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Abstract: The study focuses on the crucial aspect of lossless compression for FAST pulsar search data. The deep
generative model PixelCNN, stacking multiple masked convolutional layers, achieves neural network
autoregressive modeling, making it one of the most excellent image density estimators. However, the local
nature of convolutional networks causes PixelCNN to concentrate only on nearby information, neglecting
important information at greater distances. Although deepening the network can broaden the receptive field,
excessive depth can compromise model stability, leading to issues like gradient degradation. To address these
challenges, the study combines causal attention modules with residual connections, proposing the Causal
Residual Attention Module to enhance the PixelCNN model. This innovation not only resolves convergence
problems arising from network deepening but also widens the receptive field. It effectively utilizes global
features, particularly capturing vertically correlated features prominently present in subgraphs of candidates.
This significantly enhances its capability to model pulsar data.In the experiments, the model is trained and
validated using the HTRU1 dataset. The study compares the average negative log-likelihood score with
baseline models like GMM, STM, and PixelCNN. The results demonstrate the superior performance of the our
model over other models. Finally, the study introduces the practical compression encoding process by
combining the proposed model with arithmetic coding.

Keywords: pulsar candidate image; lossless compression; PixelCNN; FAST

1. Introduction

The compression of astronomical big data has always been a significant research area,
particularly with the activation of FAST (Five-hundred-meter Aperture Spherical radio Telescope),
which employs 19 beams for observations. Following this, the daily data collection rate has reached
250TB per day. When considering 300 observation days in a year, the annual data collection amounts
to 74PB, and this doesn’t even include other data storage needs. The frequent data interactions and
the massive volume of data in storage make compression work exceptionally important.

Astronomical data is typically stored in the Fits (Flexible Image Transport System) file format [2]
and the HDF5 (Hierarchical Data Format) format [3]. These standard file formats allow for traditional
compression methods. For example, Fits files can be compressed using industrial standard
algorithms such as Gzip, Rice, and HCOMPRESS. HDF5 offers compression algorithms like LZF,
SZIP, and Shuffle. While these compression methods may not achieve high compression ratios, they
do provide fast compression speeds.

The prerequisite for data compression is the presence of redundancy and correlation among the
data. Data compression involves using fewer bits to represent frequently occurring information and
more bits to represent less frequent information. In theory, any data distribution model can be
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subjected to lossless encoding, but the effectiveness of data compression depends on the quality of
data distribution modeling. To gauge the quality of a model, it's necessary to assess its ability to
capture data correlations and minimize information entropy, which is reflected in negative log-
likelihood scores.

Traditional density models like GMM (Gaussian Mixture Model) [4] and STM (Student’s T
Mixture Model) [5] are capable of modeling prior distributions for low-dimensional and small-batch
data but struggle with complex and high-dimensional data. With the advent of artificial intelligence
methods, the use of generative models for modeling joint density distributions in complex and high-
dimensional data density estimation has seen rapid development. Autoregressive models [8,9],
variational autoencoders [10,11], flow models [12,13], and diffusion models [14,15] have all
successfully modeled high-dimensional data. Entropy coding methods, such as arithmetic coders [16]
and BB-ANS (Bits Back with Asymmetric Numeral Systems) systems [17-20], effectively combine
density models for information encoding.

Research indicates that autoregressive models possess reliable density estimation capabilities.
We consider using the autoregressive model PixelCNN (Pixel Convolutional Neural Networks) [9]
in conjunction with an arithmetic coder to compress pulsar candidate image data. PixelCNN employs
masked convolutional operations, which define network connectivity patterns and achieve localized
autoregressive dependency modeling. By stacking multiple convolutional layers, Pixel CNN extends
the receptive field, extracting distant characteristic information to enhance its modeling capacity,
showcasing strong modeling capabilities. However, the PixelCNN model has limitations. The local
nature of convolutional operations constrains the receptive field. While stacking convolutional layers
can expand the receptive field, these layers tend to focus on nearby information and neglect distant
information. Research indicates that as network layers deepen, issues like gradient vanishing and
model degradation can occur. Pulsar candidate images, with dimensions of 32x32, exhibit significant
vertical correlations in time-phase subgraphs and frequency-phase subgraphs. Hence, utilizing
global features for modeling pulsar candidate data becomes particularly crucial.

We propose a causal residual attention module that employs self-attention to overcome local
limitations. The causal constraint of the self-attention module ensures autoregression, and the use of
residual connections guarantees that deeper network layers do not degrade performance. The overall
model architecture is similar to the PixelCNN model and is referred to as the RCA-Pixel CNN model.
The model is trained and validated on the HTRU1 dataset and fine-tuned on FAST’s pulsar candidate
image data for practical compression tasks.The main innovations are as follows:

(DIntroducing the causal residual self-attention module to address the shortcomings of
Pixel CNN.

(2)In experiments, the proposed model is trained and validated using the HTRU1 dataset. The
average negative log-likelihood values are compared with baseline models such as GMM, STM, and
PixelCNN. The results indicate that the proposed model outperforms the others.

(3)Describing the practical compression encoding process by combining the proposed model
with arithmetic coding.

2. Background

The FAST telescope’s search for pulsar signals generates a vast quantity of pulsar candidate
images. Considering storage and network transmission requirements, it's highly necessary to explore
the compression of these pulsar candidate images using Al technology. Current Al methods in image
compression are advancing rapidly. The typical approach involves utilizing generative models to
model data distributions, followed by entropy coding.

The PixelCNN model, as an autoregressive model, maximizes the use of pixel dependencies. By
leveraging contextual information from neighboring pixels to predict the current pixel’s probability
density distribution, it demonstrates outstanding performance in data modeling. This makes it an
excellent choice for lossless compression. Given its capacity to capture intricate pixel relationships,
PixelCNN presents an ideal option for compressing pulsar candidate images, particularly due to their
substantial volume, from both storage and network transmission perspectives.
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The assumption for data compression is that there is redundancy in the data and correlation
between the data. The density model for compression should be able to model the data distribution,
capture correlation and obtain better log-likelihood results.

2.1. Pulsar Candidate Image

Pulsar signal search is a crucial scientific task in the sky survey observations conducted by the
FAST telescope. Upon receiving pulsar signals, FAST employs search software (such as PRESTO) to
undergo a series of data processing steps. For instance, pulse clipping is employed to reduce pulse
interference, while dispersion removal mitigates dispersive delays. Subsequently, Fourier
transformation is utilized to analyze the data in the frequency domain, thereby determining the signal
period. Based on the established signal period, multiple received signals of the same period are
combined to enhance the signal-to-noise ratio. The processed data is then transformed into image
format, serving as samples of pulsar candidates [21]. Figure 1 illustrates pulsar candidate images

processed by PRESTO.
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Figure 1. Sample images of pulsar candidate bodies derived from FAST observations and processed
using the PRESTO software.

Pulsar candidate diagnostic images are a fundamental basis for scientists to assess the
significance of pulsars, and they also serve as a data source for machine learning methods used in
pulsar selection. The labeled subfigures in Figure 1 include: (1)Pulsar profile curve subfigure,(2)Time-
phase subfigure, (3)Frequency-phase subfigure, and (4)Period-dispersion subfigure. These
subfigures provide essential reference features for astronomers when evaluating candidate samples.

With the activation of 19-beam observations and the utilization of parallel acceleration tools,
FAST has significantly bolstered its search capabilities, resulting in the generation of a massive
volume of pulsar candidate images. According to early statistics from the FAST data center,
approximately 60,000 images are generated daily, accumulating to 60 GB per month and 800 GB per
year. The exponential growth in the scale of astronomical scientific data stored in the form of image-
based pulsar candidate images poses challenges in scientific data management.
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Researching data compression techniques for compressing candidate images holds paramount
importance. This research facilitates efficient data storage, accelerates network transmission and
sharing, and contributes significantly to advancing astronomical scientific exploration and research.

2.2. Pixel CNN

The autoregressive model decomposes the joint density distribution into a product of
conditional distributions for multiple elements. Its formula is described as follows:

p(x)= Hp(xi | x<i) (1)

The autoregressive model demands a strict context structure, where for each element, only the
preceding pixel information can be used to predict the current pixel’s density distribution. Models
like MADE (Masked Autoregressive Model Estimator) [6], NADE (Neural Autoregressive Model
Estimator) [7], and RANDE (Real Autoregressive Model Estimator) [6] implement this probability
prediction function using neural networks. Image data contains spatial structural information, and
simply flattening images into 1D sequences can lead to a significant loss of spatial information.

Hence, to address this, Oord et al. (2016) [8] introduced the deep generative model PixelCNN. It
employs convolutional neural networks to capture structural information and models the pixel
probability distribution of natural images in a z-scan order. To achieve autoregressive dependencies,
Oord defined two types of masked convolutional layers, as illustrated in Figure 2. The convolution
kernel of a 2D convolutional layer is multiplied by a mask matrix, which constrains network
connectivity relationships, ensuring compliance with autoregressive requirements.
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Figure 2. Two Types of Mask Matrices in PixelCNN.

PixelCNN leverages the advantages of convolutional neural network operations. Convolutional
layers are efficient at extracting spatially correlated information and can be parallelized for
processing. This ensures both model training and data processing speed.

However, PixelCNN also has some issues and limitations. The inherent characteristics of
convolutional networks determine that PixelCNN can model local correlated information effectively,
yet it struggles to efficiently utilize dependencies over longer distances. Research indicates that
enlarging the receptive field is crucial for enhancing model performance. To achieve this, Pixel CNN
stacks multiple masked convolutional layers. However, this approach also presents the following
problems:

(1) Stacking multiple network layers increases the model’s parameters. As the network depth
increases, the convergence speed of the model slows down, and it can even lead to a decrease in
model performance or instability.

(2) Despite enlarging the receptive field, the local nature of CNNs makes the model focus more
on neighboring information, often neglecting crucial information from distant areas.

3. Our Methods
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To expand the receptive field and effectively utilize global image information, we introduce a
self-attention module and residual connections to the PixelCNN framework, creating a novel
network building block known as the causal residual self-attention module. This new model is
referred to as the RCA-PixelCNN. In this section, we provide a comprehensive overview of the
proposed model’s architecture, with a primary focus on a detailed analysis of the introduced causal
residual self-attention module. We discuss the selected data distribution entropy model and present
the integration of the proposed model with Arithmetic Coding, outlining a practical compression
encoding process.

3.1. Network Architecture

As depicted in Figure 3, the proposed model primarily comprises four stages: feature extraction,
residual learning, causal residual self-attention learning, and adjustment of output feature channels
using 1x1 causal convolutions. Among these, the causal residual self-attention module is detailed in
the orange section of the diagram. The dashed lines represent the causal attention blocks.
Subsequently, masked causal convolution blocks and ReLU activation layers are stacked, and the
branch outputs are connected to the input via residual connections.

Pulsar Candidate

Features Extract Residual Learing Attention Learning Prediction

ResBlock ResBlock ResBlock
Type A Type B Residual Type B Type B Type B Residual Type B
Masked Masked Causal Masked Masked Masked Causal Masked
Conv ™ conv Attention Conv ™ conv ™ cony Attention Conv
X7 3x3 Block 3x3 3x3 3x3 Block 1x1

K time:

big kernel size Causal Convolution layer |:| Residual Causal Convolution layer

small kemel size Causal Convolution layer Ix1 Causal Convolution layer

Residual Causal Atttention module

LI

Figure 3. The network architecure of RCA-PixelCNN model.

3.2. Residual-Causal-Attention Block

To address the issues present in PixelCNN, we consider two approaches: residual neural
networks and self-attention networks.To tackle the problem of gradient vanishing and gradient
explosion caused by deep network layers, Kaiming et al. [23] introduced residual neural networks.
These networks incorporate residual learning branches into the main network using skip connections.
The main network approximates the target, while the residual branch learns the difference between
the main network and the target. This ensures stable performance even with increased network depth.
Residual connections expand the receptive field, but convolutional networks still tend to emphasize
nearby information over distant information.On the other hand, self-attention models [24] utilize a
square matrix of the same length as the input data sequence to store the importance of correlations
between input elements. This breaks away from the convolutional bias, allowing access to long-range
information indiscriminately. However, self-attention modules access all elements of the input, rather
than just the pixels preceding the current pixel in the spatial position. This limitation prevents direct
utilization of self-attention modules for autoregressive modeling.

Xi Chen [25] analyzed the implementation process of self-attention and introduced causal
attention modules by setting specific mask matrices. This allows networks containing self-attention
modules to satisfy the autoregressive property. According to a certain autoregressive order, a series


https://doi.org/10.20944/preprints202309.0400.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2023 doi:10.20944/preprints202309.0400.v1

of 2D feature map vectors are named as ), y,,**, Y, . The autoregressive mapping relationship is

as follows:

Z; = Zpijf;/ulue(yj) (2)

i<j

P = 50ft max([ £, ()" ooy (Vs s fros D) frsary (D) 3)

The attention distribution p, corresponds to the dependency level of all features of feature ;.

Each conditional probability is established based on accessing all pixels within the attention-
constrained context qu p; =1. As evident from Equation (2), to achieve autoregressive conditions,

it is sufficient to constrain the summation terms during the summation process.

As shown in Figure 4, this is our proposed residual causal attention block. The dashed box
represents the causal attention module [12], which carries essential information in the main path of
the network. Below it, there are three stacked masked convolutional layers, with ReLU layers and
BatchNorm layers in between. The first convolutional layer has a kernel size of 1X1, and the number
of channels decreases by a factor as indicated by the downward-pointing arrow in Figure 4. The
second convolutional layer has a kernel size of 3X3 and maintains the same number of channels.
The third convolutional layer has a kernel size of and restores the input’s original number of channels.
During the process of information transmission within the network, the feature map dimensions
remain unchanged. The attention module captures the importance of positional information, while
the residual connection preserves detailed information in the features. Both the causal attention
module and the residual branch impose connectivity constraints, ensuring the extracted information
maintains autoregressive properties. The attention module can also employ a multi-head mechanism
to enhance the weighting of importance. The residual causal attention module is an independent
network module that can be used as a plugin within any part of an existing autoregressive network.

lincar mask | _causal attention
matrix

atten

. O ——

1x1 3x3 1x1

relu relu relu
> > conv [—P —»{ conv > —» conv

bn bn bn

J’f Tl/f

Figure 4. Residual Causal Attention Block.

3.3. Entropy model

Compression encoding requires the encodable information to be discrete, corresponding to a
discrete density model. Most neural networks utilize continuous models for image modeling,
wherein data is first quantized inversely to learn a continuous model. Encoding with such a model
involves quantizing the variables first and discretizing the learned model, which is a complex process.
However, we directly model discrete pixel values; each pixel is an 8-bit integer x € {0,--+,255}, and

the pixel density model becomes a 256-way categrical distribution. For example, when we input
N XN image data into the model and process it through a series of network layers, we obtain
prediction features with a final size of N X N X1X256. The last dimension indicates the probability
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of the 256 possible values for each pixel. Therefore, a softmax operation is applied to the prediction
features.

exp(z;)

N

D exp(z)) @
=0

soft max(z,) =

Normalizing the last dimension of the model’s output ensures that the sum of the probability
255
distribution is equal to 1, Zi:o p(z;) =1,guaranteeing that the model’s output in this dimension

represents a valid probability distribution.
The model used for data compression is denoted as ¢, while the actual distribution of the data

is represented by p . The training objective is to minimize the distance between the model ¢ and

the data distribution p , which can be expressed as:

Dy, (q(x) || p(x)) = p(x)(log g(x) —log p(x))
= p(x)logg(x)— plog p(x) (5)
=H(q,p)—H(p)

So,the cross-entropy is given by:

H(q,p)=H(p)+Dy (qll p) (6)

H (p) represents the entropy of the data, and when the data is given, it remains constant.

Therefore, minimizing the KL divergence is equivalent to minimizing the cross-entropy. Cross-
entropy H(q, p) represents the amount of information required to encode data using the model

and is equal to the codelength. Thus, we use cross-entropy as the training objective for the
compression model. In the encoding process, the autoregressive model estimates data density, and
this estimation can be computed in parallel all at once. In the decoding process, on the other hand,
pixel probabilities are estimated step by step during decoding. As a result, autoregressive algorithms
compress data quickly, and while decompression is slower, they offer good compression
performance.

3.4. Arithmetic Coding

The most commonly used entropy coding algorithm employed in this paper is the arithmetic
coding. When encoding each pixel in the image, it is necessary to know the probability distribution
of the pixels. The image’s pixel sequence is then transformed into a binary sequence. Based on the
size of the probabilities, pixels are assigned different numbers of coding bits. The Arithmetic Coder
assigns fewer bits to pixels with higher probabilities and more bits to pixels with lower probabilities.
Another reason for choosing Arithmetic Coder is its progressive coding approach, which aligns well
with our progressive probability model. Based on the pixels that have already been encoded, the
model predicts the probabilities of pixels to be encoded next, resulting in higher compression
efficiency. The decoding process follows a similar pattern. Initially, pixels that were encoded earlier
are decoded, and then subsequent pixels are decoded conditionally one by one.

4. Experiments

In this section, we first introduce the dataset of pulsar candidate diagnostic images. We also
present the baseline models used for comparison against the RCA-PixelCNN model, including
Gaussian Mixture Model (GMM), Student’s t Mixture Model (STM), and the Pixel CNN Base Model.
Subsequently, we conduct two sets of experiments. In the first set of experiments, we compare the
modeling performance of the RCA-Pixel CNN model against GMM, STM, and PixelCNN Base Model.
We evaluate the average negative log-likelihood values. In the second set of experiments, we analyze
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the proposed causal residual self-attention module through various erosion experiments,
investigating different settings.

4.1. Datasets

(1)The HTRU1 (High Time Resolution Universe Survey) dataset originates from observations
conducted by the Parkes Telescope in Australia using multiple beams (13 beams). The central
observing frequency is 1352MHz, and each beam records a bandwidth of 400MHz, with the actual
data usage being in the middle 340MHz bandwidth. This dataset comprises 1196 known pulsars
(positive samples) from 512 distinct sources and 89996 non-pulsar candidates (negative
samples).Within the HTRU1 dataset’s HTRUS subset, there are 60000 binary classification images
sized 32x32. These images include both known pulsars and non-pulsar candidates. Each image
consists of two channels, analogous to the RGB channels in natural images, although the content of
each channel differs from that of natural images. Channel 1 represents the period-dispersion
subgraph, channel 2 corresponds to the frequency-phase subgraph, and channel 3 represents the
time-phase subgraph. The left four columns in Figure 8 depict the positive samples from the HTRU1
dataset, where the first row shows the period-dispersion graph, the second row displays the
frequency-phase graph, and the third row depicts the time-phase graph. In this study, the HTRU1
dataset is utilized for training, testing, and validating the models. The baseline models, including
GMM and STM, require the data to be in the form of 1D tensors. Therefore, the 2D images need to be
reshaped into 1D sequences before being used with these models. On the other hand, both the
PixelCNN baseline model and the RCA-PixelCNN model are capable of directly processing
structured image data without the need for reshaping.

(2)FAST Pulse Candidate Data: The FAST pulse candidate images are obtained from 19-beam
observations using the PRESTO software processing. These image-formatted pulse candidate data
files are sourced from the early data center of FAST and are intended for internal use. In practical
applications, the model is initially trained using the HTRU1 dataset. Subsequently, transfer learning
is applied to fine-tune the model parameters on the FAST data, ensuring the model’s better suitability
for the specific application scenarios of FAST.

4.2. Baseline Models

(1) GMM: The Gaussian Mixture Model, which consists of multiple Gaussian distributions as its
components. Each image is associated with a Gaussian distribution, making it suitable for data spaces
with multiple central distributions. As long as the model has a sufficient number of components, it
can approximate any complex distribution.

(2) STM: The Student’s t Mixture Model, similar to the GMM, employs Student’s t-distribution
as its components. It is particularly well-suited for modeling data distributions with heavy tails, as
seen in natural images.

(3) PixelCNN Base Model: This is a typical autoregressive model that works well for data with
spatial structure. By stacking multiple masked convolutional layers, the receptive field can be
expanded. In this context, the baseline model includes 1 type-A masked convolutional layer with a
kernel size of 7x7, 2 type-B masked convolutional layers with kernel sizes of 3x3, and 1 type-B masked
convolutional layer with a kernel size of 1x1.

4.3. Results and Analysis

4.3.1. Experiment setting and Results

The model in this paper was implemented using the PyTorch framework on an NVIDIA GeForce
GTX 1080 GPU. The organizational structure of the model is as follows: The first layer is a 7x7
convolutional layer with a stride of 1 and padding of 3, which is a type A masked convolutional layer.
The second layer consists of four type B Masked Conv2d+BN+ReLU residual masked convolutional
layers. This is followed by a segment that includes three Res-CausalAttention blocks. The final layer
is a 1x1 convolutional layer with a type B mask, aimed at converting the number of channels to the
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target channel quantity. The optimizer used is Adam, with an initial learning rate of 0.01 and beta
parameters of 0.9 and 0.99.

In order to make a fair comparison of the density modeling abilities between RCA- PixelCNN
and GMM (Gaussian Mixture Model) as well as STM (Student’s t Mixture Model), the evaluation
metric used is the average negative log likelihood. Both training and testing data are sourced from
the HTRU1 dataset. Our RCA-PixelCNN model directly models 2-D image matrices and 3D data
volumes, whereas GMM and STM can only model 1D data sequences. Since the HTRU1 images are
of size 64x64, they are flattened to 1D, resulting in a dimensionality of 4096. Due to the high
dimensionality, convergence of models like GMM and STM becomes challenging. To address this
issue, for the training set, we randomly extract 800,000 8x8 image patches from the training data.
Through model selection experiments, we determine the optimal number of Mixture Components
for GMM and STM to be 8. To avoid overfitting or underfitting, the models are trained on the training
set and their performance in terms of average negative log likelihood is evaluated using the test set.
As shown in Table 1, we compare the experimental results of RCA-PixelCNN with other models on
the HTRUT1 test dataset. The average negative log likelihood score for the Mixtures of Gaussian model
is 3.51 bits per pixel (bpp), which performs well in fitting natural images. However, the Mixtures of
Student T model, which is typically better suited for long-tailed distributions, performs worse than
GMMV, suggesting that the candidate pulse images are not following a long-tailed distribution. The
Pixel CNN model achieves an average negative log likelihood score of 3.11 bpp, indicating the best
performance among the compared models. This highlights the superior modeling capability of neural
network-based methods compared to traditional approaches. Within the PixelCNN framework, the
RCA-Pixel CNN model with the added Res-Causal-Attention module exhibits the best performance,
outperforming the standard PixelCNN by 0.33 bpp. This demonstrates that deep learning-based
modeling methods outperform traditional data distribution modeling approaches, and the inclusion
of the Res-Causal-Attention module further enhances the performance of Pixel CNN.

Table 1. Comparison of RCA-PixelCNN with Other Models in terms of Negative Log Likelihood

(NLL).
Methods NLL
GMM 3.54
STM 411
Pixel CNN Base Model 3.11
RCA-Pixel CNN 2.82

In Figure 5, we present the training curves for the PixelCNN Base Model and the RCA-Pixel CNN.
It is evident that the training speed of our model is slower compared to the baseline Pixel CNN model.
The training time per batch is approximately 10 times that of the baseline model. Additionally, our
model requires higher memory resources, and due to memory limitations, the batch size for training
is smaller than that of the baseline model. This can lead to greater fluctuations in the convergence
during training. After adjusting the learning rate and performing subsequent training epochs, the
convergence gradually stabilizes. The experimental results demonstrate that the stability and
performance of our RCA-PixelCNN model significantly outperform the baseline PixelCNN model.

doi:10.20944/preprints202309.0400.v1
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Figure 5. Training Speed and Stability Comparison between PixelCNN Base Model and RCA-
PixelCNN.

4.3.2. Practical coding Algorithm

In the actual data compression process, we combine the proposed RCA-Pixel CNN model with
Arithmetic Coding to achieve efficient data compression. The specific process is as follows:

Model Training: Firstly, we train the RCA-Pixel CNN model using the HTRU1 dataset to obtain
a model that accurately models the data distribution.

Density estimation:Using the trained RCA-PixelCNN model, we input the data to be
compressed into the model. The model predicts the probability distribution of each pixel based on its
density distribution model.

Encoding:we use the Arithmetic Coding algorithm for actual compression encoding. This
algorithm maps the pixel sequence to a compact binary encoding based on the predicted probability
distribution from the model. High probability pixels are assigned fewer bits, while low probability
pixels are assigned more bits.

Decoding:we predict the probability distribution of each pixel using the trained model and
previous decoded pixels. Then, we use the Arithmetic Coding algorithm to reverse the encoding
process, recovering the original pixel sequence from the binary encoding.

In Table 2, we provide detailed pseudocode descriptions of the arithmetic encoding and
decoding processes based on the RCA-Pixel CNN.

Table 2. Arithmetic coding with RCA-PixelCNN.

Coding Algorithm:
Lossless compression with Our model. [AC] stands for arithmetic coding

Encoder:
use our model to compute :

a; :p(xi |X1,"',X[71),l.€ {1’2’>D}
foreach x,, i=12,---,D do
[AC] enode symbol x; with probability «,

end for
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Decoder:

foreach x,, i=12,---,D do

with decoded pixels X;,---, X, , ,use our model to compute:
a; = plx; | %, %)

[AC] decode symbol x, with probability «;

end for

4.3.3. Ablation Expermiments

In order to test the impact of specific module modifications on the overall model, we conducted
a series of erosion experiments and analyses. Firstly, we compared the performance difference
between the causally connected attention module without residual connections and the existing
combination method. Secondly, we examined the effect of stacking different numbers of Res-Causal-
Attention modules in the network on the overall model. Through these experiments, our aim was to
gain a deeper understanding of how these specific module modifications affect the model’s
performance.

(1)skip connection

To validate the impact of residual connections on the model, and without loss of generality, we
retained the Causal-Attention part of a module and removed the Resnet Connection within the
module. All connection layers were placed in the main network, maintaining the same depth and
parameter count as the existing model. The comparison of training curves between the model with
severed residual connections and the existing model is shown in Figure 6a. Our model achieved a
negative log-likelihood score of 2.82 bpp, while the model without residual connections achieved a
score of 2.99 bpp. The performance difference is 0.17 bpp. This indicates that residual connections
have a significant impact on model performance. The sub-images of pulsar candidates contain a
substantial amount of random noise, and the pulsar signal features exhibit subtle differences from
noise, highlighting the importance of preserving details through learning.

3.7

37

—— Causal Attention

—— Causal Attention .
| —— Resudial Causal Attention

364 | —— Resudial Causal Attention 26

3.4

33 33

NLL
NLL

3.2 3.2

31 3.1

3.0 3.0

2.9 S—— 29

2.8

0 10 20 30 40 50 60 70 80 28

0 10 20 30 40 50 60 70 80
epoch

epoch

(a)Effect of Modified skip connection (b)Effect of Modified attention

Figure 6. Impact of Modified Specific Modules on the Model.

(2) Causal-Attention

In Section 3.2, it was mentioned that the attention module can break the limit of the receptive
field size in convolutional networks. It extracts information from different positions with varying
degrees of attention, and computes a weighted sum of contextual information as the predicted
probability distribution for the current pixel. To evaluate the role of the self-attention module in the
entire network model and understand its effect on improving model performance, we conducted
experiments by removing the attention module and comparing it with the existing model.

The results are shown in Figure 6(b). The model without the attention module achieved a log-
likelihood value that is 0.4 bits per pixel lower than our model. The convergence speed of the network
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is slower, but the memory consumption is slightly reduced. This is because the test dataset, HTRU1
images, has a size of 32x32 pixels, which is of medium size. The effect of the attention module is more
pronounced on larger images, and overall performance improvement is moderate. However, in
practical scenarios, the images of FAST pulsar candidates that need to be compressed are larger,
indicating that the impact of the attention module could be more substantial in those cases.

(3) numbers of Res-Causal-Attention

The Res-Causal-Attention module was added as a plugin module to the neural network, and
different numbers of Res-Causal-Attention modules were set. The comparison of negative log-
likelihood scores is shown in Table 3. In the PixelCNN network, adding 1 Res-Causal-Attention
module improved the performance by 0.29 bpp, and adding 2 Res-Causal-Attention modules
improved the performance by 0.33 bpp. Due to the memory-intensive nature of the attention
mechanism in the Res-Causal-Attention module, and considering the limitations of the experimental
environment, we stacked up to 2 Res-Causal-Attention blocks.

Table 3. Comparsion of model with diffferent numbers of Res-Cause-Attentino Blocks.

Methods NLL(bpp)

PixelCNN 3.11
RCA-PixelCNN-1 2.82
RCA-Pixel CNN-2 2.78

The experiments demonstrate that the Res-Causal-Attention module significantly improves
model performance, and as the number of modules increases, the model performance continues to
improve. In the experiments, we attempted to replace self-attention with multi-head self-attention
and found that the multi-head mechanism also effectively enhances the model. The multi-head
mechanism essentially increases the number of attention channels, achieving a similar effect as deep
stacking. The significant impact of the Attention module can also be explained by the characteristics
of the pulsar sub-images. For instance, the sub-integration phase image, which is a folded
representation of pulsar data, exhibits clear overlapping and similarity regions in positive samples.
The expanded receptive field of the convolution operation makes effective use of the vertical pixel
correlations in this scenario.

4.4. Generated Positive Pulsar Candidate Samples

Pulsar observation data suffer from severe class imbalance in classification tasks. As of now,
there are over 3000 confirmed pulsars, while the number of daily pulsar candidate observations
reaches hundreds of thousands. Candidate selection is a crucial aspect of pulsar search efforts. Taking
the HTRU1 dataset as an example, the positive-negative sample ratio is 1194:58806, with positive
samples accounting for only 2% of the total. Machine learning is employed to sift through pulsar
candidates, and addressing class imbalance is a primary concern21-22.

Using a class-label conditioned PixelCNN model can generate the required positive samples.
We encode the class information using one-hot encoding and linearly map it to features of the same
shape as the images. The label features are input to each layer. The three sub-images of each synthetic
HTRU1 sample describe the same candidate’s information, and the three-channel sub-images are
interdependent. As shown in the rightmost four columns of Figure 7, the positive samples generated
by the class-conditioned Pixel CNN model are displayed. The three rows of sub-image correspond to
period-dispersion, time-phase, and frequency-phase representations. It’s evident that the generated
positive samples exhibit distinct pulsar characteristics.
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Figure 7. Positive Samples of Pulsar Candidates. The leftmost 4 columns represent HTRU1 samples,
while the rightmost 4 columns represent generated samples.

5. Concolusion and Discussion

In this study, we proposed an RCA-PixelCNN model with the aim of addressing the
compression issue of pulsar candidate images. To fully leverage the spatial structural information in
images, we introduced the concept of causal residual self-attention modules, which employ a self-
attention mechanism to capture long-range relationships between pixels, thereby enhancing the
modeling capability of the model. We validated our model using the HTRU1 dataset through
experiments and compared it with other models, demonstrating that our model outperforms others
in terms of average negative log-likelihood performance.

Through a series of ablation experiments, we conducted an in-depth analysis of the impact of
the causal residual self-attention modules on model performance and the significance of residual
connections. The results revealed that the inclusion of the causal residual self-attention modules
significantly improved model performance, with the residual connections playing a pivotal role,
especially when dealing with pulsar sub-images containing noise.

Furthermore, we addressed the issue of class imbalance. For pulsar candidate images, we
employed a class-conditioned PixelCNN model to generate positive samples. By learning class
information, we successfully generated images with distinct pulsar features.
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