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Abstract: This paper features an analysis of the relative effectiveness of a variety of methods of modelling
Realised Volatility (RV), namely: the use of Gegenbaur processes in Auto-Regressive Moving Average format,
GARMA, as opposed to Heterogenous Auto-Regressive HAR models and simple rules of thumb. The analysis
is applied to two data sets that feature the RV of the S&P500 index, as sampled at 5 minute intervals, provided
by the Oxford Man RV database. The GARMA model does perform slightly better than the HAR model, but
both models are matched by a simple rule of thumb regression model based on the application of lags of
squared, cubed and quartic, demeaned daily returns.
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1. Introduction

Over the past 100 years considerable advances have been made in time series modelling. Yule
(1926) and Slutsky(1927) developed the stochastic analysis of time series and developed the concepts
of autoregressive (AR) and moving average (MA) models. Box and Jenkins (1970) suggested methods
for applying autoregressive moving average (ARMA) or autoregressive integrated moving average
(ARIMA) models to find the best fit of a time-series model to past values of a time series.

A contrary view of the approriateness of this approach has been promoted by Commandeur and
Koopman (2007), who suggested that the Box]Jenkins approach is fundamentally problematic. They
have championed the adoption of alternative state-space methods to counter the contention that
many real economic series are not truly stationary, despite differencing.

In the 1980's attention switched to the consideration of the issues related to stationarity and non-
stationary time series, fractional integration and cointegration. Granger and Joyeaux (1980) and
Hosking (1981) focussed attention on fractionally integrated autoregressive moving average
(ARFIMA or FARIMA) processes. Unit root testing to assess the stationarity of a time series became
established via the application of the Dickey-Fuller test, following the work of Dickey and Fuller
(1979).

Engle and Granger (1987) developed the concept of cointegration, whereby two time series
might be individually integrated and non-stationary I(1), but some linear combination of them might
possess a lower order of integration and be stationary, in which case the series are said to be
cointegrated. Many of these conceptual developments have important applications to economic and
financial time series, and to economic theory in these discipline areas.

One of the common features of many time series of financial data sets is that the variance of the
series is not homoscedastic, and that these features concerned are autocorrelated. Engle (1982)
developed the Autoregressive Conditional Heteroskedasticity (ARCH) model that incorporates all
past error terms. It was generalised to GARCH by Bollerslev (1986) to include lagged term conditional
volatility. In other words, GARCH predicts that the best indicator of future variance is a weighted
average of long-run variance, the predicted variance for the current period, and any new information
in this period, as captured by the squared residuals. GARCH models provide an estimate of the
conditional variance of a financial price time series.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202309.0382.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2023

2

An alternative approach is to measure the variance directly from the observed values of the price
series, these are referred to as being realised measures of volatility. Realised measures are
theoretically sound, high frequency, nonparametric-based estimators of the variation of the price
path of an asset, during the times at which the asset trades frequently on an exchange. The metrics
were developed by Anderson et al. (2001), Anderson et al. (2003), and Barndorff-Nielsen and
Shephard (2002).

The modelling of the variance of financial time series and the use of realised volatility (RV) is
the focus of attention of this paper. In the empirical analysis we use RV 5-minute estimates from
Oxford Man for S&P500 Index as the RV benchmark (see: https://realized.oxford-man.ox.ac.uk/data).
Their database contains daily (close to close) financial returns, and a corresponding sequence of daily
realised measures rmy,rm,,..... , M.

Corsi (2009, p 174) suggests “an additive cascade model of volatility components defined over
different time periods. The volatility cascade leads to a simple AR-type model in the realized
volatility with the feature of considering different volatility components realized over different time
horizons and which he termed as being a “Heterogeneous Autoregressive model of Realized
Volatility”. We make use of the Corsi (2009) HAR model to model realised volatility (RV) in some of
the empirical tests included in this paper.

However, the main focus of this paper is the application of Gegenbaur processes to the modeling
of realised volatility (RV). Gegenbauer processes were introduced by Hosking (1981) and further
developed by Andel (1986), and Gray, Zhang and Woodward (1989, 1994). The latter proposed the
class of time series models known as Gegenbauer ARMA, or as abbreviated, GARMA processes,
which are the central focus in this paper.

In the current paper, we compare the effectiveness of GARMA models, as opposed to HAR
models and other rules of thumb, based on de-meaned squared daily returns, as methods for
modelling and forecasting daily 5-minute RV.

The paper is a further companion piece to two previous studies in the topic’s general area,
namely, Allen and McAleer (2020) and Allen (2020), that compared the effectiveness of stochastic
volatility, vanilla GARCH and HAR models, as opposed to simple rules of thumb, in their
effectiveness as tools for capturing the RV of major stock market indices.

The current paper concentrates on the S&P500 index, and examines whether GARMA, HAR or
simple rules of thumb, better capture the RV sampled at 5-minute intervals, as provided by Oxford
Man, of the S&P500 Index. Thus, the central concern is what is the best method of capturing the long
memory properties of a historical time series of RV5 for the S&P500 index? This is in contrast with
the two previously mentioned studies, which contrasted the effectiveness of the volatility models per
se.

The benchmark is provided by the estimates of RV5 provided by Oxford Man, in a sample of
daily estimates of realised volatility, RV5, running from 1997/05/08 until 2013/08/30 with 4096
observations, plus a longer-period sample of RV5, also based on the S&P500 Index, running from
2000/01/04 until 2020/04/30, comprising 5099 observations. This is the same data set as used in Allen
(2020a).

The paper is motivated by Poon and Granger (2003, p. 507) who observed that: “as a rule of
thumb, historical volatility methods work equally well compared with more sophisticated ARCH
class and SV models.” This paper similarly seeks to explore whether simple rules of thumb, in this
case based on the use of a regression model featuring squared demeaned daily returns, with a
subsequent addition of cubed and quartic powers of them, perform as well as more sophisticated
time series models.

The paper is divided into four sections: Section 2 reviews the literature and econometric methods
employed. Section 3 presents the results, and Section 4 presents conclusions.

2. Previous work and econometric models

Recent reviews of the literature on the nature and applications of Gegenbaur processes are
provided by Hunt et al. (2021) and Dissanayake et al., (2018). Peiris, Allen and Peiris (2005), and Peiris
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and Thavaneswaran (2007), considered long memory models driven by heteroskedastic GARCH
errors. Peiris and Asai (2016), returned to this topic, whilst Geugan (2020), combined Gegenbauer
processes with integrated GARCH (GIGARCH), to include the attributes of long memory, seasonality
and heteroskedasticity at the same time, in the modelling of volatility.

2.1. The basic GEGENBAUR model

Let {X;, t=12,...,} be a stationary random process with the autocovariance y(k) =
Cov(X¢, X¢4 k), and the autocorrelation function p(k) = y(k)/y(0), where k = 1,2.... . The spectral
density function (sdf) is denoted by:

flw) = % Z p(Ke “F, —m<w<m,
K=—co
where w is the Fourier frequency.

There are various ways in which the long memory component of the Gegenbaur model can be
specified, as discussed in Dissanayake et al., (2018). In the analysis that follows, we utilise the R
package garma, as developed by Hunt (2022).

A Gegenbaur process is a long memory process generated by the dynamic equation:

(1-2uB + B»)%X, = ¢, 1)

where |u <1, 6§ € (0,0.5), and €, is a short memory process characterised by a positive and
bounded spectral density f.(w). If €, ~WN(0,02), (1) is a Gegenbaur process of order § or a
GARMA (0,6,0) process. Dissanayake et al., (2018) mention that (1) complies with the definition of
a long memory process at the frequency wyarccos(u). According to (1), X, arises from filtering the
process €, by the infinite impulse response filter:

(1-2uB+B*» %= c?w)B.
J
Jj=0

It can be shown that a stationary Gegenbauer process contains an unbounded spectrum at wq
and is long memory when 0 < 6§ < % This special frequency w, is called the Gegenbauer or G-

frequency, Dissayanake et al., (2018, p.416).
The GARMA model as fit by the garma package, Hunt (2022), is specified as:

k
o®) | (1 - 20 + B9 (1= B (X, —w) = 6(B)e. @
i=1

e  where ¢(B) represents the short-memory Autoregressive component of order p,

e  O(B) represents the short memory Moving Average component of order g,

e (1 - 2B + B?*)%represents the long-memory Gegenbauer component (there may in general be
k of these),

e  § represents integer differencing (currently only =0 or 1 is supported),

e X, represents the observed process,

e ¢, represents the random component of the model - these are assumed to be uncorrelated but
identically distributed variates,

® B represents the Backshift operator, defined by BX; = X;_;.

When k = 0, then this is just a short memory model, as would be represented by an ARIMA
model.

2.2. Heterogenous Autoregressive Model (HAR)

Corsi (2009, p 174) suggests “an additive cascade model of volatility components defined over
different time periods. The volatility cascade leads to a simple AR-type model in the realized
volatility with the feature of considering different volatility components realized over different time
horizons and which he termed as a Heterogeneous Autoregressive model of Realized Volatility”.

do0i:10.20944/preprints202309.0382.v1
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Corsi (2009) suggests his model can reproduce the main empirical features of financial returns (long
memory, fat tails, and self-similarity) in a parsimonious way. He writes his model as:

oD g = c+ BORVY + pWIRy™ + ptRy ™ + 5@, ®)

where @ is the daily integrated volatility, and RI/;(d), RI/;(W) and RVt(m) are respectively the daily,
weekly, and monthly (ex post) observed realized volatilities.

2.3. Historical volatility model

Poon and Granger (2005) discuss various practical issues involved in forecasting volatility. They
suggest that the HISVOL model has the following form:

6t = $10_1 + P05 +.. + 0., 4)

where 6, is the expected standard deviation at time t, ¢ is the weight parameter, and o is the
historical standard deviation for periods indicated by the subscripts. Poon and Granger (2005)
suggest that this group of models include the random walk, historical averages, autoregressive
(fractionally integrated) moving average, and various forms of exponential smoothing that depend
on the weight parameter ¢.

We use a simple form of this model in which the estimate of o is the previous day’s demeaned
squared return. Poon and Granger (2005) review 66 previous studies and suggest that implied
standard deviations appear to perform best, followed by historical volatility and GARCH which have
roughly equal performance.

Barndorff-Neilsen and Shephard (2003) point out that taking the sums of squares of increments
of log-prices has a long tradition in the financial economics literature. See for example, Poterba and
Summers (1986), Schwert (1989), Taylor and Xu (1997), Christensen and Prabhala (1998), Dacorogna
et al. (1998), and Andersen et al. (2001). Shephard and Sheppard (2009, p 200, footnote 4) note that:
“Of course, the most basic realised measure is the squared daily return”. We utilise this approach as
the basis of our historical volatility model. Furthermore, Perron and Shi (2020) show how the squared
low-frequency returns can be expressed in terms of the temporal aggregation of a high-frequency
series in relation to volatility measures.

3. Results

3.1. The data sets

To expedite a direct comparison with previous work on the HAR model we use the R library
package '"HARModel’ by Sjoerup (2019). This contains data featuring realized measures from the
SP500 index from April 1997 to August 2013, and we use the RV5, or realised measures on the S&P500
Index sampled at 5 minute intervals.

Table 1 provides a statistical description of this RV5 data set, together with that of another,
slightly longer data set, taken from 2000 to 2020, also featuring S&P500 index RV5 data, taken from
Allen and McAleer (2020a). Both of these data sets feature RV5 estimates taken from the Oxford Man
Realized library, (https://realized.oxford-man.ox.ac.uk/).

Table 1. Descriptive Statistics RV5 data sets.

Descriptor S&P500 1997-2013 S&P500 2000- 2020
Number of Observations 4096 5099
Minimum 0.04329 0.00000122
Maximum 60.56 0.0074
median 0.6294 0.0000471
mean 1.1752 0.000112
Standard Deviation 2.3151 0.000269

NB: The data taken from the R library package HARModel on RV5 was scaled up in the package.

do0i:10.20944/preprints202309.0382.v1
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One of the features of estimates of RV is that the data time series displays long-memory
characteristics. Long memory refers to the association between observations in a time series are ever
larger sample intervalling, and is also referred to as long-range dependence. It basically refers to the
level of statistical dependence between two points in the time series sampled at increasing intervals.

Figure 1 displays the long memory characteristics of the two RV5 time series that we analyse.
The first panel in the two plots displays the basic series of RV5 and the two large spikes in RV5,
correspond to the effects on volatility of the Global Financial Crisis (GFC), that occurred in 2008. The
two panels marked ACF and PACEF, refer to the autocorrelation and partial autocorrelation statistics.

S&PS00 time series RVS 1997-2013.

*1
|
| -—-l—-d S S P T i

PRCF

|
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Figure 1. Plots of the RV5 samples for the S&P500 index and their long-range dependence.

The R garma package, Hunt (2022), was used to generate the two graphs. The program was
instructed to use 100 lags of daily observations. The blue lines in the bottom two sets of panels display
the standard error bands. The long memory properties of RV5 are apparent in both sets of diagrams,
in that the ACEF statistics remains well outside the error bands for 100 lags, and the PACF is outside
the error bands for up to 30 lags.

These long memory characteristics are used in Corsi’s (2009) HAR model and will be a feature
of the Gegenbaur models that we fit to the data sets.

3.2. The basic HAR model

Table 2 provides summary descriptions of the HAR models fitted to the two RV5 data sets and
Figure 2 provides plots of the fits. The results presented in Table 2 show that the basic HAR model
does an excellent job in capturing the time series properties of RV5. All the estimates are significant
at a one percent level, as are the F statistics, and the Adjusted R-squares are 52 percent, for the period
1997-2013, and 56 percent for the period 2000-2020, respectively.
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Table 2. Summary of the HAR models fitted to the RV5 data sets.

S&P500 1997-2013 RV5

Coefficient Estimate Standard Error t. value
betal 0.11231 0.03065 3.664***
betal 0.22734 0.01870 12.157%**
betab 0.49035 0.03144 15.595%**
beta22 0.18638 0.02813 6.624 ***
Adjusted R-squared 0.5221
F-Statistic 1484***
S&P500 2000-2020 RV5
Coefficient Estimate Standard Error t. value
betal 1.218e-05 2.877e-06 4.235%**
betal 2.703e-01 1.704e-02 15.858***
betab 5.295e-01 2.633e-02 20.108 ***
beta22 9.134e-02 2.225e-02 4.105%**
Adjusted R-squared 0.5608
F-Statistic 2162%**

Note: *** Indicates significant at the 1% level.

Observed vs. fitted based on model: HAR 1097-05-08 | 2013-08-30

— Realized Measure
50 | | | | | | | | | | | —— Filled values

May 08 1997 Jul 011 2008 Jan 02 2013
Observed vs. fitted based on model: HAR 2000 -01-04 / 2020-04-30
— Reaized Measure
= Fitied valses

Jan 4 2000 Juby 12008 April 30 2020

Figure 2. Plots of Fitted HAR Models.

The plots in Figure 2 confirm this, but do suggest that the large periodic peaks in RV5 are not
captured so effectively by the HAR model. The question remains as to whether the Gegenbaur model
will perform more effectively?

3.3. Gegenbaur results

The R library package (garma), Hunt (2022), was used to fit garma models to the realised
volatility (RV) series sampled at 5 minutes for the S&P500 index as sourced from the OxfordMan
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library. This shorter RV series, for the S&P500 from 1997-2013, was taken from the HARmodel R
library package, Sjoerup (2019).

A detailed summary of the methods used in the garma package are available in Hunt (2022). The
garma package provides the ability to fit stationary, univariate GARMA models to a time series, and
to forecast from those models. The garma() function in the garma package is the main function for
estimating the parameters of a GARMA model. It provides three methods of parameter estimation -
the Whittle method, (Whittle, (1953)), the conditional sum-of-squares (CSS) method, (for a discussion,
See Hunt (2022) Ph.D, chapter 2, equation 2.3.2) and the WLLS method. The latter, Whittle Log Least-
Squares method, was proposed by Hunt (2022, chapter3). The Whittle method was used in the
estimations reported in the paper.

A summary of the Gegenbaur model estimated for this data is shown in Table 3. A potential
advantage of the Gegenbaur model is that it is non-linear and more flexible than the HAR model.

Table 3. Gegenbaur estimation for RV5 for the S&P500 from 1997-2013, constant included with no

trend.
Series Intercept U1 fd1 arl ar2 ar3 ar4 ar5
coefficient 1.139e-04  0.9794239 0.33368 -0.27435  2.215e-11 -5.991e-11 0.09145 0.08230
S.E. 7.430e-08  0.0001457 0.03893 0.07677 5.745e-02 3.259e-02 0.02167 0.01137
Series ar6 ar7 ar8 ar9 arl0 arll ar12 arl3
coefficient  -0.02743 9.408e-11 0.02743 0.2469 0.16461 0.08230 0.1097  0.10974
S.E. 0.01075 1.034e-02 0.01050 0.0118 0.02678 0.02949  0.0260 0.02663
Series arl4 arl5 arlé arl7 arl8 ar19 ar20 ar21
coefficient  0.02743 0.0823 0.0823 0.02743 1.320e-10 1.125e-10 -6.332e-12 -0.03658
S.E. 0.02655 0.0205 0.0208 0.02007 1.578e-02 1.237e-02 1.103e-02 0.01056
Series ar22 ar23 ar24 ar25 ar26 ar27 ar28 ar29
coefficient  -0.02743 -0.10974 0.04572 -0.02743 -0.02743  0.02743 4.256e-11 -4.386e-11
S.E. 0.01127 0.01226 0.01763 0.01204 0.01327 0.01359 1.129e-02 1.117e-02
Series ar30 Gegenbaur Gege1.1baur Gegenbaur
frequency period Exponent
coefficient  0.02743 0.0323 30.9197 0.3337
S.E. 0.01050

The results of a regression of the fit from the Gegenbaur model for this data on the actual RV5
estimates for the S&P500 index for this period is shown in Table 4. The HAR model regression for
this period, shown in the first half of Table 2, had an Adjusted R-squared of 0.52. The result for the
Gegenbaur model estimation is an Adjusted R-squared of 0.567, and so the non-linear model does
show an increased explanatory power.

Table 4. Regression of RV5 on Gegenbaur model estimates, 1997-2013.

Coefficient S.E.
Constant 0.0003596 0.0287058
RV5 0.9994219*** 0.0136477
Adjusted RSQ 0.567
F. Statistic 5363

Note: *** Indicates significant at the 1% level.

We also fitted the Gegenbaur model to the longer time-period of RV estimates running from
2000 to 2020.
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Table 5. Gegenbaur estimation for RV5 for the S&P500 from 2000-2020, constant included with no

trend.

Series Intercept U1 arl ar2 ar3 ar4 ar5
coefficient 1.175 0.9776774 0.12974 0.09841  0.18564 -0.06645 0.11861 0.1606
S.E. 8.315 0.0004903 0.03286 0.06504  0.02608 0.01162 0.01376  0.0119
Series ar7 ar9 ar10 arll arl2 arl3
coefficient -0.01016 -0.02717 0.02901 0.23708  -0.02952 0.01219 0.05422 0.05570
S.E. 0.01662 0.01295 0.01187 0.01259  0.02260 0.01466 0.01351 0.01408
Series arl4 arl5 arl6 arl7Table arl8 ar19 ar20
coefficient -0.02716 0.05100 0.05079 -0.04578  -0.03084 0.01445 0.04350

S.E. 0.01417 0.01183 0.01241 0.01240  0.01136 0.01165 0.01133

Series Gegenbaur Gegenbaur Gegenbaur

Frequency period Exponent

coefficient 0.0337 29.6812 0.1297

We regressed the actual daily RV5 series for the longer period from 2000 to 2020 and the results

are shown in Table 6. The slope coefficient is significant at the 1 per cent level and is very close to 1,
whilst the Adjusted R-square is 0.59 and the F statistics for the regression, with a value of 7326, is also
significant at the 1 percent level. The Adjusted R-square for the HAR model for the same period was
0.56, so the Gegenbaur model provides a marginally better fit than the HAR model.

Table 6. Regression of RV5 on Gegenbaur model estimates, 2000-2020.

Coefficient S.E.
Constant 6.72543e-07 2.77936e-06
RV5 0.993054 *** 0.0116015
Adjusted RSQ 0.589660
F. Statistic 7326.850 ***

Note: *** Indicates significant at the 1% level.

3.4. How do rule of thumb approaches perform?

The next issue is how do squared de-meaned end of day returns perform as a simple rule of
thumb to explain RV5. Table 7 presents the results of the regression of RV5 for the longer period of
2000 to 2020 on 20 lags of squared demeaned daily returns.

Table 7. Regression of RV5 on squared demeaned daily returns for 2000 to 2020. OLS, using
observations 21-5099 (T = 5079) Dependent variable: rv5

const
SQSPRET _1
SQSPRET_2
SQSPRET_3
SQSPRET_4
SQSPRET_5
SQSPRET_6
SQSPRET_7
SQSPRET_8
SQSPRET_9
SQSPRET _10
SQSPRET_11
SQSPRET_12
SQSPRET_13
SQSPRET_14

O O O O O O OO o O o Ww

0
0
—0

Coefficient

02614e-005
174294
0935967
0527928
0280810
0591188
0386591
0127360
0125674
0460141
0109619
0125986
00679795
000835242
00784497

Std. Error

84505e-006 10
00555060 31
00558548 16
00587581 8
00587693 4
00587284 10
00589632

00590538
00588044
00588112 -2
00590660 1
00590814
00592586 -1

2
0
0
0
0
0
0
0 00592375
0
0
0
0
0
0
0

6
2
00590739 2
7
1

t-ratio p-value

64 0 0000

40 0 0000

76 0 0000
985 0 0000
778 0 0000

07 0 0000
556 0 0000
150 0 0316
127 0 0334
792 0 0000
864 0 0624
142 0 0322
151 0 2498
1414 0 8876
324 0 1856
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SQSPRET_15 -0 00255057 0 00589736 -0 4325 0 6654
SQSPRET_16 -0 0109373 0 00587609 -1 861 0 0628
SQSPRET_17 0 00499043 0 00587928 0 8488 0 3960
SQSPRET_18 0 0124227 0 00592245 2 098 0 0360
SQSPRET_19 0 0124595 0 00563006 2 213 0 0269
SQSPRET_20 -0 00716919 0 00559011 -1 282 0 1997
Mean dependent var 0.000112 S.D. dependent var 0.000269
Sum squared resid 0.000168 S.E. of regression 0.000182
R? 0.543145 Adjusted R? 0.541339
F(20,5058) 300.6678 P-value(F) 0.000000
Log-likelihood 36531.92 Akaike criterion —73021.83
Schwarz criterion —72884.64 Hannan—Quinn —72973.79
p 0.281412 Durbin-Watson 1.437144

It can be seen in Table 7 that 20 lags of squared demeaned returns do not perform quite as well
as the Gegenbaur or HAR models but still have an Adjusted R-Square of 54 percent which is a
marginal 2 percent less than the HAR model and 5 percent less than the Gegenbaur model. Only 4 of
the 20 lags used in this rule of thumb approach are insignificant. The Durbin Watson statistic of 1.43
suggests that a considerable amount of autocorrelation remains in the residuals.

The application of Ramsey Reset tests suggest that squares and cubes of the explanatory variable
could add to the power of the regression. Table 8 reports the results of adding 10 lags of cubed
demeaned SPRET and 10 lags of demeaned SPRET to the power 4.

Table 8. Regression of RV5 on squared, cubed and quartic daily demeaned returns for 2000 to 2020.
OLS, using observations 21-5099 (T = 5079) variable: rv5

const 4
SQSPRET_1 0
SQSPRET_2 0
SQSPRET_3 0
SQSPRET _4 0
SQSPRET_5 0
SQSPRET_6 0
SQSPRET_7 0
SQSPRET_8 0
SQSPRET_9 0

SQSPRET _10 0
SQSPRET_11 -0
SQSPRET_12 0
SQSPRET_13 0
SQSPRET_14 -0
SQSPRET_15 -0
SQSPRET_16 -0
SQSPRET_17 0
SQSPRET _18 0
SQSPRET_19 0
SQSPRET_20 -0
CUSPRET_1 -0
CUSPRET_2 -0
CUSPRET_3 -0

Coefficient
82971e-006
231351
110377
118282
0666821
0642053
0669488
0345805
0169334
0254747
0227310
00478774
0213587
00934631
00178946
000564490
00229510
00247291
00617666
00692568
0188372
534907
574605
542658

O O OO OO OO OO OO ODODOODOD OO O oo W

Std. Error t-ratio

03009e-006 1
00958455 24
00959229 11
00966599 12

00969419 6
00980063 6
00989797 6
00995553 3
00994948 1
00993460 2
00975198 2
00583425 -0
00588183 3
00582412 1
00578095 -0
00574051 -0
00575739 -0
00572209 0
00576039 1
00554060 1
00539186 -3
0592631 -9
0614957 -9

0625408 -8

594
14
51
24

879

551

764

473

702

564

331

8206
631
605

3095

09833

3986

4322

072

250

494

026

344

677

p-value

S O O O OO OO O OO OO OO o oo oo oo oo

1110
0000
0000
0000
0000
0000
0000
0005
0888
0104
0198
4119
0003
1086
7569
9217
6902
6656
2837
2114
0005
0000
0000
0000
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CUSPRET_4 -0 421881 0 0625029 -6 750 0 0000
CUSPRET_5 -0 581211 0 0623480 -9 322 0 0000
CUSPRET_6 -0 406321 0 0625585 -6 495 0 0000
CUSPRET_7 -0 306419 0 0622486 —4 923 0 0000
CUSPRET_8 -0 0728304 0 0624320 -1 167 0 2434
CUSPRET_9 0 0440999 0 0614311 0 7179 0 4729
CUSPRET_10 -0 143643 0 0603871 -2 379 0 0174
sq_SQSPRET 1 —-11 1016 0 991204 —11 20 0 0000
sq_SQSPRET_2 -5 00005 0 992337 -5 039 0 0000
sq_SQSPRET_3 -10 1474 1 01023 -10 04 0 0000
sq_SQSPRET 4 -7 20797 1 01302 -7 115 0 0000
sq_SQSPRET_5 -2 06748 1 01765 -2 032 0 0422
sq_SQSPRET_6 -5 51711 1 01948 -5 412 0 0000
sq_SQSPRET_7 —4 90765 1 02938 —4 768 0 0000
sq_SQSPRET_8 -0 981766 1 03193 -0 9514 0 3415
sq_SQSPRET_9 2 00887 1 02378 1 962 0 0498
sq_SQSPRET 10 =2 40620 1 00723 -2 389 0 0169

Mean dependent var 0.000112 S.D. dependent var 0.000269

Sum squared resid 0.000148 S.E. of regression 0.000172

R? 0.596908 Adjusted R? 0.593707

F(40,5038) 186.5095 P-value(F) 0.000000

Log-likelihood 36849.86 Akaike criterion —73617.72
Schwarz criterion —73349.87 Hannan—-Quinn —73523.92
p 0.228344 Durbin—-Watson 1.543216

This is essentially another non-linear model, but admittedly we now have 40 explanatory
variables in the model in the form of lags of three explanatory variables. The Adjusted R-Square now
increases to over 59 percent which matches the power of the Gegenbaur model. Admittedly, the
Durbin Watson statistic is still a relatively low 1.54. This suggests that there is still autocorrelation in
the residuals which could be exploited further in enhanced modifications of the model.

4. Conclusion

In this paper we have explored the use of the Gegenbaur process or GARMA model to capture
the behaviour of realised volatility of the S&P500 index sampled at 5 minute intervals, as reported by
the OxfordMAN database. The results suggest that the non-linear Gegenbaur model does perform
slightly better than the HAR model in capturing RV5. However, a simplified rule of thumb model
based on the use of lagged, squared, cubed, and quartic, demeaned daily returns, performed equally
well. These results, for the S&P500 index, suggest that non-linear models perform better than linear
ones in the capture of long memory properties of RV5 and that sophisticated models do not
necessarily dominate rules of thumb.
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