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Abstract: In this study, deep neural network (DNN) and transfer learning (TL) techniques were employed to
predict the viscous resistance and wake distribution based on the positions of flow control fins (FCFs) applied
to containerships of various sizes. Both methods utilized data collected through Computational Fluid
Dynamics (CFD) analysis. The position of the flow control fin (FCF) and hull-form information were utilized
as input data, and the output data included viscous resistance coefficients and components of propeller axial
velocity. The base DNN model was trained and validated using a source dataset from a 1,000 TEU
containership. Grid search cross-validation technique was employed to optimize the hyperparameters of the
base DNN model. Then, transfer learning was applied to predict the viscous resistance and wake distribution
for containerships of varying sizes. To enhance the accuracy of feature prediction with a limited amount of
dataset, learning rate optimization was conducted. Transfer learning involves retraining and reconfiguring the
base DNN model, and the accuracy was verified based on the fine-tuning method of the learning model. The
results of this study can provide hull designers for containerships with performance evaluation information by
predicting wake distribution, without relying on CFD analysis.

Keywords: Flow Control Fin (FCF); Deep Neural Network (DNN); Transfer Learning (TL); containership;
viscous resistance coefficients; wake flow distributions

1. Introduction

The severity of environmental issues resulting from industrial development has become a global
concern, spanning various sectors, including the shipbuilding industry. As a result, various related
regulations are being formulated or strengthened. In 2018, the International Maritime Organization
(IMO) announced a strategy to reduce the total greenhouse gas emissions from ships by 50% and the
Carbon Intensity Indicator (CII) by 70% by the year 2050, compared to the levels in 2008. As one of
the initial strategies, the implementation of the EEXI (Energy Efficiency eXisting Ship Index) and the
CII (Carbon Intensity Index) rating system is already in place. This represents a significant
strengthening of energy efficiency regulations for existing ships. The efforts to meet EEXI compliance
and achieve higher CII ratings are tasks assigned to the existing ships. Among several strategies for
this purpose, one approach is to enhance resistance performance, and this can be achieved through
the application of Energy Saving Devices (ESDs). The application of ESDs involves installing
relatively small-scale devices that can lead to significant effects. Because of this, ESDs are utilized in
various ways, not only for existing ships but also for the design of new ships.

Samsung Heavy Industries registered a patent in 2007 [1] for SAVER (SAmsung Vibration and
Energy Reduction) Fins. These FCFs are designed to control the inflow fluid dynamics above and
below the propeller of ships, to improve pressure resistance and reduce vibrations. Lee et al. [2]
applied the SAVER Fins in combination with rudder bulb to a 35k DWT bulk carrier and confirmed
a power-saving effect of 7.4% through model tests and sea trials. Kim et al. [3] attached vertical plates
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to the stern of a 24K tanker and confirmed improvements in resistance performance and wake
distribution through Computational Fluid Dynamics (CFD) analysis. Lee et al. [4] investigated the
changes in resistance performance and wake characteristics based on the position of FCF and the
angle with the streamline using CFD analysis, focusing on an 80K bulk carrier. Recently, Park et al.
[5] demonstrated through model tests and CFD that FCF can reduce the total resistance of a 6.5K
DWT tanker by 4.3%. Many studies have been conducted on FCF design, and the effects of FCF are
predominantly verified through model tests and CFD simulations. Furthermore, research has
advanced to predict or optimize the effects of FCF using artificial intelligence techniques as a basis.
A neural network was trained based on hull-form data and then used to predict the wake distribution
[6]. Another example is Kim and Moon [7], who used a neuro-fuzzy technique to predict wake
distribution. Wie and Kim [8] carried out optimal FCF design for the Kriso 300K VLCC using Genetic
Algorithm (GA) and NLPQL (Non-Linear Programming by Quadratic Lagrangian).

In the previous paper by author's [9], optimal FCF design was performed for a small
containership using two strategies: neural network-based machine learning and optimization
techniques. The objective of this current study is to predict the resistance performance and propeller
inflow characteristics for containerships of various sizes, not just for a single containership. Initially,
a Deep Neural Network (DNN) model is employed to predict the performance of a single
containership with a substantial dataset available. The hyperparameters required for model
configuration are optimized using grid search cross-validation. Subsequently, based on the base
DNN model, Transfer Learning (TL) is utilized to predict performance for the remaining
containerships with limited data. In this study, a small number of hull-forms are applied to transfer
learning to predict the fluid dynamic performance based on the FCF position. This can be utilized as
foundational research for expanding the applicability of fluid dynamic performance prediction
techniques to containerships of various sizes and even to different types of vessels. Additionally, it is
considered that the combination of transfer learning-based performance prediction and appropriate
optimization algorithms can be extended to the FCF design of containerships of various sizes.

The paper organization is as follows: Section 2 presents the target ships and FCF specifications,
and formulates the numerical methods to prepare for the data; Section 3 describes the theoretical
background of deep neural networks and transfer learning, detailing the specific processes applied
in this study. Subsequently, Section 4 presents the performance prediction results for containerships
of various sizes. Finally, Section 5 discusses the main conclusions and findings.

2. Problem descriptions

2.1. Target ship and flow control fins

The base DNN used for predicting wake distribution and resistance is trained using data from
the author's previous paper. A relatively substantial amount of data used for training the DNN model
comes from a 1,000 TEU containership constructed by Daesun Shipbuilding & Engineering Co. Ltd.
This was associated with the presence of reliable CFD data. A model with a scale ratio 4 = 30.56 was
selected for numerical simulation. The data used for the transfer learning model consists of different-
sized vessels: 2,500 TEU and 3,600 TEU (KCS; KRISO Containership) containerships. For these ships,
models with each scale ratio of 1 =27.2 and 12 = 31.6 were considered. The principal dimensions
of target hulls and propellers are given in Table 1. Figure 1 presents the three-dimensional views of
target hull forms and propellers.

Table 1. Principal particulars of 1,000TEU containership.

Class Designation Symbol (unit) Full-scale ship
Length bet. Perpendicular Lpp (m) 137.5
Breadth B (m) 23.6
1,000 TEU Draft T (m) 7.4
Block coefficient Cg 0.595

Propeller Diameter DIA (m) 5.5
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Length bet. Perpendicular Lpp (m) 185.0
Breadth B (m) 32.26

2,500 TEU Draft T (m) 10.0
Block coefficient Cg 0.640

Propeller Diameter DIA (m) 6.8
Length bet. Perpendicular Lpp (m) 230.0

Breadth B (m) 32.2

3,600 TEU Draft T (m) 10.8
Block coefficient Cg 0.651

Propeller Diameter DIA (m) 7.9

= —

= p— =)

(a) 1,000 TEU

L T ——
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(b) 2,500 TEU
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(c) 3,600 TEU

Figure 1. 3D volumetric views of target hulls and propellers: (a) 1,000 TEU; (b) 2,500 TEU; (c) 3,600
TEU.

The Flow Control Fin (FCF) used in this study is in rectangular shape with two rounded corners
(see Figure 2). The dimensions of full-scale FCF were 1.30 m long, 0.37m high, and 0.03m thick. When
normalized by the propeller diameter D, these correspond to 0.236D (length) x 0.0673D (height) x
0.00545D (thickness). Generally, FCFs are attached in pair(s) at the same locations on the port and
starboard sides. The design variables for the FCF are the longitudinal and vertical positions of FCF,
inclination angle, and hull-form information. Here, the position of the FCF is located at the midpoint
of the baseline, and the angle of inclination refers to the angle between the FCF baseline and the ship
baseline. The hull-form information applies the derivatives representing the gradient of each tangent
at the midpoint of the FCF in the directions of the station, waterline, and buttock line. In more detail,
when the derivative is small in the station direction, it indicates that when observing the hull-form
in the body plan, the shape resembles a V type. Similarly, when the derivatives are small in the
waterline and buttock line directions, they represent hull-form that changes smoothly in the half-
breadth and shear plan, respectively.

R0.10
0.37
v

- 130>

Figure 2. Geometry of FCF.

Indeed, even within the same type of vessel, differences in main particulars, hull-form, and the
position of the FCF can result in variations in the characteristics of the propeller inflow velocity
distribution. Figure 3 illustrates the distribution of the viscous resistance coefficient and the standard
deviation of axial velocity distribution based on derivatives in the waterline and buttock line
directions. The orange symbols represent the viscosity resistance coefficients and standard deviation
for 1,000 TEU, the green symbols for 2,500 TEU, and the blue symbols for 3,600 TEU. Transfer learning
was employed to predict values with varying characteristics across different ship sizes.
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Figure 3. Features distribution for each containership: (a) distribution of viscous resistance coefficient;
(b) standard deviation of axial velocity distribution.

2.2. CFD simulation to obtain training data

In this study, 693 datasets were prepared by the CFD analysis to train, validate, and test the base
DNN model. Each data corresponded to a combination of design parameters, including 11
longitudinal positions (3.0 < x/St. < 4.0, Ax/St.= 0.1) X vertical positions (0.135 < z/T < 0.405,
Az/T = 0.0135) x 3 inclination angles (a = 19°20° 21°). Here, St. Refers to the station length,
which is 1/20 of the length between perpendicular Lpp. Around 150 target datasets for 2,500 TEU and
3,600 TEU were obtained through CFD analysis for transfer learning. The target datasets were
randomly selected within the same longitudinal and vertical position ranges as the source datasets.
Similarly, the inclination angles were also randomly specified.

It is necessary to emphasize the importance of automation in such preprocessing steps as
modeling and mesh generation, as it significantly enhances the overall computational efficiency for
the entire set of 843 simulation cases. The processes including three-dimensional modeling of hull-
forms with varying FCF positions, mesh generation, and creation of CFD setups was carried out using
OptHull® software, a professional hull form design software. Then, the commercial CFD S/W STAR-
CCM+ was configured and the numerical analysis were automatically controlled by an in-house
javascript code. By using a 140 CPU (Intel Xeon 2.6GHz)-parallel computing cluster, approximately
419 hours were required to complete the preparation of data for the 843 simulations.

2.2.1. Governing equations

The STAR-CCM+ v.15.06 was used for the CFD analysis of the flow around the ship. The
governing equations consist of the continuity equation for mass conservation and the Reynolds-
Averaged Navier-Stokes (RANS) equations for momentum and energy conservation. These
equations are given in the following tensor notation;

au,
x, 0 (1)
at TPUG T Tax Tan, (“ %, ””"”l) +Pgi (2)

where U; = (U,V,W) is the velocity component in x; = (x,y,z) direction, while p, p, u, —u;u; and
g; are the static pressure, fluid density, absolute viscosity of fluid, Reynolds stress, and gravitational
acceleration in the x;-direction, respectively.

The Reynolds stress turbulent model, being excellent in resolving bilge vortex and capable of
high-accuracy prediction of flow around the ship [10], was employed in the numerical analysis. The
transport equation for the Reynolds stress is described as follows;
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Duju; 2
TIDU+GU—§6US+PS (3)

where §;; is the Kronecker delta and D;;, G;; and PS correspond to the diffusion, production, and

jr
pressure strain terms which are expressed as follows;

D - 0 k? aru“r ou, .
v dx; kg dx; v dx; )
ou; v
Gij = — ulula—xl+ujula—xl (5)
£ 2 2
PS = —ClE(uluJ —§6ijk)—C2 (GU _§6iij) (6)

Here, C,, C; and C, are turbulent model constants. Additionally, k and e respectively represent
turbulent kinetic energy and dissipation rate.

2.2.2. Computational domain and boundary conditions

Figure 4 illustrates the computational domain, which is rectangular, set within the range of
—2.5Lpp <x < Lpp, 0 <y <15Lpp, and —1.5Lpp <z < 0. Since the computational domain is
symmetric with respect to the center plane (y = 0), only half domain was considered. In addition, a
double-body simulation, in which the underwater hull was mirrored with respect to the free surface
(z = 0), was performed for all cases. This approach allows the neglect of wave generation by the ship
hull and the resulting wave-making resistance. However, due to the deep submergence of the FCF,
which prevents its influence on the free surface, complex issues in analyzing the various effects of
FCF design on the flow field are avoided. The double-body simulation significantly reduces the
computational time by omitting computationally intensive free-surface calculations, which is crucial
for this study encompassing various test cases. The boundary conditions for the computational
domain surfaces shown in Figure 4 are summarized in Table 2.

Figure 4. Computational domain for double-body simulation.

Table 2. Boundary conditions for Figure 6.

Boundary surface Type
Inlet Velocity inlet
Outlet Pressure outlet
Top, Bottom, Side, Centerplane Symmetry

Ship Wall
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2.2.3. Uncertainty analysis in CFD verification methodology

The validation of CFD analysis used to acquire 839 data points is unavoidable. In this study, a
double body analysis was conducted to reduce data collection time. As a result, validation with
model tests could not be carried out. Therefore, the verification of the grid system used in the analysis
was performed following the procedures and guidelines recommended by ITTC [11]. To verify
specific parameters used in the CFD analysis, numerical error and uncertainty of the simulation are
evaluated. A parameter convergence study is performed by varying the ith input parameter A x;;
while keeping all other parameters constant, using multiple solutions with systematic parameter
refinement. The input parameter is varied based on the refinement ratio defined in Equation (7).

o= A x(;,z/A Xe1= A xG,3/A Xg2 = A xG,m/A X6m-1 = V2 ()

At least three values of the input parameter are required for evaluating convergence, and the
convergence ratio is defined as Equation (8).

Rg = 56,21/56,32 )

Here, g; represents the difference in simulation solutions and is defined as the changes between the
medium-fine &g,; = S5, — Sg; and coarse-medium &; 3, = Sg 3 — S5 1. The convergence conditions
are defined into three categories based on the convergence ratio as follows.

(1) Monotonic convergence: 0 < R; <1
(ii) Oscillatory convergence: R; < 0 9)
(iii) Divergence: R; > 1

In case (i), the generalized Richardson Extrapolation (RE) method is employed to estimate the
numerical error and uncertainty. In case (ii), numerical uncertainty is estimated using the following
equation.

1
Ug = E(SU -5 (10)

Here, Sy and S, represent the maximum and minimum values among the oscillating trends in the
analysis results. In case (iii), it is not possible to estimate numerical error and uncertainty since the
analysis results exhibit a diverging tendency.

Subsequently, detailed explanations for the numerical error (68zg,) and uncertainty (Ug)
calculated through the generalized RE method are based on the ITTC Recommended Procedures and
Guidelines for Uncertainty Analysis. In this study, the estimation results for numerical error and
uncertainty of the grid system used in data acquisition through simulations are thoroughly described
in Section 4.

3. Methodology

The present study can be divided into two main steps. Firstly, utilizing Deep Neural Networks,
it predicts the viscous resistance coefficients and wake distributions for the 1,000 TEU container
vessel, which has a substantial dataset. Secondly, building upon the results of the DNN training, it
employs Transfer Learning to predict the viscous resistance coefficients and wake distributions for
the 2,500 TEU and 3,600 TEU container vessels, which have relatively smaller datasets.

3.1. Deep Neural Network (DNN)

A deep Neural Network is a supervised learning technique that involves training and predicting
based on input and output data. The number of hidden layers and the number of neurons in each
layer connecting input and output data are determined according to the designer's needs. The
weights between layers are initialized and then continuously adjusted during the training process
[12]. Figure 5 illustrates the general structure of a DNN, where {xy,x,, ...,x; } represents input data.
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The outputs of each neuron in the first and second hidden layers are calculated using the following

equations;
n
hf = f(bl +Zwixi> (1)
i=1

m
Rt = f(b,-+1 +Zwijh{>, j=>1 (12)
i=1
Here, f represents the activation function, b stands for bias, W and w represent the weights of
neurons in the input layer and hidden layer, respectively. Furthermore, x represents the normalized
input value of the input layer, and h is the output of neurons in the hidden layer. The final output
of the last output layer is calculated in the same way as the output of the hidden layer. The calculated
output value of the DNN model is then used to compute the loss function by comparing it with the
actual values. Subsequently, an optimization algorithm is used to minimize the loss function and
adjust the values of weights and biases. In this study, hyperparameters such as batch size, epochs,
and learning rate were determined using the grid search cross-validation method. Table 3 represents
the basic configuration of the hidden layers, activation function, and optimizer used for applying the
grid search.

. . . . .

Hidden layer
Figure 5. The general architecture of the DNN model.

Table 3. Hyper-parameters of the ANN.

Layers Neurons Activation function Optimizer
1st hidden layer 11
2nd hidden layer 22
3rd hidden layer 44 ReLU Adam
4% hidden layer 66
5t hidden layer 89

In this study, the DNN was employed to predict the axial velocity distribution in the propeller
plane based on the input design variables of the Flow Control Fin (FCF). Thus, the input for the DNN
consisted of the design variables [x/ st.,z/T,AoA, (dy/dz),, (dy/dx),, (dz/ dx)y] , and the flow
distribution became the outputs. Here, the angle of attack (AoA) was defined as the angle between
the local streamline for the baseline hull without the FCF and the baseline of FCF. (dy/dz),, (dy/dx),,
and (dz/dx), represent the derivatives of the station line (constant x), waterline (constant z), and
buttock line (constant y), respectively. These derivatives indicate the inclinations of the hull in each

do0i:10.20944/preprints202309.0480.v1
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direction relative to the center point where the FCF is attached. In order to enhance the training
efficiency, it was essential to align the dimensions of the neural network's input and output as closely
as possible without compromising the detailed representation of the velocity distribution. To obtain
the Fourier series coefficients for the axial velocity distribution in the form of 73 x 8 polar array
(Figure 6) of the propeller plane, harmonic analysis was performed. Specifically, the circumferential
distribution of the axial velocity V,.(¢) was expressed using a Fourier series up to the 10th order for
eight radial positions within the range 0.3R < r < 1.0R (4r = 0.1R).

10
Ve(p) = A(0) + E{A(i) cos(ip) + B(Dsin (ip)} (13)

The symmetry of the wake flow distribution makes the sine coefficients B(i) = 0, resulting in the
utilization of the remaining 11 X 8 cosine coefficients as the output of the base DNN model. This
Fourier analysis preprocessing was found to improve training efficiency compared to cases without
preprocessing. The 693 source datasets used for the base DNN model were divided into 415 training
sets, 139 validation sets, and 139 test sets. When individual data sizes significantly differ, the training
often fails. To mitigate this, all data was normalized using a Min-Max scaler to ensure sizes ranged
from 0 to 1.

1st harmonic

%90 180 270 360

1.0 J‘ 1.0 | 2nd harmonic
T 02
05| { og— |
‘ 0.0)
% 06 ‘ % 0.6 | > o
: g % 0.
S | - -— 9% 180 270 360
04 =" 04 [ +> -
[ 3rd harmonic
02 02 ol
0490 18 270 360 I N N
005180 270 360 0456180 270 360 Angular position (degrees, Z L u—
Angular position (degrees) Angular position (degrees) .

10th harmonic

' % W™ 20 360

(b)

Figure 6. Preprocessing of output data for the neural network: (a) bisecting the propeller plane; (b)

harmonic analysis.

3.2. Transfer Learning (TL)

The machine learning algorithms of the data-centric learning method assume that they are
trained by the same distribution of train and test datasets [13]. However, in real-world applications,
this assumption may not hold. When the dataset changes, machine learning algorithms need to be
retrained based on a substantial amount of newly collected training data, which can be time-
consuming and costly [14]. To address these issues, transfer learning can be applied, allowing
efficient learning with a small amount of new data. Transfer learning involves transferring the
weights of a pre-trained neural network model to a new neural network for learning, thereby
facilitating the construction of a model with a small amount of newly applied data [15]. The main
objective of this study is to apply Deep Neural Networks (DNN) and Transfer Learning (TL) for
estimating viscous resistance and wake distribution on various sizes of container ships using the
position of flow control fin and hull-form information as input features. Figure 7 provides a brief
overview of how transfer learning is applied.
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Trained on source dataset Trained on target dataset

with sufficient data with limited data
Input Input
e i ---------- ---1  Copy weights } ------------ i ------------

15t hidden layer

!

Trainable True or False

15t hidden layer

!

Trainable True or False

i 2 hiddfn layer Trainable True or False 2 hiddfn layer E
E 3 hiddfn layer Trainable True or False 3 hiddfn layer E
E 4" hiddfn layer Trainable True or False 4" hiddfn fayer :
: 5% hidden layer 5 hidden layer :

Figure 7. Overview of the transfer learning.

First, the base DNN model is trained and validated using the source dataset (1,000 TEU). Then,
a new model is reconfigured (retrained and validated) based on a subset of the target dataset (2,500
TEU and 3,600 TEU), where the knowledge from the base DNN model is transferred. The remaining
part of the target dataset is used in the testing phase of the reconfigured model.

3.3. Model application details

Figure 8 illustrates the structure of the algorithm for predicting viscous resistance and wake
distribution of new sizes of container ships using transfer learning.

Figure 8. Workflow of transfer learning.

Source dataset Target dataset
Build Prediction and
the base model error calculation
l for test dataset
i
Calculate - Developing the
the validation loss model for transfer
l T learning
- Grid search ; i
Investigate - !
the optimal |~ | Batch size | : Select the optimal K-fold
hyperparameter | Epochs | learning rate cross validation
l | Learning rate | !
Calculate Calculate the
the test loss validation loss
Store the final Direct copy weights Create a new
base model model for fine-
tuning of weights


https://doi.org/10.20944/preprints202309.0480.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2023 do0i:10.20944/preprints202309.0480.v1

11

In this study, the source dataset used for training and validation of the base DNN model consists
of viscous resistance and wake characteristics based on the flow control fin applied to a 1,000 TEU
container ship. When training the DNN model, there are various hyperparameters that the designer
needs to set, including batch size, the number of epochs, and the learning rate. The choice of the batch
size used in mini-batch gradient descent affects the learning speed and the tracking of the global
minimum point of the cost function. The number of epochs, which indicates how many times the
entire dataset is iterated over during training, can lead to issues of overfitting and underfitting.
Furthermore, selecting an appropriate optimizer and the corresponding learning rate is crucial based
on the learning model and dataset used. To optimize these various hyperparameters, a grid search
cross-validation method was applied, which involves exploring the optimal parameters by
combining multiple settings specified by the designer. The loss function for optimizing the
hyperparameters was the Mean Square Error (MSE). The base DNN model constructed with the
optimal hyperparameters was then used to evaluate the learning performance on the test dataset.

Using the well-constructed base DNN model as a foundation, transfer learning was applied to
create a restructured DNN model for knowledge transfer to 2,500 TEU and 3,600 TEU (KCS) as target
datasets. For the reconstruction of the model through transfer learning, it's necessary to fine-tune the
weights of the base DNN model using a smaller learning rate compared to the original learning rate.
To determine an appropriate learning rate for the small amount of target data, K-fold cross-validation
was performed to assess the general prediction performance with varying learning rates.
Subsequently, the effect of fixing the number of layers during the reconstruction of the DNN through
transfer learning was investigated. Exactly, the study adopted transfer learning with fine-tuning,
which involves adjusting or maintaining the weights of specific layers among the hidden layers of
the base DNN model. This was done by training on various cases and comparing the results for each
case. In this study, the application of transfer learning using a small dataset for container ships of
different sizes demonstrates the potential for predicting resistance and wake distribution based on
FCF position with sufficient accuracy.

3.4. Accuracy evaluation

The performance evaluation metrics used for the proposed model are as follows.

e  Mean Squared Error; MSE estimates the standard deviation of the random component in the
data and is used to optimize the validation loss during model training. It is defined as follows:

n L 5)2
MSE = Zi=1(yl yl) (14)
n

where y; is the true value of the ith sample, J; is the estimated output of the
ith sample and n is the number of samples.

e  Mean Absolute Percentage Error; MAPE is used to compare the accuracy of predictions and is
defined as follows:

- (15)

n
100 i — Vi
MAPE = —Z |u
~1 Vi
Here, y;, ¥ and n have the same meanings as mentioned in the previous descriptions. A lower
MAPE indicates better predictions.

e  Coefficient of Determination; The coefficient of determination, or R?, is defined to demonstrate
how well the model predicts the variability of the observed and unobserved samples. The best
possible value is 1, and it can also be negative, indicating that the model cannot follow the true
datasets. R? is defined as follows:

. iz (i — 9)?

R?>=1 —
(i —¥)?

(16)
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Here, y represents the mean of the actual samples, and the other variables have the same
meanings as explained earlier.

4. Results

4.1. Uncertainties analysis in CFD verification

In this study, CFD analyses were conducted on a total of three grid systems by increasing and
decreasing the grid size with a refinement ratio of V2. The total number of cells and model-scale
viscous resistance for each grid system corresponding to the three different sizes of containerships
are presented in Table 4. Due to the use of unstructured grids in CFD analysis, the randomness in
grid generation leads to a limitation in precisely controlling the total number of cells.

Table 4. Cell number of the grid system.

Class Fineness # of grid cells Rvm [N]

Coarse 398,208 26.05

1,000 TEU Medium 1,047,619 26.19
Fine 2,923,468 26.31

Coarse 400,585 27.35

2,500 TEU Medium 1,080,754 27.55
Fine 3,074,301 27.72

Coarse 391,605 33.99

3,600 TEU Medium 913,245 34.09
Fine 2,533,138 34.27

The results of numerical error and uncertainty assessment for the three different sizes of
containerships are summarized in Table 5. Since all the convergence ratios are between 0 and 1, it can
be assumed that the model-scale viscous resistance (Ryy) converges monotonically. Therefore,
numerical error and uncertainty were estimated using the generalized Richardson Extrapolation (RE)
method. The results show that when performing double body analysis for the three containerships,
it can be expected numerical uncertainty of Rvim due to grid effects to be within 2% for all cases.
Based on the uncertainty results, data collection for machine learning was carried out using the
medium grid system for all cases. The coarse grid system faced difficulties in generating a smooth
flow control fin due to its thin structure. The fine grid system had a high number of cells, leading to
extended analysis time. Consequently, the medium grid system was chosen to strike a balance
between accuracy and computational efficiency.

Table 5. Results of numerical error and uncertainty analysis for Ryy,.

Class TG £621 €632 R ORE, Ug Ug(%Sc2)
1,000 TEU \2 -0.127 -0.138 0.919 -0.127 0.359 1.37
2,500 TEU \2 -0.176 -0.195 0.903 -0.176 0.489 1.77
3,600 TEU \2 -0.178 -0.106 0.907 -0.178 0.496 1.46

The subscript ‘G’ refers to grid size.

4.2. Prediction results using source dataset (the base DNN model)

The results of the grid search cross-validation for hyperparameter optimization of the DNN
model using a total of 690 source data (1,000 TEU) are presented in Figure 9. The Mean Squared Error
(MSE) was used to assess the prediction accuracy for each hyperparameter. In this study, three
hyperparameters were optimized, and the optimal values for each parameter are as follows; 1) batch
size: [4, 8, 16, 32, 64, 128], 2) epochs: [100, 500, 1000, 2000, 3000] and 3) learning rate: [0.001, 0.005, 0.01,
0.05, 0.1].
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Figure 9. Grid search results for DNN model using source dataset.

The final hyperparameters determined for the Base DNN model were chosen based on the
consideration of a small mean squared error value while considering the training speed. The training
hyperparameters for the base DNN model were set as follows: batch size = 64, epochs = 2000, and
learning rate = 0.01. Using this combination of selected hyperparameters, the model was trained for
a total of 18,000 iterations on the 1000 TEU containership dataset. The prediction accuracy of the base
DNN training model is quantified by an MSE of approximately 0.0008, as shown in Figure 10. The
peak of the loss typically occurs during mini-batch training with split data.

Model loss

| —— Train

---- Validation

—4 |

10

0 250 500 750 1000 1250 1500 1750 2000
Epoch #

Figure 10. Loss for the base DNN models.

The prediction accuracy for the test dataset not used during training was evaluated to validate
the learning level of the base DNN model. Table 6 presents the evaluation metrics for the test dataset
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of the source data, which is the 1,000 TEU containership. MSE and MAPE indicate higher prediction
accuracy as their values become smaller, and an R? value closer to 1 signifies that the test dataset
not used in training is being well predicted. The DNN model can accurately predict viscous resistance
and wake distribution in the propeller plane, as evidenced by the high level of accuracy. Figure 11
displays the predicted viscous resistance results for the two above-mentioned test cases. The average
error of the viscous resistance coefficient of model Cy,, is significantly small, being 0.00009 x 1073,
which is less than 0.005% of the target value. Figure 12 compares the true data obtained from CFD
analysis with the results predicted by the DNN. The true wake distribution is given on the left, and
the predicted data is shown on the right. The true data for the circumferential distribution of the axial
velocity component is depicted as black dashed lines, while the predicted data is represented by red
symbols and solid lines. As observed in Figure 12, the true and predicted data closely match with
high accuracy. The DNN model is capable of accurately predicting not only wake distribution but
also viscosity resistance. The neural network that serves as the basis for transfer learning on a small
amount of dataset requires sufficient prediction accuracy. Given the results above, it can be
concluded that the base DNN model can effectively capture the design variables of the FCF and
establish a strong association with both the viscous resistance coefficient and wake distribution,
demonstrating high accuracy in its predictions.

Table 6. MSE, MAPE and R? values for the base DNN model

.MSE MAPE [%] R?
0.00081 7.16 0.98
+0.062% -0.031%
3.220 3.223 3.198

w

CVM X 103

B Truth K Predicted
N I

Test No.1 Test No.2

Figure 11. Evaluation of prediction accuracy by the viscous resistance coefficient for the base DNN
model.
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Figure 12. Evaluation of prediction accuracy by harmonic wake distribution and axial wake
distribution for the base DNN model: (a) Test data no.1; (b) Test data no.2.

4.3. Prediction results using target dataset (DNN-TL model)

The DNN-TL model is reconstructed and retrained based on the weights of the previously
trained DNN model, using only the target dataset. Since the size of the target dataset is considerably
smaller (150 datasets) compared to the source dataset, a smaller learning rate is necessary to ensure
training accuracy. Therefore, it is necessary to find the optimal learning rate value for the training
dataset of the DNN-TL model The optimization was performed with learning rates [0.00001, 0.00005,
0.0001, 0.0005, 0.001, 0.005, 0.01], and the comparison of MSE values for each value is shown in Figure
13. In this study, the optimal learning rate value for predicting the viscous resistance and wake
distribution of the target dataset (2,500 TEU and 3,600 TEU) is determined to be 0.0005. Based on this,
the parameters of the DNN-TL model were constructed. To verify the prediction of viscous resistance
and wake distribution based on transfer learning, different configurations were tested: DNN-TL
models with 1, 4, and 5 fixed layers, as well as a DNN-TL model without any fixed layers (Table 7).
Fine-tuning was performed on each of these configurations, and their performances were compared.
In the DNN-TL model, the weights of neurons are initialized based on the previously trained base
model, and the model is retrained and reconstructed using the training dataset from the target

dataset.

0.06 -

0.05 1

MSE

0.04 -

0.03 -

0.02 1

0.000 0.002 0.004 0.006 0.008 0.010
Learning rate

Figure 13. Optimization of the learning rate for DNN-TL model using target dataset.
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1st hidden layer 274 hidden layer 3~ hidden layer 4™ hidden layer 5* hidden layer

All fixed layer Fixed Fixed Fixed Fixed Fixed
Fixed 4 layer Fixed Fixed Fixed Fixed Train
Fixed 1 layer Fixed Train Train Train Train

No fixed layer Train Train Train Train Train

The prediction accuracy based on fine-tuning of hidden layer weights was evaluated to verify
the level of learning. Figure 14 compares the predicted viscous resistance coefficients of the model
ship for each fine-tuning condition. The black-filled bar chart represents the true values obtained
from CFD analysis, while the red dashed-filled bars represent the predicted results from each fine-
tuning condition. The viscosity resistance performance was compared using one test data for each of
the 2,500 TEU and 3,600 TEU containerships. Figures 15 and 16 illustrate the comparison of predicted
results for harmonic wake distribution and circumferential distribution of axial velocity components
for both 2,500 TEU and 3,600 TEU. The left figure shows the harmonic wake distribution obtained
from CFD analysis, and the middle part displays the predicted wake distribution from each fine-
tuning condition. In the case where the weights of all five hidden layers are fixed (All fixed layer
case), there is an error of 18% specifically in the viscosity resistance coefficient (Cy,,) for the 3,600 TEU
containership. The accuracy of predicting the axial velocity distribution in the propeller plane is also
quite low, and it can be observed that it is trying to follow the wake distribution characteristics of the
1,000 TEU used in the base DNN model. In the case of ‘Fixed 4 layer’, where only the weights of the
last layer among the layers were trained, Cy) for 2,500 TEU and 3,600 TEU show errors of 0.38% and
-3.6% respectively. This indicates an improvement in prediction accuracy compared to the “All fixed
layer’ case. In Figures 15(b) and 16(b), compared to the ‘All fixed layer’, there is an attempt to capture
the characteristics of each hull-form. This indicates that the weights of the last hidden layer among
the hidden layers play a role in conveying a certain level of knowledge about the target datasets (2,500
TEU and 3,600 TEU). The prediction results for the Fixed 1 layer, where only the weights of the first
hidden layer are not retrained, and the No fixed layer, where all layers are retrained, show a quite
similar trend. The Cy) prediction results for both 2,500 TEU and 3,600 TEU exhibit errors within
0.5%. When observing the wake distribution and axial velocity components figures, it is evident that
the characteristics of each linear component are sufficiently captured.

All fixed layer Fixed 4 layer Fixed 1 layer No fixed layer
33
+0.92% o
3.179 ?'?gz/ ° 0.25% 0.32%
3.150 3.150 3 3.150 3,142 3.150 3,140
+0.10% +0.13%

3.0 2.971 2.971 2.974 2.971 2.975
m
o
—
X

S

O

27

-18%
2425
24
BN Truth Y Predicted
L 1 1
2500 TEU 3600 TEU 2500 TEU 3600 TEU 2500 TEU 3600 TEU 2500 TEU 3600 TEU

Figure 14. Evaluation of prediction accuracy by the viscous resistance coefficient for the target dataset
(2,500 TEU and 3,600 TEU) between each fine-tuning condition.
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Figure 15. Evaluation of prediction accuracy by harmonic wake distribution and axial wake
distribution for 2,500 TEU between each fine-tuning condition: (a) All fixed; (b) Fixed 4 layer; (c) Fixed
1 layer; (d) No fixed layer.
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Figure 16. Evaluation of prediction accuracy by harmonic wake distribution and axial wake
distribution for 3,600 TEU between each fine-tuning condition: (a) All fixed; (b) Fixed 4 layer; (c) Fixed
1 layer; (d) No fixed layer.

Table 8 presents the prediction accuracy metrics for the test dataset that was not used in the
training process under each fine-tuning condition. MSE and MAPE are metrics where lower values
indicate higher accuracy in predictions. R?, on the other hand, is a measure of how well the model
explains the variance in the data. A higher R? value, closer to 1, indicates a better predictive
performance. Generally, when R? > 0.67, it is considered to have a reasonably good predictive
accuracy, while 0.33 < R? < 0.67 indicates moderate predictive performance, and 0.16 < R? < 0.32
suggests poor predictive performance [16]. The R? score for the ‘All fixed layer’ case is -4.163,
indicating no prediction capability on the test dataset. Conversely, when the first hidden layer is fixed,
it exhibits the highest scores across all accuracy metrics. It is considered that the weights of the first
layer in the previously trained base DNN model were tailored to capture the characteristics of the
viscous resistance coefficient on containership and the axial velocity on the propeller plane. The
remaining hidden layers seem to have been designed to understand the fluid characteristics by hull-
form. To assess the level of prediction accuracy in this study, the performance was compared to
accuracy metrics from other literature that used transfer learning for predictions. Solis and Calvo-
Valverde [17] applied DNN and TL to time series prediction, and their optimal prediction model
achieved a MAPE value of approximately 9%. Zhou et al. [18] predicted the dynamic behavior of a
gas turbine engine using transfer learning, and in their optimal prediction model, they achieved MSE
and R? values of 0.00466 and 0.881, respectively. The MSE, MAPE, and R? values in this paper all
fall within a similar range, indicating that the prediction model applied with transfer learning is at a
satisfactory level of accuracy.
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Table 8. MSE, MAPE and R? values for each fine-tuning conditions

. MSE MAPE [%l] R?
All fixed layer 0.3083 182.4 -4.163
Fixed 4 layer 0.0307 24.88 0.499
Fixed 1 layer 0.0086 13.89 0.854
No fixed layer 0.0185 18.40 0.703

Figure 17 compares the predicted radial profiles of axial velocity components from the four
tuning cases with their true values. The green circles represent the predictions from the “All fixed
layer’ condition, the black squares are from the case where the first four layers were fixed (Fixed 4
layer), the blue triangles represent the condition where only the first layer was fixed (Fixed 1 layer),
and the red "X’ symbols depict the predictions from the ‘No fixed layer’ condition. In the case of ‘All
fixed layer’, significant discrepancies are observed between the predicted values and the true values
across all radii. On the other hand, for the ‘Fixed 1 layer” and ‘No fixed layer’ cases, it can be observed
that the predicted values closely follow the trends of the true values.
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Figure 17. Predictions for the circumferential distribution of axial velocity components for each radius:
(a) R=0.30; (b) R=0.40; (c) R=0.50; (d) R=0.60; (e) R=0.70; (f) R=0.80; (g) R=0.90; (h) R=1.00.

5. Conclusions

This paper proposes a novel methodology for predicting the resistance performance and wake
distribution of Flow Control Fins (FCFs) on containerships of various sizes using Deep Neural
Network (DNN) through transfer learning. The main contribution of this paper lies in introducing
DNN to predict the outcomes in a shorter time compared to traditional Computational Fluid
Dynamics (CFD) simulations, which are used to assess the performance based on the locations of
FCFs on containerships of different sizes. Another novel aspect is the utilization of Transfer Learning
(TL) to enhance the efficiency of training using a limited amount of data. Firstly, a base DNN model
is constructed based on a relatively large source dataset of 690 cases (1,000 TEU). Then, transfer
learning is applied to predict the performance of smaller target datasets (2,500 TEU and 3,600 TEU)
using the base DNN model as a foundation. Furthermore, fine-tuning between layers in the transfer
learning process is employed to identify the conditions that yield the highest learning accuracy.

As a result, the first layer of the base DNN model was fixed, and the rest of the layers were
retrained and reconfigured conditions showed higher scores in accuracy metrics. When evaluated
using the test dataset not involved in the transfer learning training, the MSE, MAPE, and R%*were
found to be 0.0086, 13.89%, and 0.854, respectively, indicating the highest accuracy. Additionally, in
terms of the viscous resistance coefficient (Cyy ), the accuracy was within 0.5%. This study
demonstrates the procedure in which machine learning techniques, particularly transfer learning, can
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contribute to the advancement of computational design technology. The current application of
transfer learning-based predictive capabilities is not limited to specific case studies. By adopting the
optimization techniques, it could be extended to the optimal design of FCFs' positions for various
types of containerships, which will be the topic of future study.
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