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NOTE:
1. The "Euclid Math One" regular and bold fonts are needed to display the contents correctly in this 
Notebook.
2. If there is no special case, the Mathematica code starts with gray "In[] :=" and is bold by default 
according to Mathematica's rules.

Part 1. Angular Speed Distribution of Randomly Moving Particles
The proof strategy in this part is similar to that in the Supplementary Information in the literature[1].

In [ ] := Clear["Global`*"];

X = TransformedDistribution
N1

N12 +N22 +N32
,

{N1, N2, N3}  ProductDistribution[{NormalDistribution[], 3}];

PDF[X, x]
Out[ ]=

1
2

-1 ≤ x ≤ 1

0 True

The expression of Ω’ in the main text is calculated as follows. NOTE: VS in the main text is 
substituted by Vs here.

In [ ] := X = Vs Sin[ArcCos[Θ]]Cos[Η];
Y = Vs Sin[ArcCos[Θ]] Sin[Η];
Z = 0;

FullSimplify X2 + Y2 + Z2 , Assumptions→Vs > 0

Out[ ]=

1 - Θ2 Vs

To obtain the probability density of the aforementioned function, we approach the problem step by 
step. Initially, we compute the probability density of 1 -Θ2 .

In [ ] := FullSimplifyPDFTransformedDistribution 1 - Θ2 , ΘUniformDistribution[{-1, 1}], x

Out[ ]=
x

1-x2
0 < x < 1

0 x > 1 ∨ x ≤ 0
Indeterminate True

Then, we calculate the probability density of VS 1 -Θ2 , that is, ω ' (x). NOTE: ω ' (x) in the 
main text is substituted by ω’ as the probability density expression here.

In [ ] := ω ' = FullSimplifyPDFTransformedDistributionVs fΘ,

VsMaxwellDistribution
1

2

π

2
c, fΘ ProbabilityDistribution

x

1 - x2
, {x, 0, 1}, x

Out[ ]=

8 x ⅇ
-
4 x2

π c2

π c2
x > 0

0 True

NOTE: ωS,X (x) in the main text is substituted by ωsx here. Then, the probability density of X, which 

represents one of the three equivalent coordinates of the angular velocity ΩS contributed by the random 
vector VS, can be obtained: 2



NOTE: ωS,X (x) in the main text is substituted by ωsx here. Then, the probability density of X, which 

represents one of the three equivalent coordinates of the angular velocity ΩS contributed by the random 
vector VS, can be obtained:

In [ ] := ωsx = FullSimplifyPDFTransformedDistributionF1 F2, F1 ProbabilityDistribution
1

2
, {x, -1, 1},

F2 ProbabilityDistribution
8 x ⅇ-

4 x2

π c2

π c2
, {x, 0, +∞}, x, Assumptions→ c > 0

Out[ ]=

erfc 2 x

π c

c
x ≥ 0

erf 2 x

π c
+1

c
True

NOTE: ωB,X (x,r) in the main text is substituted by ωbx here. Then, the probability density of the norm 
r of the radius r at which the starting point of the vector VB is located within the ball can be obtained:

In [ ] := ωbx = PDFTransformedDistribution
1

r
x,

x ProbabilityDistribution

Erfc 2 x

π c


c
x ≥ 0

Erf 2 x

π c
+1

c
x < 0

, {x, -∞, ∞}, Assumptions→ r > 0 ∧ c > 0, x

Out[ ]=

r erf 2 r x

π c
+1

c
r x < 0

r erfc 2 r x

π c

c
True

The distribution function of the contribution of VB to the equivalent coordinate ΩB,X  of ΩB is calcu-
lated as follows:

In [ ] := FullSimplify

CDFProbabilityDistribution

r Erf 2 r x

π c
+1

c
x < 0

r Erfc 2 r x

π c

c
x ≥ 0

, {x, -∞, ∞}, Assumptions→ r > 0 ∧ c > 0, x

Out[ ]=

1
2
ⅇ-

4 r2 x2

π c2 +
r x erf 2 r x

π c
+1

c
x ≤ 0

- 1
2
ⅇ-

4 r2 x2

π c2 +
r x erfc 2 r x

π c

c
+ 1 True

We integrate the function in the whole unit ball:
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In [ ] := FullSimplify
0

1
4 π r2

1
2
ⅇ-

4 r2 x2

π c2 +
r x Erf 2 r x

π c
+1

c
x ≤ 0

- 1
2
ⅇ-

4 r2 x2

π c2 +
r x Erfc 2 r x

π c

c
+ 1 x > 0

ⅆ r

Out[ ]=

1
64

π  π
2 c3

x3
+ 64 x

c
 erf 2 x

π c
 + ⅇ-

4 x2

π c2 32 - 4 π c2

x2
 + 64 x

c
x ≤ 0

1
192

π  3 π
2 c3

x3
+ 192 x

c
 erfc 2 x

π c
 - 3 π2 c3

x3
+ ⅇ-

4 x2

π c2  12 π c
2

x2
- 96 + 256 True

We find the first derivative of the above result with respect to x:

In [ ] := FullSimplifyD

1
64

π  π
2 c3

x3
+ 64 x

c
 Erf 2 x

π c
 + ⅇ-

4 x2

π c2 32 - 4 π c2

x2
 + 64 x

c
x ≤ 0

1
192

π  3 π
2 c3

x3
+ 192 x

c
 Erfc 2 x

π c
 - 3 π2 c3

x3
+ ⅇ-

4 x2

π c2  12 π c
2

x2
- 96 + 256 x > 0

, x

Out[ ]=

π 64 x4-3 π2 c4 erf 2 x

π c
+4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

64 c x4
x < 0

π 3 π2 c4-64 x4 erf 2 x

π c
-4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

64 c x4
x > 0

Indeterminate True

We integrate the function in the whole interval (-∞, ∞).

In [ ] := Integrate

π 64 x4-3 π2 c4 Erf 2 x

π c
+4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

64 c x4
x < 0

π 3 π2 c4-64 x4 Erf 2 x

π c
-4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

64 c x4
x > 0

, {x, -∞, ∞}, Assumptions→ c > 0

Out[ ]=

4 π

3

The above function is normalized according to the integration results:

In [ ] := FullSimplify
1
4 π
3

π 64 x4-3 π2 c4 Erf 2 x

π c
+4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

64 c x4
x < 0

π 3 π2 c4-64 x4 Erf 2 x

π c
-4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

64 c x4
x > 0



Out[ ]=

3 64 x4-3 π2 c4 erf 2 x

π c
+4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

256 c x4
x < 0

3 3 π2 c4-64 x4 erf 2 x

π c
-4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

256 c x4
x > 0

Further more, when the radius of the ball is R, the above situation scales to ΩB,X (x)
R

. Accordingly, the 

probability density of the contribution of the random vector V to the single equivalent coordinate X of 
angular velocity Ω is (Note: ωX (x) in the main text is substituted by ωx here):
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Further more, when the radius of the ball is R, the above situation scales to ΩB,X (x)
R

. Accordingly, the 

probability density of the contribution of the random vector V to the single equivalent coordinate X of 
angular velocity Ω is (Note: ωX (x) in the main text is substituted by ωx here):

In [ ] := ωxd = TransformedDistribution
x

R
,

x ProbabilityDistribution

3 64 x4-3 π2 c4 Erf 2 x

π c
+4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

256 c x4
x < 0

3 3 π2 c4-64 x4 Erf 2 x

π c
-4 c x ⅇ

-
4 x2

π c2 3 π c2+8 x2+64 x4

256 c x4
x > 0

, {x, -∞, ∞},

Assumptions→ R > 0 ∧ c > 0;
ωx = FullSimplify[PDF[ωxd, x]]

Out[ ]=

3
256

 64 R
c

- 3 π2 c3

R3 x4
 erf 2 R x

π c
 +

4 ⅇ
-
4 R2 x2

π c2 3 π c2+8 R2 x2

R2 x3
+ 64 R

c
R x < 0

3
256

 3 π
2 c3

R3 x4
- 64 R

c
 erf 2 R x

π c
 -

4 ⅇ
-
4 R2 x2

π c2 3 π c2+8 R2 x2

R2 x3
+ 64 R

c
R x > 0

The standard deviation of ωxd is:

In [ ] := StandardDeviation[ωxd]
Out[ ]=

π c

2 R

This is the end of the whole proof.

Part 2. Figures Used in This Study
NOTE: To run these codes correctly, the contents in "MyDirection = **" in the next cell should be 
modified. It is similar to MyDirection = "/Users/yourdirection/". Then, run it (Shift+Enter) before-
hand. The drawing methodology of Figure 1 in this part is similar to that in the Supplementary Informa-
tion in the literature[1].

MyDirection = **;
Protect[MyDirection];
Off[General::wrsym];

###### Figure1##############################################

Clear["Global`*"];
ℛ1 = Sphere[{0, 0, 0}, 1];
ℛS1 = Point[{0, 0, 0}];

A = Line
1

2
, -

3

4
, 0, 

1

2
, -

3

4
, 1;

pts1 = Solve[{x, y, z} ∈ ℛ1 && {x, y, z} ∈ A, {x, y, z}];

ℛ2 = Sphere
1

2
, -

3

4
, z /. Association[pts1],

6

5
;

ℛ3 =Arrow{0, 0, 0}, 
1

2
, -

3

4
, z /. Association[pts1];
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{u, v, w} =Normalize{0, 0, 1}⨯
1

2
, -

3

4
, z /. Association[pts1];

θ =VectorAngle
1

2
, -

3

4
, z /. Association[pts1], {0, 0, 1};

M =

u2 + 1 - u2 cos(θ) u v (1 - cos(θ)) - w sin(θ) u w (1 - cos(θ)) + v sin(θ) 0

u v (1 - cos(θ)) + w sin(θ) v2 + 1 - v2 cos(θ) v w (1 - cos(θ)) - u sin(θ) 0

u w (1 - cos(θ)) - v sin(θ) v w (1 - cos(θ)) + u sin(θ) w2 + 1 - w2 cos(θ) 0
0 0 0 1

;

ℛ4 = ParametricPlot3DTake[M.{r Cos[t], r Sin[t], 1, 1}, 3], r, 0,
6

5
,

{t, 0, 2 Pi}, PlotStyle→ {Orange, Opacity[0.4]}, PlotPoints→ 300, Mesh→None;

ℛ5 =Arrow
1

2
, -

3

4
, z /. Association[pts1], TakeM.-

1

2
,
1

4
, 1, 1, 3;

ℛS2 = Point
1

2
, -

3

4
, z /. Association[pts1];

A = LineTakeM.-
1

2
,
1

4
, 1, 1, 3, TakeM.-

1

2
,
1

4
, 3, 1, 3;

pts2 = Solve[{x, y, z} ∈ ℛ2 && {x, y, z} ∈ A, {x, y, z}];

ℛ6 = LineTakeM.-
1

2
,
1

4
, 1, 1, 3, {x, y, z} /. Association[pts2];

ℛ7 =Arrow
1

2
, -

3

4
, z /. Association[pts1], {x, y, z} /. Association[pts2];

ℛ8 = Point[{x, y, z} /. Association[pts2]];

ℛ9 = LineTakeM.-
1

2
,
1

4
,
20 + 5

20
, 1, 3, TakeM.-

1

2
+
1

10
,
1

4
-
1

20
,
20 + 5

20
, 1, 3;

ℛ10 = LineTakeM.-
1

2
+
1

10
,
1

4
-
1

20
, 1, 1, 3, TakeM.-

1

2
+
1

10
,
1

4
-
1

20
,
20 + 5

20
, 1, 3;

figure1 =

ShowGraphics3D{Blue, Specularity[White, 30], Opacity[0.3], ℛ1}, {PointSize[Large], Blue, ℛS1},
{Orange, Specularity[White, 20], Opacity[0.3], ℛ2}, {PointSize[Large], Blue, ℛS2},
{Blue, Thickness[0.0085], ℛ3}, {Thickness[0.0085], Orange, ℛ5},
{Thickness[0.005], Dashed, Orange, ℛ6}, {Thickness[0.0085], Orange, ℛ7},
{PointSize[Large], Orange, ℛ8}, {Thickness[0.0085], Orange, ℛ9}, {Thickness[0.0085],
Orange, ℛ10}, {Text[Style["S", 24, FontFamily→ "Arial", Blue], {0.14, 0, 0}]},

TextStyle["r", 24, FontFamily→ "Arial", Bold, Italic, Blue], TakeM.0.11, 0,
1

2
, 1, 3,

{Text[Style["S'", 24, FontFamily→ "Arial", Orange], Take[M.{0.14, 0, 1, 1}, 3]]},

TextStyle["D'", 24, FontFamily→ "Arial", Orange], TakeM.
1

2
, 0.12, 1.1, 1, 3,

TextStyle["v", 24, FontFamily→ "Arial", Bold, Italic, Orange],

TakeM.-
1

4
+ 0.14, 0.23, 1 +

3

4
, 1, 3, TextStyle["S", 13,
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FontFamily→ "Arial", Orange], TakeM.-
1

4
+ 0.216, 0.23, 0.98 +

3

4
, 1, 3,

TextStyle["ω'", 24, FontFamily→ "Arial", Bold, Orange], TakeM.-
1

4
, 0, 0.91, 1, 3,

Method→ {"SpherePoints"→ 300}, ℛ4,

Lighting→Automatic, Boxed→ False, ViewPoint→ {0, -∞, 0};
Export[MyDirection <> "figure1.png", figure1, Background→None, ImageResolution→ 600];

###### Figure1##############################################

###### Figure2##############################################

Clear["Global`*"];
c = 100;
u = 60;
σ = 10;
ω = 0.1;

𝒫= ItoProcessⅆx1[t] ⩵ - u2 - ω2 x1[t]2 ⅆ t +
c2 - u2

c
σ ⅆw1[t],

ⅆx2[t] ⩵ ω x1[t] ⅆ t +
c2 - u2

c
σ ⅆw2[t], ⅆx3[t] ⩵

c2 - u2

c
σ ⅆw3[t], {x1[t], x2[t], x3[t]},

{{x1, x2, x3}, {0, 0, 0}}, {t, 0}, {w1WienerProcess[], w2WienerProcess[], w3WienerProcess[]};
SeedRandom[125];
sample = Table[First[Transpose[RandomFunction[𝒫, {0, 10, 0.01}]["ValueList"], {2, 1, 3}]], {100}];
figure2 =Graphics3D[Table[{ColorData["SolarColors"][RandomReal[]], Line@sample〚i〛}, {i, 100}],

BoxStyle→Directive[Black, Thickness→ 0.001], ViewPoint→ {-3, 7, -30}];
Export[MyDirection <> "figure2.png", figure2, Background→None, ImageResolution→ 600];

###### Figure2##############################################
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