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Abstract: This paper features an analysis of the relative effectiveness of a variety of methods of modelling 

Realised Volatility (RV), namely: the use of Gegenbaur processes in Auto-Regressive Moving Average format, 

GARMA, as opposed to Heterogenous Auto-Regressive HAR models and simple rules of thumb. The analysis 

is applied to two data sets that feature the RV of the S&P500 index, as sampled at 5 minute intervals, provided 

by the Oxford Man RV database. The GARMA model does perform slightly better than the HAR model, but 

both models are matched by a simple rule of thumb regression model based on the application of lags of 

squared, cubed and quartic, demeaned daily returns. 
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1. Introduction  

Over the past 100 years considerable advances have been made in time series modelling. Yule 

(1926) and Slutsky(1927) developed the stochastic analysis of time series and developed the concepts 

of autoregressive (AR) and moving average (MA) models. Box and Jenkins (1970) suggested methods 

for applying autoregressive moving average (ARMA) or autoregressive integrated moving average 

(ARIMA) models to find the best fit of a time-series model to past values of a time series. 

A contrary view of the approriateness of this approach has been promoted by Commandeur and 

Koopman (2007), who suggested that the BoxJenkins approach is fundamentally problematic. They 

have championed the adoption of alternative state-space methods to counter the contention that 

many real economic series are not truly stationary, despite differencing. 

In the 1980′s attention switched to the consideration of the issues related to stationarity and non-

stationary time series, fractional integration and cointegration. Granger and Joyeaux (1980) and 

Hosking (1981) focussed attention on fractionally integrated autoregressive moving average 

(ARFIMA or FARIMA) processes. Unit root testing to assess the stationarity of a time series became 

established via the application of the Dickey-Fuller test, following the work of Dickey and Fuller 

(1979). 

Engle and Granger (1987) developed the concept of cointegration, whereby two time series 

might be individually integrated and non-stationary I(1), but some linear combination of them might 

possess a lower order of integration and be stationary, in which case the series are said to be 

cointegrated. Many of these conceptual developments have important applications to economic and 

financial time series, and to economic theory in these discipline areas. 

One of the common features of many time series of financial data sets is that the variance of the 

series is not homoscedastic, and that these features concerned are autocorrelated. Engle (1982) 

developed the Autoregressive Conditional Heteroskedasticity (ARCH) model that incorporates all 

past error terms. It was generalised to GARCH by Bollerslev (1986) to include lagged term conditional 

volatility. In other words, GARCH predicts that the best indicator of future variance is a weighted 

average of long-run variance, the predicted variance for the current period, and any new information 

in this period, as captured by the squared residuals. GARCH models provide an estimate of the 

conditional variance of a financial price time series. 
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An alternative approach is to measure the variance directly from the observed values of the price 

series, these are referred to as being realised measures of volatility. Realised measures are 

theoretically sound, high frequency, nonparametric-based estimators of the variation of the price 

path of an asset, during the times at which the asset trades frequently on an exchange. The metrics 

were developed by Anderson et al. (2001), Anderson et al. (2003), and Barndorff-Nielsen and 

Shephard (2002). 

The modelling of the variance of financial time series and the use of realised volatility (RV) is 

the focus of attention of this paper. In the empirical analysis we use RV 5-minute estimates from 

Oxford Man for S&P500 Index as the RV benchmark (see: https://realized.oxford-man.ox.ac.uk/data). 

Their database contains daily (close to close) financial returns, and a corresponding sequence of daily 

realised measures 𝑟𝑚ଵ, 𝑟𝑚ଶ, . . . . . , 𝑟𝑚். 

Corsi (2009, p 174) suggests “an additive cascade model of volatility components defined over 

different time periods. The volatility cascade leads to a simple AR-type model in the realized 

volatility with the feature of considering different volatility components realized over different time 

horizons and which he termed as being a “Heterogeneous Autoregressive model of Realized 

Volatility”. We make use of the Corsi (2009) HAR model to model realised volatility (RV) in some of 

the empirical tests included in this paper. 

However, the main focus of this paper is the application of Gegenbaur processes to the modeling 

of realised volatility (RV). Gegenbauer processes were introduced by Hosking (1981) and further 

developed by Andel (1986), and Gray, Zhang and Woodward (1989, 1994). The latter proposed the 

class of time series models known as Gegenbauer ARMA, or as abbreviated, GARMA processes, 

which are the central focus in this paper. 

In the current paper, we compare the effectiveness of GARMA models, as opposed to HAR 

models and other rules of thumb, based on de-meaned squared daily returns, as methods for 

modelling and forecasting daily 5-minute RV. 

The paper is a further companion piece to two previous studies in the topic’s general area, 

namely, Allen and McAleer (2020) and Allen (2020), that compared the effectiveness of stochastic 

volatility, vanilla GARCH and HAR models, as opposed to simple rules of thumb, in their 

effectiveness as tools for capturing the RV of major stock market indices. 

The current paper concentrates on the S&P500 index, and examines whether GARMA, HAR or 

simple rules of thumb, better capture the RV sampled at 5-minute intervals, as provided by Oxford 

Man, of the S&P500 Index. Thus, the central concern is what is the best method of capturing the long 

memory properties of a historical time series of RV5 for the S&P500 index? This is in contrast with 

the two previously mentioned studies, which contrasted the effectiveness of the volatility models per 

se. 

The benchmark is provided by the estimates of RV5 provided by Oxford Man, in a sample of 

daily estimates of realised volatility, RV5, running from 1997/05/08 until 2013/08/30 with 4096 

observations, plus a longer-period sample of RV5, also based on the S&P500 Index, running from 

2000/01/04 until 2020/04/30, comprising 5099 observations. This is the same data set as used in Allen 

(2020a). 

The paper is motivated by Poon and Granger (2003, p. 507) who observed that: “as a rule of 

thumb, historical volatility methods work equally well compared with more sophisticated ARCH 

class and SV models.” This paper similarly seeks to explore whether simple rules of thumb, in this 

case based on the use of a regression model featuring squared demeaned daily returns, with a 

subsequent addition of cubed and quartic powers of them, perform as well as more sophisticated 

time series models. 

The paper is divided into four sections: Section 2 reviews the literature and econometric methods 

employed. Section 3 presents the results, and Section 4 presents conclusions. 

2. Previous work and econometric models 

Recent reviews of the literature on the nature and applications of Gegenbaur processes are 

provided by Hunt et al. (2021) and Dissanayake et al., (2018). Peiris, Allen and Peiris (2005), and Peiris 
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and Thavaneswaran (2007), considered long memory models driven by heteroskedastic GARCH 

errors. Peiris and Asai (2016), returned to this topic, whilst Geugan (2020), combined Gegenbauer 

processes with integrated GARCH (GIGARCH), to include the attributes of long memory, seasonality 

and heteroskedasticity at the same time, in the modelling of volatility. 

2.1. The basic GEGENBAUR model  

Let {𝑋௧,  𝑡 = 1,2, . . . , }  be a stationary random process with the autocovariance 𝛾ሺ𝑘ሻ =𝐶𝑜𝑣ሺ𝑋௧ ,𝑋௧ା∣௞∣ሻ, and the autocorrelation function 𝜌ሺ𝑘ሻ = 𝛾ሺ𝑘ሻ/𝛾ሺ0ሻ, where 𝑘 = 1,2. . .. . The spectral 

density function (sdf) is denoted by: 

𝑓ሺ𝜔ሻ =
1

2𝜋 ෍ 𝜌ஶ
௞ୀିஶ ሺ𝑘ሻ𝑒ିఠ௞,     −𝜋 ≤ 𝜔 ≤ 𝜋,  

where 𝜔 is the Fourier frequency. 

There are various ways in which the long memory component of the Gegenbaur model can be 

specified, as discussed in Dissanayake et al., (2018). In the analysis that follows, we utilise the R 

package garma, as developed by Hunt (2022). 

A Gegenbaur process is a long memory process generated by the dynamic equation: ሺ1− 2𝑢𝐵 + 𝐵ଶሻఋ𝑋௧ = 𝜖௧ ,  (1) 

where ∣ 𝑢 ∣< 1,   𝛿 ∈ ሺ0,0.5ሻ,  and 𝜖௧  is a short memory process characterised by a positive and 

bounded spectral density 𝑓ఢሺ𝜔ሻ . If 𝜖௧ ∼ 𝑊𝑁ሺ0,𝜎ଶሻ,  (1) is a Gegenbaur process of order 𝛿  or a 

GARMA ሺ0, 𝛿, 0ሻ process. Dissanayake et al., (2018) mention that (1) complies with the definition of 

a long memory process at the frequency 𝜔଴𝑎𝑟𝑐𝑐𝑜𝑠ሺ𝑢ሻ. According to (1), 𝑋௧ arises from filtering the 

process 𝜖௧ by the infinite impulse response filter: 

ሺ1 − 2𝑢𝐵 + 𝐵ଶሻିఋ = ෍𝐶௝ఋஶ
௝ୀ଴ ሺ𝑢ሻ𝐵௝ .  

It can be shown that a stationary Gegenbauer process contains an unbounded spectrum at 𝜔଴ 

and is long memory when 0 < 𝛿 <
ଵଶ. This special frequency 𝜔଴  is called the Gegenbauer or G-

frequency, Dissayanake et al., (2018, p.416). 

The GARMA model as fit by the garma package, Hunt (2022), is specified as: 

𝜙ሺ𝐵ሻෑሺ1 − 2𝑢௜𝐵 + 𝐵ଶሻௗ೔௞
௜ୀଵ ሺ1− 𝐵ሻఋሺ𝑋௧ − 𝑢ሻ = 𝜃ሺ𝐵ሻ𝜖௧  (2) 

• where 𝜙ሺ𝐵ሻ represents the short-memory Autoregressive component of order 𝑝, 

• 𝜃ሺ𝐵ሻ represents the short memory Moving Average component of order 𝑞, 

• ሺ1 − 2𝑢௜𝐵 + 𝐵ଶሻௗ೔represents the long-memory Gegenbauer component (there may in general be 

k of these), 

• 𝛿 represents integer differencing (currently only = 0 or 1 is supported), 

• 𝑋௧ represents the observed process, 

• 𝜖௧ represents the random component of the model - these are assumed to be uncorrelated but 

identically distributed variates, 

• 𝐵 represents the Backshift operator, defined by 𝐵𝑋௧ = 𝑋௧ିଵ. 

When 𝑘 = 0, then this is just a short memory model, as would be represented by an ARIMA 

model. 

2.2. Heterogenous Autoregressive Model (HAR) 

Corsi (2009, p 174) suggests “an additive cascade model of volatility components defined over 

different time periods. The volatility cascade leads to a simple AR-type model in the realized 

volatility with the feature of considering different volatility components realized over different time 

horizons and which he termed as a Heterogeneous Autoregressive model of Realized Volatility”. 
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Corsi (2009) suggests his model can reproduce the main empirical features of financial returns (long 

memory, fat tails, and self-similarity) in a parsimonious way. He writes his model as: 𝜎௧ାଵௗሺௗሻ
= 𝑐 + 𝛽ሺௗሻ𝑅𝑉௧ሺௗሻ + 𝛽ሺ௪ሻ𝑅𝑉௧ሺ௪ሻ + 𝛽ሺ௠ሻ𝑅𝑉௧ሺ௠ሻ +𝜔෥௧ାଵௗሺௗሻ

, (3) 

where 𝜎ሺௗሻ is the daily integrated volatility, and 𝑅𝑉௧ሺௗሻ, 𝑅𝑉௧ሺ௪ሻ and 𝑅𝑉௧ሺ௠ሻ are respectively the daily, 

weekly, and monthly (ex post) observed realized volatilities. 

2.3. Historical volatility model 

Poon and Granger (2005) discuss various practical issues involved in forecasting volatility. They 

suggest that the HISVOL model has the following form: 𝜎ො௧ = 𝜙ଵ𝜎௧ିଵ + 𝜙ଶ𝜎௧ିଶ+. . +𝜙ఛ𝜎௧ିఛ, (4) 

where 𝜎ො௧  is the expected standard deviation at time 𝑡, 𝜙 is the weight parameter, and 𝜎 is the 

historical standard deviation for periods indicated by the subscripts. Poon and Granger (2005) 

suggest that this group of models include the random walk, historical averages, autoregressive 

(fractionally integrated) moving average, and various forms of exponential smoothing that depend 

on the weight parameter 𝜙. 

We use a simple form of this model in which the estimate of 𝜎 is the previous day’s demeaned 

squared return. Poon and Granger (2005) review 66 previous studies and suggest that implied 

standard deviations appear to perform best, followed by historical volatility and GARCH which have 

roughly equal performance. 

Barndorff-Neilsen and Shephard (2003) point out that taking the sums of squares of increments 

of log-prices has a long tradition in the financial economics literature. See for example, Poterba and 

Summers (1986), Schwert (1989), Taylor and Xu (1997), Christensen and Prabhala (1998), Dacorogna 

et al. (1998), and Andersen et al. (2001). Shephard and Sheppard (2009, p 200, footnote 4) note that: 

“Of course, the most basic realised measure is the squared daily return”. We utilise this approach as 

the basis of our historical volatility model. Furthermore, Perron and Shi (2020) show how the squared 

low-frequency returns can be expressed in terms of the temporal aggregation of a high-frequency 

series in relation to volatility measures. 

3. Results 

3.1. The data sets 

To expedite a direct comparison with previous work on the HAR model we use the R library 

package ’HARModel’ by Sjoerup (2019). This contains data featuring realized measures from the 

SP500 index from April 1997 to August 2013, and we use the RV5, or realised measures on the S&P500 

Index sampled at 5 minute intervals. 

Table 1 provides a statistical description of this RV5 data set, together with that of another, 

slightly longer data set, taken from 2000 to 2020, also featuring S&P500 index RV5 data, taken from 

Allen and McAleer (2020a). Both of these data sets feature RV5 estimates taken from the Oxford Man 

Realized library, (https://realized.oxford-man.ox.ac.uk/). 

Table 1. Descriptive Statistics RV5 data sets. 

Descriptor S&P500 1997-2013 S&P500 2000- 2020 

Number of Observations 4096 5099 

Minimum 0.04329 0.00000122 

Maximum 60.56 0.0074 

median 0.6294 0.0000471 

mean 1.1752 0.000112 

Standard Deviation 2.3151 0.000269 

NB: The data taken from the R library package HARModel on RV5 was scaled up in the package. 
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One of the features of estimates of RV is that the data time series displays long-memory 

characteristics. Long memory refers to the association between observations in a time series are ever 

larger sample intervalling, and is also referred to as long-range dependence. It basically refers to the 

level of statistical dependence between two points in the time series sampled at increasing intervals. 

Figure 1 displays the long memory characteristics of the two RV5 time series that we analyse. 

The first panel in the two plots displays the basic series of RV5 and the two large spikes in RV5, 

correspond to the effects on volatility of the Global Financial Crisis (GFC), that occurred in 2008. The 

two panels marked ACF and PACF, refer to the autocorrelation and partial autocorrelation statistics. 

 

Figure 1. Plots of the RV5 samples for the S&P500 index and their long-range dependence. 

The R garma package, Hunt (2022), was used to generate the two graphs. The program was 

instructed to use 100 lags of daily observations. The blue lines in the bottom two sets of panels display 

the standard error bands. The long memory properties of RV5 are apparent in both sets of diagrams, 

in that the ACF statistics remains well outside the error bands for 100 lags, and the PACF is outside 

the error bands for up to 30 lags. 

These long memory characteristics are used in Corsi’s (2009) HAR model and will be a feature 

of the Gegenbaur models that we fit to the data sets. 

3.2. The basic HAR model 

Table 2 provides summary descriptions of the HAR models fitted to the two RV5 data sets and 

Figure 2 provides plots of the fits. The results presented in Table 2 show that the basic HAR model 

does an excellent job in capturing the time series properties of RV5. All the estimates are significant 

at a one percent level, as are the F statistics, and the Adjusted R-squares are 52 percent, for the period 

1997-2013, and 56 percent for the period 2000-2020, respectively. 
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Table 2. Summary of the HAR models fitted to the RV5 data sets. 

S&P500 1997-2013 RV5 

Coefficient Estimate Standard Error t. value 

beta0 0.11231 0.03065 3.664*** 

beta1 0.22734 0.01870 12.157*** 

beta5 0.49035 0.03144 15.595*** 

beta22 0.18638 0.02813 6.624 *** 

Adjusted R-squared 0.5221  

F-Statistic 1484***  

S&P500 2000-2020 RV5 

Coefficient Estimate Standard Error t. value 

beta0 1.218e-05 2.877e-06 4.235*** 

beta1 2.703e-01 1.704e-02 15.858*** 

beta5 5.295e-01 2.633e-02 20.108 *** 

beta22 9.134e-02 2.225e-02 4.105*** 

Adjusted R-squared 0.5608  

F-Statistic 2162***  

Note: *** Indicates significant at the 1% level. 

 

Figure 2. Plots of Fitted HAR Models. 

The plots in Figure 2 confirm this, but do suggest that the large periodic peaks in RV5 are not 

captured so effectively by the HAR model. The question remains as to whether the Gegenbaur model 

will perform more effectively? 

3.3. Gegenbaur results 

The R library package (garma), Hunt (2022), was used to fit garma models to the realised 

volatility (RV) series sampled at 5 minutes for the S&P500 index as sourced from the OxfordMan 
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library. This shorter RV series, for the S&P500 from 1997-2013, was taken from the HARmodel R 

library package, Sjoerup (2019). 

A detailed summary of the methods used in the garma package are available in Hunt (2022). The 

garma package provides the ability to fit stationary, univariate GARMA models to a time series, and 

to forecast from those models. The garma() function in the garma package is the main function for 

estimating the parameters of a GARMA model. It provides three methods of parameter estimation - 

the Whittle method, (Whittle, (1953)), the conditional sum-of-squares (CSS) method, (for a discussion, 

See Hunt (2022) Ph.D, chapter 2, equation 2.3.2) and the WLLS method. The latter, Whittle Log Least-

Squares method, was proposed by Hunt (2022, chapter3). The Whittle method was used in the 

estimations reported in the paper. 

A summary of the Gegenbaur model estimated for this data is shown in Table 3. A potential 

advantage of the Gegenbaur model is that it is non-linear and more flexible than the HAR model. 

Table 3. Gegenbaur estimation for RV5 for the S&P500 from 1997-2013, constant included with no 

trend. 

Series Intercept U1 fd1 ar1 ar2 ar3 ar4 ar5 

coefficient 1.139e-04  0.9794239  0.33368 -0.27435  2.215e-11 -5.991e-11 0.09145  0.08230  

S.E. 7.430e-08  0.0001457  0.03893 0.07677  5.745e-02 3.259e-02 0.02167  0.01137  

Series ar6 ar7 ar8 ar9 ar10 ar11 ar12 ar13 

coefficient -0.02743 9.408e-11 0.02743  0.2469 0.16461  0.08230  0.1097 0.10974  

S.E. 0.01075 1.034e-02 0.01050  0.0118 0.02678  0.02949  0.0260 0.02663  

Series ar14 ar15 ar16 ar17 ar18 ar19 ar20 ar21 

coefficient 0.02743  0.0823  0.0823 0.02743  1.320e-10 1.125e-10 -6.332e-12 -0.03658 

S.E. 0.02655  0.0205  0.0208 0.02007  1.578e-02 1.237e-02 1.103e-02 0.01056  

Series ar22 ar23 ar24 ar25 ar26 ar27 ar28 ar29 

coefficient -0.02743 -0.10974  0.04572  -0.02743 -0.02743 0.02743  4.256e-11 -4.386e-11 

S.E. 0.01127 0.01226  0.01763  0.01204 0.01327  0.01359  1.129e-02 1.117e-02 

Series ar30 
Gegenbaur 

frequency 

Gegenbaur 

period 

Gegenbaur 

Exponent 
    

coefficient 0.02743 0.0323 30.9197 0.3337     

S.E. 0.01050        

The results of a regression of the fit from the Gegenbaur model for this data on the actual RV5 

estimates for the S&P500 index for this period is shown in Table 4. The HAR model regression for 

this period, shown in the first half of Table 2, had an Adjusted R-squared of 0.52. The result for the 

Gegenbaur model estimation is an Adjusted R-squared of 0.567, and so the non-linear model does 

show an increased explanatory power. 

Table 4. Regression of RV5 on Gegenbaur model estimates, 1997-2013. 

 Coefficient S.E. 

Constant 0.0003596 0.0287058 

RV5 0.9994219*** 0.0136477 

Adjusted RSQ 0.567  

F. Statistic 5363  

Note: *** Indicates significant at the 1% level. 

We also fitted the Gegenbaur model to the longer time-period of RV estimates running from 

2000 to 2020. 
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Table 5. Gegenbaur estimation for RV5 for the S&P500 from 2000-2020, constant included with no 

trend. 

Series Intercept U1 fd1 ar1 ar2 ar3 ar4 ar5 

coefficient 1.175  0.9776774  0.12974  0.09841 0.18564  -0.06645 0.11861  0.1606 

S.E. 8.315  0.0004903  0.03286  0.06504 0.02608  0.01162  0.01376  0.0119 

Series ar6 ar7 ar8 ar9 ar10 ar11 ar12 ar13 

coefficient -0.01016  -0.02717  0.02901  0.23708 -0.02952 0.01219  0.05422  0.05570 

S.E. 0.01662  0.01295  0.01187  0.01259 0.02260  0.01466  0.01351  0.01408 

Series ar14 ar15 ar16 ar17Table ar18 ar19 ar20  

coefficient -0.02716  0.05100  0.05079  -0.04578 -0.03084 0.01445  0.04350  

S.E. 0.01417  0.01183  0.01241  0.01240 0.01136  0.01165  0.01133  

Series 
Gegenbaur 

Frequency 

Gegenbaur 

period 

Gegenbaur 

Exponent 
     

coefficient 0.0337 29.6812 0.1297      

We regressed the actual daily RV5 series for the longer period from 2000 to 2020 and the results 

are shown in Table 6. The slope coefficient is significant at the 1 per cent level and is very close to 1, 

whilst the Adjusted R-square is 0.59 and the F statistics for the regression, with a value of 7326, is also 

significant at the 1 percent level. The Adjusted R-square for the HAR model for the same period was 

0.56, so the Gegenbaur model provides a marginally better fit than the HAR model. 

Table 6. Regression of RV5 on Gegenbaur model estimates, 2000-2020. 

 Coefficient S.E. 

Constant 6.72543e-07 2.77936e-06 

RV5 0.993054 *** 0.0116015 

Adjusted RSQ 0.589660  

F. Statistic 7326.850 ***  

Note: *** Indicates significant at the 1% level. 

3.4. How do rule of thumb approaches perform? 

The next issue is how do squared de-meaned end of day returns perform as a simple rule of 

thumb to explain RV5. Table 7 presents the results of the regression of RV5 for the longer period of 

2000 to 2020 on 20 lags of squared demeaned daily returns. 

Table 7. Regression of RV5 on squared demeaned daily returns for 2000 to 2020. OLS, using 

observations 21–5099 (𝑇 = 5079) Dependent variable: rv5 

. Coefficient Std. Error 𝒕-ratio p-value 

const 3 02614e–005 2 84505e–006 10 64 0 0000 

SQSPRET_1 0 174294 0 00555060 31 40 0 0000 

SQSPRET_2 0 0935967 0 00558548 16 76 0 0000 

SQSPRET_3 0 0527928 0 00587581 8 985 0 0000 

SQSPRET_4 0 0280810 0 00587693 4 778 0 0000 

SQSPRET_5 0 0591188 0 00587284 10 07 0 0000 

SQSPRET_6 0 0386591 0 00589632 6 556 0 0000 

SQSPRET_7 0 0127360 0 00592375 2 150 0 0316 

SQSPRET_8 0 0125674 0 00590739 2 127 0 0334 

SQSPRET_9 0 0460141 0 00590538 7 792 0 0000 

SQSPRET_10 0 0109619 0 00588044 1 864 0 0624 

SQSPRET_11 −0 0125986 0 00588112 −2 142 0 0322 

SQSPRET_12 0 00679795 0 00590660 1 151 0 2498 

SQSPRET_13 0 000835242 0 00590814 0 1414 0 8876 

SQSPRET_14 −0 00784497 0 00592586 −1 324 0 1856 
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SQSPRET_15 −0 00255057 0 00589736 −0 4325 0 6654 

SQSPRET_16 −0 0109373 0 00587609 −1 861 0 0628 

SQSPRET_17 0 00499043 0 00587928 0 8488 0 3960 

SQSPRET_18 0 0124227 0 00592245 2 098 0 0360 

SQSPRET_19 0 0124595 0 00563006 2 213 0 0269 

SQSPRET_20 −0 00716919 0 00559011 −1 282 0 1997 

 

Mean dependent var 0.000112 S.D. dependent var 0.000269 

Sum squared resid 0.000168 S.E. of regression 0.000182 𝑅ଶ 0.543145 Adjusted 𝑅ଶ 0.541339 𝐹ሺ20,5058ሻ 300.6678 P-value(𝐹) 0.000000 

Log-likelihood 36531.92 Akaike criterion −73021.83 

Schwarz criterion −72884.64 Hannan–Quinn −72973.79 𝜌ො 0.281412 Durbin–Watson 1.437144 

    

It can be seen in Table 7 that 20 lags of squared demeaned returns do not perform quite as well 

as the Gegenbaur or HAR models but still have an Adjusted R-Square of 54 percent which is a 

marginal 2 percent less than the HAR model and 5 percent less than the Gegenbaur model. Only 4 of 

the 20 lags used in this rule of thumb approach are insignificant. The Durbin Watson statistic of 1.43 

suggests that a considerable amount of autocorrelation remains in the residuals. 

The application of Ramsey Reset tests suggest that squares and cubes of the explanatory variable 

could add to the power of the regression. Table 8 reports the results of adding 10 lags of cubed 

demeaned SPRET and 10 lags of demeaned SPRET to the power 4. 

Table 8. Regression of RV5 on squared, cubed and quartic daily demeaned returns for 2000 to 2020. 

OLS, using observations 21–5099 (𝑇 = 5079) variable: rv5 

.. Coefficient Std. Error 𝑡-ratio p-value 

const 4 82971e–006 3 03009e–006 1 594 0 1110 

SQSPRET_1 0 231351 0 00958455 24 14 0 0000 

SQSPRET_2 0 110377 0 00959229 11 51 0 0000 

SQSPRET_3 0 118282 0 00966599 12 24 0 0000 

SQSPRET_4 0 0666821 0 00969419 6 879 0 0000 

SQSPRET_5 0 0642053 0 00980063 6 551 0 0000 

SQSPRET_6 0 0669488 0 00989797 6 764 0 0000 

SQSPRET_7 0 0345805 0 00995553 3 473 0 0005 

SQSPRET_8 0 0169334 0 00994948 1 702 0 0888 

SQSPRET_9 0 0254747 0 00993460 2 564 0 0104 

SQSPRET_10 0 0227310 0 00975198 2 331 0 0198 

SQSPRET_11 −0 00478774 0 00583425 −0 8206 0 4119 

SQSPRET_12 0 0213587 0 00588183 3 631 0 0003 

SQSPRET_13 0 00934631 0 00582412 1 605 0 1086 

SQSPRET_14 −0 00178946 0 00578095 −0 3095 0 7569 

SQSPRET_15 −0 000564490 0 00574051 −0 09833 0 9217 

SQSPRET_16 −0 00229510 0 00575739 −0 3986 0 6902 

SQSPRET_17 0 00247291 0 00572209 0 4322 0 6656 

SQSPRET_18 0 00617666 0 00576039 1 072 0 2837 

SQSPRET_19 0 00692568 0 00554060 1 250 0 2114 

SQSPRET_20 −0 0188372 0 00539186 −3 494 0 0005 

CUSPRET_1 −0 534907 0 0592631 −9 026 0 0000 

CUSPRET_2 −0 574605 0 0614957 −9 344 0 0000 

CUSPRET_3 −0 542658 0 0625408 −8 677 0 0000 
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CUSPRET_4 −0 421881 0 0625029 −6 750 0 0000 

CUSPRET_5 −0 581211 0 0623480 −9 322 0 0000 

CUSPRET_6 −0 406321 0 0625585 −6 495 0 0000 

CUSPRET_7 −0 306419 0 0622486 −4 923 0 0000 

CUSPRET_8 −0 0728304 0 0624320 −1 167 0 2434 

CUSPRET_9 0 0440999 0 0614311 0 7179 0 4729 

CUSPRET_10 −0 143643 0 0603871 −2 379 0 0174 

sq_SQSPRET_1 −11 1016 0 991204 −11 20 0 0000 

sq_SQSPRET_2 −5 00005 0 992337 −5 039 0 0000 

sq_SQSPRET_3 −10 1474 1 01023 −10 04 0 0000 

sq_SQSPRET_4 −7 20797 1 01302 −7 115 0 0000 

sq_SQSPRET_5 −2 06748 1 01765 −2 032 0 0422 

sq_SQSPRET_6 −5 51711 1 01948 −5 412 0 0000 

sq_SQSPRET_7 −4 90765 1 02938 −4 768 0 0000 

sq_SQSPRET_8 −0 981766 1 03193 −0 9514 0 3415 

sq_SQSPRET_9 2 00887 1 02378 1 962 0 0498 

sq_SQSPRET_10 −2 40620 1 00723 −2 389 0 0169 

 

Mean dependent var 0.000112 S.D. dependent var 0.000269 

Sum squared resid 0.000148 S.E. of regression 0.000172 𝑅ଶ 0.596908 Adjusted 𝑅ଶ 0.593707 𝐹ሺ40,5038ሻ 186.5095 P-value(𝐹) 0.000000 

Log-likelihood 36849.86 Akaike criterion −73617.72 

Schwarz criterion −73349.87 Hannan–Quinn −73523.92 𝜌ො 0.228344 Durbin–Watson 1.543216 

    

This is essentially another non-linear model, but admittedly we now have 40 explanatory 

variables in the model in the form of lags of three explanatory variables. The Adjusted R-Square now 

increases to over 59 percent which matches the power of the Gegenbaur model. Admittedly, the 

Durbin Watson statistic is still a relatively low 1.54. This suggests that there is still autocorrelation in 

the residuals which could be exploited further in enhanced modifications of the model. 

4. Conclusion 

In this paper we have explored the use of the Gegenbaur process or GARMA model to capture 

the behaviour of realised volatility of the S&P500 index sampled at 5 minute intervals, as reported by 

the OxfordMAN database. The results suggest that the non-linear Gegenbaur model does perform 

slightly better than the HAR model in capturing RV5. However, a simplified rule of thumb model 

based on the use of lagged, squared, cubed, and quartic, demeaned daily returns, performed equally 

well. These results, for the S&P500 index, suggest that non-linear models perform better than linear 

ones in the capture of long memory properties of RV5 and that sophisticated models do not 

necessarily dominate rules of thumb. 
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