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Abstract: In this study, deep neural network (DNN) and transfer learning (TL) techniques were employed to 

predict the viscous resistance and wake distribution based on the positions of flow control fins (FCFs) applied 

to containerships of various sizes. Both methods utilized data collected through Computational Fluid 

Dynamics (CFD) analysis. The position of the flow control fin (FCF) and hull-form information were utilized 

as input data, and the output data included viscous resistance coefficients and components of propeller axial 

velocity. The base DNN model was trained and validated using a source dataset from a 1,000 TEU 

containership. Grid search cross-validation technique was employed to optimize the hyperparameters of the 

base DNN model. Then, transfer learning was applied to predict the viscous resistance and wake distribution 

for containerships of varying sizes. To enhance the accuracy of feature prediction with a limited amount of 

dataset, learning rate optimization was conducted. Transfer learning involves retraining and reconfiguring the 

base DNN model, and the accuracy was verified based on the fine-tuning method of the learning model. The 

results of this study can provide hull designers for containerships with performance evaluation information by 

predicting wake distribution, without relying on CFD analysis. 

Keywords: Flow Control Fin (FCF); Deep Neural Network (DNN); Transfer Learning (TL); containership; 

viscous resistance coefficients; wake flow distributions 

 

1. Introduction 

The severity of environmental issues resulting from industrial development has become a global 

concern, spanning various sectors, including the shipbuilding industry. As a result, various related 

regulations are being formulated or strengthened. In 2018, the International Maritime Organization 

(IMO) announced a strategy to reduce the total greenhouse gas emissions from ships by 50% and the 

Carbon Intensity Indicator (CII) by 70% by the year 2050, compared to the levels in 2008. As one of 

the initial strategies, the implementation of the EEXI (Energy Efficiency eXisting Ship Index) and the 

CII (Carbon Intensity Index) rating system is already in place. This represents a significant 

strengthening of energy efficiency regulations for existing ships. The efforts to meet EEXI compliance 

and achieve higher CII ratings are tasks assigned to the existing ships. Among several strategies for 

this purpose, one approach is to enhance resistance performance, and this can be achieved through 

the application of Energy Saving Devices (ESDs). The application of ESDs involves installing 

relatively small-scale devices that can lead to significant effects. Because of this, ESDs are utilized in 

various ways, not only for existing ships but also for the design of new ships.  

Samsung Heavy Industries registered a patent in 2007 [1] for SAVER (SAmsung Vibration and 

Energy Reduction) Fins. These FCFs are designed to control the inflow fluid dynamics above and 

below the propeller of ships, to improve pressure resistance and reduce vibrations. Lee et al. [2] 

applied the SAVER Fins in combination with rudder bulb to a 35k DWT bulk carrier and confirmed 

a power-saving effect of 7.4% through model tests and sea trials. Kim et al. [3] attached vertical plates 
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to the stern of a 24K tanker and confirmed improvements in resistance performance and wake 

distribution through Computational Fluid Dynamics (CFD) analysis. Lee et al. [4] investigated the 

changes in resistance performance and wake characteristics based on the position of FCF and the 

angle with the streamline using CFD analysis, focusing on an 80K bulk carrier. Recently, Park et al. 

[5] demonstrated through model tests and CFD that FCF can reduce the total resistance of a 6.5K 

DWT tanker by 4.3%. Many studies have been conducted on FCF design, and the effects of FCF are 

predominantly verified through model tests and CFD simulations. Furthermore, research has 

advanced to predict or optimize the effects of FCF using artificial intelligence techniques as a basis. 

A neural network was trained based on hull-form data and then used to predict the wake distribution 

[6]. Another example is Kim and Moon [7], who used a neuro-fuzzy technique to predict wake 

distribution. Wie and Kim [8] carried out optimal FCF design for the Kriso 300K VLCC using Genetic 

Algorithm (GA) and NLPQL (Non-Linear Programming by Quadratic Lagrangian).  

In the previous paper by author's [9], optimal FCF design was performed for a small 

containership using two strategies: neural network-based machine learning and optimization 

techniques. The objective of this current study is to predict the resistance performance and propeller 

inflow characteristics for containerships of various sizes, not just for a single containership. Initially, 

a Deep Neural Network (DNN) model is employed to predict the performance of a single 

containership with a substantial dataset available. The hyperparameters required for model 

configuration are optimized using grid search cross-validation. Subsequently, based on the base 

DNN model, Transfer Learning (TL) is utilized to predict performance for the remaining 

containerships with limited data. In this study, a small number of hull-forms are applied to transfer 

learning to predict the fluid dynamic performance based on the FCF position. This can be utilized as 

foundational research for expanding the applicability of fluid dynamic performance prediction 

techniques to containerships of various sizes and even to different types of vessels. Additionally, it is 

considered that the combination of transfer learning-based performance prediction and appropriate 

optimization algorithms can be extended to the FCF design of containerships of various sizes. 

The paper organization is as follows: Section 2 presents the target ships and FCF specifications, 

and formulates the numerical methods to prepare for the data; Section 3 describes the theoretical 

background of deep neural networks and transfer learning, detailing the specific processes applied 

in this study. Subsequently, Section 4 presents the performance prediction results for containerships 

of various sizes. Finally, Section 5 discusses the main conclusions and findings. 

2. Problem descriptions 

2.1. Target ship and flow control fins 

The base DNN used for predicting wake distribution and resistance is trained using data from 

the author's previous paper. A relatively substantial amount of data used for training the DNN model 

comes from a 1,000 TEU containership constructed by Daesun Shipbuilding & Engineering Co. Ltd. 

This was associated with the presence of reliable CFD data. A model with a scale ratio 𝜆 = 30.56 was 

selected for numerical simulation. The data used for the transfer learning model consists of different-

sized vessels: 2,500 TEU and 3,600 TEU (KCS; KRISO Containership) containerships. For these ships, 

models with each scale ratio of 𝜆 = 27.2 and 𝜆 = 31.6  were considered. The principal dimensions 

of target hulls and propellers are given in Table 1. Figure 1 presents the three-dimensional views of 

target hull forms and propellers. 

Table 1. Principal particulars of 1,000TEU containership. 

Class Designation Symbol (unit) Full-scale ship 

1,000 TEU 

Length bet. Perpendicular 𝐿௉௉ (m) 137.5 

Breadth 𝐵 (m) 23.6 

Draft 𝑇 (m) 7.4 

Block coefficient 𝐶஻  0.595 

Propeller Diameter 𝐷𝐼𝐴 (m) 5.5 
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2,500 TEU 

Length bet. Perpendicular 𝐿௉௉ (m) 185.0 

Breadth 𝐵 (m) 32.26 

Draft 𝑇 (m) 10.0 

Block coefficient 𝐶஻  0.640 

Propeller Diameter 𝐷𝐼𝐴 (m) 6.8 

3,600 TEU 

Length bet. Perpendicular 𝐿௉௉ (m) 230.0 

Breadth 𝐵 (m) 32.2 

Draft 𝑇 (m) 10.8 

Block coefficient 𝐶஻  0.651 

Propeller Diameter 𝐷𝐼𝐴 (m) 7.9 

 

 

(a) 1,000 TEU 

 

 

(b) 2,500 TEU 
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(c) 3,600 TEU 

Figure 1. 3D volumetric views of target hulls and propellers: (a) 1,000 TEU; (b) 2,500 TEU; (c) 3,600 

TEU. 

The Flow Control Fin (FCF) used in this study is in rectangular shape with two rounded corners 

(see Figure 2). The dimensions of full-scale FCF were 1.30 m long, 0.37m high, and 0.03m thick. When 

normalized by the propeller diameter 𝐷, these correspond to 0.236𝐷 (length) × 0.0673𝐷 (height) × 0.00545𝐷 (thickness). Generally, FCFs are attached in pair(s) at the same locations on the port and 

starboard sides. The design variables for the FCF are the longitudinal and vertical positions of FCF, 

inclination angle, and hull-form information. Here, the position of the FCF is located at the midpoint 

of the baseline, and the angle of inclination refers to the angle between the FCF baseline and the ship 

baseline. The hull-form information applies the derivatives representing the gradient of each tangent 

at the midpoint of the FCF in the directions of the station, waterline, and buttock line. In more detail, 

when the derivative is small in the station direction, it indicates that when observing the hull-form 

in the body plan, the shape resembles a V type. Similarly, when the derivatives are small in the 

waterline and buttock line directions, they represent hull-form that changes smoothly in the half-

breadth and shear plan, respectively.  

 

Figure 2. Geometry of FCF. 

Indeed, even within the same type of vessel, differences in main particulars, hull-form, and the 

position of the FCF can result in variations in the characteristics of the propeller inflow velocity 

distribution. Figure 3 illustrates the distribution of the viscous resistance coefficient and the standard 

deviation of axial velocity distribution based on derivatives in the waterline and buttock line 

directions. The orange symbols represent the viscosity resistance coefficients and standard deviation 

for 1,000 TEU, the green symbols for 2,500 TEU, and the blue symbols for 3,600 TEU. Transfer learning 

was employed to predict values with varying characteristics across different ship sizes. 
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(a) (b) 

Figure 3. Features distribution for each containership: (a) distribution of viscous resistance coefficient; 

(b) standard deviation of axial velocity distribution. 

2.2. CFD simulation to obtain training data 

In this study, 693 datasets were prepared by the CFD analysis to train, validate, and test the base 

DNN model. Each data corresponded to a combination of design parameters, including 11 

longitudinal positions ሺ3.0 ൑ 𝑥 𝑆𝑡.⁄ ൑ 4.0, ∆𝑥 𝑆𝑡. = 0.1⁄ ሻ ൈ vertical positions ሺ0.135 ൑ 𝑧 𝑇⁄ ൑ 0.405,∆𝑧 𝑇 = 0.0135⁄ ሻ ൈ 3 inclination angles ሺ𝛼 = 19°, 20°, 21°ሻ. Here, 𝑆𝑡. Refers to the station length, 

which is 1/20 of the length between perpendicular 𝐿௉௉. Around 150 target datasets for 2,500 TEU and 

3,600 TEU were obtained through CFD analysis for transfer learning. The target datasets were 

randomly selected within the same longitudinal and vertical position ranges as the source datasets. 

Similarly, the inclination angles were also randomly specified.  

It is necessary to emphasize the importance of automation in such preprocessing steps as 

modeling and mesh generation, as it significantly enhances the overall computational efficiency for 

the entire set of 843 simulation cases. The processes including three-dimensional modeling of hull-

forms with varying FCF positions, mesh generation, and creation of CFD setups was carried out using 

OptHull® software, a professional hull form design software. Then, the commercial CFD S/W STAR-

CCM+ was configured and the numerical analysis were automatically controlled by an in-house 

javascript code. By using a 140 CPU (Intel Xeon 2.6GHz)-parallel computing cluster, approximately 

419 hours were required to complete the preparation of data for the 843 simulations. 

2.2.1. Governing equations 

The STAR-CCM+ v.15.06 was used for the CFD analysis of the flow around the ship. The 

governing equations consist of the continuity equation for mass conservation and the Reynolds-

Averaged Navier-Stokes (RANS) equations for momentum and energy conservation. These 

equations are given in the following tensor notation; 𝜕𝑈௜𝜕𝑥௜ = 0 (1) 

𝜕𝑈௜𝜕𝑡 ൅ 𝜌𝑈௟ 𝜕𝑈௜𝜕𝑥௟ = − 𝜕𝑝𝜕𝑥௜ ൅ 𝜕𝜕𝑥௟ ൬𝜇 𝜕𝑈௜𝜕𝑥௟ − 𝜌𝑢௜𝑢௟൰ ൅ 𝜌𝑔௜ (2) 

where 𝑈௜ = ሺ𝑈, 𝑉, 𝑊ሻ is the velocity component in 𝑥௜ = ሺ𝑥, 𝑦, 𝑧ሻ direction, while 𝑝, 𝜌, 𝜇, −𝑢௜𝑢௟ and 𝑔௜ are the static pressure, fluid density, absolute viscosity of fluid, Reynolds stress, and gravitational 

acceleration in the 𝑥௜-direction, respectively. 

The Reynolds stress turbulent model, being excellent in resolving bilge vortex and capable of 

high-accuracy prediction of flow around the ship [10], was employed in the numerical analysis. The 

transport equation for the Reynolds stress is described as follows; 
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𝐷𝑢௜ᇱ𝑢௝ᇱ𝐷𝑡 = 𝐷௜௝ ൅ 𝐺௜௝ − 23 𝛿௜௝𝜀 ൅ 𝑃𝑆 (3)

where 𝛿௜௝ is the Kronecker delta and 𝐷௜௝, 𝐺௜௝ and 𝑃𝑆 correspond to the diffusion, production, and 

pressure strain terms which are expressed as follows; 𝐷௜௝  =  𝜕𝜕𝑥௟ ቆ𝐶௞ 𝑘ଶ𝜀 𝜕𝑢ప𝑢ఫതതതതത𝜕𝑥௟ ൅ 𝜈 𝜕𝑢ప𝑢ఫതതതതത𝜕𝑥௟ ቇ (4)

𝐺௜௝  =  − ቆ𝑢ప𝑢௟തതതതത 𝜕𝑈௝𝜕𝑥௟ ൅ 𝑢ఫ𝑢௟തതതതത 𝜕𝑈௝𝜕𝑥௟ ቇ (5)

𝑃𝑆 =  −𝐶ଵ 𝜀𝑘 ൬𝑢ప𝑢ఫതതതതത − 23 𝛿௜௝𝑘൰ − 𝐶ଶ ൬𝐺௜௝ − 23 𝛿௜௝𝐺௞൰ (6)

Here, 𝐶௞, 𝐶ଵ and 𝐶ଶ are turbulent model constants. Additionally, 𝑘 and 𝜀 respectively represent 

turbulent kinetic energy and dissipation rate. 

2.2.2. Computational domain and boundary conditions 

Figure 4 illustrates the computational domain, which is rectangular, set within the range of −2.5𝐿௉௉ < 𝑥 < 𝐿௉௉, 0 < 𝑦 < 1.5𝐿௉௉ , and −1.5𝐿௉௉ < 𝑧 < 0 . Since the computational domain is 

symmetric with respect to the center plane ሺ𝑦 = 0ሻ, only half domain was considered. In addition, a 

double-body simulation, in which the underwater hull was mirrored with respect to the free surface ሺ𝑧 = 0ሻ, was performed for all cases. This approach allows the neglect of wave generation by the ship 

hull and the resulting wave-making resistance. However, due to the deep submergence of the FCF, 

which prevents its influence on the free surface, complex issues in analyzing the various effects of 

FCF design on the flow field are avoided. The double-body simulation significantly reduces the 

computational time by omitting computationally intensive free-surface calculations, which is crucial 

for this study encompassing various test cases. The boundary conditions for the computational 

domain surfaces shown in Figure 4 are summarized in Table 2.  

 

Figure 4. Computational domain for double-body simulation. 

Table 2. Boundary conditions for Figure 6. 

Boundary surface Type 

Inlet Velocity inlet 

Outlet Pressure outlet 

Top, Bottom, Side, Centerplane Symmetry 

Ship Wall 
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2.2.3. Uncertainty analysis in CFD verification methodology 

The validation of CFD analysis used to acquire 839 data points is unavoidable. In this study, a 

double body analysis was conducted to reduce data collection time. As a result, validation with 

model tests could not be carried out. Therefore, the verification of the grid system used in the analysis 

was performed following the procedures and guidelines recommended by ITTC [11]. To verify 

specific parameters used in the CFD analysis, numerical error and uncertainty of the simulation are 

evaluated. A parameter convergence study is performed by varying the 𝑖𝑡ℎ input parameter △ 𝑥ீ,௜ 
while keeping all other parameters constant, using multiple solutions with systematic parameter 

refinement. The input parameter is varied based on the refinement ratio defined in Equation (7). 𝑟 =  △ 𝑥ீ,ଶ △ 𝑥ீ,ଵ⁄ =  △ 𝑥ீ,ଷ △ 𝑥ீ,ଶ⁄ =  △ 𝑥ீ,௠ △ 𝑥ீ,௠ିଵ⁄ =  √2 (7)

At least three values of the input parameter are required for evaluating convergence, and the 

convergence ratio is defined as Equation (8). 𝑅ீ =  𝜀ீ,ଶଵ 𝜀ீ,ଷଶ⁄  (8)

Here, 𝜀ீ represents the difference in simulation solutions and is defined as the changes between the 

medium-fine 𝜀ீ,ଶଵ = 𝑆መீ,ଶ − 𝑆መீ,ଵ and coarse-medium 𝜀ீ,ଷଶ = 𝑆መீ,ଷ − 𝑆መீ,ଵ. The convergence conditions 

are defined into three categories based on the convergence ratio as follows.  ሺ𝑖ሻ Monotonic convergence: 0 < 𝑅ீ < 1 ሺ𝑖𝑖ሻ Oscillatory convergence: 𝑅ீ < 0 ሺ𝑖𝑖𝑖ሻ Divergence: 𝑅ீ > 1 

(9)

In case ሺ𝑖ሻ, the generalized Richardson Extrapolation (RE) method is employed to estimate the 

numerical error and uncertainty. In case ሺ𝑖𝑖ሻ, numerical uncertainty is estimated using the following 

equation. 𝑈ீ =  12 ሺ𝑆௎ − 𝑆௅ሻ (10)

Here, 𝑆௎ and 𝑆௅ represent the maximum and minimum values among the oscillating trends in the 

analysis results. In case ሺ𝑖𝑖𝑖ሻ, it is not possible to estimate numerical error and uncertainty since the 

analysis results exhibit a diverging tendency.  

Subsequently, detailed explanations for the numerical error ( 𝛿ோாಸ∗ ) and uncertainty ( 𝑈ீ ) 

calculated through the generalized RE method are based on the ITTC Recommended Procedures and 

Guidelines for Uncertainty Analysis. In this study, the estimation results for numerical error and 

uncertainty of the grid system used in data acquisition through simulations are thoroughly described 

in Section 4. 

3. Methodology 

The present study can be divided into two main steps. Firstly, utilizing Deep Neural Networks, 

it predicts the viscous resistance coefficients and wake distributions for the 1,000 TEU container 

vessel, which has a substantial dataset. Secondly, building upon the results of the DNN training, it 

employs Transfer Learning to predict the viscous resistance coefficients and wake distributions for 

the 2,500 TEU and 3,600 TEU container vessels, which have relatively smaller datasets. 

3.1. Deep Neural Network (DNN) 

A deep Neural Network is a supervised learning technique that involves training and predicting 

based on input and output data. The number of hidden layers and the number of neurons in each 

layer connecting input and output data are determined according to the designer's needs. The 

weights between layers are initialized and then continuously adjusted during the training process 

[12]. Figure 5 illustrates the general structure of a DNN, where ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ௗ  ሽ represents input data. 
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The outputs of each neuron in the first and second hidden layers are calculated using the following 

equations; 

ℎ௜௟ = 𝑓 ൭𝑏௟ ൅ ෍ 𝑊௜𝑥௜௡
௜ୀଵ ൱ (11)

ℎ௜௝ାଵ = 𝑓 ൭𝑏௝ାଵ ൅ ෍ 𝑤௜௝ℎ௜௝௠
௜ୀଵ ൱ ,   𝑗 ൒ 1 (12)

Here, 𝑓 represents the activation function, 𝑏 stands for bias, 𝑊 and 𝑤 represent the weights of 

neurons in the input layer and hidden layer, respectively. Furthermore, 𝑥 represents the normalized 

input value of the input layer, and ℎ is the output of neurons in the hidden layer. The final output 

of the last output layer is calculated in the same way as the output of the hidden layer. The calculated 

output value of the DNN model is then used to compute the loss function by comparing it with the 

actual values. Subsequently, an optimization algorithm is used to minimize the loss function and 

adjust the values of weights and biases. In this study, hyperparameters such as batch size, epochs, 

and learning rate were determined using the grid search cross-validation method. Table 3 represents 

the basic configuration of the hidden layers, activation function, and optimizer used for applying the 

grid search.  

 

Figure 5. The general architecture of the DNN model. 

Table 3. Hyper-parameters of the ANN. 

Layers Neurons Activation function Optimizer 

1st hidden layer 11 

ReLU Adam 

2nd hidden layer 22 

3rd hidden layer 44 

4th hidden layer 66 

5th hidden layer 89 

In this study, the DNN was employed to predict the axial velocity distribution in the propeller 

plane based on the input design variables of the Flow Control Fin (FCF). Thus, the input for the DNN 

consisted of the design variables ൣ𝑥 𝑠𝑡.⁄ , 𝑧 𝑇⁄ , 𝐴𝑜𝐴, ሺ𝑑𝑦 𝑑𝑧⁄ ሻ௫, ሺ𝑑𝑦 𝑑𝑥⁄ ሻ௭, ሺ𝑑𝑧 𝑑𝑥⁄ ሻ௬൧ , and the flow 

distribution became the outputs. Here, the angle of attack (𝐴𝑜𝐴) was defined as the angle between 

the local streamline for the baseline hull without the FCF and the baseline of FCF. ሺ𝑑𝑦 𝑑𝑧⁄ ሻ௫, ሺ𝑑𝑦 𝑑𝑥⁄ ሻ௭, 

and ሺ𝑑𝑧 𝑑𝑥⁄ ሻ௬ represent the derivatives of the station line (constant 𝑥), waterline (constant 𝑧), and 

buttock line (constant 𝑦), respectively. These derivatives indicate the inclinations of the hull in each 
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direction relative to the center point where the FCF is attached. In order to enhance the training 

efficiency, it was essential to align the dimensions of the neural network's input and output as closely 

as possible without compromising the detailed representation of the velocity distribution. To obtain 

the Fourier series coefficients for the axial velocity distribution in the form of 73 ൈ 8 polar array 

(Figure 6) of the propeller plane, harmonic analysis was performed. Specifically, the circumferential 

distribution of the axial velocity 𝑉௫ሺ𝜑ሻ  was expressed using a Fourier series up to the 10th order for 

eight radial positions within the range 0.3𝑅 < 𝑟 < 1.0𝑅 ሺ𝛥𝑟 = 0.1𝑅ሻ.  

𝑉௫ሺ𝜑ሻ =  𝐴ሺ0ሻ ൅ ෍ሼ𝐴ሺ𝑖ሻ cosሺ𝑖𝜑ሻ ൅ 𝐵ሺ𝑖ሻsin ሺ𝑖𝜑ሻሽଵ଴
௜ୀଵ  (13)

The symmetry of the wake flow distribution makes the sine coefficients 𝐵ሺ𝑖ሻ = 0, resulting in the 

utilization of the remaining 11 ൈ 8 cosine coefficients as the output of the base DNN model. This 

Fourier analysis preprocessing was found to improve training efficiency compared to cases without 

preprocessing. The 693 source datasets used for the base DNN model were divided into 415 training 

sets, 139 validation sets, and 139 test sets. When individual data sizes significantly differ, the training 

often fails. To mitigate this, all data was normalized using a Min-Max scaler to ensure sizes ranged 

from 0 to 1.  

  
(a)                                   (b) 

Figure 6. Preprocessing of output data for the neural network: (a) bisecting the propeller plane; (b) 

harmonic analysis. 

3.2. Transfer Learning (TL) 

The machine learning algorithms of the data-centric learning method assume that they are 

trained by the same distribution of train and test datasets [13]. However, in real-world applications, 

this assumption may not hold. When the dataset changes, machine learning algorithms need to be 

retrained based on a substantial amount of newly collected training data, which can be time-

consuming and costly [14]. To address these issues, transfer learning can be applied, allowing 

efficient learning with a small amount of new data. Transfer learning involves transferring the 

weights of a pre-trained neural network model to a new neural network for learning, thereby 

facilitating the construction of a model with a small amount of newly applied data [15]. The main 

objective of this study is to apply Deep Neural Networks (DNN) and Transfer Learning (TL) for 

estimating viscous resistance and wake distribution on various sizes of container ships using the 

position of flow control fin and hull-form information as input features. Figure 7 provides a brief 

overview of how transfer learning is applied. 
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Figure 7. Overview of the transfer learning. 

First, the base DNN model is trained and validated using the source dataset (1,000 TEU). Then, 

a new model is reconfigured (retrained and validated) based on a subset of the target dataset (2,500 

TEU and 3,600 TEU), where the knowledge from the base DNN model is transferred. The remaining 

part of the target dataset is used in the testing phase of the reconfigured model. 

3.3. Model application details 

Figure 8 illustrates the structure of the algorithm for predicting viscous resistance and wake 

distribution of new sizes of container ships using transfer learning. 

 

Figure 8. Workflow of transfer learning. 
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In this study, the source dataset used for training and validation of the base DNN model consists 

of viscous resistance and wake characteristics based on the flow control fin applied to a 1,000 TEU 

container ship. When training the DNN model, there are various hyperparameters that the designer 

needs to set, including batch size, the number of epochs, and the learning rate. The choice of the batch 

size used in mini-batch gradient descent affects the learning speed and the tracking of the global 

minimum point of the cost function. The number of epochs, which indicates how many times the 

entire dataset is iterated over during training, can lead to issues of overfitting and underfitting. 

Furthermore, selecting an appropriate optimizer and the corresponding learning rate is crucial based 

on the learning model and dataset used. To optimize these various hyperparameters, a grid search 

cross-validation method was applied, which involves exploring the optimal parameters by 

combining multiple settings specified by the designer. The loss function for optimizing the 

hyperparameters was the Mean Square Error (MSE). The base DNN model constructed with the 

optimal hyperparameters was then used to evaluate the learning performance on the test dataset. 

Using the well-constructed base DNN model as a foundation, transfer learning was applied to 

create a restructured DNN model for knowledge transfer to 2,500 TEU and 3,600 TEU (KCS) as target 

datasets. For the reconstruction of the model through transfer learning, it's necessary to fine-tune the 

weights of the base DNN model using a smaller learning rate compared to the original learning rate. 

To determine an appropriate learning rate for the small amount of target data, K-fold cross-validation 

was performed to assess the general prediction performance with varying learning rates. 

Subsequently, the effect of fixing the number of layers during the reconstruction of the DNN through 

transfer learning was investigated. Exactly, the study adopted transfer learning with fine-tuning, 

which involves adjusting or maintaining the weights of specific layers among the hidden layers of 

the base DNN model. This was done by training on various cases and comparing the results for each 

case. In this study, the application of transfer learning using a small dataset for container ships of 

different sizes demonstrates the potential for predicting resistance and wake distribution based on 

FCF position with sufficient accuracy. 

3.4. Accuracy evaluation 

The performance evaluation metrics used for the proposed model are as follows. 

• Mean Squared Error; MSE estimates the standard deviation of the random component in the 

data and is used to optimize the validation loss during model training. It is defined as follows: 

𝑀𝑆𝐸 =  ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶ௡௜ୀଵ 𝑛  (14)

where 𝑦௜ is the true value of the 𝑖𝑡ℎ sample, 𝑦ො௜ is the estimated output of the  𝑖𝑡ℎ sample and 𝑛 is the number of samples. 

• Mean Absolute Percentage Error; MAPE is used to compare the accuracy of predictions and is 

defined as follows: 

𝑀𝐴𝑃𝐸 =  100𝑛 ෍ ฬ𝑦௜ − 𝑦ො௜𝑦௜ ฬ௡
ூୀଵ  (15)

Here, 𝑦௜, 𝑦ො௜ and 𝑛 have the same meanings as mentioned in the previous descriptions. A lower 

MAPE indicates better predictions. 

• Coefficient of Determination; The coefficient of determination, or 𝑅ଶ, is defined to demonstrate 

how well the model predicts the variability of the observed and unobserved samples. The best 

possible value is 1, and it can also be negative, indicating that the model cannot follow the true 

datasets. 𝑅ଶ is defined as follows: 

𝑅ଶ =  1 − ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶ௡௜ୀଵ∑ ሺ𝑦௜ − 𝑦തሻଶ௡௜ୀଵ  (16)
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Here, 𝑦ത  represents the mean of the actual samples, and the other variables have the same 

meanings as explained earlier. 

4. Results 

4.1. Uncertainties analysis in CFD verification 

In this study, CFD analyses were conducted on a total of three grid systems by increasing and 

decreasing the grid size with a refinement ratio of √2. The total number of cells and model-scale 

viscous resistance for each grid system corresponding to the three different sizes of containerships 

are presented in Table 4. Due to the use of unstructured grids in CFD analysis, the randomness in 

grid generation leads to a limitation in precisely controlling the total number of cells. 

Table 4. Cell number of the grid system. 

Class Fineness # of grid cells Rvm [N] 

1,000 TEU 

Coarse 398,208 26.05 

Medium 1,047,619 26.19 

Fine 2,923,468 26.31 

2,500 TEU 

Coarse 400,585 27.35 

Medium 1,080,754 27.55 

Fine 3,074,301 27.72 

3,600 TEU 

Coarse 391,605 33.99 

Medium 913,245 34.09 

Fine 2,533,138 34.27 

The results of numerical error and uncertainty assessment for the three different sizes of 

containerships are summarized in Table 5. Since all the convergence ratios are between 0 and 1, it can 

be assumed that the model-scale viscous resistance ( 𝑅௏ெ ) converges monotonically. Therefore, 

numerical error and uncertainty were estimated using the generalized Richardson Extrapolation (RE) 

method. The results show that when performing double body analysis for the three containerships, 

it can be expected numerical uncertainty of Rvm due to grid effects to be within 2% for all cases. 

Based on the uncertainty results, data collection for machine learning was carried out using the 

medium grid system for all cases. The coarse grid system faced difficulties in generating a smooth 

flow control fin due to its thin structure. The fine grid system had a high number of cells, leading to 

extended analysis time. Consequently, the medium grid system was chosen to strike a balance 

between accuracy and computational efficiency. 

Table 5. Results of numerical error and uncertainty analysis for 𝑅௏ெ. 

Class 𝒓𝑮 𝜺𝑮,𝟐𝟏 𝜺𝑮,𝟑𝟐 𝑹𝑮 𝜹𝑹𝑬𝑮∗  𝑼𝑮 𝑼𝑮൫%𝑺෡𝑮,𝟐൯ 

1,000 TEU √2 -0.127 -0.138 0.919 -0.127 0.359 1.37 

2,500 TEU √2 -0.176 -0.195 0.903 -0.176 0.489 1.77 

3,600 TEU √2 -0.178 -0.106 0.907 -0.178 0.496 1.46 

The subscript ‘G’ refers to grid size. 

4.2. Prediction results using source dataset (the base DNN model) 

The results of the grid search cross-validation for hyperparameter optimization of the DNN 

model using a total of 690 source data (1,000 TEU) are presented in Figure 9. The Mean Squared Error 

(MSE) was used to assess the prediction accuracy for each hyperparameter. In this study, three 

hyperparameters were optimized, and the optimal values for each parameter are as follows; 1) batch 

size: [4, 8, 16, 32, 64, 128], 2) epochs: [100, 500, 1000, 2000, 3000] and 3) learning rate: [0.001, 0.005, 0.01, 

0.05, 0.1]. 
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Figure 9. Grid search results for DNN model using source dataset. 

The final hyperparameters determined for the Base DNN model were chosen based on the 

consideration of a small mean squared error value while considering the training speed. The training 

hyperparameters for the base DNN model were set as follows: batch size = 64, epochs = 2000, and 

learning rate = 0.01. Using this combination of selected hyperparameters, the model was trained for 

a total of 18,000 iterations on the 1000 TEU containership dataset. The prediction accuracy of the base 

DNN training model is quantified by an MSE of approximately 0.0008, as shown in Figure 10. The 

peak of the loss typically occurs during mini-batch training with split data. 

 

Figure 10. Loss for the base DNN models. 

The prediction accuracy for the test dataset not used during training was evaluated to validate 

the learning level of the base DNN model. Table 6 presents the evaluation metrics for the test dataset 
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of the source data, which is the 1,000 TEU containership. MSE and MAPE indicate higher prediction 

accuracy as their values become smaller, and an 𝑅ଶ value closer to 1 signifies that the test dataset 

not used in training is being well predicted. The DNN model can accurately predict viscous resistance 

and wake distribution in the propeller plane, as evidenced by the high level of accuracy. Figure 11 

displays the predicted viscous resistance results for the two above-mentioned test cases. The average 

error of the viscous resistance coefficient of model 𝐶௏ெ is significantly small, being 0.00009 ൈ 10ିଷ, 

which is less than 0.005% of the target value. Figure 12 compares the true data obtained from CFD 

analysis with the results predicted by the DNN. The true wake distribution is given on the left, and 

the predicted data is shown on the right. The true data for the circumferential distribution of the axial 

velocity component is depicted as black dashed lines, while the predicted data is represented by red 

symbols and solid lines. As observed in Figure 12, the true and predicted data closely match with 

high accuracy. The DNN model is capable of accurately predicting not only wake distribution but 

also viscosity resistance. The neural network that serves as the basis for transfer learning on a small 

amount of dataset requires sufficient prediction accuracy. Given the results above, it can be 

concluded that the base DNN model can effectively capture the design variables of the FCF and 

establish a strong association with both the viscous resistance coefficient and wake distribution, 

demonstrating high accuracy in its predictions. 

Table 6. MSE, MAPE and 𝑅ଶ values for the base DNN model 

.MSE MAPE [%] 𝑹𝟐 

0.00081 7.16 0.98 

 

Figure 11. Evaluation of prediction accuracy by the viscous resistance coefficient for the base DNN 

model. 

 
(a) 
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(b) 

Figure 12. Evaluation of prediction accuracy by harmonic wake distribution and axial wake 

distribution for the base DNN model: (a) Test data no.1; (b) Test data no.2. 

4.3. Prediction results using target dataset (DNN-TL model) 

The DNN-TL model is reconstructed and retrained based on the weights of the previously 

trained DNN model, using only the target dataset. Since the size of the target dataset is considerably 

smaller (150 datasets) compared to the source dataset, a smaller learning rate is necessary to ensure 

training accuracy. Therefore, it is necessary to find the optimal learning rate value for the training 

dataset of the DNN-TL model The optimization was performed with learning rates [0.00001, 0.00005, 

0.0001, 0.0005, 0.001, 0.005, 0.01], and the comparison of MSE values for each value is shown in Figure 

13. In this study, the optimal learning rate value for predicting the viscous resistance and wake 

distribution of the target dataset (2,500 TEU and 3,600 TEU) is determined to be 0.0005. Based on this, 

the parameters of the DNN-TL model were constructed. To verify the prediction of viscous resistance 

and wake distribution based on transfer learning, different configurations were tested: DNN-TL 

models with 1, 4, and 5 fixed layers, as well as a DNN-TL model without any fixed layers (Table 7). 

Fine-tuning was performed on each of these configurations, and their performances were compared. 

In the DNN-TL model, the weights of neurons are initialized based on the previously trained base 

model, and the model is retrained and reconstructed using the training dataset from the target 

dataset. 

 

Figure 13. Optimization of the learning rate for DNN-TL model using target dataset. 
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Table 7. Fine-tuning for DNN-TL. 

 1st hidden layer 2nd hidden layer 3rd hidden layer 4th hidden layer 5th hidden layer 

All fixed layer Fixed Fixed Fixed Fixed Fixed 

Fixed 4 layer Fixed Fixed Fixed Fixed Train 

Fixed 1 layer Fixed Train Train Train Train 

No fixed layer Train Train Train Train Train 

The prediction accuracy based on fine-tuning of hidden layer weights was evaluated to verify 

the level of learning. Figure 14 compares the predicted viscous resistance coefficients of the model 

ship for each fine-tuning condition. The black-filled bar chart represents the true values obtained 

from CFD analysis, while the red dashed-filled bars represent the predicted results from each fine-

tuning condition. The viscosity resistance performance was compared using one test data for each of 

the 2,500 TEU and 3,600 TEU containerships. Figures 15 and 16 illustrate the comparison of predicted 

results for harmonic wake distribution and circumferential distribution of axial velocity components 

for both 2,500 TEU and 3,600 TEU. The left figure shows the harmonic wake distribution obtained 

from CFD analysis, and the middle part displays the predicted wake distribution from each fine-

tuning condition. In the case where the weights of all five hidden layers are fixed (All fixed layer 

case), there is an error of 18% specifically in the viscosity resistance coefficient (𝐶௏ெ) for the 3,600 TEU 

containership. The accuracy of predicting the axial velocity distribution in the propeller plane is also 

quite low, and it can be observed that it is trying to follow the wake distribution characteristics of the 

1,000 TEU used in the base DNN model. In the case of ‘Fixed 4 layer’, where only the weights of the 

last layer among the layers were trained, 𝐶௏ெ for 2,500 TEU and 3,600 TEU show errors of 0.38% and 

-3.6% respectively. This indicates an improvement in prediction accuracy compared to the ‘All fixed 

layer’ case. In Figures 15(b) and 16(b), compared to the ‘All fixed layer’, there is an attempt to capture 

the characteristics of each hull-form. This indicates that the weights of the last hidden layer among 

the hidden layers play a role in conveying a certain level of knowledge about the target datasets (2,500 

TEU and 3,600 TEU). The prediction results for the Fixed 1 layer, where only the weights of the first 

hidden layer are not retrained, and the No fixed layer, where all layers are retrained, show a quite 

similar trend. The 𝐶௏ெ prediction results for both 2,500 TEU and 3,600 TEU exhibit errors within 

0.5%. When observing the wake distribution and axial velocity components figures, it is evident that 

the characteristics of each linear component are sufficiently captured.  

 

Figure 14. Evaluation of prediction accuracy by the viscous resistance coefficient for the target dataset 

(2,500 TEU and 3,600 TEU) between each fine-tuning condition. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. Evaluation of prediction accuracy by harmonic wake distribution and axial wake 

distribution for 2,500 TEU between each fine-tuning condition: (a) All fixed; (b) Fixed 4 layer; (c) Fixed 

1 layer; (d) No fixed layer. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 16. Evaluation of prediction accuracy by harmonic wake distribution and axial wake 

distribution for 3,600 TEU between each fine-tuning condition: (a) All fixed; (b) Fixed 4 layer; (c) Fixed 

1 layer; (d) No fixed layer. 

Table 8 presents the prediction accuracy metrics for the test dataset that was not used in the 

training process under each fine-tuning condition. MSE and MAPE are metrics where lower values 

indicate higher accuracy in predictions. 𝑅ଶ, on the other hand, is a measure of how well the model 

explains the variance in the data. A higher 𝑅ଶ  value, closer to 1, indicates a better predictive 

performance. Generally, when 𝑅ଶ > 0.67 , it is considered to have a reasonably good predictive 

accuracy, while 0.33 < 𝑅ଶ < 0.67 indicates moderate predictive performance, and 0.16 < 𝑅ଶ < 0.32 

suggests poor predictive performance [16]. The 𝑅ଶ  score for the ‘All fixed layer’ case is -4.163, 

indicating no prediction capability on the test dataset. Conversely, when the first hidden layer is fixed, 

it exhibits the highest scores across all accuracy metrics. It is considered that the weights of the first 

layer in the previously trained base DNN model were tailored to capture the characteristics of the 

viscous resistance coefficient on containership and the axial velocity on the propeller plane. The 

remaining hidden layers seem to have been designed to understand the fluid characteristics by hull-

form. To assess the level of prediction accuracy in this study, the performance was compared to 

accuracy metrics from other literature that used transfer learning for predictions. Solis and Calvo-

Valverde [17] applied DNN and TL to time series prediction, and their optimal prediction model 

achieved a MAPE value of approximately 9%. Zhou et al. [18] predicted the dynamic behavior of a 

gas turbine engine using transfer learning, and in their optimal prediction model, they achieved MSE 

and 𝑅ଶ values of 0.00466 and 0.881, respectively. The MSE, MAPE, and 𝑅ଶ values in this paper all 

fall within a similar range, indicating that the prediction model applied with transfer learning is at a 

satisfactory level of accuracy. 
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Table 8. MSE, MAPE and 𝑅ଶ values for each fine-tuning conditions 

. MSE MAPE [%] 𝑹𝟐 

All fixed layer 0.3083 182.4 -4.163 

Fixed 4 layer 0.0307 24.88 0.499 

Fixed 1 layer 0.0086 13.89 0.854 

No fixed layer 0.0185 18.40 0.703 

Figure 17 compares the predicted radial profiles of axial velocity components from the four 

tuning cases with their true values. The green circles represent the predictions from the ‘All fixed 

layer’ condition, the black squares are from the case where the first four layers were fixed (Fixed 4 

layer), the blue triangles represent the condition where only the first layer was fixed (Fixed 1 layer), 

and the red ‘X’ symbols depict the predictions from the ‘No fixed layer’ condition. In the case of ‘All 

fixed layer’, significant discrepancies are observed between the predicted values and the true values 

across all radii. On the other hand, for the ‘Fixed 1 layer’ and ‘No fixed layer’ cases, it can be observed 

that the predicted values closely follow the trends of the true values. 

  
(a) (b) 

  

(c) (d) 
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(e) (f) 

 
 

(g) (h) 

Figure 17. Predictions for the circumferential distribution of axial velocity components for each radius: 

(a) R=0.30; (b) R=0.40; (c) R=0.50; (d) R=0.60; (e) R=0.70; (f) R=0.80; (g) R=0.90; (h) R=1.00. 

5. Conclusions 

This paper proposes a novel methodology for predicting the resistance performance and wake 

distribution of Flow Control Fins (FCFs) on containerships of various sizes using Deep Neural 

Network (DNN) through transfer learning. The main contribution of this paper lies in introducing 

DNN to predict the outcomes in a shorter time compared to traditional Computational Fluid 

Dynamics (CFD) simulations, which are used to assess the performance based on the locations of 

FCFs on containerships of different sizes. Another novel aspect is the utilization of Transfer Learning 

(TL) to enhance the efficiency of training using a limited amount of data. Firstly, a base DNN model 

is constructed based on a relatively large source dataset of 690 cases (1,000 TEU). Then, transfer 

learning is applied to predict the performance of smaller target datasets (2,500 TEU and 3,600 TEU) 

using the base DNN model as a foundation. Furthermore, fine-tuning between layers in the transfer 

learning process is employed to identify the conditions that yield the highest learning accuracy.  

As a result, the first layer of the base DNN model was fixed, and the rest of the layers were 

retrained and reconfigured conditions showed higher scores in accuracy metrics. When evaluated 

using the test dataset not involved in the transfer learning training, the MSE, MAPE, and 𝑅ଶwere 

found to be 0.0086, 13.89%, and 0.854, respectively, indicating the highest accuracy. Additionally, in 

terms of the viscous resistance coefficient ( 𝐶௏ெ ), the accuracy was within 0.5%. This study 

demonstrates the procedure in which machine learning techniques, particularly transfer learning, can 
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contribute to the advancement of computational design technology. The current application of 

transfer learning-based predictive capabilities is not limited to specific case studies. By adopting the 

optimization techniques, it could be extended to the optimal design of FCFs' positions for various 

types of containerships, which will be the topic of future study. 
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