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NOTE:
1. The "Euclid Math One" regular and bold fonts are needed to display the contents correctly in this
Notebook.

2. If there is no special case, the Mathematica code starts with gray "In[#]:=" and is bold by default
according to Mathematica's rules.

Part 1. Angular Speed Distribution of Randomly Moving Particles
The proof strategy in this part is similar to that in the Supplementary Information in the literature[1].

Clear["Global +"];

Ny
X = TransformedDistribution ,

‘\’le +N22 +1\732

{N1, N3, N3} &~ ProductDistribution[{NormalDistribution][], 3}]];

PDF[X, x]

The expression of ||£2’]| in the main text is calculated as follows. NOTE: ||F5|| in the main text is
substituted by Vs here.

X = Vs Sin[ArcCos[®]] Cos[H];
Y = Vs Sin[ArcCos[®]] Sin[H];
Z=0;

FullSimplify[ X2 + Y% + 7%, Assumptions - Vs > 0]

N1-07 Vs

To obtain the probability density of the aforementioned function, we approach the problem step by
step. Initially, we compute the probability density of /1 - ®?.

FullSimplify[PDF[TransformedDistribution[ \1-©?, © & UniformDistribution[{-1, 1}]], x]]

X

O<x<l1
1-x2

0 x>1Vx=<0

Indeterminate True

Then, we calculate the probability density of [[Vs|| 4/1 — @7, that is, [|w']l (x). NOTE: [|lw'l| (x) in the
main text is substituted by w’ as the probability density expression here.

w'= FullSimplify[PDF [TransformedDistribution[Vs fo,

{Vs 5] MaxwellDistribution[% g c], O~ ProbabilityDistribution[ ; , {x, 0, 1}]}], x”
1-x



NOTE: wg x(x) in the main text is substituted by wsx here. Then, the probability density of X, which

represents one of the three equivalent coordinates of the angular velocity Qg contributed by the random
vector Vs, can be obtained:

1
In[-]:= WSX= FullSimplify[PDF[TransformedDistribution[Fl F2, {Fl R ProbabilityDistribution[— , {x, =1, 1}],
2

4x?

8xe =
F2 ~y ProbabilityDistribution[ — {x, 0, +oo}]}], x], Assumptions - ¢ > 0]
TC
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NOTE: wp x(x,r) in the main text is substituted by wbx here. Then, the probability density of the norm
r of the radius r at which the starting point of the vector V7 is located within the ball can be obtained:
1
In[-]:= wbx = PDF[TransformedDistribution[— X,
r
2x
Erfc[ */70] £ 0
XA ProbabilityDistribution[ [ c“ ] , {x, —o0, oo}], Assumptions > r>0Ac> 0], x]
Erf| — |+1
c
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The distribution function of the contribution of F3 to the equivalent coordinate Qp x of Qg is calcu-

lated as follows:

Inf J:= FullSimplify[

r(Erf( 2rx ]+1)
# x<0

CDF[ProbabilityDistribution[ E,x , {x, —c0, o0}, Assumptions > r>0Ac> 0], x]]

rErfc( ‘/;c] 20
(4
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——e ¢ + " +1 True

2

We integrate the function in the whole unit ball:



4y rx[Erf( 2rx )+1)
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We find the first derivative of the above result with respect to x:

g ({5 (2

)+enc (32—4:2”)+“7”) x=<0
infe J:= FullSimplify[D[

x|

4x?
1 37r203 192 x 322 -— (127(02 )
mn[( 25) Brfe( 2= ) - 255 + €7 (255 - 96) 4256 x>0
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x<0
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Indeterminate True

We integrate the function in the whole interval (-co, c0).

41

& (37rc +8x )+64x

[(64 x

x<0
, {x, —c0, 0}, Assumptions —» ¢ > 0]

4
In[e]:= Integrate[ 6dcx
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[(3;:% =@ (3x2+8x2)+64 x*

x>0

64cx*

The above function is normalized according to the integration results:

4x2

@ (3x2+8x%)+64x*

C

[(64 x'-3x

1 x<0
infe = FullSimplify[4— 64cat ]
g
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Further more, when the radius of the ball is R, the above situation scales to ——. Accordingly, the

probability density of the contribution of the random vector V to the single equlvalent coordinate X of



angular velocity £ is (Note: wy(x) in the main text is substituted by wx here):

x
n[-]= wxd= TransformedDistribution[ -
R

4x?
3 [(64 =37 ) Erf[j_—x]+4 cxe @ (3m 4824645t
e

x<0

X~ ProbabilityDistribution[ 256cat , {x, —oo, oo}],

422
3|(322 c*-64x%) Erf[j_—x]—4 cxe 2 (3mc2+8x%)+64x¢
e

x>0
256 ¢ x*
Assumptions > R >0A ¢ > 0];
wx = FullSimplify[PDF[wxd, x]]
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The standard deviation of wxd is:

in[-]:= StandardDeviation[wxd]
Out[«]=
e
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This is the end of the whole proof.

Part 2. Figures Used in This Study

NOTE: To run these codes correctly, the contents in "MyDirection = =" in the next cell should be
modified. It is similar to MyDirection = "/Users/yourdirection/". Then, run it (Shift+Enter) before-
hand. The drawing methodology of Figure 1 in this part is similar to that in the Supplementary Informa-
tion in the literature[1].

MyDirection = sx;

Protect[MyDirection];

Off[General::wrsym];
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Clear["Global +"];
Ry = Sphere[{0, 0, 0}, 1];
RS1 = Point[{0, 0, 0}];

R IR
A=tinel{{~, - == o}, {-. -—=. 1}}]
ptsl = Solve[{x, y, z} e R && {x, y,z} €A, {x, y, 2}];

1 3 :
Ry = Sphere[{ > - T\/_ , z} /. Association[pts1], g],

Ry = Arrow[{{O, 0, 0}, {%, - ? , z} /- Association[ptsl]}];



\/5

1
{u, v, w}= Normalize[{O, 0, l}x{— y ——, z} /. Association[ptsl]];
2 4

1 3
0= VectorAngle[{E _T\/_ }/. Association[pts1], {0, 0, 1}];

u* + (1 - u?) cos(9) uv (1 - cos()) — wsin(®) uw (1 - cos(6)) + vsin(6) 0
uv (1= cos(9)) + wsin®) v*+ (1—1*)cos(6) vw (1 —cos()) —usin(@) 0 |
uw (1= cos(6)) —vsin(@) vw(l-cos(®))+usin@®) w?+(1-w?)cos(6) o
0 0 0 1

M=

6
Ry = ParametricPlot3D[Take[M.{r Cos[t], r Sin[t], 1, 1}, 3], {r, 0, - }
5

{¢, 0, 2 Pi}, PlotStyle — {Orange, Opacity[0.4]}, PlotPoints — 300, Mesh —» None];

Rs = Arrow[{{%, —g }/ Association[pts1], Take[M{ % 3, 1, 1}, 3]}];
RS2 = Point[{% y — ? , z} /. Association[ptsl]];
A=vinel{Takept (-2, =, 1,1),3) Take| ==+ 3,1, 3]}

ptSZ = SOlve[{x’ Ys Z} € 732 && {x’ Ys Z} GA, {x’ Y Z}]s

Re = Llne[{Take[M { , 1, 1}, 3], {(x,y,2}/. Association[ptsZ]}];

-hl»—t

1
2’

Ry = Arrow[{{ ! ? , z} /. Association[pts1], {x, y, z} /. Association[ptsZ]}];

Rs = Point[{x, y, z} /. Association[pts2]];
o= il {ranef 2. £ 25V o) et L 1L 2OV
Rug=Line (Takelpt - + = = 1 3] maker {2+ 2= 2T ]l
figurel =

Show[{Graphics3D[{{Blue, Specularity[White, 30], Opacity[0.3], R,}, {PointSize[Large], Blue, RS1},

{Orange, Specularity[ White, 20], Opacity[0.3], R;}, {PointSize[Large], Blue, RS2},

{Blue, Thickness[0.0085], R3}, {Thickness[0.0085], Orange, Rs},

{Thickness[0.005], Dashed, Orange, R¢}, {Thickness[0.0085], Orange, R;},

{PointSize[Large], Orange, Rg}, {Thickness[0.0085], Orange, Ro}, {Thickness[0.0085],
Orange, R}, {Text[Style["S", 24, FontFamily —» "Arial", Blue], {0.14, 0, 0}]},

{Text[Style["r", 24, FontFamily — "Arial", Bold, Italic, Blue], Take[M {O 11, 0, } 3”}

{Text[Style["S'", 24, FontFamily - "Arial", Orange], Take[M.{0.14, 0, 1, 1}, 3]]},
1
{Text[Style["D'", 24, FontFamily - "Arial", Orange], Take[M.{ S 012, 1L, 1}, 3]]}

{Text[Style["V", 24, FontFamily — "Arial", Bold, Italic, Orange],

Take[M.{—z +0.14,023,1 + ?, 1}, 3]]} {Text[Style["S", 13,



1 3
FontFamily - "Arial", Orange], Take[M.{—Z +0216, 0.23, 0.98 + TV_’ 1}, 3]]}

{Text[Style["w"’, 24, FontFamily - "Arial", Bold, Orange], Take[M.{—%, 0, 0.91, 1}, 3]]}}

Method - {"SpherePoints" - 300}], ‘R4},

Lighting » Automatic, Boxed — False, ViewPoint — {0, —co, 0}];
Export[MyDirection <> "figurel.png", figurel, Background — None, ImageResolution - 600];
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Clear["Global +"];

¢ =100;
u=60;
o=10;
w=0.1;
\/cz —-u?
P= ItoProcess[{dxl[t] =- \/ 2 X1t dt + ———— o dwll[f],
c
2 — 2 2 — 12
dx2[t] = wx1[tf] dt + —— o dw2[t], dx3[t] == ——— UdWS[t]}, {x1[#], x2[z], x3[¢]},
c c

{{x1, x2, x3}, {0, 0, 0}}, {¢, 0}, {wl &~ WienerProcess[], w2 & WienerProcess[], w3 &~ WienerProcess[]}];

SeedRandom[125];

sample = Table[First[Transpose[RandomFunction[P, {0, 10, 0.01}][" ValueList"]", {2, 1, 3}]], {100}];

figure2 = Graphics3D[Table[{ColorData[ " SolarColors" ][RandomReal[]], Line @ sample[i]}, {i, 100}],
BoxStyle — Directive[Black, Thickness - 0.001], ViewPoint —» {-3, 7, —30}];

Export[MyDirection <> "figure2.png", figure2, Background — None, ImageResolution - 600];
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