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Article 
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Abstract: The global prevalence of type 2 diabetes mellitus (T2DM) has surged in recent decades 
and the identification of differential glycemic responders can aid tailored treatment for prevention 
of prediabetes and T2DM. A mixed meal tolerance test (MMTT) based on regular foods offers 
potential to uncover differential responders in dynamical postprandial events. We aimed to fit a 
simple mathematical model on dynamic postprandial glucose data from repeated MMTTs among 
participants with elevated T2DM risk, to identify response clusters and investigate their association 
with T2DM risk factors and gut microbiota. Data were used from a 12-week multi-center dietary 
intervention trial involving high-risk T2DM adults, comparing high- versus low-glycemic index 
foods within a Mediterranean diet context (MEDGICarb). Model-based analysis of MMTTs from 
155 participants (81 females, 74 males) revealed two distinct plasma glucose response clusters that 
were associated with baseline gut microbiota. Cluster A, inversely associated with HbA1c and waist 
circumference and directly with insulin sensitivity, exhibited a contrasting profile to cluster B. 
Findings imply that a standardized breakfast MMTT using regular foods could effectively 
distinguish non-diabetic individuals at varying risk levels for T2DM using a simple mechanistic 
model.   

Keywords: differential responders; clustering; personalized nutrition  
 

1. Introduction 

The global prevalence of type 2 diabetes mellitus (T2DM) is expected to reach 783.2 million 
(12.2%) in 2045 [1]. T2DM is strongly associated with the risk of developing cardiovascular disease 
(CVD) which is the leading cause of mortality and morbidity globally [2,3]. Major risk factors for the 
development of T2DM include heredity, increased waist circumference, and elevated glycated 
hemoglobin (HbA1c). Furthermore, elevated glycemic variability and postprandial glucose and 
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insulin responses may affect the risk of developing T2DM and CVD among nondiabetic individuals 
[4,5].  

Recent studies have revealed large inter-individual variation in plasma glucose after 
corresponding meals and found that gut microbiota and food structure are important determinants 
of the differential response [6,7]. Hallmark studies have developed models to predict plasma glucose 
concentrations based on gut microbiota data, health information, and basic subject characteristics 
[6,8]. Personalized guidelines based on such predictions have been shown more efficient than healthy 
dietary patterns such as a common Mediterranean diet in lowering HbA1c levels among prediabetic 
patients [9], although large differences in total carbohydrate intake between the groups may in part 
have confounded the results. Thus, tailored guidelines based on the glucose variability in 
postprandial dynamic response may be an effective way to lower the risk of T2DM.       

Clustering of dynamic features of the postprandial response could aid in identifying differences 
in glucose variability to the same dietary intake and provide a simple way of categorizing individuals 
according to diabetes risk. Such clusters may be targets for tailored diet and lifestyle interventions to 
prevent prediabetes or T2DM. Differential responders have been identified after consuming an oral 
glucose tolerance test (OGTT) [10] but mixed meal tolerance tests (MMTT) based on regular foods are 
underexplored for this purpose when measuring only glucose [11]. Strong correlations between the 
response to OGTT and MMTT have been reported showing that mixed meals with more complex 
composition that also affect lipid and protein metabolism are effective in reflecting glucose 
metabolism and perturbation thereof [11]. Furthermore, although gut microbiota has been shown to 
be a key determinant of the inter-individual variation in postprandial glucose response, it has to the 
best of our knowledge not been associated with differential postprandial glucose response clusters 
[4,6,8]. 

Therefore, we aimed to investigate if a simple mechanistic model of glucose regulation could be 
applied to describe postprandial glucose concentrations after a standardized MMTT based on regular 
foods, and whether clusters of differential responders could be identified from such a model. 
Furthermore, we investigated if differential response clusters associated differently with risk factors 
of T2DM. We further investigated if baseline gut microbiota was associated with the response clusters 
and if clusters remained after dietary intervention with low or high glycemic index. The methodology 
was applied to data from non-diabetic men and women from Sweden, Italy, and the USA with 
overweight or obesity participating in intervention with high or low GI Mediterranean diets [12,13].  

2. Materials and Methods 

Clinical trial and dietary intervention 

Data from the MEDGI-Carb trial was used in the present study because participants were at risk 
of developing T2DM and the intervention tested the effect of a high vs. low GI diet within the context 
of a healthy eating pattern, i.e., Mediterranean diet. By including individuals with elevated risk of 
T2D and using data from a dietary intervention with large contrasts in GI we had the chance to 
evaluate the possibility of identifying glycemic response clusters across a wide range of likely 
postprandial glucose responses and to assess their stability during the intervention.,  

The MEDGI-Carb trial was an international multi-center randomized, controlled, parallel-group, 
15-week dietary trial, including a 3-week baseline period followed by a 12-week controlled dietary 
intervention in adults at elevated risk of developing type 2 diabetes (give their age range, BMI range 
OR provide a small table with their features (also the other risk factors, up to you). During the 12-
week intervention period, participants consumed a Mediterranean-style, controlled, isocaloric, 
weight-maintenance diet. Furthermore, the participants were instructed to consume either a low-GI 
or high-GI diet with intervention-specific foods. All participants were instructed to consume the same 
amount of digestible carbohydrates (270 g/d) and dietary fiber (35 g/d). Modulation of daily energy 
intake was achieved by adjusting intakes of proteins and fat. Half of the daily carbohydrate intake 
was identical in the two groups, including vegetables and fruit. The other half consisted of 
carbohydrates with GI < 55 and > 70 in the low and high GI groups, respectively. The intervention-
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specific carbohydrates were distributed throughout the day with 26% at breakfast, 30% at lunch, and 
44% at dinner. Markers of glucose homeostasis were obtained during standardized testing days by 
completion of an eight-hour MMTT, an OGTT, and 6 days of 24-hour CGM at baseline and post-
testing. Furthermore, blood samples were drawn to measure HbA1c, insulin, glucose, high-density 
lipoprotein, triglycerides, blood pressure, and anthropometrics. Insulin sensitivity indices such as 
quantitative insulin sensitivity check index (QUICKI), Stumvoll, and Matsuda were calculated using 
data from the OGTTs [14]. The study was conducted at three centers: (i) Federico II University, 
Naples, Italy, (ii) Chalmers University of Technology, Gothenburg, Sweden, and (iii) Purdue 
University, West Lafayette, IN, USA. The study was initiated in January 2018 and the last participant 
finished the trial in December 2019. The trial was registered in the public trial registry 
clinicaltrials.gov as NCT03410719 prior to initiating participant recruitment. The study protocol was 
approved by the intuitional review boards at Purdue University and Federico II University and by 
the Swedish Ethical Review Authority. The study protocol with detailed descriptions of the trial such 
as randomization, blood sampling, anthropometric measurements, and intervention diet has 
previously been published [12] as well as the results of the primary analysis [13].      

Mixed meal tolerance tests  

Breakfast and lunch MMTT were performed at baseline, at mid-testing (USA only), and post-
intervention. Prior to all testing days, participants were instructed not to eat or drink anything (except 
a small amount of water) from 10:00 p.m. the evening before the visit. Fasting blood samples were 
collected at the time point (TP) -15 min and TP -5 following 15 min of rest. The test meal was 
consumed at TP 0 in two parts, the participants had 7.5 minutes to consume the first part of the meal 
and 7.5 minutes to consume the last part, to control the pace of the meal consumption. The 
participants were allowed to drink 8 ounces of water (approx. 2.4 dL) during the meal. The test meals 
were strictly standardized across all three centers. All participants were served the same portion size 
i.e., kilocalories regardless of energy requirement for practical reasons. The food composition and 
nutrients of the standardized meals are provided in Table 1.  

Table 1. Food composition and nutrients of the standardized meals. 

HIGH GI MEAL 

Foods Name 
Serving Size 

(gram) 

Energy 

(kilocalories

) 

Proteins 

(g) 
Fat (g) 

Total 

Carbohydrate

s (g) 

Soluble 

Carbohydrates (g) 

Total 

Dietar

y Fiber 

(g) 

Breakfast               

Cornflakes 30 140.4 2.5 0.3 26.4 4.0 1.5 

Bread wholegrain, 

Pan Bauletto 

(Barilla) 

24 64.0 2.0 0.9 11.4 1.7 1.1 

Eggs, whole* 50 77.5 6.3 5.3 0.6 0.0 0.0 

Extra virgin oil, 

olive 
18 162.0 0.0 18.0 0.0 0.0 0.0 

Ham, dry cured 

(country style), no 

visible fat eaten 

85 52.2 7.5 2.0 0.5 0.0 0.0 

Apple, fresh, 

without skin 

(Golden Delicious)* 

150* 78.0 0.4 0.3 20.7 20.7 3.6 

Milk, 1% fat or low-

fat, lactose-free 
244 102.5 8.2 2.4 12.2 12.2 0.0 

TOTAL   676.6 27.,0 29.1 71.8 38.6 6.2 

                

LOW GI MEAL 

Foods Name 
Serving Size 

(gram) 

Energy 

(kilocalories

) 

Proteins 

(g) 
Fat (g) 

Total 

Carbohydrate

s (g) 

Soluble 

Carbohydrates (g) 

Total 

Dietar

y Fiber 

(g) 

Breakfast               
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*Edible amount 

Blood samples were collected at TP 15 after the test meal and then at TP 30, TP 45, TP 60, TP 90, 
TP 120, TP 180, and TP 240. A standardized lunch meal was served at TP 240, again with 7.5 minutes 
to consume the first half of the meal and 7.5 min to consume the second part. The blood sampling 
continued by the same pattern as after the breakfast meal (Supplementary Figure 1). For the present 
analysis, only glucose data from testing minutes TP -15 to TP 240 (i.e., the breakfast meal) were 
included to accommodate the fit of a simple kinetic model of the postprandial glucose response.  

Oral glucose tolerance test 

Participants completed OGTT at baseline, at mid-testing (USA only), and post-intervention. 
Fasting blood samples were collected at TP -15 after 15 minutes of rest and at TP -5. At TP 0, 
participants were instructed to consume a test beverage containing 75 g glucose dissolved in water 
within 5 minutes. No additional fluids were permitted during the test. Blood samples were collected 
at TP 60 and TP 120 (Supplementary Figure 1). 

Fecal microbiota  

During pre- and post-intervention study days, participants were asked to collect fecal samples 
using a stool sampling collection kit. Samples were taken using an EasySampler Stool Collector and 
a sample tube with a spoon-lid. The sample was protected by being placed in yet another tube and 
stored immediately in the freezer (-20 ℃). The samples were transported in a cooling box with an ice 
pack to the clinic within 72 hours after the sample was collected. At the clinic, the sample is 
transferred to -80℃ within 24 hours. The samples were analyzed with the 16S rRNA gene amplicon 
sequencing method where DNA was extracted and purified from fecal samples using the QIAamp 

FAST DNA Stool mini kit from Qiagen. The DNA extraction followed the protocol from the 
manufacturer with one exception, where lysis of the bacterial cell walls used a mechanical lysis step 
(bead beating 2x1 minutes in a Precellys Evolution using 0.1 mm zirconium/silica beads). Once the 
DNA was extracted and purified from the sample, polymerase chain reaction (PCR) was used to 
amplify the V3-V4 region of the gene encoding 16S rRNA. This gene exists in all bacteria and is 
normally used for the taxonomic classification of bacteria since parts of the 16S gene vary in sequence 
composition between different bacteria. Sample-specific barcodes and Illumina adapters were then 
attached to the PCR amplicons to enable the pooling of samples. The library of PCR amplicons was 
then sequenced on the Illumina NovaSeq 6000 platform at Novogene. The bioinformatics analysis to 
handle the generated sequence data used QIIME2 via the dada2 pipeline.  The sequences were first 
demultiplexed, i.e., separated according to the sample-specific barcode in the specific sample. Then, 
a quality control and filtration of the sequence data was performed to remove sequences with poor 
quality. Finally, a taxonomic classification of the sequences was performed. The gut microbiota 
analysis and subsequent data processing and analysis has been described in detail by Iversen, 
Dicksved [15]. The gut microbiota was analyzed to investigate if it could explain inter-individual 
differences in glycemic postprandial response and provide some mechanistic insights into potential 
differential response profiles between subjects. The microbiota was aggregated to genus level prior 
to downstream analysis.  

Piadella (Mulino 

Bianco - Barilla) 
75 255.0 5.6 8.4 38.3 2.3 2.0 

Extra virgin oil, 

olive 
10 90.0 0.0 10.0 0.0 0.0 0.0 

Eggs, whole* 50 77.5 6.3 5.3 0.6 0.0 0.0 

Ham, dry cured 

(country style), no 

visible fat eaten 

38 60.9 7.7 3.1 0.0 0.0 0.0 

Apple, fresh, 

without skin 

(Golden Delicious)* 

150* 78.0 0.4 0.3 20.7 20.7 3.6 

Milk, 1% fat or low-

fat, lactose-free 
244 102.5 8.2 2.4 12.2 12.2 0.0 

TOTAL   663.9 28.2 29.4 71.7 35.2 5.6 
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Species that were known from literature to associate with glucose regulation were selected and 
association with clusters was investigated using one-way ANOVA. Selected species were 
"Bifidobacterium", "Bacteroides", "Faecalibacterium", "Akkermansia", "Roseburia", "Fusobacterium", "Blautia", 
"Haemophilus", "Ruminococcus", "Clostridium", and "Dorea" [16–22]. 

Mechanistic model of glucose regulation 

A modified version of the minimal glucose model [23] proposed by Bolie [24] was used to 
describe the glucose response to the MMTT from breakfast at baseline and after 12 wk in order to 
identify interpretable parameters that could be used as the basis for grouping individuals according 
to plasma glucose-time profiles [25]. The model was initially developed for plasma glucose data 
following an OGTT and consists of two coupled differential equations describing the feedback loop 
of glucose and insulin blood concentrations in response to glucose intake [25]. In the present study, 
the MMTT consisted of a carbohydrate-rich meal which was hypothesized to give a similar response 
to that of an OGTT, when consumed at a fasted state, although it is acknowledged that the model is 
oversimplifying the complex glucose-insulin system in response to foods that also contain other 
nutrients and non-nutrients. The idea was not to provide a model that explains all biological 
processes related to the postprandial response to a mixed meal, rather to provide a simple model that 
fits the data and could be used to group responders into clusters that are differently related to T2D 
risk factors.  

The dynamics of the model are described using compartments that represent mechanisms in the 
glucose-insulin system and the exchange rates between compartments are described using rate 
constants. The model assumes that the ingested glucose is delayed by the digestive system and 
transferred to the bloodstream, where insulin acts to let the glucose be absorbed by the muscle tissue 
or the liver and converted to glycogen. Furthermore, the model assumes that the glucose can be 
discarded through the urine via the kidneys and that the pancreas produces insulin at a given rate in 
response to the current glucose concentration. Notably, the model assumes a linear relationship 
between insulin secretion and glucose which is often not the case due to the effects of incretin 
hormones for example, but the rationale is to obtain a more parsimonious model with easily grouped 
parameters. A particularly simple solution for the model glucose concentration can be formulated if 
the gastrointestinal absorption is assumed to rise very quickly and fall slowly and the ingested 
breakfast meal is modeled as a momentary impulse at the first measurement in time[25]. This solution 
takes the shape of a damped sinusoidal wave (Equation 1), which is used widely in mechanics  [26]. 
Thus, the parameters governing the glucose dynamics were reduced to a glucose baseline level (𝐺௕), 
sinusoidal amplitude (𝐴) involved in the resulting amplitude of the glucose concentration, sinusoidal 
frequency (𝜔) relating to the velocity of glucose oscillations, and damping coefficient (𝛼) determining 
the rate of glucose decay.  𝐺(𝑡) = 𝐺௕ + 𝐴 𝑠𝑖𝑛(𝜔𝑡) 𝑒ିఈ௧ (1) 

Although the parameters of the reduced model have no one-to-one correspondence to specific 
mechanisms in the body, they convey the general quality of the glucose control.  
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Figure 1. Example dynamics generated from the model in Eq.1. The blue curve is characterized by a 
fast biphasic response to the MMTT, thus having high frequency (𝜔) and low amplitude (𝐴). The red 
curve has a larger damping coefficient (𝛼) which yields a faster monophasic return to baseline. The 
yellow curve is characterized by a slow response to the MMTT, meaning poor glucose regulation, and 
is described by the inverse parameter relationship as the blue line but sharing the same damping 
coefficient. 

The sinusoidal frequency (𝜔) relates to the rates of removal of glucose and insulin where a high 
frequency describes a fast response of the regulatory system meaning that the first glucose peak 
appears early, as seen in the blue and red line in Fig.1. The amplitude (𝐴) of the undamped sinusoidal 
depends on the body’s tolerance of the ingested glucose and relates to the height of the glucose peak 
together with the damping coefficient (𝛼). The yellow dynamic has a larger amplitude than the blue 
and red ones, and the larger damping coefficient in the red dynamics avoids the under- and 
overshoots seen in the blue dynamic Fig.1. It should be noted that insulin is not part of the solution 
in Eq.1 since it has been eliminated in the derivation and described in terms of glucose and the 
estimated parameters. This makes the model very attractive to use in a setting when insulin cannot 
be measured and CGM could be used to measure glucose, such as when performing measurements 
at home. Since no parameter directly describes the maximum postprandial glucose concentration, an 
expression of this was derived (Eq.2). 

𝐺௠௔௫ =  𝐺௕ + 𝑒ି ୡ୭ୱషభቀ ඥଵାమ⁄ ቁ√1 + ଶ  𝐴       where       = 𝛼𝜔 (2) 

The model was originally shown to fit OGTT data well, despite mechanisms such as the role of 
adrenal cortical and medullary function in glucose economy were not accounted for [27]. In the 
present study, the model was used to describe the postprandial glucose concentration for an MMTT 
where the subjects were fasted prior to ingesting the meal. 

Statistical analyses  

The parameters of the model were estimated within the nonlinear mixed effects model 
framework [28]. Here, we refer to our nonlinear regression model (Eq. 1) as 𝐺 which depends on the 
individual model parameters 𝜑௜ = ሼ𝐺௕,(௜), 𝐴௜ , 𝜔௜ , 𝛼௜ሽ and regresses to the glucose measurements 𝑦௜ 
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with some measurement or process error 𝜀 ∼ 𝒩(0, 𝜎ଶ) with an assumed constant variance across 
observations (Eqs. 3 and 4). Here 𝑖 represents the subject index. 𝑦௜ = 𝐺(𝜑௜ , 𝑡) + 𝜀 (3) 𝜑௜ = 𝛽 𝑒ఎ೔ା𝑨 ௫೔ (4) 

The individual parameters 𝜑௜ are described by the fixed effects (shared among all individuals) 𝛽, and the random effects 𝜂௜ ∼ ∑ 𝜇௝𝕀൛௜∈ெೕൟ௡ିଵ௝ୀଵ + 𝒩(0, 𝚿). Additionally, they are affected by covariates 𝑥௜  via the covariate matrix 𝑨. Here 𝜂௜  is a vector with four elements, representing the random 
effects (modeling the variation within the test population) on each of the four parameters in 𝜑௜. The 
mean vector (𝜇௝) of the multivariate normal distribution is dictated by what group 𝑀௝ individual 𝑖 
is most likely to belong via the indicator function 𝕀൛௜∈ெೕൟ , effectively making 𝜂௜  a mixture of 𝑛 

multivariate normal distributions and allowing identification of subgroups (clusters) within the data. 
The covariance matrix is denoted by 𝚿, which we assume to be diagonal, i.e., no correlation between 
parameters. Associations between clusters and clinical parameters were investigated using one-way 
ANOVA and Chi-squared tests for continuous and categorical data, respectively.  

The study effect on gut microbiota composition was investigated using log fold change of 
baseline and 12 wk. on all species using random forest analysis within a repeated double cross-
validation framework [29].  

The parameter estimation software Monolix was used to simultaneously estimate the random 
and fixed effects (Monolix 2021R2, Lixoft SAS, a Simulations Plus company). Covariates were 
imposed to reduce the variance not reflecting blood glucose control. Age and site were imposed as 
covariates on the baseline (𝐺௕). Since the breakfast meals given to the two treatment groups had 
similar nutritional composition (Table 1), treatment (high or low GI) was imposed as a covariate on 
the amplitude (𝐴), thus accounting for differences in MMTTs between treatments. Parameters were 
estimated per individual and occasion (pre- and post-trial). The relative standard error (RSE) was 
used as an estimate of the uncertainty in the estimated parameters:  𝑅𝑆𝐸 = 100 ⋅ 𝑒௦௧ௗ𝑦ො . (5) 

Here, 𝑒௦௧ௗ describe the standard error and 𝑦ො the estimate. We consider an RSE value below 
50% percent a valid estimate using the Monolix software.  

3. Results 

In total, 155 individuals completed the two MMTTs and OGTTs (baseline and wk. 12) and were 
included in the analyses. Calculations on fecal microbiota were based on 130 individuals who 
provided two fecal samples within the participants that performed the two MMTT and OGTTs 
(baseline and wk. 12) (Table 2).   

Table 2. Baseline characteristics of the subpopulations analyzed in MMTT & OGTT and Fecal 
microbiota. 

 High GI Low GI 

MMTT & 
OGTT 

72 (36 men & 36 women) 
Age: 55.8 ± 9.9 (years) 
BMI: 30.8 ± 3.0 (kg/m2) 

Waist circumference: 107.3 ± 9.2 (cm) 
Glucose: 105.5 ± 10.2 (mg/dL) 

Total cholesterol: 187.8 ± 30.8 (mg/dL) 
Triglycerides: 114.8 ± 44.6 (mg/dL) 

HDL: 48.4 ± 11.6 (mg/dL) 
LDL: 116.1 ± 27.6 (mg/dL) 

83 (38 men & 45 women) 
Age: 56.0 ± 10.5 (years) 
BMI: 31.1 ± 3.2 (kg/m2) 

Waist circumference: 105.1 ± 8.6 (cm) 
Glucose: 103.4 ± 10.3 (mg/dL) 

Total cholesterol: 192.2 ± 33.0 (mg/dL) 
Triglycerides: 122.2 ± 68.8 (mg/dL) 

HDL: 47.7 ± 11.8 (mg/dL) 
LDL: 119.8 ± 26.6 (mg/dL) 
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Systolic blood pressure: 124.6 ± 12.4 
Diastolic blood pressure: 80.9 ± 8.9 

Systolic blood pressure: 128.5 ± 13.7 
Diastolic blood pressure: 81.9 ± 8.5 

Fecal 
microbiota 

57 (28 men & 29 women) 
Age: 57.0 ± 9.7 (years) 
BMI: 30.4 ± 3.1 (kg/m2) 

Waist circumference: 106.5 ± 9.2 (cm) 
Glucose: 106.4 ± 10.5 (mg/dL) 

Total cholesterol: 189.7 ± 30.5 (mg/dL) 
Triglycerides: 113.9 ± 45.5 (mg/dL) 

HDL: 50.2 ± 11.8 (mg/dL) 
LDL: 116.8 ± 27.4 (mg/dL) 

Systolic blood pressure: 124.1 ± 12.5 (mm 
Hg) 

Diastolic blood pressure: 81.1 ± 9.0 (mm 
Hg) 

73 (34 men & 39 women) 
Age: 55.8 ± 10.7 (years) 
BMI: 30.9 ± 3.2 (kg/m2) 

Waist circumference: 105.1 ± 8.4 (cm) 
Glucose: 102.9 ± 10.2 (mg/dL) 

Total cholesterol: 192.7 ± 32.7 (mg/dL) 
Triglycerides: 117.6 ± 60.0 (mg/dL) 

HDL: 47.9 ± 11.8 (mg/dL) 
LDL: 120.6 ± 27.3 (mg/dL) 

Systolic blood pressure: 128.1 ± 13.8 (mm 
Hg) 

Diastolic blood pressure: 82.1 ± 8.6 (mm 
Hg) 

Postprandial MMTT glucose responses 

Individual parameters of the kinetic model (baseline, amplitude, damping, and frequency) from 
Eq.1 were estimated using the postprandial MMTT glucose response at baseline and wk. 12. The 
parameters were successfully estimated with RSE < 43% in all cases, which indicated certainty in the 
estimates. Variation among individuals resulted only in the parameters amplitude 𝐴௜, frequency 𝜔௜, 
and baseline 𝐺௕,(௜) since random effects on the damping parameter were not estimated with enough 
certainty. Clusters were therefore not based on the damping parameter 𝛼௜. Nor the covariate group 
membership (high-GI or low-GI) could be estimated with enough precision meaning that there was 
no effective difference in the response of the two meals. The model fitted well to the response of the 
breakfast MMTT as given by the low RSE, although some systematic phenomena could not be 
captured e.g., the slow undershoot in subject 104 (Figure 2). 
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Figure 2. Model fit to postprandial breakfast MMTT response at baseline of 16 randomly selected 
representative subjects. Here points represent measurements and lines represent the fitted model 
values. 

Two plasma glucose concentration profile clusters (A and B) were successfully identified (RSE < 
33%), which were well separated in the amplitude and frequency parameters but not in the baseline 
parameter, although the cluster membership was estimated in the baseline parameter as well (Figure 
3). Estimating more than two clusters rendered the cluster membership parameter unidentifiable and 
a clear separation of individuals was visible when using a single lognormal distribution instead of a 
mixture of lognormal distributions (data not shown). This led to the choice of estimating the 
likelihood of cluster membership using two lognormal distribution modes (clusters). The distribution 
of the clusters in the covariates is shown in Supplementary Figure 2. 

The individuals in cluster A had in general a higher frequency 𝜔௜ and a lower amplitude 𝐴௜ 
(Figure 3). This is also visible in the postprandial glucose profiles of the MMTT data when 
participants were color-coded by cluster membership (Figure 4). Individuals in cluster A, had in 
general a lower peak in plasma glucose response. The peak also appeared later for cluster B (which 
equates to a lower frequency 𝜔௜ of the sinusoidal function in Equation 1). The clusters consisted of 
approximately 46% of cluster A and 54% of cluster B. 

 

Figure 3. Joint parameter distribution obtained from fitting the model in Equation (1) to the 
postprandial breakfast MMTT data. The blue and red colors represent clusters A and B respectively. 
The diagonal represents histograms of the parameter distribution and the off-diagonal represents 
pairwise joint distributions. 
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Figure 4. Baseline postprandial breakfast MMTT response color-coded by the clusters. 

The clusters at baseline were associated with known diabetic risk markers such as HbA1c 
(p=2.8 ⋅ 10ିହ), insulin sensitivity indices (QUICKI (p=1.4 ⋅ 10ି଺), Stumvoll (p=1.7 ⋅ 10ିଷ), Matsuda 
(p=1.8 ⋅ 10ି଼ )) and waist circumference (p=1.1 ⋅ 10ି଺) using one-way ANOVA (Figure 5). Although 
the clusters mostly involved the amplitude and frequency, all the parameters correlated with the risk 
factors (Supplementary Figure 2).  

Importantly, the clusters also associated differently with conditions reflecting clinical cut-offs 
for differential glucose control, i.e., prediabetes (fasting HbA1c ൒ 5.7 % and fasting blood 
glucose>100mg/dl, p=0.01  [30], insulin resistance (p=6.5 ⋅ 10ି଻ ), (Matsuda index ൑ 2.5), glucose 
control (p=6.6 ⋅ 10ିହ ) (normal, impaired, or diabetic [30,31]) using a Chi-squared test.  
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Figure 5. Baseline joint distribution of diabetes risk markers which had significant associations with 
clusters. The diagonal represents histograms of the parameter distribution and the off-diagonal 
represents pairwise joint distributions. 

Most of the subjects classified as normoglycemic also belonged to cluster A and most of the 
subjects classified as “impaired” or “diabetic” belonged to cluster B (Figure 6). The frequencies of 
glycemic control classes in each cluster are indicated in Supplementary Figure 4.  
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Figure 6. Baseline joint parameter distribution obtained from fitting the model in Equation (1) to the 
postprandial MMTT data. The different markers (dots, triangles, and asterisk) represent subjects 
classified as “normoglycemic”, “impaired” glucose control, or being “diabetic”, respectively. Here we 
used the OGTT measurement after 2h and classified normal glycemic regulation as < 7.7 mmol/L, 
impaired glucose tolerance in the range of 7.8-11.0 mmol/L, and diabetic > = 11.1 mmol/L. The 
diagonal represents histograms of the parameter distribution and the off-diagonal represents 
pairwise joint distributions. 

The same analysis as described using the breakfast MMTT response before the intervention (at 
baseline) was made using the breakfast MMTT response post-intervention where similar cluster 
memberships were identified (Figure 7). However, the average Euclidean silhouette measure 
decreased from 0.58 to 0.36, indicating that the clusters were more distinct using baseline data. 
Moreover, it was observed that 60% of the subjects in cluster B improved in their glucose regulation 
by a decreased amplitude and increased frequency parameter value when comparing baseline values 
with those after 12 weeks of intervention. Additionally, in the low GI group, 58% decreased their 
baseline parameter, 61% decreased their amplitude parameter and 59% increased their frequency 
parameter after the intervention compared to baseline, which all relate to improved glycemic control. 
In comparison, in the high GI group, 49% decreased their baseline parameter, 46% decreased their 
amplitude parameter and 57% increased their frequency parameter compared to baseline. However, 
there was only a statistically significant change between the two time points in the low GI group in 
the amplitude parameter (Wilcoxon signed-rank test p=0.001).  Furthermore, cluster A had a minor 
enrichment of women (63 and 64% pre- and post-intervention respectively) compared to the entire 
study population (53%).  

 
Figure 7. Week 12 joint parameter distribution obtained from fitting the model in Equation (1) to the 
postprandial breakfast MMTT data. The blue and red colors represent clusters A and B respectively. 
The diagonal represents histograms of the parameter distribution and the off-diagonal represents 
pairwise joint distributions. 

Some of the individuals changed cluster from pre- to post-trial (~26% change in each cluster), 
but there was no significant difference between clusters (Cohen's kappa = 0.42, moderate stability 
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between clusters (95%CI 0.27-0.56)). The change in parameters from baseline to wk. 12 (change = 
baseline – wk.12) did not correlate significantly with the change in risk markers.  

Interestingly, the identified plasma glucose response clusters at baseline were associated with 
the gut microbiota genera Clostridium sensu stricto 1 (ANOVA p = 0.007) and Blautia (ANOVA p = 
0.024). However, these genera correlated weakly with the estimated amplitude (𝜌 = -0.2, p = 0.02 and 𝜌 = 0.2, p = 0.02 respectively) and frequency (𝜌 = 0.14, p = 0.08 and 𝜌 = -0.19, p = 0.02 respectively) 
parameters that separated the clusters. Here,  𝜌 denotes the Pearson correlation coefficient and p 
denotes the probability that the correlation is zero, using a t-test. As expected, we found no 
differences in gut microbiota composition between the two intervention groups (log fold change to 
predict low vs. high GI, balanced error rate 0.5) However, there was a clear difference attributed to 
the site (balanced error rate 0.09) and a difference in the Shannon diversity index (ANOVA p = 0.0134) 
between study centers was also noted (Supplementary Figure 5). 

4. Discussion 

To dissect glucose data into features representing postprandial events, we used a model with 
only four parameters to identify clusters from standardized breakfast meal tolerance test responses 
that strongly related to T2DM risk factors. Although the model did not capture all systematic 
variation in the data, it was flexible enough to allow the identification of differential glycemic 
response clusters after mixed meal tests that were differentially associated with risk factors of T2D 
and gut microbiota. The results suggest that a standardized breakfast meal could provide meaningful 
data to predict risk factors of T2DM from dynamic glucose response measurements.  

Plasma glucose response clusters were mostly separated in the amplitude and frequency 
parameters and not in the baseline glucose parameter (Figs. 3&7) which confirms that a dynamical 
model captures more information than a fasting plasma measurement and can more effectively be 
used for prediction of glycemic regulatory status. Individuals in cluster A were deemed to have better 
glucose control since they were characterized by a more favorable T2DM risk marker profile: a lower 
glycemic response, lower amplitude, and higher frequency parameters, whereas cluster B had the 
opposite traits and therefore more likely to develop health issues related to their glycemic control 
such as T2DM. However, the individuals classified as “diabetic” (Figure 6) may be on the borderline 
to be classified as diabetics since this classification was using data from one OGTT when all 
participants were classified as non-diabetics at screening. Predictive tests of glycemic control 
classifications from estimated parameters were not analyzed due to the imbalance among classes, i.e., 
lack of diabetic patients in the data. Furthermore, some patients in the healthier cluster A had 
impaired glycemic regulation indicating that the estimated parameters give more information about 
the patient's glycemic regulation than solely a classification based on OGTTs. 

The breakfast MMTT clusters did not associate with the study site nor with treatment, which 
suggests that using these as covariates successfully captured their variance in the data. However, the 
low GI group improved more than the high GI group in their estimated parameters (decreased 
average baseline, decreased average amplitude, and increased average frequency) after a 12-week 
intervention, which suggests that the low GI diet aided in improving the glycemic control of the 
participants [32]. This could also explain why the cluster separation reduced from an average 
silhouette value of 0.58 to 0.36 from baseline to post-intervention, although there was no statistical 
difference overall between the two time points (Wilcoxon signed-rank test). 

Our data suggests that a standardized breakfast MMTT based on regular foods may be an 
alternative to an OGTT, especially among patients with a high risk of nausea, such as pregnant 
women or bariatric surgery patients [33,34]. In contrast, an MMTT does not cause these side effects 
and is therefore an alternative to OGTT. Furthermore, our results based on a standardized breakfast 
meal including commonly consumed foods are in line with conclusions from a recent review that 
compared an OGTT to an MMTT and found a strong or very strong correlation (𝑟 = 0.9-0.97) between 
an OGTT and MMTT, which further supports that it may be used as an alternative to the OGTT [11]. 
Additionally, the metabolic feedback from an MMTT that includes all macronutrients (carbohydrates, 
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fat, and proteins) provides more comprehensive information on glucose homeostasis compared to a 
single macronutrient [35,36]. However, the MMTT should be standardized and preferably provided 
as a breakfast to avoid complications of the glucose dynamics with lingering metabolic effects of other 
meals. If standardized, cluster membership could potentially be estimated at home using the MMTT 
and a CGM connected to a cellular device, as CGM data has been shown to capture clusters of 
individuals based on glucose variability [7]. 

Previous studies have shown that gut microbiota is associated with postprandial glucose 
response, but no studies have investigated associations with response clusters. In our study, we 
found that glucose response clusters were associated with the bacterial genera Clostridium sensu stricto 

1 and Blautia. Cluster A had a higher proportion of Clostridium sensu stricto 1 than cluster B and vice 
versa for Blautia, which is consistent with previously reported associations of these genera with 
glucose control [16–18]. Future studies should test how dietary interventions may affect these genera 
and to reveal their mechanistic links with postprandial glucose response. As expected, there were no 
differences in microbiota composition between groups after intervention, since the diets were similar 
except for low/high GI. In accordance with other studies, large differences between study centers 
were found, probably due to differences in dietary and lifestyle patterns as observed [32]. 

Our study has several strengths including the large sample size with participants from three 
countries (Italy, USA, and Sweden), which reduces the chances that treatment effect or found clusters 
would be confounded by the cohort. In addition, the MMTT was robustly designed with participants 
carefully monitored during the test days and strictly standardized meal composition across the three 
centers to reduce the risk that the differences in response would be due to differences in intake. 
Furthermore, the mechanistic model gave interpretable clusters using only four identifiable 
parameters, which were estimated using a mixture of lognormal distributions. Although a mixture 
of distributions is rarely used, it proved useful in estimating the likelihood of cluster membership. 
However, although the method enabled investigating glucose control from the dynamical response, 
it should be noted that all descriptive variance was not captured using the model (e.g., slow 
undershoot). 

Limitations included the fact that all participants were at risk of developing T2DM. Hence, 
although OGTT and MMTT responses have been described using the same model to estimate insulin 
sensitivity [37], our method remains to be validated in a broader population, including patients with 
manifested T2DM and gestational diabetes. Also, the response to the lunch was not applied using 
this model since a more complex dynamic would be needed to account for the lingering response of 
the breakfast.  

The MMTT used in the present trial was based on a Mediterranean diet. However, different diets 
and foods may have different effects on gastric emptying time and blood glucose response which 
should be taken into consideration when designing future studies [38,39]. Validating our method in 
a cohort with a balanced set of individuals with normoglycemic, impaired glucose control and 
diabetics may allow for the development of an algorithm to classify these states from the estimated 
parameters using our model on the response of MMTTs. Furthermore, this algorithm could 
potentially be used with a cellular device and a CGM in a home setting and to be done periodically 
to facilitate tailored preventative treatment of prediabetes and T2DM.  

5. Conclusions 

We used a simple model to successfully describe glucose response to a standardized breakfast 
MMTT based on common foods and identified two response clusters that were associated differently 
with T2DM risk markers and gut microbiota. Future studies should investigate if such clusters can 
be identified by an algorithmic self-sampling tool for the classification of differential T2D risk profiles 
based on standardized breakfast MMTT in a home setting using continuous glucose monitoring and 
whether tailored diet and lifestyle advice may lower T2D risk. 
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