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Introduction 

Staudinger [1] taught us that macromolecules were made up of the covalently bonded monomer 

repeat units chaining up as polymer chains. The chemical nature of the monomer directed the type 

of covalent bonds conferring most of the specific properties of the polymer. The more the number of 

repeat units the longer the chains and the more the possibility for the chains to assume a variety of 

shapes, from an extended elongated one to a more compact coiled one. Also, the chemical process 

that resulted in the synthesis of macromolecules produced many chains, often not with the same 

shape or size. The properties of the polymers improved when the chains became longer but it was 

more difficult to process them: their viscosity increased with molecular weight; viscosity was no 

longer an intensive property like it was for small liquids. 

The main question raised in polymer physics was: how do these long chains interact and move 

as a group when submitted to shear deformation at high temperature when they are viscous liquids? 

This question is debated in a field of polymer physics called RHEOLOGY, whose purpose is to 

understand the viscoelastic aspects of polymer melts deformation [2]. 

The current consensus is that we need to distinguish two cases: the deformation of “un-

entangled chains” for macromolecules with molecular weight, M, smaller than Me, “the entanglement 
molecular weight”, and the deformation of “entangled” chains for M > Me.  

Several eminent scientists have extensively studied these 2 cases over the last 70 years. Paul J. 

Flory, in 1974, and Pierre-Gilles de Gennes, in 1991, were awarded the Nobel price in Chemistry and 

Physics, respectively, for their significant theoretical contribution to the understanding of these 

challenging problems [3,4]. For both these authors, the properties of polymers derive from the 

statistical characteristics of the macromolecule itself, the designated statistical system that defines the 

thermodynamic state of the polymer [5,6]. The molecular weight between entanglements, Me, is 

defined from the rubber elasticity theory and known to be equal to Mc/2 where Mc is the molecular 

weight for the entanglements when viscosity measurements are carried out. The current paradigm is 

that the viscoelasticity of un-entangled melts (M < Mc) is well described by the Rouse model [7] and 

the entanglement issues raised by the impact of the increase of the length of the macromolecules on 

the melt viscoelasticity, when M > Mc, are well understood by the reptation model introduced by de 

Gennes in 1971 [8]. Both models can be classified in the category of “chain dynamics statistics” [9–
12].  

In this paper we examine in details the failures and the current challenges facing the current 

paradigm of polymer rheology: the Rouse model [7] for M < Mc, the reptation model [4,6,8] for M > 

Mc, the time-temperature superposition principle [13], the strain induced time dependence of 

viscosity [14], shear-refinement [15] and sustained-orientation[16]. The basic failure of the current 

paradigm and its inherent inability to fully describe the experimental reality [17] is reviewed in this 

paper. 

We focus in re-examining some experimental facts, the most damaging, for these 2 models based 

on chain dynamics statistics, being their inability to explain the time dependence of viscosity under 

small shear strain conditions [14] and the observation of “Sustained-Orientation”, i.e., the reversible 

triggering of the instability of the network of entanglement [2,16]. 
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In the discussion and conclusion of the paper we suggest that new concepts are needed to 

explain the viscoelasticity of polymer chains and of their “entanglement”, also answering a question 
raised a long time ago [18] regarding their relaxation and thermal analysis behavior. These concepts 

represent a change of paradigm to describe the dynamics of the interactions within the chains and 

across the chains. A brief description of our currently proposed open dissipative statistical approach, 

“the Grain-Field Statistics of Open Dissipative Systems” [19–21]., is introduced in the conclusion 

Development 

1. The Great Myth of The Rouse Model: Its Failure to Describe the Rheology of Unentangled 

Melts (M < Mc). 

1.1. (In) validation of the Rouse model Using dynamic data G’(), G”() 

A classical misconception, already emphasized in other instances ([13], ch. 3 of Ref. 2), is the 

statement that polymer melts below Mc follow the predictions of the Rouse model [7]. The Myth is 

so well established that the majority of the authors make this statement without fully verifying the 

accuracy of the allegation using their own data to validate it. 

We give two examples of authors claiming that their data can be fitted by the Rouse model, and 

show that we have good reasons to dispute such validation. The data both concern dynamic 

rheological results obtained on a series of monodispersed PS samples [22,23]. The 1st set of dynamic 

data is from Watanabe et al.1 [22]. It applies to a monodispersed PS with M=27,000 obtained at 4 

temperatures T=115 oC, 120 oC, 130 oC and 140 oC. The 2nd set of dynamic data is from Majeste who 

studied in his thesis a series of monodispersed PS samples both unentangled and entangled [23]. Note 

that for the Watanabe et al.’s results the temperatures are all located below the TLL temperature for 

this molecular weight (164.1 °C, see Equation XXX in [24]), whereas the temperature of T=160 oC is 

the reference temperature chosen by Majeste to shift the other frequency sweep isotherms and obtain 

the mastercurves for 8 unentangled PS samples. As we learn in [24], TLL varies with M for PS like 

Tg(M)+70.44 oC, so the choice of T= 160 oC for the mastercurves in the Majeste’s data at various M 

positions the analysis of the data very near below or above TLL for all the molecular weights below 

Mc. This contrasts with the Watanabe et al.’s data analysis. 
The Rouse model is very simple to apply to a set of data: one needs the longest relaxation time, 

R, at a given temperature, and the melt modulus GN. The melt modulus, GN=RT/M, is calculated 

using the well known modulus formula taken from rubber elastic theory, where  is the melt density, 

M the molecular weight, and T the value of the temperature (R is the gas constant). In other words, 

when the molecular weight and the temperature are given, the Rouse model only depends on one 

parameter, R. The value of R is linearly correlated to the Newtonian viscosity at that temperature, 

*o; it is also the inverse of the cross-over frequency of G’() and G”(), x, also at the same 

temperature. The secondary relaxation times, p are found from R: p= R/p2 with p= 1 to N= M/Mo 

where Mo is the mer molecular weight (For PS and M=27,000 N=257). A simple spreadsheet permits 

the calculation of G’() and G”() according to Equation (1): 

 
1 The data were kindly provided by Prof. Watanabe, who also clarified some of the experimental 

issues by email.   
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(1) 

The density  of the PS melts is given by Fox-Flory (Ref. 36 of [23]): 

 
(2) 

The Rouse time R is given by: 

 
(3) 

The Newtonian viscosity o is determined at each temperature using the empirical Cole-Cole 

equation [25] to fit the data Log(()) vs log and extrapolate to → . For PS M=27,000, the 

temperature dependence of the Newtonian viscosity varies with temperature following the Vogel-

Fulcher equation [26]: 

 

(4) 

As already mentioned, the Rouse time can also be determined, R=1/x, from the cross-over of 

the Maxwell straight lines passing through the low  data points of Log G’() and Log G”() vs 

Log(), by forcing their respective slopes to be 2 and 1 in the low  line regressions, respectively, and 

calculating the coordinates of the intercepting straight lines. 

Let us look at the match between the experimental results of Watanabe et al. and the Rouse 

Equation (1). Figures 1 to 4 compare the results for T=130 °C. 

 

Figure 1. Compare log G’(), G”() vs log  for Data of Watanabe et al. [22] and the predictions of 

the Rouse model pursuant to Equations. (1–4). 
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Figure 1 displays the dynamic moduli G’() and G”() for the data (symbols) and the Rouse 

Equation 1 (red and blue lines). At first glance, one may say that the fit is remarkably good if one 

realizes that there is just one fitting constant involved, R, the Rouse model providing a theoretical 

basis to determine the other constants GN and p. The fit is especially good for G”() in the lower 

frequency region, explaining why the Rouse equation is often validated in the Newtonian range using 

the viscosity as the variable (G”/ →*o at low ). But, as we have expressed many times ([13], Ch. 

3 of [2]), a close examination of the plot makes visible all the objective reasons to reject such a model, 

which turns out to provide an unacceptable fit of the data. Figure 2 provides the proof. 

 

Figure 2. error G’() and G”() with respect to Rouse simulation in Figure 1 plotted against  

One of the reasons the apparent fitness of the Rouse model to the data in Figure 1 looked “good”, 
is that we used log scales on both axes, which clearly compresses the resolution in order to display 

the overview picture. The log compression of the  axis covers only 3 decades of variation of , from 

0.1 to 100 rad/s. When the curves are mastercurves obtained by horizontal shifting, the log 

compression extends 1 to 3 more decades, which makes the appearance of a good fit even better 

because of the further data compression. Such is the case in the figures presented in Majeste’s thesis, 
for instance, when they compare the data to the Rouse equation projections [23]. Even in Figure 1, 

which is not a mastercurve, one can see unacceptable discrepancies when comparing the results: the 

G’() curves never seem to overlap, a fact proven in the next figure that shows that the residuals for 

the errors are totally curved when they should be random (i.e., with the points of the residual plot 

randomly disposed on both sides of the zero horizontal line). Figure 2 provides the % error between 

the data and its corresponding Rouse prediction. The verdict is crystal clear: there is no range where 

the fit can be considered acceptable, not even in the low frequency zone, in the terminal region, where 

Fig- 1 gives the illusion of some relative success, especially for G”() as we mentioned earlier. For all 

the values of  the residuals are badly curved, the error is 2 to 5 times the accuracy for measuring the 
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modulus: the Rouse model fails to fit the dynamic behavior for this M < Mc melt. This is true for T=130 
oC in Figure 2, as well as for the 3 other temperatures chosen by Watanabe et al. (not shown). In fact, 

the errors get much worse for T=120 and 115 oC. Only T=140 oC shows a decrease in the magnitude 

of the errors, yet the residuals are still badly curved. 

Figure 3 compares the data and the Rouse dynamic viscosity () As in Figure 1, the illusion 

of a good fit is what is apparent at first, perhaps even more so for the viscosity than for the moduli. 

All the features of shear-thinning are displayed by the Rouse model: the Newtonian plateau and the 

decrease of viscosity with strain rate at higher frequency. Yet, these are the same data that produced 

the unacceptable errors in the determination of G’() and G”() in Figure 2. One sees how the choice 

of the variables and the use of the log scale can easily mislead the conclusion. 

 

Figure 3. Compare the Rouse model prediction of log *() vs log  and the data of Watanabe et al. 

[22] for PS (M=27,000) at T= 130 oC (same data as in Figure 1). 

As we said, the elegance of the Rouse model is its lack of fitting constants, being based on a 

molecular understanding of the motion of a macromolecule to produce flow. The Rouse equation that 

we have written above can even be further tuned down to include the expression of the radius of 

gyration of a single macromolecule, RG, which can be measured by light or neutron scattering. 

However, if we desire to optimize the fit between the Rouse’s predictions and the experimental data, 

we need to make “loose” the value of R or GN in Equation (1) and introduce them as regression 

parameters. The regression fits at low  become much improved as we do that, yet it is at the expense 

of the physical Rouse reality: the value of R and GN values found by regression become 2,000 to 

5,000% different from their respective values for that T and M pursuant to the Rouse model (GN= 

RT/M). For instance, if the value of GN is made different for the G’() than for the G”() equation in 

the Rouse formula (Equation (1)), the fits are considerably improved but the molecular explanation 

of the model goes down the drain. See below. 

Figure 4 is a graph that displays an important apparent discrepancy between the prediction of 

the Rouse model and the data in the non-Newtonian range of . The graph compares the value of  

= (G’/G*)2 at various  either measured experimentally by Watanabe et al. [22], the black squares, or 
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calculated from the Rouse model (the red dots). What we mean by “discrepancy” is that the large 
departure between the Rouse model and the data seen in Figure 4 can be demonstrated (as shown 

below) to not be caused by a transitional high frequency relaxation process that need to be introduced 

to correct the data, it is the demonstration of the failure of the Rouse model to describe shear-thinning 

correctly. The range of the data investigated in Figure 4 is the lower and middle  range for shear-

thinning, a phenomenon expressing the shear dependence of viscosity, classically exhibited as a 

departure from the Newtonian range, itself only observed at very low frequency ( < 100 = 1 rad/s). 

The reason we bring this up is to differentiate our conclusions about the origin of the differences 

(observed at higher frequency in Figure 4) as a failure of the Rouse model, from the explanations by 

many other authors, such as Majeste in his thesis, who have claimed, that the Rouse model basic 

equations can be corrected to include the influence of the transitional high frequency relaxation terms 

on the dynamics of flow, thus would have attributed the differences in Figure 4 to the lack of 

corrections pursuant to the transitional high frequency relaxation terms. We dedicate the following 

section to disprove the applicability of these authors’ argument. 

 

Figure 4. Compare  = (G’/G*)2 vs log  for the data in Figs. 1-3 and the predictions of the Rouse model 

pursuant to Equations (1–4). 

We have expressed in several previous publications ([2,14,27]) our interest in the variable 

=(G’/G*)2, equal to cos2, also equal to 1/(1+tan2), where  is the phase angle between stress and 

strain. This parameter , we have suggested, is more appropriate than other traditional rheological 

variables (such as G” or tan ) to describe the viscoelastic character of the melt, especially when it is 

formulated in terms of the Dual-Phase and Cross-Dual-Phase parameters [20]. The maximum of () 

visible in Figure 4, corresponding to a minimum of tan , is known to occur for entangled (M> Mc) 

melts, and its frequency occurrence is attributed to the beginning of the rubbery plateau. In the case 
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of unentangled melts, however, such as is the case for the sample of Watanabe and co-workers in 

Figure 4, the current paradigm understanding is that there is no rubbery plateau and therefore the 

phenomenon giving rise to the maximum in Figure 4 must have a different origin than the onset of 

entanglements. Since the absence of the rubbery plateau implies the juxtaposition of the terminal 

region and the T transitional region, many authors were led to attribute the departure they saw in 

their higher frequency data to the presence of the transitional high frequency relaxation terms, the 

so-called T terms. Note that the Rouse model is not capable, on its own and without correction, to 

make  exhibit a maximum (or a minimum of tan ). The simple reason is that, in the Rouse 

mathematical formulation limited to R,  is equal to G’/GN, (see Equation (16) of Ref. 13). Since its 

G’() never exhibits a maximum for all molecular weights and all values of the frequency , the 

Rouse model is doomed to fail to explain the maximum in Figure 4 without adding at least an extra 

term. 

This failure is, indeed, recognized by the molecular models of the unentangled state which have 

considered correcting the Rouse modulus to include an extra term due to these high frequency 

relaxations. Likewise, earlier models than the dynamic molecular Rouse’s model that tackle 

viscoelastic network deformation by expressing the moduli in terms of a spectrum of relaxations have 

shown the need to correct the high frequency terms. For instance, Gray, Harrison and Lamb [28] 

considered a continuous and dissymmetric distribution of the relaxation times of the type Davidson 

and Cole [29] resulting in the modification of the complex compliance to include 3 terms. This 

manipulation of the spectrum of relaxation did result in a very good fits between the data and the 

corrected deformation model, such as applied to Rouse [25], but amounts to modify-to-fit the 

spectrum of relaxation without a sound physical foundation to justify it. The use of mathematical 

patches to make failing models fit the results may be useful if they point to the right direction to what 

needs to be done theoretically to modify the initial assumptions of the model. In the case of models 

based on the spectrum of relaxation profile, the Gray et al.’s corrections of the spectrum of relaxation 
represents a real success. In the case of the Rouse’smodel, we have quoted in Ref. [13] (Equation (18)) 

an expression due to Allal [30] that has been claimed to extend the range of fitness of the Rouse 

expression of G’() and G”() to higher frequencies. Majeste used Allal’s method to correct his data 
and claimed that it improved the fits to the Rouse model [23]. We evaluate in details below the merit 

of such improvements and its relevance to explain the discrepancy in Figure 4. 

Equation (5) explains the Allal’s high frequency correction which adds a new term, G*HF, to the 

complex modulus. 
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In this equation, G∞ is the glass modulus, o the monomeric friction coefficient, b’ the monomeric 

length, j the imaginary unity number (j2=-1) and k is the Boltzmann’s constant (1.38065 10-23). We have 

found two sets of values for the molecular parameters introduced in Equation (5): o, b’ and G∞. 

Leonardi (Table II-1 of Ref. 31)] studied a PS with Mw=326,000 and polydispersity I=3.4 and gives the 

following values: o = 6.3 10-8 Kg/s, b’ = 7.4 10-10 m and G∞ = 6 109 Pa. This PS sample is entangled and 

polydispersed. For T=130 oC (i.e., 403 oK in Equation I.2.5), the value of ’o is: 6.2823 10-7 s. Majeste 

[23] studied 8 monodispersed unentangled PS samples and provides for those grades the following 

values: o = 2.7 10-14 Kg/s, b’ = 3.7 10-10 m and G∞ = 1 109 Pa. For T=130 oC we now find ’o= 6.7310 10-

14 s. This high frequency relaxation time is one million times smaller than the one found for the 

Leonardi’s entangled PS. It is unclear why the fundamental molecular parameters entering the Allal’s 

high frequency relaxation correcting term would make ’o vary so much with the length and the 

polydispersity of the chain. Could it be a new characteristic of entanglements? The physical reason 

for such a huge variation of ’o appears doubtful because the high frequency component is supposed 

to represent the local relaxation at the monomeric level and should not depend, at least 

approximately, on the length of the chain, whether it is entangled or not. Such large differences in the 

values of o and b’ between the two PS samples of Majeste and Leonardi do not make sense. 

Additionally, assuming that the value of o and b’ tabulated by either Majeste or Leonardi are 

acceptable, we have found another reason to be concerned with the Allal’s formulation of the Rouse’s 
correction and it is exposed below. 

G*HF is a complex number in Equation (5) that can be decomposed into an elastic and viscous 

component by way of the de Moivre’s formula to get rid of the square root: 

 

(6) 

Figure 5 is a graph of G’HF() and G”HF() versus log  for T=130 °C using the o, b’ and G∞ 

constants of Leonardi plugged into Eqs. (5) and (6). The data range region covers the  range between 

0.1 and 100. The higher values of  are added to show how Allal’s formula works. In this figure, in 

the data range region, the magnitude of the value found for G”HF() is greater than its G’HF() 

counterpart by more than 5 decades!. When we add these high frequency correction moduli, G’HF() 

and G”HF(), to the Rouse modulus G’() and G”(), respectively, using the PS M=27,000 sample, 

we observe that G’() remains unchanged because G’HF() is irrelevantly small, and that the 

corrected G”() is worse than the uncorrected G”() Rouse modulus in the low  region, the very 

region where the fit to the real data was not so bad. This is shown in Figure 6, a plot of G”()= 

G”ROUSE()+G”HF(), using the Leonardi’s parameters, versus G”() data. The Rouse modulus 

corresponds to the red dots, the corrected Rouse modulus is represented by the black square, the 

perfect fit is the straight line y=x. One sees that the black squares are further away from the perfect 

fit. The conclusion is that the Allal’s high frequency correction appears to render the fit worse than 
the pure Rouse equation: the Rouse correction cannot be applied to the PS 27K data using Leonardi’s 
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PS molecular parameters. The other possibility is that only the molecular constants of a 

monodispersed unentangled PS should be used in the Allal’s equations when applied to PS 27k which 
is also unentangled and monodispersed. Figure 7 is the same graph as Figure 5 but uses the molecular 

parameters assumed by Majeste, everything else being the same. One sees that the correction moduli, 

G’HF() and G”HF(), are now both too small to add anything relevant to the values of the 

uncorrected Rouse moduli in the data range used to analyse this polymer. This is confirmed in Figure 

8, similar to Figure 6 but now using the Majeste’s constants in the Allal’s equation. In Figure 8, the 

graphs before and after correction are identical and still very poorly fitting the data. 

 

Figure 5. Calculated high frequency (HF) moduli, G’HF(), G”HF () vs log , pursuant to Allal [30], 

Equations (5) and (6), using the molecular parameters provided by Leonardi in [31].for a PS specified 

in the graph. 

 

Figure 6. Plot of simulated G”() using Rouse and the HF corrections from Figure 5 against G”() for 

the data of Watanabe et al. in Figure 1 The red dots apply to the uncorrected Rouse Equations (1–4) 
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and the black squares to the corrected G”() after adding G”HF() calculated from Equations (5) and 

(6). The straight line is Y=X, assuming a perfect fit. 

 

Figure 7. Calculated high frequency (HF) moduli, G’HF(), G”HF () vs log , pursuant to Allal [30], 

Equations (5) and (6), using the molecular parameters provided by Majeste in [23].for a PS with the 

specifications of the Watanabe et al.’s sample. 

 

Figure 8. Plot of simulated G”() using Rouse and the HF corrections from Figure 7 against G”() for 

the data of Watanabe et al. in Figure 1 The red dots apply to the uncorrected Rouse Equations (1–4) 

and the black squares to the corrected G”() after adding G”HF() calculated from Equations (5) and 

(6). The straight line is Y=X, assuming a perfect fit. 
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In conclusion, the Allal’s high frequency terms added to the Rouse terms does not improve 
fitting the data. The use of the Rouse formulation should be limited to the Newtonian (terminal) 

region and is not adequate to describe shear-thinning of unentangled polymer melts. 

Note that Majeste applied the Allal’s corrections to the mastercurves obtained after shifting the 
isotherms to T=160 °C. This shifting expands by a couple of decades the span of frequency toward 

the higher frequency region. Yet, looking at Figure 7 and expanding the data range to the right by 2 

or 3 decades will not increase the values of G’HF() and G”HF() sufficiently to explain the large 

residuals observed in Figure 2. Besides, the time-temperature superposition principle needs to be 

validated over the data range analyzed in order to apply it with confidence, and, as will be shown 

below, the time-temperature shifting validity is limited for the Watanabe et al.’s PS to the low  range, 

below the maximum of  vs log  in Figure 3. 

The reason we conclude that the Allal’s high frequency term has nothing to do with the 

maximum of  observed in Figure 3, which occurs around =10 rad/s, is the value of ’o in the 

expression of G*HF in Equation (5). With the values provided by Leonardi, ’o is around 10-6 to 10-7, 

which, we agree, is “big enough” to start to have an impact in the  = 0.1 to 100 rad/s range. However, 

we saw that the parameters provided for the Leonardi’s PS made the Allal’s corrections WORSE, not 

better. For the other option, with ’o ~ 10-14 to 10-13, the values provided by Majeste, corresponding to 

the vibrational motions in the glassy state, it is clear that Allal’s correction G*HF() will practically 

remain equal to 0 until the frequency is near resonance i.e., until  ~ 1/’o. 

In conclusion, although the basic idea of adding a “glassy component” to the behavior in the 
terminal region makes sense to try to complement the Rouse’s basic molecular dynamic contribution, 
it does not appear to be correctly addressed by Allal’s formula. Besides, as we will show using the 

data of Watanabe et al., the time-temperature superposition principle only applies satisfactorily 

within a limited range of temperature, which raises some questions regarding the accuracy of the 

shifted data at high frequency in the case of the Majeste’s data. 
In conclusion, the “satisfying improvement of the fitting of the data” claimed by Majeste to be 

the result of adding the high frequency Allal’s correction is definitely overstated, to say the least. For 

instance, Figure 1.88 (M=8,500) of Majeste’s thesis (not reproduced here) clearly shows that the 

improvement is not satisfactory, according to our standards: all the calculated G’() values calculated 

after corrections are systematically off the data values, even in the terminal region, and using log-log 

axes. This seems to be the same type of fitting failure observed for G’() in Figure 1 for the M=27,000 

PS. 

1.2.(In)validity of the Rouse Formula to Predict the Molecular Dependency of R below Mc 

We said that the Rouse model was not capable of describing well the dynamics of shear-thinning 

for unentangled melts, but also added that its use could be limited to the Newtonian region. Does it 

mean that the Rouse model is correct/useful in the terminal regime of viscoelasticity? This is what we 

want to examine in this section. 

Equation (3) is often used to validate the Rouse model. There are two ways to verify this formula, 

one at T constant, M variable, i.e., using the Majeste’s data at T=160 °C, and by working at M constant 

and varying T, i.e., using the Watanabe et al.’s data at M=27,000 and T variable between 115 and 140 
°C. 

As we already mentioned before, the Maxwell lines cross-over, x, can easily been found from 

fitting the low  region where G’() and G”() can be forced to verify the Maxwell’s slopes of 2 and 

1 when plotted against  on log-log axes. This provides an accurate way to determine R=1/x. 
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1.2.1. Molecular Weight Dependence of the Rouse Time, R from the M < Mc Majeste Data 

The Rouse theory implies that R is proportional to M2, which is equivalent to predicting that o 

is proportional to M. 

Figure. 9 is a plot of Log x vs log M for the 8 unentangled samples of Majeste at T=160 oC. We 

expect to see a slope of -2 if the Rouse formula is validated. 

 

Figure 9. Log x vs Log M for un-entangled PS samples [23]. 

The Graph in Figure 9 is better described by two straight lines than by just one. The crossing of 

these 2 lines occurs for log M ~ 3.67 (M=4,700) that we have designated M’c. The regression line 

passing through the points M > M’c has a (forced) slope of -3.0 ±0 and an intercept equal to 15.92±0.033 

(r2=0.987, 2/DoF= 0.0067). This regression straight line is the red line drawn in Figure 9 passing 

randomly through 6 data points including M’c. The unconstrained slope, -2.92 ±0.16 (r2=0.994), also 

points towards a slope of -3. 

The conclusion is that the slope is not equal to -2 as it should be if the Rouse formula had been 

validated. It is clear that a slope of -3, although unexpected, is closer to what is measured (-2.92). In 

such as case o would vary against M2 instead of M. The other observation concerns M’c that we find 

at approximately M=Mc/8 (4,375). This same M’c “transition” in the log viscosity-logM curve is 

observed using viscometry data on the same monodispersed PS, but this is not our subject in this 

presentation. Needless to say, the Rouse model does not predict the presence of M’c. Let the reader 

know, in that regard, that in our Dual-Phase model of polymer interactions to describe viscoelasticity 

[20], the transition M’c is predicted and represents the molecular weight for the formation of stable 

macrocoils, the 1st rheological manifestation of the macromolecular aspect of the interactive systems 

of mers. 
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1.2.2. Temperature Dependence of R at M Constant 

Equation (3) involves the Newtonian viscosity, o, the shear elastic modulus of the melt, 

GN=RT/M, and R computed from the cross-over frequency: x=1/R. GN is calculated by Equation 

I.2.2 and the Newtonian viscosity by Equation I.2.4. All these variables are temperature dependent 

and known. We can test its validity by plotting the product GN x(T) versus *o(T). The Rouse 

equation is validated if the slope is equal to 6/ 2 = 0.608 

A linear regression applied to the 3 upper isotherms, T=140 to 120 °C, is represented by the red 

segment in Figure 10. It is a quasi perfect linear fit with r2=1.0; the slope, 0.6151, is almost exactly what 

is projected by the Rouse model (0.60935). The extrapolation is slightly off the T=115 °C data point at 

the top of the figure, but this offset is expected and will be explained in the next section. 

 

Figure 10. Validation of Rouse equation (3) between G
N

, x and n*o in the Newtonian region using 

the data of Watanabe et al. [22] for PS = M27,000. 

In other words, the Rouse model correctly describes the relationship between o(T) and R(T) at 

M constant and correctly assigns the ratio of the viscosity to the relaxation time (G*/R) to the melt 

modulus: (6/2) GN. This result is not a minor achievement of the Rouse model. This correct 

prediction of GN(T) may explain its popularity at a time when the relaxation processes in polymers 

were mainly described by networks of spring and dashpots put in series (Maxwell network) or in 

parallel (Voigt network). In these networks the relaxation time was equal to the ratio of the spring 

modulus to the dashpot viscosity (= G/). 

Yet, the validation of Equation (3) provided by Figure 10 corresponds to validating GN from 

G”() in Equation (1) since *o = lim (G”/) when → 0. Equation (1) assumes that G’() and G”() 

have both the same terminal relaxation time, R, and the same normalization modulus, GN. Equation 

(3) can easily be derived from the G”()/GN side of the Rouse formula: 
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(7a) 

The last line of Equation (7a) is Equation (3) verified by Figure 10. In other words, G”() is 

correctly normalized by the rubber elasticity theory modulus GN when  is in the Newtonian range. 

We now need to check that the G’()/GN part of the Rouse formula in Equation (1) is also 

validated in the Newtonian range at  → 0. 

 

(7b) 

The testing of the Rouse equation in the Newtonian regime conducted from a G’() point of view 

can be done by plotting first log G’() vs Log  and fitting the low  range with a Maxwell’s straight 
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line of slope 2. This is shown in Figure 11 for the M=27,000 PS of Watanabe et al. at T=130 °C. The 

intercept is I’M = 4.6973. The value of x to calculate R, x=1/R, imposes itself because R is the same 

for G’() and G”() in the Rouse equation and thus x must be at the cross-over point where G’(x) 

= G”(x). When x and I’M are known, Equation (7b) provides the value of GN
exp 

calculated from 

G’(). We repeat the same operation for the other temperatures that show a Maxwell’s behavior at 
low , i.e for T=120 o and 140 oC. The T= 115 oC plot, similarly to what we saw in Figure 11, does not 

present a range of data points that could be fitted by a straight line with slope 2 in the low  data 

range). For the Rouse model to be validated we should have GN
exp

 = GN =RT/M: so, if we plot 

GN
exp

(T) vs GN(T), we should find all the points on the line Y=X. The values of x, GN, I’M and GN
exp

 

are confined in Table 1 

Table 1. 

 

 

Figure 11. Testing the Rouse equation in the Newtonian regime from a G’() point of view pursuant 

to Equation (7a): A plot of log G’() vs Log  is fitted in the low  range with a Maxwell’s straight 
line of slope 2. The value of GN is derived from the fit. 

Figure 12 demonstrates the clear failure of the Rouse model to predict in the Newtonian region 

the correct GN value that normalizes the G’() moduli data of Watanabe et al. We can draw a straight 

line passing through the 3 data points in Figures I.2–12 and a linear regression gives: G
Nexp

= (-1.39E6 
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+11.9 G
NRouse

) with r2=0.999. One sees that GN calculated from G’() is not equal to GN calculated 

from G”() and, therefore, the validation of the Rouse model that emerged from Figure 10 based on 

the G”() Newtonian branch of the Rouse Equation (1) is contradicted without ambiguity by Figure 

12. The only temperature at which the two GN values coincide is at the crossing of the Y=X and the 

red line in Figure 12, occurring for GN=127, 500, which, according to GN(T) occurs at T=137.5 oC. We 

cannot predict, without the necessary experimental data to test it, whether the invalidation of the 

Rouse model persists at higher temperature, for instance above T
LL

 ~ 164 oC for this polymer. 

 

Figure 12. Invalidation of Rouse Equations (1–4) in the Newtonian regime from a G’() point of view 

pursuant to Equation (7a): the value of G
N

 is totally different from the Rouse value determined from 

G”(). 

We saw in Figure 9 that the Rouse model failed to describe the molecular dependence of x 

when Equation. (3) was applied to the Majeste data at T=160 oC. This meant to say that the Rouse 

modulus, GN, although good to predict GN(T) when calculated from G”(), was not good to predict 

GN(M). What about the value of GN(M) found from G’(): does it match the Rouse model molecular 

modulus, GN=RT/M with (M) given by Equation (2)? 

1.2.3. Comparing the Calculations of GN from the G’() or G”() Sides of the Rouse Equations and 

Invalidating the Rouse’s Approach 

In order to proceed with this new (in)validation step, we find for each unentangled PS sample 

of Majeste’s thesis the value of I’M given by Equation (7b) by plotting Log G’() vs Log . This is 

illustrated in Figure 13 for M=13,000. We already know the values of x for all these samples (Table 

2) and thus can calculate the value of Log GN
exp

 (M) for each M and compare it with the 

corresponding value of GN from the Rouse equation. This comparison is done in Figure 14. Finally, 

Figure 15 compares the Log GN vs Log M at T=160 °C for the Majeste PS unentangled samples with 

GN coming from 3 sources: from the Rouse Equation (black squares), from Equation (7a), I.e. the 
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G”() data based on x and o (blue triangles), and from Equation (7b), i.e., the G’() data based on 

x and I’M (red dots). 

Table 2． 

 

 

Figure 13. Same testing of the Rouse equation as in Figure 11, here applied to Majeste’s data [23] at T 
= 160 oC, M=13,000. 

 

Figure 14. Compare the G
N

 values calculated from G’() and G”() in the Newtonian region using 

the Rouse Equations (1)–(4) and (5,6). The points should be on the Y=X line for validation of the Rouse 

model. 
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Figure 15. Comparing the value of GN calculated from G’(), G”() and from the Rouse’s formula 

based on the rubber elastic theory. 

1.3. Conclusion Regarding the Myth of the Applicability of the Rouse Equation to the Rheology of 

Unentangled Polymer Melts 

The results of our investigation of the applicability of the Rouse model are provided in Tables 1 

and 2. These results and the figures drawn from them are devastating for the Rouse model’s 
validation to describe polymer melts. Its failure to describe experimental data is so flagrant and 

demonstrated in so many ways that it is almost incomprehensible that both authors of the data which 

we re-analyzed concluded that the Rouse model satisfactorily described their data. Take Figure 15 

for instance, the black squares on the straight line are the points given by the Rouse formula for GN, 

the melt modulus. The red dots and the blue triangles are calculated from the Rouse equation 

(Equation (1)) taking either the G’() or the G”() expressions in the Newtonian range to find GN, 

respectively. These red dots and blue triangles should all be disposed on the black line if the Rouse 

theory was applicable to these data. What we observe, instead, is unambiguously different: the red 

dots are all located above the black line, shifted vertically by almost a decade and a half and the blue 

triangles are all scattered below the black line, almost forming a straight line pattern. The Myth of the 

Rouse model applicability to unentangled polymer melts is so anchored in the current paradigm that 

even the most reliable polymer scientists fail to test it fully on their own data. 

An important conclusion of the failure of the Rouse model to satisfactorily describe rheological 

data for unentangled polymer melts is that the normalizing melt modulus, GN, is different for the 

elastic and the viscous components, G’() and G”() of the complex modulus, G*= G’+jG”. We can 
call them G’N and G”N, respectively. We could also push this exercise one step further and consider 

that the elastic and viscous components of G* have different terminal times, say ’R and ”R, 

respectively. The Rouse equation remains the same, formerly, but we have made the real and the 

imaginary terms of the complex function G* “independent”. These two terms might still be coupled 

but in a way different than what is implied by the un-modified Rouse equation. We have already 

mentioned above that making the GN and R constants “loose” in the non-linear regression of the 

Rouse formula improved the fit of the data a great deal. We also added, however, that this bifurcation 
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from the Rouse basic formula inevitably took us away from the Rouse molecular reality. But what is 

the real molecular reality? Is the modulus of the melt truly a complex entity with elastic and 

dissipative coordinates? The Rouse equation establishes very simply the viscoelastic nature of the 

melt by considering the formula of two functions G’(,T) and G”(,T) and stating that they are the 

real and imaginary coordinates of a complex function. This mathematical foundation-based on the 

coupling between a spring and a dashpot in a mechanical system-correctly led to the observed 

Maxwell slopes of 2 and 1 for the log G’() or Log G”() when plotted against Log in the Newtonian 

region. The true appeal of the Rouse model is to have found a molecular basis for the “spring and 

dashpot” mathematical parameters, GN and R. The problem of the Rouse model is illustrated in 

Figure 15 that shows that beautiful and simple mathematics might be enough to create a myth but 

not enough to be validated through its confrontation with the data. We show in Chapter I.5 of Ref. 20 

(simulation of the Dual-Phase model) that the attribution of the Maxwell slopes 2 and 1 is not 

necessarily derived from a Rouse type of mathematical formalism, and that the origin of and the 

coupling between G’(), that force proportional to 2, and G”(), that force proportional to  may be 

understood in a way fundamentally different than a complex dependence of the type: G*=G’+jG”. 
In conclusion, there is no merit to the Rouse model, in our opinion, in its present formulation, 

Equation (1). The Rouse model fails to describe the viscoelastic behavior of unentangled polymeric 

melts. The introduction of GN= RT/M, borrowed from the rubber elasticity theory, permits to 

normalize the dynamic moduli, G’(T,) and G”(T,), but it has no molecular meaning in the Rouse’s 
physical reality (or if it does, the theory of rubber elasticity must be reconsidered). The introduction 

of R, the Rouse time, since it is the inverse of the cross-over frequency, R=1/x, is useful, practically: 

it permits to introduce a “marker” of the state of the melt, more or less correlated to the end of the 
Newtonian range for . Of course we don’t need a theoretical meaning to use R, and there is none. 

The physical molecular modelization of flow proposed by the Rouse model is wrong: like any 

molecular model that considers the single chain as the system to explain the flow behavior it cannot 

predict the existence of any transition in the melt, neither the T
g
+23 oC transition [18,19] nor T

LL
 (see 

next section). The temperature and molecular weight dependence of R = 1/x also provide useful 

information. However, R is totally useless (theoretically) to quantify the “dynamics” of the 

viscoelastic behavior, i.e., shear-thinning, the effect of rate and temperature on the kinetics of 

molecular motion. The spectrum of relaxation generated by p= R/p2 is simple but useless to correctly 

describe shear-thinning or to understand why ()=(G’/G*)2 presents a maximum. Likewise, we find 

the various attempts to modify the Rouse equation by either “truncating-to-fit” the spectrum of 
relaxation or by adding a high frequency term to the Rouse modulus (the Allal’s approach) to be 
either empirical or not working according to the claims (despite of our best efforts to make these 

attempts work). 

2. The Myth of the Extended Applicability of the Time-Temperature Superposition Principle 

The “time-temperature superposition” principle is an extrapolation method that permits to 
extend the range of measurement of an experiment, in time or in frequency, by operating at other 

temperatures and shifting the multi-T data to obtain a mastercurve, at a given chosen temperature, 

with the extended time/frequency range. This extrapolation method has been extensively used, for 

instance, to present the full view of the elastic modulus from the molten state temperature region to 

the glassy state region, a complete picture that no single instrument can provide. It is, therefore, of 

the utmost importance to trust the method of extrapolation in question, that is to say test the validity 

of the Time-Temperature superposition claims. 

The current paradigm of polymer physics teaches that the validity of the “time-temperature 

superposition principle” (tts) covers the range Tg to Tg+100 oC, i.e., works approximately over a 100 

degrees range above Tg [32]. The tts is also applicable to dynamic data obtained by frequency sweeps 
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at constant temperature, i.e., under oscillation at various frequencies  under given temperatures. 

The tts expresses the following: the rheological variables found at temperature T1, using frequency 

1, are the same as those found at T using frequency  provided the time scale (here the frequency) 

is changed by a shift factor, log aT =Log(/1), which varies with temperature only; the Vogel-Fulcher 

equation (see Equation (4) can be re-arranged to describe Log aT as a function of T and T1 (WLF 

equation, Ch.11 of Ref. 32). The moduli to superpose must be normalized by the Rouse modulus, GN= 

RT/M, before superposition. This amounts to say that there is a vertical shift factor bT= 1T1/T to 

be applied to the modulus variables to superpose in order to optimize the superposition. The data set 

at T1,1 is called the reference data set; the other data sets at T,  are shifted by bT on the vertical axis 

and aT on the horizontal axis to produce a mastercurve at T1. We have discussed the limitations of 

the tts and its status as a myth in Ch 3, pp. 59-73 of Ref. 2 and we refer to that writing for more details. 

To summarize our findings: 

- The superposition of curves by horizontal shifting on the log time or log frequency is a good 

approximation over a rather short temperature interval. There are 3 ranges of temperature 

within which the tts works well for polymer melts: the Tg to Tg+23±2 region, the Tg+23 to T
LL

 

region and the T > T
LL

 region. For each temperature region a new set of WLF constants (or Vogel 

Fulcher constants) must be established. Superposition across regions is physically improper 

according to the Dual-Phase model [20}. 

- The use of b
T
 pursuant to the normalization of the moduli by the Rouse modulus GN is incorrect. 

The reason has been implicitly given in the previous section which showed the inadequacy of 

using G
N

 except for G”() and thus viscosity (Figure 10). To find the correct value of b
T
, a double-

shifting regression is always required [33]. It has been shown, for instance, that the vertical shift 

factor, log bT, when it is obtained by regression-double-shifting, is not as predicted by the Rouse 

modulus GN/GN1, yet that its variation with T permits to detect the presence of transitions, such 

as the transition at Tg+23 °C also visible from thermal stimulated depolarization data [19] or the 

TLL transition [24,35]. 

- The temperature range of applicability of the tts varies with the strain imposed during the 

frequency sweeps ([2] “Effect of Strain” (sec. 5.8, p. 322) and with the thermal-mechanical history 

of the melt prior to the frequency sweep ([2] “Thermal-Mechanical History to create out-of-

equilibrium melt properties”, sec. 4.3.5.2 p. 206). 

- The tts might be valid for a limited frequency range only or it might be valid on two or successive 

frequency ranges with different constants to express the 2 shift factors, Log aT and Log bT. It is 

the case for the 3 temperature ranges delimited by Tg+23 and TLL. 

In this section we want to illustrate the difficulty encountered applying the frequency-

temperature superposition to the data of Watanabe et al. already introduced in the previous section. 

These data on a well characterized monodispersed PS are within the range of temperature above Tg 

(Tg=93.78 oC for M=27,000) where the time-temperature superposition is claimed to apply, and, the 

range of temperature analyzed is only 25 oC (from T=115 oC to 140 oC). The melt is located below its 

TLL evaluated at 161.4 oC for M=27,000. Also note that Tg+23 oC= 116.78 oC, which positions T=115 oC 

inside the Tg+23 range (barely though) and T=120, 130 and 140 in a different range, the (Tg+23) to TLL 

range. Our intention is to show that the principle of superposition does not work well for these data 

because it needs to be perfected based on a better understanding of its origin and its limitations. The 

possible reasons for the need to modify and limit the time-temperature superposition naturally shift 
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the light on the necessity to reconsider our understanding of the physics of the interactions in 

polymers. A quantitative explanation of the rheological results of Watanabe et al. based on the 

concepts of the new paradigm is described in another publication (Ch. II.7 of Ref.20) and not in this 

paper. 

The time-temperature principle is illustrated in Figures 16–25 using the data of Watanabe et al. 

which are obtained by dynamic rheometry. These authors have described their experimental 

procedure as follows: the frequency sweeps were “DOWN sweeps”, from high to low frequency (100 
to 0.1 rad/s). The temperature for the 1st sweep was 140 oC, followed by the other frequency sweeps 

done at the lower temperatures (130,120,115 °C in this order) using the same sample. The strain was 

chosen to keep the results in the linear viscoelastic region (2%). This procedure is not unusual but is 

different from the one used most often that consists of UP sweeps and changing the sample after each 

frequency sweep to avoid the slightest possibility of inducing a thermal-mechanical history in the 

sample when operating sequentially on the same sample even in the linear range. 

 

Figure 16. Compare Log (G’/b
TRouse

) and Log (G’) vs log  at various temperatures for Watanabe et al. 

PS=27,000 [22]. 

 

Figure 17. Compare Log (G”/b
TRouse

) and Log (G”) vs log  at various temperatures for Watanabe et 

al. PS=27,000 [22]. 
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Figures 16 and 17 are plotted from the original data of Watanabe et al. which were kindly 

provided to this author. The black squares represent the “reduced” modulus values, i.e., G’ and G” 

corrected by T1/T where T1= 115 is the reference temperature and T is the temperature of the 

frequency sweep to shift, both converted to oK. This correction is induced by the adherence to the 

Rouse model for which the dynamic moduli are proportional to GN= RT/M (Equation (1). The round 

red dots (reduced in size to avoid overlapping the black squares) are the data without any 

temperature correction. The difference between the red dots and the black squares is hardly visible. 

The small temperature interval (25 o) renders the Rouse correction of the moduli negligible. 

 

Figure 18. Log *() vs Log  at 4 temperatures for PS M=27,000. Raw data [22]. 

The complex viscosity, *()= G*/, is calculated from the values of G’() and G”() in Figs.16 

and 17, with G*= (G’2+G”2)0.5, and plotted in Figure 18 against the log of frequency . The tts can be 

used to superpose these curves into a mastercurve. We followed Watanabe et al.’s choice of T1=115 

for the reference mastercurve to check that our values of the shift factors, log aT, matched theirs [22]. 

Table 3 provides those values which were validated by us. Retrospectively, though, the choice of 

T1=115 oC for the mastercurve was not the best one since this temperature is right on the transition 

between ranges mentioned earlier, the (T < Tg+25) range and the ((Tg+25) <T< TLL) range (see Figure 

25 below). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2023                   doi:10.20944/preprints202309.0424.v1

https://doi.org/10.20944/preprints202309.0424.v1


 23 

 

 

Figure 19. Viscosity mastercurve of Log *() vs Log a
T
 after horizontal shifting of the curves of 

Figure 18 onto the T1= 115 oC curve. 

Figure 19 is the “viscosity mastercurve” at T= 115 oC obtained after shifting horizontally and 

vertically the data of Figure 18 by an amount Log a
T
 and –log aT, respectively. The shift factors Log 

aT are given in Table 3. The shift by –log aT on the viscosity axis is due to the definition of the viscosity: 

*()= G*/, which becomes after superposition: G*/(aT), so the shifted viscosity using the log scale 

is: Log(G*/) -log aT. 

Our conclusion from Figure 19 is that the tts does not work, at least over the full range of aT. A 

closer observation permits to fine tune our conclusion. First, T=115 oC seems to behave differently 

than the other 3 frequency sweeps. This is visible at both frequency ends. In the Newtonian region 

(the plateau region), although it is harder to see without zooming in, the T115 is the only curve not 

really merging with the rest (see later in Figure 25 for a more convincing perspective). Second, the 

overlapping of the 3 frequency sweeps, other than T115, is restricted to a range of frequency that 

extends from the Newtonian region to the inflective point of the shear-thinning drop off line (at which 

log *() ~ 6.46). This restricted range is the only one where we can ascertain that the tts is validated. 
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Figure 20. Log a
T
 vs T for shifting the curves of Figure 18 onto the reference temperature T

1
= 115 oC. 

Figure 20 plots the temperature variation of Log aT, the horizontal shift factor. As expected, aT 

is equal to the ratio of the Newtonian viscosity at T and T1: 

 

(8) 

The red curve in Figure 20 is calculated from Equation (8) using the values of Log(*o(T)) in 

Equation (4) with T1= 115 oC. 

Figure 21 displays the variation of  vs log  with temperature for the PS27 of Watanabe et al. 

=(G’/G*)2 = cos2  was introduced in section I (Figure 4). Both the position and the magnitude of the 

maximum vary with temperature. (G’/G*) is the stored elastic energy, which is expected to increase 

as T decreases, but we observe the opposite trend: the peak maximum amplitude decreases as T 

decreases. One may think, for a reason, the fact that the modulus is proportional to GN which 

increases with T. This explanation cannot stand, however, since (G’/G*) is the ratio of two moduli, 
which cancels out the vertical correction due to the proportionality of the modulus to GN according 

to the classical tts. In other words the usual correction on the vertical axis for the temperature 

dependence of a modulus, T
1
/T, is not required in Figure 21. Besides, as we mentioned before, the 

temperature span being small, the T1/T correction is negligible. According to the current tts, based on 

the Rouse molecular background, one should not need a vertical shift factor to superpose (G’/G*)2 vs 

log . Figure 21 visually contradicts such a statement: shifting only horizontally will not superpose 

the data. 

Log aT = Log
h o(T1)

Q Vh o(T)
Q V
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Figure 21. = (G’/G*)2 vs log  for the Watanabe et al. [22] PS= 27,000 at 4 temperatures. 

Figure 22 is the mastercurve at T= 115 oC obtained after shifting horizontally the data of Figure 

21 by the Log a
T
 values that were used to shift the viscosity curves of Figure 18 to obtain the 

mastercurve of Figure 19. We already said that our log aT values matched the values published by 

Watanabe et al. [22] for which these authors claimed that the tts works. We see in Figure 22 that when 

the elastic component of the viscoelastic modulus is used, the time-temperature superposition fails 

entirely, even in the restricted frequency range it was validated to superpose viscosity in Figure 19. 

In other words, we face the same dilemma as for the invalidation of the Rouse formula comparing 

the value of GN from the viscosity side and the elastic side of G* to determine GN. In Figure 22 we 

have drawn a dash straight line (green) joining the peak maxima that shows a tilt from the expected 

verticality of such a line if the horizontal shifting of the curves the way the tts works had been 

successful. In other words, if we want to be able to obtain a true mastercurve by shifting the curves 

in Figure 21, not only do we need to use a vertical shift bT to address the issue of a peak magnitude 

which varies with T, but we also need to modify aT on the horizontal shifting axis. 
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Figure 22. Mastercurve at T= 115 oC obtained after shifting horizontally the data of Figure 21 by the 

Log a
T
 of Figure 20, i.e., the values that were used to shift the viscosity curves of Figure 18 to obtain 

the mastercurve of Figure 19. 

Graph74-Watanabe-ELAS vs log aT mastercurve at T115 to show lack of superposition. 

The values of bT were found by plotting log(*(aT)) vs (), not shown, for which we saw that 

all the maxima at the 4 temperatures lined up horizontally for log(*())=6.46, the value found for 

the inflection of log(*(aT) vs Log(aT) in Figure 19; we then determined the value of  at the 

maximum of () from which we determined bT as the ratio of the  values found at T and T1, with 

T1=115 oC. The values found for bT are listed in Table 3 and the variation of Log bT with T is found 

in Figure 24. A couple of remarks regarding the procedure to find bT: By plotting log(*(aT)) vs 

(), the horizontality of the maxima of () with T made it not necessary to find a new aT, as 

suggested by the tilt of the green dash line in Figure 22. The choice for bT to be the ratio of the values 

of  at the maximum for T and T1 was hinted by the considerations we expressed earlier on the 

possibility to define G’N and G”N in the section on the myth of the Rouse model. In effect, the Rouse 

model is not capable to understand the need of bT to superpose the () at various T, the way the 

Rouse equations stand (Equation (1). Yet, if we accept to modify the Rouse equations to have G’N and 

G”N different (with still G”N=GN=RT/M)), then bT can be an affine function of . 

The mastercurve at T=115 oC obtained by “double-shifting” on both the horizontal and vertical 
axes by log aT and Log bT, respectively, is shown in Figure 23. The y-axis scale remains linear in this 

figure and, therefore, the y coordinate is ( bT). The temperature dependence of bT is in Figure 24. 
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Table 3. 

 

 

Figure 23. bT) plotted against log (aT ) at T1= TRef= 115 oC. 

We confirm in Figure 23 that the data of Figure 21 can be superposed, using two shift factors, aT 

and bT, yet the superposition is only valid in the range of frequency up to the maximum of (). This 

successful shifting of the data up to the maximum of  matches what we observed for the successful 

shifting of the log(()) vs log() up to the inflection point in the shear-thinning range. We know 

that the correspondence between the two ranges matches because the bT data were obtained at 

log(()) =6.46, which was also the value obtained at the inflection of log(()) vs log(aT) in 

Figure 19. 
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Figure 24. Log bT of the vertical shift factor in Figure, 23 plotted against T showing an hyperbolic fit. 

Figure 24 provides the temperature variation of Log bT. It is remarkable that log bT vs T can be 

fitted by an hyperbolic function of the Vogel-Fulcher type: A + B/(T- C), with the fitting constants A,B 

and C determined by non-linear regression: A= -0.19876; B=4.26732; C=93.78 oC (r2=0.9999). The value 

of C was forced to equal the Tg of the M=27,000 monodispersed PS. A loose regression, without 

forcing the value of C, provided a value of C=91.00, B=5.0138 and A=-0.2.09.The r2 is not improved 

for the loose regression. Let us consider here that C is truly equal to Tg for the variation of Log bT. 

Now, for the variation of Log aT, the value of C in its own Vogel-Fulcher equation, (Equation (4), is 

equal to T∞. We have shown in [34] how the value of Tg and T∞correlate with the isomeric state of 

the Dual-conformers and their dynamic free volume to determine the value of the TLL transition of 

the melt. The value of TLL plays an important dynamic role in the Dual-Phase theory of interactions 

([2], [19], Chs. I.4,II.7 of [20], [35]); for our purpose in this section, let’s just say that TLL determines the 

upper temperature end of the tts applicability that starts at Tg+23 oC, and the need to find a different 

set of shift factors Log aT and Log bT when T > TLL to extrapolate the data correctly on the 

mastercurve for the data in that T region. Besides, TLL also holds many important functions, for 

instance the end of the dynamism of the dual-phase dissipative statistics, (Ch. 3 of Ref. 19). 

Conclusion regarding the Myth of the Time-Temperature Superposition Principle. 

The classical claim, e.g., by J.D. Ferry [35], that the Time-Temperature Superposition (tts) can be 

applied from T= Tg to T=Tg+100 oC to obtain the behavior over the full range of frequency or 

relaxation times by data shifting extrapolation, is perhaps true for certain polymers under certain 

circumstances, but we miss the original data to be able to validate the generality of that claim. What 

we know for certain is that many limitations and restrictions to the general sst must be added to 

establish it as a workable general rule and that these restrictions are as fundamental or even more 

fundamental than the sst principle itself to understand the behavior of polymer melts. The restrictions 

imply that the sst should only be applied over delimited temperature and frequency (time) intervals 
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which depend on the chemical nature of the polymer and its thermal-mechanical history (its 

processing and thermal history). We have used the specific example of the data of Watanabe et al. on 

a classical Polystyrene sample to prove the need for certain restrictions that, we claim, should be the 

ones to be generalized. Here are the specific reservations concerning tts: 

The time-temperature superposition principle is not verified for the data we analyzed. Watanabe 

et al. recognized in their paper the shortcomings of the superposition applied to G’() and G”(), yet 

they did not question why their data showed such a flagrant discrepancy. We believe that questioning 

why the tts does not work when performing super standard dynamic rheological experiments on a 

super standard polymer (PS) was worth the subsequent dedicated analysis time and efforts it 

demands and triggers. 

Why do the rheological curves for a simple PS studied in the linear range of visco-elasticity fail 

to superpose over a classical range of frequency (0.1 to 100 rad/s) using a span of temperature of only 

25 oC? Why do the users of the current paradigm of polymer science avoid to report the failures of a 

full superposition of their data? Why is there the need to restrict the frequency range or the 

temperature range for the sst to work ?. Isn’t there a fundamental requirement for the prevailing 

theory of viscoelasticity to answer the following questions: 

- Why is the tts valid only for the low (left) frequency side of the peak of  vs log ? 

- Why does log ()) vs log  only needs one horizontal shift of the curves, Log aT, whereas the 

 vs log  requires two shift factors, Log aT and Log bT when applying the tts, 

- Why are we systematically correcting vertically the rheological moduli by (T)-1 without 

checking if the Rouse modulus GN does normalize both G’() and G”()? 

- Why is the value of  at the maximum increase and not decrease as T increases? This appears 

counter-intuitive with the explanation that glassy relaxation components are causing the 

maximum in the  vs log  curve. 

- Why is the rheological behavior at T=115 oC different than at T=120 to 140 oC ? 

Figure 25 is another way to plot the data to make appear the Tg+25 transition introduced earlier, 

explain that T=115 oC is located at the Tg+25 and thus belongs to a different rheological range, with 

its own shift factor characteristics. 

 

Figure 25. Plot of ’ =   against log G* at the 4 temperatures of the Watanabe et al. data [22] 

demonstrates the presence of the Tg+23 oC transition at T~115 oC. See text. 
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Figure 25 is a graph of    plotted against log G* as the frequency decreases from left to right 

in the down sweep procedure used by Watanabe et al. [22]. As we explain in Ch. 5.4 of Ref.2, ’ = / 

is the frequency of the elastic dissipative wave that maintains the collective coherence of the melt 

despite of the local density fluctuation due to the dual-phase interactions. The figure shows that the 

 values of the frequency sweeps at T=140,130 and 120 oC fuse and overlap at low , i.e., at lower 

value of G*, merging into a single curve like data do in a mastercurve. This is not the case for T=115 
oC which is singled out by showing a minimum and the curve starting to rise sharply at lower . This 

distinct behavior separates out the two regions of viscoelastic across the Tg+23 transition. The 

presence of one of the isotherms very near a transition made it impossible to consolidate the tts curves 

into a mastercurve for this narrow range of temperature interval explored by Watanabe et al. 

In conclusion, the myth of the time-temperature superposition is linked to the myth of the Rouse 

model which, we suggested, is in no way descriptive of the rheology of unentangled polymers. The 

use of the Rouse molecular model as the theoretical base to apply the tts creates a huge confusion on 

the precise way to superpose the data, single or double-shifting, on what range of temperature and 

frequency, with what correction and depending on which rheological function. Besides, even when 

the limitations to the superposition are noted, the reason for the restrictions remain obscure and 

without explanation. As we will see in the next section the same clueless response to basic 

fundamental results faces the reptation theory. The mathematical solutions proposed by the 

reptationist school follow the steps of the Rouse molecular dynamic model to focus on modeling the 

variations of the chain dimensions during deformation, which, as we have suggested, is the wrong 

statistical system to model. This fundamental assumption that the dimensions of a single chain are 

correlated to the macroscopic stresses can be tested experimentally using the Rheo-SANS technique. 

As a matter of fact, despite of the mathematical brilliance of the reptation work, some recent 

experimental results fail to agree with the predictions of the reptation theory. This is presented in our 

next section. 

3. The Great Myth of Reptation. the Failure of the Reptation Model to Correctly Describe and 

Understand the Shear-Thinning Behavior of Entangled Polymeric Melts (m > mc). 

3.1. The Brilliance of the de Gennes’s Reptation Ideas 

The Rouse model was created to describe the viscoelastic behavior of polymer solutions, not 

polymer melts. The application of the Rouse model to unentangled polymer melts was the initiative 

of J.D Ferry [32]. It was clear immediately to polymer scientists that the Rouse model could not 

predict the distinct rheological behavior of entangled melts (or entangled solutions). But the natural 

tendency is to start from what is known and to modify it, i.e., in the case of de Gennes, to keep certain 

basic assumptions of the Rouse formalism while adapting it to the case of reptiles moving within 

fixed obstacles, which is the title given by de Gennes when he published his 1st paper in 1971 [8]. De 

Gennes, who was not a polymer scientist by training, learned from the context of the thoughts on 

viscoelasticity established at the time. The theory of viscoelasticity of polymers considered then, 

which still serves as the ground foundation for the current paradigm describing viscoelastic 

interactions, assumed that the rheological deformation of polymer melts was resulting from the 

behavior of singular chains embedded in a sea of interactions with other chains. In the existing theories 

of macromolecular physics, the emphasis is put on determining the shape of the individual 

macromolecules, often called their chain conformation. The presence of neighboring and 

interpenetrating macromolecules is perceived as a disturbance to the ideal conformation of the chain. In 

the traditional texts, the field of interaction responsible for the disturbance is homogeneous. Therefore, 

de Gennes, like all his predecessors before him, considered the behavior of the melt as the consequences 

of what happens to a single chain after the effect of the interactions between the chains had been 

established. De Gennes had the idea of considering the interactions between the chains as a field of 

obstacles between which a single chain is oscillating through, the way reptiles move, when the chain is 

requested to move pursuant to an external deformation. De Gennes modeled the motion of the chain 
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among the obstacles using the molecular dynamic language already established in the Rouse model, thus 

defining the reptation time of a single chain. 

In the case of shear deformation, the Newtonian viscosity is classically considered to describe 

the local internal friction between the bonds of interacting macromolecules which assume a stable 

thermodynamics state, the equilibrium state at a given temperature and pressure. The non-

Newtonian behavior, shear-thinning, is due to a modification by the flow of the dimensions of the 

macromolecules, i.e., of their conformation, which can be calculated from the effect of the shear rate 

on the rms end to end distance of the macromolecule and the amount of slippage (relax/retraction) 

occurring. Theoretical models predict that for a shear rate strong enough to overpower the ability of 

the chain to relax, -and this happens at the reptation time-, shear-thinning starts to be observed, 

corresponding to an increase of the rms end to end distance of the chain, leading to its orientation. In 

the classical formulas that describe the non-Newtonian dependence of viscosity with shear rate, the 

amount of shear-thinning is only a function of two parameters (in addition to the strain rate, of 

course): the Newtonian viscosity and the value of the reptation time. But these two parameters can 

be correlated to each other, as in the Rouse’s formula, Equation (3), and to the dimensions and 

interactions between the chains, which simplifies the description of the flow deformation process to 

the description of the dependence of the reptation time with temperature, pressure, and chain length 

(the interactions between the macromolecules, defined by “their entanglement”, is already 

incorporated in the definition of the reptation time). 

In summary, the effect of strain rate, temperature, molecular weight, according to the accepted 

reptation model, could all be related to a simple explanation: the deformation and relaxation of single 

macromolecular chains confined to move within the boundaries of a tube, the entanglement tube, 

whose lifetime was the reptation time. The whole process would continuously be happening, from 

very low strain rate to high shear-thinning producing strain rate. Additionally, the reptation model 

provided a new understanding of “entanglement” by quantifying the dimensions of the tube and 

correlating it to the reptation time. The interactions between the macromolecules could be described 

topologically, the tube serving as the new topological description of the environment of the bonds. 

This was the brilliance, even the beauty, of the original reptation model of de Gennes [2], who 

succeeded scaling the effect of all variables into the description of a single parameter, the reptation 

time. However, this extraordinary tour de force had to be refined over the years to account for a better 

description of the experimental data, in particular to improve the molecular weight dependence of 

the reptation time which did not follow the predicted M3 variation by de Gennes [3]. The model of 

reptation in a tube has been significantly improved over the years, by incorporating additional 

molecular mechanisms such as contour length fluctuation [36–38], constraint release [39–43], and 

chain stretching [44–46]. Doi and Edwards [47] proposed to account for the nonlinear rheological 

behavior by asserting that the external deformation acted on the tube, instead of the polymer chain 

[48]. The non-affine evolution of chain conformation beyond the Rouse time would be caused by 

chain retraction within the affinely deformed tube. Other essential improvements to the tube reptation 

model were done by many contributors, notably Marrucci [9,10], Wagner [11], McLeish [12] but the state-

of-the-art version of the tube theory is the GLaMM model (named after Graham, Likhtman, Milner, 

and McLeish) as it incorporates the effects of reptation, convective constraint release and chain stretch 

on the microscopic level [46]. 

It is fair to recognize that the tube model revolutionized the field of polymer dynamics, and 

stands at present on the highest step of the podium of the current paradigm for its predictions of the 

linear and nonlinear viscoelastic properties of entangled polymers. 

Small angle neutron scattering (SANS) studies on polymer melts under steady-state flow 

provide in-situ information at a molecular scale on how the flow field is transmitted to the melt. Such 

experiments, called “Rheo-SANS”, are difficult to set up and require special equipment but their 
results are fundamental to test experimentally the accepted claim by the reptation model [6,47] that 

the shear-thinning of entangled polymer chains is due to significant orientation of the segments 

between entanglements under the shear flow. We quote below two significant Rheo-SANS studies, 
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one by Watanabe et al. in Japan, published in 2007 [49], and the other one by Noirez et al. in France, 

published in 2009 [50]. 

Both studies concluded that the chains remained largely un-deformed under steady-state shear 

flow conditions for which extensive shear-thinning was present. These results represent a formidable 

challenge to the reptation model of melt deformation [36–48]. 

Recently, in 2017, there was the new Rheo-SANS evidence published by Zhe Wang et al. [51], 

that demonstrates experimentally that the chain retraction step of the tube model does not occur, 

which makes these authors conclude that our current understanding of the flow and relaxation of 

entangled polymers, based on the reptation theoretical model of motions pioneered by de Gennes 

(1971) and Doi-Edwards (1979) is fundamentally wrong: 

“…This result calls for a fundamental revision of the current theoretical picture for nonlinear 

rheological behavior of entangled polymeric liquids…the predictions by the tube model are not 

experimentally observed in a well-entangled polystyrene melt after a large uniaxial step 

deformation”. 

3.2. Invalidation of Reptation by Rheo-SANS Results of Watanabe et al. (2007) 

In order to examine the chain conformation changes under shear flow for a well characterized 

monodispersed entangled polymer and the orientation distribution along the chain backbone, 

Watanabe et al. examined the Rheo-SANS behavior for an entangled polybutadiene sample dissolved 

in a deuterated oligomeric butadiene at the volume fraction of 0.28. The rheometer was a Couette 

apparatus, allowing high flow shear rates at constant temperature [49]. The shear rate, normalized 

by the reptation time, was between 24 and 29 sec-1and at these shear rates the viscosity of the systems 

was significantly smaller than the zero-shear viscosity (by a factor of ˜ 40). Despite this intense shear-

thinning, Watanabe et al. observed that “the I(q) data just moderately deviate from the Debye function 

(describing the data at equilibrium)... These SANS data allow us to examine the current molecular picture for 

the entangled chains under fast shear flow. This picture assumes that successive entanglement segments are 

not orientationally correlated and behave as independent stress sustaining units even under fast flow... Thus, 

the above assumption fails for the entangled chains under fast flow.” 

In other words, at a shear rate that reduced the Newtonian viscosity by a factor 40, i.e., under 

strong non-Newtonian conditions, the chain rms end to end distance hardly varied from its value 

under static (equilibrium) conditions: this result, if verified, was in full contradiction with the basic 

assumption of the reptation model regarding the deformation mechanism involving the singular 

macromolecules. Yet this catastrophic contradiction was kept buried in the archives and was not 

brought forward by the authors; it remained an isolated research report which was not confirmed. 

3.3. Invalidation of Reptation by Rheo-SANS Results of Noirez et al. (2009) 

Noirez et al., apparently unaware of the results of Watanabe et al. [49], probably for the reasons 

evoked above, used a similar Quartz Couette rheometer set up and reported on in-situ observations 

of polymer melts under steady-state shear flow using neutron scattering [50]. The amorphous melts 

studied by these authors were an entangled polybutadiene (T
g

=-110 oC, M
w

 =29 M
e
) characterised 

by a reptation time 
d

=7 10-3 s (
x

=143 rad/s) and a low molecular weight (unentangled) 

polybutylacrylate (Tg = -64 oC, M
w~ Me

), characterised by 
d

=10-3 s (
x

=1,000 rad/s). Both melts were 

monodisperse and sheared at room temperature (i.e., far above their respective T
g

). The melts were 

sheared with a range of strain rates spanning the zone from far below the reptation time to far above 

it (from 0.011 s-1 to 1000 s-1) to determine the variation of the chain dimensions across the reptation 

time and test the admitted reptation theories claims with regard to the onset of shear-thinning and of 

chain orientation/disentanglement [6,47]. 

Figure 1 of Noirez et al. [50] clearly demonstrate that the two components, azimuthal and 

longitudinal, of the radius of gyration (R
v

 and R
z

) remained constant at 80 Ả as the shear rate varied 
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from the Newtonian range to a highly shear-thinned melt, and, besides, that no change of the radius 

of gyration occurred as the melt crossed 
d

. The authors concluded “that the chains remain largely 

undeformed under steady-state shear flow... These observations are of prime importance; they reveal that the 

flow mechanism and its viscoelastic signature reflect a collective effect and not properties of individual chains”. 

We emphasize the last sentence in the conclusion: “… the viscoelastic signature reflects a 

collective effect and not properties of individuals chains”. This is the key sentence to remember from 

this experimental research. In summary, both Watanabe et al. and Noirez et al. concluded that the 

macromolecular dimensions remain quasi-unchanged as the melt is sheared in the non-Newtonian 

region, and this conflicts totally with the currently accepted understanding of shear-thinning. The 

failure of the existing models to interpret such a fundamental aspect of polymer rheology cannot 

remain unchallenged [13–21]. 

3.3. Invalidation of Reptation by Rheo-SANS Evidence that Chain Retraction does not Occur by Zhe Wang et 

al. [2017] 

This paper by Zhe Wang and 11 other co-authors [51] solves the problem of critically testing the 

chain retraction hypothesis of the tube theory for entangled polymers. In principle, these authors 

explain in their paper, one should be able to critically test the chain retraction hypothesis by 

performing SANS experiments on uniaxially stretched entangled polymer melts and comparing the 

measured Rg with theoretical predictions. “In reality, experimentalists have encountered tremendous 

difficulty in following this approach…it is practically impossible to reliably determine the radius of gyration 

tensor through model independent Guinier analysis, because of the limited Q range and flux of existing SANS 

instruments and the large molecular size of entangled polymers”. These limitations of the analysis of the 

radius of gyration tensor in step-strain relaxation Rheo-SANS investigations may represent 

arguments to question the results of Noirez et al. or Watanabe et al. above. 

Zhe Wang et al. recently recognized the value of “spherical harmonic expansion” as a general 

approach for characterizing Q-dependent deformation anisotropy and chain conformation at 

different length scales. The idea of using spherical harmonic expansion of the orientation distribution 

function of statistical segments in deformed polymer networks was conceived by Roe and Kribaum 

who discussed the potential application of this technique to analyze the amorphous halo for stretched 

polymers [51]. A more formal treatment of the measured scattering intensity by Legendre expansion 

was developed by Mitchell [Refs.84-86 of [51]] and applied to the tensile deformation mode. The 

originality of Zhe Wang et al.‘s work is to have applied the spherical expansion analysis to test 
directly and unambiguously the chain retraction hypothesis, central to the theoretical picture of the 

tube model. 

The stretching of the rectangular samples of PS to orient them before their SANS analysis was 

conducted by Zhe Wang et al. by uniaxial elongation at 130 °C to a stretch ratio λ=1.8, with a 

constant crosshead velocity v= 40 l0 /τR, where l0 is the initial length of the sample, and R the Rouse 

relaxation time (~600 s). The oriented samples were allowed to relax for different amounts of time 

(from 0 to 20τR) at 130 °C and then were immediately quenched by pumping cold air into the oven. 

The authors verified that they successfully froze the conformation of the polymer chain with 

negligible stress relaxation during the quenching procedure. 

Zhe Wang et al. unambiguously showed that: 

“the two prominent spectral features associated with the chain retraction—peak shift of the leading 

anisotropic spherical harmonic expansion coefficient and anisotropy inversion in the intermediate 

wave number (Q) range around Rouse time—were not experimentally observed in a well-entangled 

polystyrene melt after a large uniaxial step deformation”. 
They added: 

“Unlike the previous investigations, there is no ambiguity associated with model fitting and no room 

for human bias. Therefore, our critical test clearly demonstrates that the chain retraction hypothesis 

of the tube model is not supported by small-angle neutron scattering experiments.” 
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“This result calls for a fundamental revision of the current theoretical picture for nonlinear 

rheological behavior of entangled polymeric liquids.” 

“Therefore, without an alternative mechanism for molecular relaxation, the idea of nonaffine 

deformation alone does not seem to be able to explain the experimental observation.” 

“Since the tube theory is of paramount importance for our current understanding of the flow and 

deformation behavior of entangled polymers, the invalidation of the chain retraction hypothesis has 

immense ramifications.” 

Following such radical conclusive statements regarding the merit of the reptation model, it is 

important to verify the credibility of the authors of the study: they are all scientists working at the 

most reliable and prestigious international institutions in the world: the 1,2Oak Ridge National 

Laboratory, Oak Ridge, Tennessee (USA), the 4Center for Neutron Research, National Institute of 

Standards and Technology, in Gaithersburg, Maryland, the 3Department of Polymer Science of the 

University of Akron in Ohio(USA), the 6Institut Laue-Langevin, in Grenoble France, and the 
5Department of Chemical and Biomolecular Engineering, University of Delaware (USA). 

In my view, the competence of the authors is impeccable. 

3.4. Conclusion on the Great Myth of the Applicability of the Reptation Model to Entangled Polymer Melts 

(M > Mc). 

Despite all of its elegance, mathematical sophistication and quasi-general acceptation we 

conclude that the reptation model is not correctly describing the Rheo-SANS experiments of 

Watanebe et al. [49], Noirez et al. [50], and of Zhe Wang et al. [51] and should be abandoned. The 

reason for this radical proposition, in our view, is that the dynamics of the interactions defining the 

melt properties should not be defined by statistical systems which are the single macromolecules. 

The failure of the reptation model also implies to re-consider the concept of entanglement, the corner 

stone of polymer physics which, in our opinion, is not understood by the current paradigm of 

polymer physics. 

4. Shear-Refinement and Sustained Orientation: the Lack of Understanding by the Current 

Paradigm 

4.1. Shear-Refinement 

“Shear-Refinement” is the observed influence on subsequent viscoelastic behavior (e.g., 
viscosity) of a pre-shearing treatment of a polymeric melt. Cogswell mentions the influence of 

thermo-mechanical history on viscosity in his book [52, p.53]: 

“Intense working, producing high shear, will usually lead to a reduction in viscosity and also a 
decrease in the elastic response”. 
Note that the viscosity reduction discussed by Cogswell is not due to a decrease of molecular 

weight, which is known to occur concomitantly, to a variable degree depending on the polymer and 

the experimental processing conditions. 

4.1.1. Pre-Treatment on Branched Polymers 

Most of the pioneering work was done 20 years ago on branched polymers (PE,PP) by such 

authors as D. E. Hanson [53], M. Rokudai [54], B. Maxwell [55], J-F. Agassant [56], H. P. Schreiber [57] 

(who wrote a review of the subject up to 1966), G. Ritzau [58,59], who provides details of a shear-

refinement apparatus, J.R. Leblans and Bastiaansen [60], Van Prooyen et al. [61], Munstedt [62], who 

studied the effect of thermal elongational history, and A. Ram and L. Izailov [63]. Hanson [53] showed 

that the Melt Flow Index of a branched PE could be modified by shear-refinement from 0.28 to 0.66 

and that the MFI returned to the initial value 0.27 after solution and re-precipitation of the pre-

sheared sample. Cogswell [52] comments as follows on the results obtained by Hanson and others 

[53–55]: 
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“The change is seen to be reversible by solution treatment. Molecular weight characterization 

indicated that all these samples were identical… [Shear-refinement effects] “might at first appear 

to be the result of degrading the polymer, are frequently reversed by cooking the melt, though the 

time for which the melt may need to be cooked to achieve reversion may be much longer than the 

natural time of the material (viscosity/modulus at zero shear)”. 
J-F. Agassant et al. [56] show that the effects of shear-refinement are most obvious, and most 

commonly exploited, in the case of PVC which is known to have a morphology very sensitive to 

thermo-mechanical history. 

No clear explanation was ever given to the origins of shear-refinement by these authors, which 

remained empirical until Bourrigaud [39] published a possible reptation based interpretation in the 

case of branched polymers. 

Bourrigaud [64], and Berger [65] have recently investigated the shear-refinement of long-chain 

branched (“LCB”) polyolefins in their thesis. Bourrigaud focused on several well characterized low 

density branched polyethylene grades and obtained proof of the influence of the strain amplitude of 

shear deformation on the degree of viscosity reduction during subsequent processing. Bourrigaud 

suggested that molecular topology is critical, and his results support the view that molecules with 

very long-chain branches are highly affected by shear refinement, whereas linear polyethylene seems 

to undergo much smaller changes (if any), under the experimental shear refinement conditions he 

used. Bourrigaud and co-workers [66] concluded that the degree of long chain branching or 

ramification qualifies or disqualifies, for the most part, the degree of viscosity reduction observed by 

shear refinement. In other words, controlled alteration by branching of the molecular weight 

distribution leads to the optimization of shear-refinement and of its benefits, according to these 

authors. Furthermore, Bourrigaud et al. showed that refinement by elongation is more effective than 

refinement by shear for the same flow strength [64,66]. Berger [65] and Berger et al. [67], worked with 

a long chain branched polypropylene under very high shear strain rates and found similar results. 

Additionally, Berger and coworkers [67] confirmed that the MFI of branched PP, collected as pellets, 

could be increased by shear-refinement, and that solvent dissolution would reverse the effect; after 

evaporation of the solvent, the MFI returning to its original value. These authors concluded that 

disentanglement was responsible for the decrease of viscosity and die swell [67]: 

The pre-treatment of the LCB-PP in the capillary rheometer at the highest shear stress 

applied causes a significant reduction of the tensile stress, which can be referred to the 

reduction of the mass-average molar mass. However, the significant decrease of the extrudate 

swell after the pre-treatment cannot be explained by the change of the molar mass, as the 

elastic behavior of polymer melts is known to be independent of the mass-average molar 

mass. Therefore, the reduction of the extrudate swell is an indication of a change of the 

entanglement network during the pre-treatment. 

4.2. Pre-Treatment on Linear Polymers 

We published a series of papers and patents during the last two decades [68-85} to explain how 

the combination of shear rate and controlled strain mechanical treatments applied prior to or during 

processing of linear polymers (not branched) could result in substantial viscosity reduction benefits 

that allow, for instance, to work in extrusion at lower temperature or under lower pressures at the 

same throughput. We invented, designed and run “Rheo-Fluidizers”, processing equipment making 
use of vibrational methods during melt extrusion to induce shear-refinement by shear strain energy 

coupled with extensional flow [68–85]. The emphasis of this “dynamic shear strain refinement” 
process was on the improved processability of linear high molecular weight polymer melts, such as 

polycarbonate and Plexiglas (PMMA), i.e., polymers without branches. We showed [69,70,83,84] that 

to induce the shear refinement benefits, a combination of shear stress and superposed oscillation 

could raise the elasticity of the melt to a level identical or perhaps even superior to what branching 

could do. In other words, we proposed that, at least under dynamic conditions, both linear polymers 

and branched polymers could qualify for “disentanglement” by shear strain refinement. 
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Furthermore, we drew attention to the requirement of rheological criteria to be fulfilled for shear 

refinement to occur [71,75,83], and pointed out the importance of the shear strain amplitude of the 

oscillation to operate the melt in the non-linear time dependent viscoelastic range [72,74,77,78,80]. 

We suggested that the combination of shear-thinning and strain softening during the pre-treatment, 

which we designated “Rheo-Fluidification”, could produce either shear-refinement benefits 

[70,71,83,85], or Sustained-Orientation (“disentanglement”) depending on certain conditions [76]. 

Sustained-Orientation is explained in the next sub-section 4.3. 

Shear-refinement work has remained largely empirical because of the lack of its understanding 

by the current models. The viscosity reduction is temporary and rheological properties can be 

restored, which can occur in various ways not very well understood until now. Most of the 

comprehension necessary for its generalization and extrapolation to all macromolecules was lacking 

because the current models remained speechless about the shear-refinement results. For instance, for 

linear polymers, the current paradigm could not under how it could be possible that shear-refinement 

effects could happen since the chains were linear and not branched. Besides, the Rheo-Fluidified 

melts had relaxation times calculated from their cross-over frequency much shorter than those with 

the same molecular weight without treatment, and this was as if they had been “disentangled”, 

sometimes by a factor 1000 or even 10 times that. The claim by Munstedt [86] that shear-refinement 

can only exist for branched polymer structures and not for linear chains is debated in section 4.4 

below and in [15]. 

It is clear that the lack of comprehension of shear-refinement for linear polymers by the current 

models poses a threat to the whole foundation of the existing paradigm in polymer science. The 

situation is different for branched polymers for which the Bourrigaud’s theoretical explanation has 

the merit to search for a classical interpretation [64]. Bourrigaud modified the McLeish and Larson’s 
pom-pom model [87] to account for the increase, due to branching, of the value of the tube renewal 

relaxation time and explained, at least partially, some of the shear-refinement results for its branched 

PE samples. For linear polymers, however, “disentangled” polymers present a real challenge to 

existing models of flow. 

The positioning of the science community with respect to the “disentanglement” results remains 

confused and hesitant based on the claim of the reptationists’ gate keepers that those results must be 
artifacts since they disprove their theory. Properties of melts brought out of equilibrium are largely 

ignored. Yet, many plastic industries are directly concerned and will benefit from the fundamental 

understanding of what causes shear refinement viscosity drops in linear or branched polymer, and 

how this can be applied to processing of polymer resins, branched or not. The ability to process plastic 

melt at much lower temperature (50-80 oC below normal), because of reduced viscosity due to shear-

refinement or disentanglement, opens up new boundaries not just in processing but also in blending, 

such as in nanoparticule dispersion, or for the processing of high temperature sensitive additives 

(wood flour, instable additives such as peroxides, etc.). Details are given elsewhere [Ch. 8 of Ref. 2]. 

4.3“. Sustained Orientation” 

Shear-refinement can occur with unentangled polymers, linear or branched, and therefore shear-

refinement should not always be called “disentanglement”, like we did in our early publications 
(when we were not even aware of the work of others on shear-refinement). It is true that we only 

applied our Rheo-Fluidification pre-treatments on entangled melts, because of the commercial 

applications of reducing their viscosity, and this was one of the reasons to designate the results 

“disentanglement”. When entangled polymer melts are submitted to Rheo-Fluidification treatments, 

the result produced is at least shear-refinement, at best Sustained-Orientation, and the distinction 

means that the Sustained-Orientation is more difficult to achieve, requiring a dual-phase model 

understanding of the differences between unentangled and entangled melts, in particular their 

stability under stress. 

In simple terms, by manipulation of the stability of entanglements, it is possible to create and 

maintain quasi-stable at high temperature in an amorphous polymeric melt (say 120 oC above Tg) a 

certain state of orientation that was induced by a mechanical deformation. The manipulation of 
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entanglements was achieved by coupling two Rheo-Fluidification processors [xxx]. The”sustained-

orientation” discovery describes the possibility to obtain non-equilibrium entanglement states for 

polymeric melts which can be preserved in a pellet formed after the treatment. This pellet displays a 

melt flow index (MFI) that can be 100% bigger than the original (virgin) pellet before the treatment, 

after correction for any molecular degradation present due to the process. This new state of polymer 

matter challenges the current established models of polymer physics, because such “oriented” melts 

can remain oriented for hours at temperatures below their TLL transition temperature, yet can slowly 

recover in time their initial un-oriented equilibrium state (the MFI of the treated pellet then slowly 

reverses to its original MFI). This esoteric behavior can be understood by the Dual-Phase model of 

the interactions that explains entanglements as a split of the statistical system of interactions yielding 

a set of cross-dual-phases [20]. 

The experiments of “sustained-orientation” could be interpreted qualitatively using the classical 

terminology by a change of Me, the molecular weight between entanglement (thus the wording which 

was used, “disentanglement” or “re-entanglement”), except that there is no classical explanation to 

why Me could vary so slowly in time, Me(t), independently of the terminal relaxation time, and be 

increased or decreased by relatively low shear forces. For instance, using the classical language, 

sustained-orientation would produce a melt with an Me value twice as big as the virgin pellet, Meo. 

That value can be frozen in the new pellet and stay stable as the pellet is reheated above the Tg, say 

at T=Tg+120 oC, at least for a certain time that could be equal to a million times the value of the 

reptation time. Then Me(t) can start to decrease towards its original equilibrium value Meo, the time 

to control the return to equilibrium being controlled by pressure. There is no explanation in the 

current theories for an unstable entanglement network resulting in an unstable liquid state for 

polymers, and on how the instability dynamics could be correlated to non-linear viscoelastic effects. 

What sustained-orientation suggests is that the classical concept of Me to describe entanglements 

is too simplistic and its usefulness is, at best, limited to the linear range of viscoelasticity. The whole 

foundation of polymer physics, based on its understanding of entanglements, appears to be 

challenged, perhaps even overhauled, by the type of experimental results resulting in Sustained-

Orientation. 

Figure 26 below (similar to Figures 4–9 for PC and Figure 4.74 for PMMA in Ref. 2) demonstrates 

the benefits of Sustained-Orientation, sometimes designated “disentanglement in a pellet” by 
contrast to “disentanglement in-line” which refers to the shear-refinement reductions in viscosity and 

melt elasticity while the melt is being processed after the pre-treatment. 

 

Figure 26. Signature of “Sustained-Orientation” : MFI value found for pellets made out of a melt 

prepared by Rheo-Fluidification treatment are linearly correlated to the value of viscosity measured 

by the in-line viscometer at the exit of the Rheo-Fluidizer. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2023                   doi:10.20944/preprints202309.0424.v1

https://doi.org/10.20944/preprints202309.0424.v1


 38 

 

Figure 26 applies to a linear PC grade. One compares the MFI value found for pellets made out 

of a melt prepared by the twin Rheo-Fluidification treatment stations of Figures 5a,b of Ref. 2 with 

the value of viscosity measured by the in-line viscometer (shown in Figure 4.8 of [2]) at the exit of the 

strand die. Although the two temperatures are different (300 °C for the MFI measurement, 275 oC for 

the in-line measurement), the correlation is validated: when the in-line viscosity drops, the pellet has 

a higher MFI than the reference pellet (11.3). In other words, the viscosity benefits obtained from the 

manipulation of the melt stability can be frozen into a state in a pellet that will survive subsequent 

heating periods, about 20,000 times its terminal relaxation time value at 150 oC above its Tg. This 

“Sustained-Orientation” behavior shambles completely the current understanding of viscoelasticity 
in polymer melts. 

Ever since we were able to produce hundreds of pounds of linear polymers (PC, PMMA, LLDPE) 

exhibiting the Sustained-Orientation behavior and understood that this new property contradicted 

the current paradigm of polymer physics, we knew that a different explanation of “entanglements” 
was required and that polymer physics had to be reconstructed from a different understanding of the 

coupling between the covalent and inter-molecular interactions. 

We conclude this section by claiming that the reptation tube model, as it stands now, cannot 

explain the challenging results obtained by “shear-refinement”, and by “Sustained-Orientation”. If a 

model cannot comprehend a phenomenon that we can reproduce to produce batches of hundreds of 

pounds of pellets demonstrating the benefits of the phenomenon at a time, then this model should 

be abandoned. This is the way science works. 

4.4. The Munstedt’s Exclusive Requisite that the Polymer must be an LCB (with long Chain Branches) to be 

able to Obtain Shear-Refinement 
Munstedt [86] recently claimed that only branched polymers could demonstrate shear-

refinement benefits, not linear polymers. According to him, linear polymers could only show artifacts 

or unreported degradation [86]. We offered a rebuttal to Munstedt’s paper and his allegations [15]. 

These two publications should be read to illustrate how the gate keepers of an existing paradigm 

practice their censorship power to eliminate any possible existential threat. The rebuttal, for instance, 

was rejected by the Journal which published the paper by Munstedt (Journal of Rheology). Also, 

Munstedt misquoted and mischaracterized –purposely or not is debatable- some parts of Ref. 2 to 

denigrate the results. Let’s stay on course and only concentrate on excerpts from Ref. 15 relevant to 
the present discussion. 

4.4.1. Münstedt,’s Critical Condition that Branching must be Present to Observe Shear-Refinement 

is Wrong 

In Ref. 2, we introduce new equations to analyze the rheology of melts (shear-thinning, strain-

softening) in terms of the Dual-Phase model and show that they also explain the origin of the 

rheological instability. The long term retention of the lower viscosity in the Rheo-fluidified pellets 

when re-heated to a melt state, sometimes for times several hundred thousand times greater than the 

reptation time at that temperature, represents an immense challenge to the currently admitted 

models of chain dynamics such as reptation. This challenge is not acknowledged by the community 

of rheologists, except swept away as artifact, such as in the paper by Münstedt [86]. However, how 

could this be an artifact when we did produce several lots of 150 lbs of sustained-oriented pellets, 

the product of the “artifact”, which could regain in time their original viscosity after re-melting! 

We concluded in [2] that this “Sustained Orientation” paradox is linked to a new concept: the 
instability of the Dual-Phase of the interactions. A first degree instability can be induced by a 

combination of shear-thinning and strain softening that may result in shear-refinement effects. 

Sustained-Orientation requires certain conditions in addition to the 1st degree instability criteria to 

trigger an instability of the 2nd kind: the instability of the Cross-Dual-Phase entanglement structure. 

There are two types of sources to trigger the rheological instabilities of polymer melts: one is 

controlled by the recoverable dynamic free volume variations, the other by the modification of the 

entanglement network structure, by entropic dissipation (orientation of the network). This 
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competition between these 2 mechanisms of instability is different for a given polymer and represents 

the true debate to have regarding the shear-refinement results, as we emphasized to Münstedt, 

during our intensive discussions [15]. For instance, the Dual-Phase model of the interactions that we 

have introduced in Ch. 1 of Ref.2, a book reviewed by Munstedt, explains the dynamic source of the 

free volume, which is also influenced by the topology of the chains, in particular whether long chain 

branching, short chain branching or no branching is present. Both the amount and the structure of 

the dynamic free volume are influenced by branching. However, and this is missing in Munstedt’s 
analysis, they are also influenced by other rheological factors, the orientation of the chains, the 

frequency and the amplitude of a vibration of the coherent interactive medium, the pressure in the 

melt, etc., all these parameters influence the local density of the melt and the frequency of the elastic 

dissipative wave that compensates for the local packing density inhomogeneity. In turn, they also 

influence the melt modulus (the famous GN=  RT/M correlation), and thus influence shear-thinning 

and strain softening. Münstedt focused on the presence of the long chain branches to determine a 

criterion for shear-refinement [86]. We argued that to understand why shear-refinement can occur in 

both branched and linear polymers one needed crucial information that are never provided by the 

molecular models: 1.the determination of the local packing density and of the localization of the free 

volume in the structure, and 2. the influence of branching on these two variables. The Dual-Phase 

model is easily applicable to this situation [2] because of the local cross-duality between the F/b 

dissipative states and the conformational states (trans,cis,gauche). This (F/b ←-→ (c,g,t)) local cross-

duality also predicts the influence of vibration, shear rate and shear strain on the free volume amount 

and its distribution, in particular how to increase it, whether the basic polymer is branched or linear. 

Therefore, the topological criteria by Münstedt that branching must be present to observe the 

conditions for shear-refinement is simply wrong. 

5. Strain Induced Time Dependence of Rheological Functions 

The conditions to achieve linear viscoelasticity are obtained at low strain amplitude for dynamic 

rheological experiments, where an oscillating strain is applied to a molten melt with frequency  at 

temperature T. Under such conditions, the elastic and loss moduli, G’(,T) and G”(,T), respectively, 

are independent of the value of the strain, that could be 1%, 3%, 5% etc. up to the limit of linear 

viscoelasticity. The limit of linear rheology is reached when the value of the moduli become strain 

dependent, i.e when the stress is no longer proportional to the strain (non-affine deformation). The 

determination of this limit is compulsory before running any other tests in the linear region of 

viscoelasticity; it is done by running a strain sweep at given T and . The value of the strain is 

increased continuously and slowly until a deviation from the horizontality of the modulus appears 

that marks the beginning of non-linearity. In the following we are interested in the “stability” of the 
non-linear solution, meaning once we have reached the value of strain for non-linearity are the 

moduli values stable in time or starting to drift to make them time dependent? 

1. Does a non-linear state obtained by increasing strain become immediately instable: time 

dependency starts as soon as its modulus differs from its linear value? 

2. Is the strain value for the end of linear viscoelasticity different from the strain value for the start 

of the time dependency of the non-linear modulus? 

3. Is the rate of the time dependency of modulus a function of the strain? 

The general affirmative response for polymer melts answers question #2, adding in complement 

that the response is function of the chemical nature of the polymer, the value of , of (T-Tg) and of 

the strain. 

In other publications (Ch. I.7 and II.9 of [20]), we address the issue of determining the critical 

strain at which the instability of the non-linear rheology is triggered (question #2) and the influence 

of strain on the rate of the moduli decay (question #3). 

When we say “instable”, we are not talking about a chemical instability of some sort 

(degradation, esterification, cross-linking) or a surface instability (cracks, edge fracture, surface 

contact loss) that would alter the measurement, we are talking about the possibility to re-organize 

the interactions inside the material under stress that results in the time dependency of the moduli. 
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For instance, using the language of the Dual-Phase model, we want to know if the dynamic free 

volume restructures (i.e., the (b/F ↔ (c,g,t) kinetics evolves), or, for entangled melts, if there is an 

enthalpic or entropic modification of the compensation between the two dual-phases, when the strain 

brings the system in the time dependent non-linear range (“disentangement”). 
It is clear that we need to ensure that the chemical instabilities or surface instabilities are not 

responsible for the time dependency observations. This point is crucial to consider in details (see [88] 

for explicit details), because certain testing configurations are more inclined to create artifacts than 

others and we need to cross-reference those doubtful results with results that can be trusted 100%. 

This dedication to scrutinize each experiment details to eliminate any potential artifact pitfalls is the 

absolute norm when dealing with the experiments exhibiting a strain induced time dependence of 

the rheological functions. This takes extra dedicated time [88], [15] but is necessary to counter the 

artifact reflex of the deniers of such results by the gate keepers of the existing paradigm [86]. 

5.1. 1st Example of Strain Induced Transient of Viscosity (Inducement) 

Figures 27a,b concern a PS melt studied with a dynamic rheometer (AR 2000, TA Instruments) 

in the time-sweep mode. The temperature is 165 oC (65 o above the Tg of PS) and the frequency remains 

equal to 20 Hz (= 125 rad/s). The cross-over frequency for this PS at that temperature is 0.1 rad/s, so 

the Rouse time is 10 s. The initial strain is 5%, known to be in the linear viscoelastic range. The strain 

remains constant to this value for 3 min, then it is automatically increased to a new value, 10%, where 

it stays constant for 3 min; this action is repeated until the final strain is 23%. In other words, the 

strain varies step wisely every 3 min from 5% to 23%, the sample undergoing time-sweep steps lasting 

3 min between each increase of the strain. Figure 27a. displays the viscosity () vs Time for each 

time sweep for strain equal to: 5%, 10%, 15.2%, 17.5%, 20% and 23%. We record the value of G’ and 
G” during each of the 3 minutes steps. Figure 27b provides the variation of G’(t) and G”(t) for the last 
step, corresponding to 23% of strain ( is still 125 rad/s). 

It is apparent in Figure 27a that a time dependent (transient) behavior is triggered by the increase 

of strain at 15.2%. For 5% and 10% strain, the viscosity remains constant, but at 15.2% in Figure 27a, 

the viscosity starts to decay. The magnitude of the effect increases with strain, the rate of the decay 

does too (compare the viscosity curves for 15.2% strain (green triangles up) and 17.5% (green triangles 

down): the increase of the slope is proportional to the rate increase. As the strain increases, the 

apparent straight line decay becomes an exponential decay visible by the convex curvature. This is 

particularly visible for the 23% strain time sweep. Note that the decay of the moduli in Figure 27b is 

not over and has not reached a plateau after 3 min, which contrasts with a terminal relaxation time 

of 10 s for this melt. The time scale involved in the transient decay is very different from the molecular 

time scale. There is a classical “engineer” description of this phenomenon in terms of shear-thinning 

and strain softening: at =125 rad/s T=165 oC, the melt shear-thins, i.e., its viscosity drops from the 

Newtonian value at that temperature to a lower value, 1075 Pa-s in Figure 27a (@ 5% strain). The 

effect of strain on the modulus, a non-linear effect, is called “strain-softening”, which is quantified by 
the ratio, h, of the non-linear modulus to the linear modulus (h < 1). Shear-thinning is controlled by 

the value of , strain-softening by the value of the strain,  , so it is expected that the strain rate 

maximum per cycle, , play a role to determine the onset of the time dependence behavior which 

we can designate by either “the instability of strain softening by the frequency ” or “the instability 
of shear-thinning by the strain ”. Criteria of melt instability based on the value of the strain rate 
and/or the strain have been used to study non-linear effects such as melt fracture or melt flow non 

laminar decohesion [89,90]. It is important to verify [88] that none of these critical values for melt 

inhomogeneity is reached to explain the triggering, at such a low  (15%), of the transient behavior 

observed in Figure 27a,b. 
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(a) 

 
(B) 

Figure 27. (a). Viscosity (Pa-s) vs Time (s) during successive time sweep sequences of 3 min each at 

165 oC, 20 Hz for a PS sample in a dynamic rheometer. The strain is increased at the beginning of each 

sequence as shown in the inset. Viscosity is calculated from G’(t) and G”(t). (b). Details of Figure 27a 

regarding the strain= 23% sequence. This graph shows the decay of G’ and G” with time. 

Wang [90] has established that two criteria must be met simultaneously to trigger a non-laminar 

structure of the melt in a gap: one of these criteria relates to the strain rate, the other to the strain. The 

strain criterion of Wang (  > 100%) is not met, by far, in Figure 27 since the transient occurs for 

=15.2%. The possibility that melt fracture occurred at the edge of the sample to explain the stress 

and viscosity decay in Figure 27 has also been considered and contradicted [89]. A simple 

experimental way to eliminate such an explanation for the strain induced triggering of a rheological 

transient is to consider if the phenomenon is reversible. This is shown in the next example on another 

polymer, a linear low density PE. 
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5.2. 2nd Example of Strain Induced Transient of Viscosity (Inducement and Recovery) 

Figures 28a,b summarize schematically the frequency and strain experimental profile to create a 

transient with a laboratory dynamic rheometer, and demonstrate that the phenomenon is reversible 

upon cessation of the cause of the effect. 

The data were obtained with a dynamic rheometer, the ARES from Rheometrics, using a parallel 

plate configuration, but a cone and plate combination was also used, providing essentially the same 

results. The resin was a LLDPE from Dupont-Dow Elastomers (Engage 8180), the temperature was 

155 oC, and the gap was chosen between 1.2 and 2 mm. 

 

(a) 

 
(b) 

Figure 28. (a). Frequency history steps (plotted against time) for the sample in the dynamic 

rheometer. (b). Strain % history steps (plotted against time) for the sample in the dynamic 

rheometer of Figure 28a. 
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Figure 29. Dynamic viscosity vs time for the 3 steps of Figure 28a,b. 

Figures 28a,b describe the frequency and % strain history. Figure 29 plots dynamic viscosity 

against time. The first and last segment, called “initial” and “recovery” in Figure 28a,b represent the 

baseline, the value of viscosity under linear viscoelastic conditions, i.e under very low frequency and 

amplitude (here 1 rad/s, 1% strain). The so-called « treatment zone » in Figures 28 and 29 was initiated 

by a jump of the frequency, from 1 to 47 rad/s, which created, in Figure 29, an “instantaneous” drop 
of viscosity from 57,000 Pa-s to 10,000 Pa-s, due to shear-thinning. The jump was then followed by a 

gradual stepwise increase of the strain amplitude, from 1% to 25%. Figure 29 shows that for the first 

2 steps of increase of strain, the viscosity held constant at 10,000 Pa-s, its shear-thinned value at that 

temperature and frequency, but that starting at strain = 13%, the viscosity started to become transient 

declining from 10,000 to a steady state value of 3,100 Pa-s. This decay of the viscosity took about 25 

min. Then the frequency and strain amplitude were changed back to their low values of the linear 

range (1%, 1 rad/s), and one observes an “instantaneous” partial loss of the effect of shear-thinning 

combined with strain softening, i.e., the viscosity jumped back to 38,000 Pa-s. Further recovery of 

viscosity occurred over the following 20 minutes, viscosity increasing slowly and finally regaining 

its original Newtonian value, 57,000 Pa-s. In other words, the state of the melt produced by the 

transient treatment was unstable when the energy that produced the transient behavior was released: 

this is why viscosity slowly increased in time and returned back to the original value for the melt. 

Nevertheless, it took 20 minutes for recovery, and this time is 60 times longer than the terminal time 

at that temperature, making it possible to exploit the benefits of a smaller viscosity during recovery 

if the melt were to be processed at that stage. One can define the viscosity benefit by comparing the 

initial Newtonian viscosity (57,000) and the Newtonian viscosity before recovery after the shear-

thinning elastic loss (38,000), a ratio of 1.5 in this treatment (« 50% viscosity drop»). Notice that a 

processor could still benefit from shear-thinning of the treated resin (Figure 28), and work under 

much greater viscosity reduction (3,100 Pa-s versus 57,000 Pa-s, an improvement of over 1,700% !). 

The experimental procedure described in Figure 28 has many variations: the time duration 

between strain amplitude step-ups can vary, the strain amplitude increment itself can be changed as 

can the temperature of the melt and the frequency of operation during treatment. The treatment could 

also be done differently, by increasing at low frequency the strain to 25%, say, and step wisely 

increasing the frequency from 1 rad/s to 47 rad/s. All these changes contribute to the final % viscosity 
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reduction, which can be as small as 20%, to as large as 3,000%. The wrong procedure can also produce 

artifacts or surface effects, as is explained in [88]. 

5.3. Conclusions on the Strain Induced Time Dependence of Rheological Variables 

5.3.1. The “Process Engineer” Interpretation of the Results 

Strain softening, known to decrease the modulus at higher strain, combines with shear-thinning 

due to the effect of frequency to render the melt unstable in its original entanglement network 

configuration; thus the transient behavior occurs. In a step strain experiment conducted in the molten 

state, a softening factor is defined, h = G(strain)/ G(LVE), where G(strain) is the melt modulus for a 

given strain and G(LVE) refers to the strain independent Linear Viscoelastic Value (h <1). At low 

strain, the modulus is only time dependent, and an increase of strain produces an increase of stress 

proportionally. Pure viscometry experiments have demonstrated that above certain strain rates, 

corresponding to a certain stress level, a transient decay towards steady state released the elastic 

energy stored during initialization. It was suggested in earlier publications dedicated to more 

engineering audiences [68–80] that the dynamics of this process could be viewed as a recursive effect 

of the stress on relaxation times. As stress continues to grow, due to increased strain, strain softening 

is the first revealing sign of the modification of the structure due to the stress dependence of the 

relaxation time. Figure 29 reveals that under dynamic conditions, the softening factor h can become 

time dependent, which translates into a transient behavior. The advantage of producing transient 

behavior with a dynamic viscometer is that G’ and G” become time dependent, so it is possible to 

analyze these curves individually and also follow how (G’/G*)2 varies during transient stress decay. 

The transient decay can be produced in-situ in the rheometer, and a frequency sweep performed 

before the transient and after it, allowing an easy way to analyze the differences due to the stay in the 

non-linear regime. This type of experiments allows to analyze the influence of strain and frequency 

during time sweep (“the treatment”). Additionally, the fact that a frequency sweep in the linear 

regime can be performed on the sample after it has been treated non-linearly, proves the integrity of 

the sample and its surfaces, in contradiction to the claims by Munstedt [86] that the treatment 

conditions degraded the sample integrity. 

5.3.2. The Theoretical Physicist Interpretation of the Results 

We have studied many curves like those in Figures 27 and 29, obtained using a parallel plate 

configuration, a cone and plate and a Couette configuration, using many different polymers, using 

different temperatures, different molecular weights, under pressure in a confined environment with 

no edges, superposed to extrusion flow, under cross-lateral vibration etc.(Ref. [2] is dedicated to 

report in details those experiments and results), and the same conclusion imposes itself: the 

rheological phenomenon observed that is triggered by strain has a kinetic origin which makes it vary 

with frequency and temperature but does not work at the same scale as the terminal time, p=1/x: 

it refers to a different phenomenon that is not accounted for in any previous model of viscoelasticity: 

the dissipative aspect of the interactions. In our theoretical work on the Grain-Field Statistics of open 

dissipative systems [21], this concept is embedded in the equations regulating the interactions 

between the dual-conformers, and these assumptions are applied to polymers in [19]. The 

“dissipative aspect” means, in essence, that beyond enthalpic and entropic changes occurring to 
constrained systems brought out of equilibrium, the size of the systems may restructure, rendering 

the statistical frame definition to become part of the dynamics. This fundamentally different statistical 

approach is what fuels the new paradigm of the interactions that we introduce which, in many ways, 

explains the shortcomings of the current paradigm to be able to correctly address the experimental 

results presented in this paper. One could say, to simplify, that the new paradigm fuses with the 

current paradigm, which may then regain some merit, when the system of interactions is in a state 

above the TLL transition, a typical “dissipative transition” resulting from the dissipative nature of the 

interactions [19,24,35]. 
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Conclusion 

The deformation of a polymer melt in shear mode is the main subject of interest in the science of 

rheology of such materials. It is a crucial topic for successfully processing these materials. In the above 

examples that dealt with linear viscoelastic rheological conditions with no effect of strain, in sections 

1 to 3, we saw that even in these simple conditions the Rouse model was not satisfactorily describing 

the data of unentangled melts when carefully comparing experiments and theoretical predictions. 

The same failure of the reptation model was also demonstrated when comparing the calculated 

projections of the affine and non-affine hypotheses suggested by the reptation model of entangled 

melts with the experimental results obtained by Rheo-SANS. In summary, even in the linear range of 

viscoelasticity the acclaimed Rouse and de Gennes models are challenged by experimental evidence. 

In the non-linear range, at a high strain rate and strain, the subject of the other examples presented 

in this paper (sections 4 and 5), it is generally admitted that the current theoretical developments that 

successfully predict the main characteristics of polymer melts in the linear range fall short, but merely 

need improving and tweaking of the parameters. The extrapolation to the non-linear behavior 

generally consist of adding some terms to the mathematical formulation of the linear viscoelastic 

model. As we said at the beginning of this paper, all the current models in polymer physics are based 

on “chain dynamics statistics” [6–12]. The aura these polymer dynamic models have reached among 

the polymer scientific community makes them the current standard references that control the field 

of plastic engineering that relies on the understanding of viscoelasticity and rubber elasticity. Yet, as 

we suggest, it is possible that the experiments described in this work challenge the current paradigm 

to its limits, to the edge of its usefulness. 

The present understanding of the physics of macromolecules is based on an analysis of the 

properties of a single chain. The presence of the other chains is perceived as a mean field influence 

on the properties of that chain. The reptation school considers that this mean field can be looked at 

as a topology, a homogeneous field of obstacles restricting the motion of the single chain, which is 

claimed to explain the extra molecular weight dependence of viscosity at Mc and beyond. We explain 

in this paper that, in our opinion, this assumption (which is also present in Rouse) is the origin of the 

failures of these models to describe the data correctly. The irony is that de Gennes [6] used the term 

“scaling concepts” in the title of his book on polymer physics [6], which resonates, but in a different 

context, with our definition of a scale of the basic unit that participates in the deformation process in 

our dissipative statistical approach. The difference is that our model not only defines the scale, in fact 

several “dynamic scales”, but also determines the coupling and the modulation between these 

cooperative scales [20]. For instance, In our Cross-Dual-Phase explanation of entanglements, we 

make reference to a “network of strands” to describe the cooperative interactive process resulting in 

the “entanglement phase”. We refer to a basic unit of deformation, the Dual- conformer, that 

participates in the evolving cooperative motion of a phase-wave responding to deformation as an 

open dissipative system [20]. We must define mathematically what “evolving cooperation” means, 

how many dual-conformers dynamically cooperate in an active strand at any instant, how many 

strands are active and how many relax, and where the cooperative dual-conformers are located: on a 

single chain or on several chains. The physics of dealing with all the chains at once in the statistics, 

redefining the coupling between the covalent and the inter-molecular interactions, is the model that 

we have adopted to describe the deformation of polymer melts and solids, above Tg and below Tg 

[2,19,20]. The theory not only addresses the interaction between the conformers of a single chain to 

assume the shape of a macro-coil (which can be deformed), but also defines why entangled macro-

coils exhibit the response of a network of active strands when all the chains participate cooperatively 

in the deformation process. The dissipative dynamic coupling between the deformation of a 

conformer, of a macro-coil, and of a network of strands is quantitatively described. The new model 

explains the influence of chain molecular weight to predict a change of behavior below and above a 

critical molecular weight (Me), in other words it proposes a new understanding of “entanglements” 
and their influence on the dynamic melt properties G′(,T) and G″(,T) and the normal stresses. It 

predicts shear-thinning and strain softening in shear mode, and strain-hardening in extensional 
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mode. It also successfully describes the transitional behavior at Tg, from a solid-like to a liquid-like 

behavior, also predicting the existence and the characteristics of the Boyer’s TL,L upper melt transition 

temperature (the end of dissipative modulation). Finally, the theory addresses the stability (or the 

strain induced lack of stability) of the Cross-Dual Phase entanglement network [20]. 

The theoretical assumptions of the new model and the quantitative descriptions it generates 

constitute a whole new understanding of the viscoelastic properties of polymers that could be 

considered the premises of a new paradigm in that field of physics. We would like to close by quoting 

Buckminster Fuller who once said: 

“In order to change an existing paradigm you do not struggle to try and change the problematic model. 

You create a new model and make the old one obsolete.”—Richard Buckminster Fuller — 
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