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Abstract: Here we will model the curvature and contraction of space-time using as a basis the
equation of state of an ideal gas and the Hawking’s equation for the temperature of a black hole.
We will use this mathematical model to hypothesize that the Boltzmann'’s constant depends on the
state of matter, that is, there is a known Boltzmann’s constant for flat space-time and an effective
Boltzmann's constant for curved space-time. This model will allow us to quantify the structure of
space-time and will serve as a basis to determine the origin of gravity and the origin of elementary
particles. Using the Shannon-Boltzmann-Gibbs entropy relation, we will demonstrate that
information is not lost and depends on the state of matter, the information is encoded and depends
on the effective Boltzmann’s constant.
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1. Generalization of the boltzmann’s constant in curved space-time
Equation of state of an ideal gas as a function of the Boltzmann’ constant.
PV=NKsT 1)

Where, P is the absolute pressure, V is the volume, N is the number of particles, KB is
Boltzmann's constant, and T is the absolute temperature.

Boltzmann's constant is defined for 1 mole of carbon 12 and corresponds to 6.0221 10?® atoms.

Equation (1) applies for atoms, molecules and for normal conditions of pressure, volume and
temperature.

We will analyse what happens with equation (1) when we work in a degenerate state of matter.

We will consider an ideal neutron star, only for neutrons.

We will analyse the condition:

(PV)/T=N Ks = constant )

This condition tells us that the number of particles remains constant, under normal conditions
of pressure, volume and temperature

However, in an ideal neutron star, the smallest units of particles are neutrons and not atoms.

This leads us to suppose that number of neutrons would fit in the volume of a carbon 12 atom,
this amount can be represented by the symbol Dn.

In an ideal neutron star,

(PV)/T=DnN Kz (©)

Where Dn represents the number of neutrons in a carbon 12 atom.
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However, equation (3) is not constant, with respect to equation (2), the number of particles
increased by a factor Dn, to make it constant again, I must divide it by the factor Dn.

(PV)/T=DnNKs/Dn (4)
(PV)/T=N’"KBs" = constant (5)

Where N' = (Dn N), is the new number of particles if we take neutrons into account and not
atoms as the fundamental unit.

Where Kg' = (KB / Dn), is the new Boltzmann's constant if we take neutrons into account and not
atoms as the fundamental unit.

We can say that equation (2) is equal to equation (5), equal to a constant

Generalizing, it is the state in which matter is found that will determine Boltzmann's constant.

A white dwarf star a will have a Boltzmann’'s constant Kse, a neutron star will have a
Boltzmann's constant Ksn, and a black hole will have a Boltzmann's constant Ksq.

There is a Boltzmann's constant KB that we all know for normal conditions of pressure, volume
and temperature, for a flat space-time.

There is an effective Boltzmann's constant, which will depend on the state of matter, for curved
space-time.

The theory of general relativity tells us that in the presence of mass or energy space-time curves
but it does not tell us how to quantify the curvature of space-time.

Here we put forward the hypothesis that there is an effective Boltzmann’ constant that depends
on the state of matter and through the value that the Boltzmann’ constant takes we can measure or
quantify the curvature of space-time.

2. Why is the theory of the generalization of the boltzmann's constant correct?

There is confusion about the concepts of heat and work. We believe that such confusion is caused
by the amalgamation of axiomatic and empirical definitions and ideas that get mixed up when
thermodynamics is explained to someone.

Temperature definition:

Temperature is a measure of the average of one kind of energy, the translational kinetic energy.

Molecules have different components in their energy. Molecules can generally do three things:

1) A molecule can move. Then we will have that its kinetic energy will be, (1/2)mv? (kinetic energy
of its centre of mass).

2) A molecule can rotate. Molecules generally have a three-dimensional structure and can have
different rotations in different directions in space, which contributes energy.

3) A molecule can vibrate. Molecules are a collection of atoms that are held together by chemical
bonds. These links are not rigid, but rather behave like "springs" and the molecule can undergo
vibrations.

What we measure with temperature is the average translational kinetic energy of a set of
molecules.

The temperature does not take into account the rest of the components, so measuring the
temperature is not the same as measuring the internal energy of a system. Or put another way, two
systems with the same temperature need not have the same internal energy.

When averaging generally, the result has the same dimensions and units as the concept of
averaging, and here "generally" is used ironically. So, shouldn't we measure temperature in units of
energy? The answer is yes, but historically we didn't realize that temperature was a measure of an
energetic component of systems until relatively recently (since the work of Boltzmann and Gibbs).

In summary, we have a historical problem with the units of temperature and this is where the
Boltzmann's constant (Ks) comes in, which is nothing more than the appropriate conversion factor
to pass the temperature in degrees (whatever), which is a “unnatural” measure, for units of energy,
like Joules, for example.
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Boltzmann's constant is: 1.380 6488 (13) x 102 J/K (in the international system and with the
absolute temperature scale).

As we have seen, Boltzmann's constant is simply a proportionality factor between the
temperature measured in units of "temperature” and units of energy. In other words, what the
constant actually does is correct the misunderstanding of the units we assign to temperature.

In school we learned that an ideal gas obeys a very simple equation that relates the pressure,
volume, and temperature of the gas to its content in moles.

PV = nRT (6)

In this equation we have an empirical constant (determined by experimental methods), the gas
constant R. This constant is nothing more than the Boltzmann constant multiplied by Avogadro's
number.

R = KsNa 7)

That is, the Boltzmann’ constant and the gas constant are essentially the same, only one refers to
a mole and the other does not.
Therefore, the equation of state for ideal gases can be written:

PV =nNa (Kz T) )

The number of moles n times Avogadro's number Na is a dimensionless quantity that simply
tells you the number of particles you have in the gas. One mole is equivalent to the number of
components of one Avogadro; Actually, a mole is not a unit and neither is a radian, it is just a useful
name to simplify the concepts.

If we now study the dimensions of factor PV and factor KsT, we will see how both have energy
dimensions and everything is dimensionally consistent.

By this we wanted to show that Boltzmann's constant is not a universal constant in the sense of
revealing a general characteristic of the universe, like the speed of light or Planck's constant. This
constant is just an artifact of a poor choice of temperature units.

So far, we have analysed the conceptual importance of the Boltzmann's constant, we are going
to continue analysing and we are going to discover the true meaning of the Boltzmann's constant.

We continue with the generalization of the Boltzmann's constant.

The ideal gas law is the equation of state of the ideal gas, a hypothetical gas formed by point
particles with no attraction or repulsion between them and whose collisions are perfectly elastic
(conservation of momentum and kinetic energy). Kinetic energy is directly proportional to
temperature in an ideal gas. The real gases that most closely approximate ideal gas behaviour are
monatomic gases under conditions of low pressure and high temperature.

Molecular kinetic theory:

This theory was developed by Ludwig Boltzmann and Maxwell. It tells us the properties of an
ideal gas at the molecular level.

e  Everyideal gas is made up of N small point particles (atoms or molecules).

e  Gaseous molecules move at high speeds, in a straight and disorderly way.

e Anideal gas exerts a continuous pressure on the walls of the container that contains it, due to
the collisions of the particles with the walls of this.

e Molecular collisions are perfectly elastic. There is no loss of kinetic energy.

e  Molecular attraction and repulsion interactions are not taken into account.

e  The average kinetic energy of the translation of a molecule is directly proportional to the
absolute temperature of the gas.

If we analyse the kinetic theory of gases, we see that equation (8) applies to atoms and molecules
and also to normal conditions of pressure, volume and temperature, that is, conditions that we are
used to working with, in which the particles points are atoms and molecules. Now let us ask
ourselves, what happens with equation (8) in a neutron star or in a plasma of quarks and gluons,
where, in both cases, the point particles do not correspond to atoms or molecules?
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Next, we will analyse these two situations:
i)  Equation of state of ideal gases and neutron stars.

Idealizing, we are going to assume that neutron stars are formed solely by neutrons, that is, in
this case the point particles would be neutrons.

In quantum field theory, atoms are not represented by perfect spheres of radius r as was
assumed at the beginning of the 20th century, but for practical purposes in order to perform the
calculations we are going to re-do this assumption and use the radius atomic number provided in the
periodic table of the chemical elements.

Calculation of the scale factor of the Boltzmann’s constant when we work at the level of the
atomic nucleus.

Dc12=1510®%cm=1510""m
Where Dcl2 is diameter of the C12 atom
Rc12=0.7510"m

Where Rcl2 is radius of the C12 atom

Dn=0.810"m
Where Dn is diameter of the neutron

Rn=0410"1m
Where Rn is radius of the neutron

VaCl12 = (4/3) n R® = (4/3) x 3.14 x (0.75 10710) 3
VaCl12=1.76 10730 m3
Where VaC12 is volume of the C12 atom
Vn=(4/3) 1 R®=(4/3) x 3.14 x (0.4 10715) 3

Vn=0.267 107 m?

Where Vn is volume of the neutron

Dn=VaCl2/Vn=1.76107%/0.267 10 = 6.591 10
Dn =6.59 10'%

Where Dn is scale factor of Boltzmann's constant for neutron stars.

If we consider that at first N were formed by carbon 12 atoms (point particles); In a neutron star,
the point particles correspond to neutrons and the number of point particles will be equal to the scale
correction factor of the Boltzmann's constant multiplied by N, thatis, N"=Dnx N

With this, the equation of state becomes:

PxV=N'xKsxT 9)
PxV=DnxNxKsxT (10)

Now, if we consider that (Px V) / T = constant, and in addition to fulfilling that,
N increases by a factor Dn, then:
Equation (10) remains:

PxV=DnxNx (Ks/Dn)xT (11)
PxV=N'xKsnxT (12)
(P x V) /T = constant (13)
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If we consider the other option, Ks = constant, equation (11) becomes:
PxV=(DnN)xKszx (T/ Dn) (14)
We see, for KB = constant, the temperature of the neutron star becomes zero.
Ken=Ks/Dn=1.38107%/6.59 1015
Ken=2.010]J/K
Where, Ksn is approximate effective Boltzmann’s constant for a neutron star.
ii) Equation of state of ideal gases and the plasma of quarks and gluons

Idealizing, we are going to suppose that in a plasma of quarks and gluons the punctual particles
are the quarks.

Rc12=0.7510""m

Where Rcl2 is radius of the C12 atom.
Rq=0.4310"®m
Where Rq is quark radius.
Vcl2 = (4/3) n R® = (4/3) x 3.14 x (0.75 10-10) 3

Vcl12=1.76 103 ms3

Where Vc12 is volume of the C12 atom
Vq=(4/3) 1 R* = (4/3) x 3.14 x (0.43 10-18) 3= 0.33 10-54 m3
Where Vq is volume of the quark
Dq=Vcl2/Vq=1,7610"/0,33 10-% = 5,33 10%
Dq=5,33 10

Where, Dq is scale factor of Boltzmann's constant for the plasma of quarks and gluons

If we consider that at first N were formed by carbon 12 atoms (point particles), in a plasma of
quarks and gluons, the point particles correspond to quarks and the amount of point particles will be
equal to the scale correction factor of the Boltzmann constant multiplied by N, thatis, N"=Dq x N

With this, the equation of state becomes:

PxV=N'xKsxT (15)
PxV=DgxNxKsxT (16)

if we consider that (P x V) / T = constant, and in addition to fulfilling that,
N increases by a factor Dq, then:
Equation (10) remains:

PxV=DgqxNx Ks/Dq)xT 17)
PxV=N'xKsqxT (18)
(PxV)/T = constant (19)

If we consider the other option, Ks = constant, equation (17) becomes:
PxV=DqxN xKsx (T/Dq)
We see, for KB = constant, the temperature of the plasma of quarks and gluons is zero.
Ksq=Ks/Dq=1.38102%/5.33 102 =0.25 10+ J/K
Ksq=0.2510"*]J/K

Where, Ksq is effective Boltzmann's constant, at quark level scale.


https://doi.org/10.20944/preprints202309.0301.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2023 do0i:10.20944/preprints202309.0301.v1

3. Application of the model and results

For our calculations we are going to consider the Hawking's equation of the temperature of a
black hole as true:

T =hc?/ (8uKsGM)

Where h is Planck’s constant, c is speed light, Ks is Boltzmann's constant, G is Newton's
gravitational constant and M es a mass.

3.1. Calculation of the effective Boltzmann's constant for white dwarf stars

The masses of white dwarf stars vary from 0.5 MO to 1.40 M6.

Where M6 is solar mass

The temperature of the core of the star varies from 5 10° K to 20 10° K.
We are going to use the following equation, T = hc® / (8nKsGM)

Ks =hc?/ (8uTGM)
i) ForM=05M6=0.5x210%=10%kg
T=5100K
Ks =hc?/ (8nTGM)
KBe =6.63 10734 x 27 1024 / 8 x 3.14 x 5 106 x 6.67 10711 x 1030
Kse =179.01 10710/ 837.75 10% = 0.2136 10-%
Kse =2.136 10%¢ J/K
D=Ks/Kgse, D=1.38 1022 /2.136 103 = 0.646 103
D =6.46 1012
Where D, scale contraction factor for a white dwarf star
D=Vcl2/Ve, Ve=Vcl2/D=1.33x3.13x0.4218 1030 / 6.46 102
Ve=1.76 1020/ 6.46 102 = 0.272 104
Ve =2,727 104 ms

Where M8 is solar mass, T is temperature, Kse is Boltzmann's constant for white dwarf stars, D
is scale factor of Boltzmann's constant and Ve is volume.

ii) ForM=14M6=14x210%°=2.810%kg
T=20106K
Ks =hc®/ (8nTGM)
Kse=6.63 1024 x27 102/ 8 x 3.14 x 20 106 x 6.67 10711 x 2.8 103
Kse =179.01 10710/ 9382.82 102> = 0.01907 10-%5
Kge =1.907 10?7 J/K
D =Kz /Kge, D=1.38 1022/ 1.907 1037 = 0.7236 104
D =7.236 102
Where D, scale contraction factor for a white dwarf star
D=Vcl2/Ve, Ve=(Vcl2/D)=1.33 x 3.13 x 0.4218 10730 / 7.236 103
Ve=1.7610730/7.236 10 = 0.2432 10%
Ve =2.43210* ms
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Where M8 is solar mass, T is temperature, Kse is Boltzmann's constant for white dwarf stars, D
is scale factor of Boltzmann's constant and Ve is volume.
3.2. Calculation of the effective Boltzmann's constant for neutron stars

The masses of neutron stars vary from 1.4 M6 to 2.2 M6

Where M8 is solar mass.

The temperature of the core of the neutron stars varies from 10** K to 10** K.
We are going to use the following equation, T = hc® / (8nKsGM)

K =he?/ (8uTGM)
i) ForM=14M6=14x210%=2810"°kg
T=101K
Ks =hc®/ (8nTGM)
Ksn=6.63 1034 x 27 10%*/ 8 x 3.14 x 10" x 6.67 1071 x 2.8 1030
Ksn=179.01 10710 / 469.14 1030 = 0.3815 1040
KBn =3.815 104 J/K
D=Ks/Ksn, D=1.38102/3.815 10 = 0.361 108
D=3.6110"
Where D, Scale contraction factor for a neutron star
D=Vcl2/Vn, Vn=(Vcl2/D)=1.33x3.13 x 0.4218 10%°/ 3.61 107
Vn=1.76102°/3.61 10" = 0.4875 10+’
Vn =4.875 1048 m3

Where M6 is solar mass, T is temperature, Ksn is Boltzmann's constant for neutron stars, D is
scale factor of Boltzmann'’s constant and Vn is neutron volume.

ii) ForM=22M6=22x210%°=4410%kg
T=1012K
Ks =hc?/ (8nTGM)
Ken=6.63 1034 x 27 10%*/ 8 x 3.14 x 102 x 6.67 1071 x 4.4 1030
Ksn=179.01 1010/ 737.22 10% = 0.2428 104
Ken=2.42104%]J/K
D =Kz /Ksn, D=1.38 102 /2.42 102 = 0.5702 10*°
D =5.702 108
Where D, Scale contraction factor for a neutron star
D=Vcl2/Vn, Vn=(Vcl2 /D) =1.33 x 3.13 x 0.4218 10-%° / 5.702 108
Vn=1.76 100/ 5.702 10'8
Vn =3.086 10*° m3
Where M8 is solar mass, T is temperature, Ksn is Boltzmann's constant for white dwarf stars, D
is scale factor of Boltzmann’s constant and Vn is neutron volume.
3.3. Calculation of the effective Boltzmann's constant for a black hole of three solar masses

The mass of the black hole is 3.0 MO
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Where M6 is solar mass

The temperature of a black hole at its formation is 103 K.

Here it is important to clarify that the temperature of a black hole is chosen when it is formed, T
=10 K, equal to the temperature at which, in particle collisions, matter forms the soup of quarks and
gluons.

M=3M6=3x210%=6.010% kg
T=108K
Ks=hc?/ (8nTGM)
Keq=6.63 104 x 27 10% / (8 x 3.14 x 10" x 6.67 10711 x 6.0 10%°)
Ksq=179.0110-1°/1005.30 10%2=0.1780 1022 =1.78 103 J /k
Ksq=1.7810*]J/K
D=Ks/Ksqg, D=1.3810-2/1.780 10 =0.7752 1020 = 7.752 10%°
D =7.75210%
Where D, Scale contraction factor for a black hole of three solar masses
D=Vcl12/Vq, Vq=(Vcl2/D)=1.33x3.13 x 0.4218 10-% / 7.752 10%°
Vq=1.7610-3/7.752 10" = 0.2270 104 = 2.270 10~ m3
Vq =2,270 10 m3, volume of the quark.

Where M6 is solar mass, T is temperature, Ksq is Boltzmann's constant for black hole, D is scale
factor of Boltzmann's constant and Vq is quark volume.

V=(4/3)xtxRR=35V(V/1.33 x 1) =3 (2.270 1050 / 4.17)
V =3+ 0.5435 105
R =3+ 5.435 101 = 1.758 10-7 m
R=1.758 10" m

Where R, corresponds to the radius of the quark when a black hole is formed.

3.4. Determination of the curvature of space-time
Calculation of the curvature of space-time of our planet earth
curved spacetime:
Ks=hc?/ (8uTGM)
M=5.9710* kg
Where M is earth mass
T=610°K
Where T is temperature
Kst = (6.62 1074 x 27 104) / (8 x 3.14 x 6 10° x 6.67 1011 x 5.97 1024
Kst=178.74 1079 / 6000.65 10 = 0.0297 10726 =2.97 10728 J/K
Kst=2971028]/K
Where Kst is Boltzmann’s constant of earth
Et=Kstx Tt
Et=29710"28]J/Kx 6 10° K
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Et=17.8210%]

Et=hx ft

Where Et is energy
ft=Et/h=17.821072°/6.62 1074 =2.69 10°
ft=2.69 10° Hz
Where ft is frequency
c=Atxft At=c/ft
At=3108/2.6910°=1.1110"=0.11m

At=0.11m

Where At is wavelength

Degree = At /360 =0.11 / 360 = 0.00030 m
second of arc = degree / 3600
second of arc = 0.00030 / 3600 = 0.0000000849 m
second of arc = 0.0000000849 m
second of arc =8.49 10® m

We are going to carry out the same calculations but for K = 1.38 103 J /K

Flat espace-time:
E=KsxTt

E=138102]J/Kx6103K

E=8.28107%]
E=hxft
Where E is energy
ft=Et/h=8.2810720/6.62 10734 =1.25 10

ft=1.2510" Hz

Where ft is frequency
c=Atxft At=c/ft
At=3108/1.25104=2.410"
At=2.410"%m

Where At is wavelength

Degree = At /360 =2.4 107/ 360 = 0.00666 107® m
second of arc = degree / 3600
second of arc = 0.00666 1076 / 3600 = 1.85 10712
second of arc=1.85 102 m
Cv = curved space time / flat space time
Cv=84910%m /18510 m
Cv =4.58 10* times
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1/Cv =21.83 microsecond
1/Cv; time correction in GPS for the curvature of space-time in a cycle /dia.
Calculation of the force and acceleration of the earth
F=-(GMm)/r?
m=1kg
F=-6.67x5.97 102/ (6.37 10) 2
=-981N
g=-9.81m/s?
Calculation of the space-time curvature for the sun
curved spacetime:
Ks =hc®/ (8nTGM)
M=1.98 103 kg
T=1510"K
KBs = (6.62 1073 x 27 10%#) / (8 x 3.14 x 1.5 107 x 6.67 107! x 1.98 103°)
Kss =178.74 1070 / 497.62 10% = 0.3591 10736
KBs=3.59107]/K
Es=Kss x Ts
Es=3.59 1077 x 1.5 107
Es=5.38 107 J/K
Es=hxfs
fs=Es/h=5.381070/6.62 1074 =0.81 10*=8.1 10° Hz
fs=8.110°Hz
c=Asxfs;As=c/fs
As=3108/8.110%=0.37105=3.7 104 =37,000 m
As=3.710*m

Where M is earth mass, T is temperature, Kss is Boltzmann's constant of sun, fs is frequency and
As is wavelength.
Degree = As / 360 = 37000 / 360 = 102.77 m

second of arc = degree / 3600
second of arc =102.77 / 3600 = 0.0285 m
second of arc =0.0285 m
We are going to carry out the same calculations but for K = 1.38 1072* J /K
Flat space-time:
E=KsxTs
E=1.3810%x1.5107
E=2.0710"]J/K
E=hxf
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f=E/h=2.07107/6.62107=0.3126 10
f=3.1210 Hz
c=AxfA=c/f
A=3108/0.31210®
A=9.6110""m
Degree =A /360 =9.61 10710 / 360 = 0.02669 107* m
Segundo de arco = Degree / 3600
Segundo de arco = 0.02669 1071° / 3600
Segundo de arco = 0.02669 1071° / 3600 = 0.00000741 10710
Segundo de arco=7.41 10" m
Cv = curved space time / flat space time
Cv=28510°m/7.41107m
Cv =3.84 10® times
Calculation of the force and acceleration of the sun
=-(GMm)/r?
m=1kg
Fs=-6.67 101 x 1.98 10%° / (6.95 108) 2= - 13.20 10" / 48.30 106 = 0.273 103
Fs=-2,7310>N
gs =-2.73102m/s?
Calculation of the space-time curvature for a white dwarf star
Curved Space-time:
Ks=hc?/ (8uTGM)
Kee=1.9710%J/K
Ee =Kse x Te
Ee=1.910"%x2 107
Ee=3.810%J/K
Ee=hxfe
fe=Ee/h=3.81070/6.62 1074 =0.5740 10*=5.74 10°
fe= 5740 Hz
c=Aexfe;Ae=c/fe
Ae=3108/5.740 10°
Ae=0.5226 10° m = 52264 m = 5.224 10° m

Where Kse is Boltzmann's constant for a white dwarf star, Ee is energy, fe is frequency and Ae
is wavelength.

Degree = Ae / 360 = 52264 / 360 = 145.17 m
second of arc = degrees / 3600

second of arc =145.17 / 3600
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second of arc =0.0403 m
We are going to carry out the same calculations but for K = 1.38 103 J /K
Flat space-time:
Ke=138102]J/K
E=KsxTe
E=1.38102x2107
E=27610"]/K
E=hxfe
fe=Ee/h=2.761071¢/6,62 1074 =0.4123 108
fe=4.12 10 Hz
c=Aexfe;Ae=c/fe
Ae=3108/4.12107=0.7210° m
Degree = Ae / 360
Degree =0.72 10/ 360 = 0.002 10 m
Degree =0.002 10 m
second of arc = degrees / 3600
second of arc=0.002 10™ /3600 =5.55 107 x 10™°
second of arc=15.55 1071 m
Cv = curved space time / flat space time
Cv=0.0403m/5.55 107 m
Cv=0.007.2 10
Cv=7.210% times
Calculation of the force and acceleration of gravity for a white dwarf star
F=-(GMm)/r?
m=1kg
Fe=-6,6710"x2.810%/ (6.3 10°) 2= - 18.67 10 / 39.69 1012 = - 0,47 107
Fe=-4710°N
ge =-4.710°m/s?
Calculation of the curvature of space-time for a neutron star
Curved space-time:
Ks =hc?/ (8nTGM)
Ken=24210%]/K
En=KsnxTn
En =242 10 x 1012
En=242107%J/K
En=hxfn
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fn=En/h=2.42107/6.62 1073*=0.3655 10*
fn=3.65510°Hz
c=Anxfn;An=c/fn
An =3 108/ 3.655 103
An=8.207 10* m

Where Ksn is Boltzmann’s constant for neutron star, En is energy, fn is frequency and An is
wavelength.

Degree = An / 360 = 82070 / 360 = 227.99 m
Degree =227.99 m
second of arc = degrees / 3600
second of arc =227.99 / 3600
second of arc =0.0633 m
We are going to carry out the same calculations but for Ks = 1.38 1072 J/K
Flat space-time:
Ks=1.38102]J/K
E=KsxTn
E=1.3810"%x 1012
E=13810"]/K
E=hxin
Fn=En/h=1.38107"/6.62 10734 =0.2084 10
Fn=2.084 102 Hz
c=Anxfn;An=c/fn
An=3108/2.084 1022
An=1.4310"m
Degree =An /360 =1.43 1074 /360 = 0.00397 1074 =3.97 1077 m
Degree=3.97 10" m
second of arc = degrees / 3600
second of arc=3.97 107 m / 3600
second of arc=3.97 107" m /3600 =1.1 107 m
second of arc=1.1102"m
Cv = curved space time / flat space time
Cv=0.0633m /1110 m=6.33102/1.1102=5.7510'®
Cv=5.7510"* m
Calculation of the force and acceleration of gravity for a neutron star
F=-(GMm)/r?
m=1kg
Fn=-6,6710"x4.410%/ (12 10%) 2=-29.34 10" / 144 10¢ = - 0,20 10%
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Fn=-2.01012N
gn=-2.0 102 m/s?

Calculation of the curvature of space-time for a black hole of three solar masses
Curved space-time:

Ks =hc?/ (8uTGM)
Ksu=1.7810J/K
Esn=Ksu x TBH
EBn=1.78 10 x 1013
Esn=1.78 1073]

EBH =h x fBH
fsn=Esn/h=1.78107%/6.62 1073 =0.2688 10*
fBu =2.688 10°
c=ABHX fBH; ABH =/ fBH
ABH=3108/2.688 10°
ABu=1.1110°m

Where KsH is Boltzmann's constant for a Black Hole, Esn is energy, fsH is frequency and AsH is
wavelength.

Degree = A / 360 = 111000 / 360 = 308.33 m
Degree = 308.33 m
second of arc = degree / 3600
second of arc = 308.33 / 3600
second of arc =0.0856 m
We are going to carry out the same calculations but for K = 1.38 1072% J /K
Flat space-time:
Ks=1.38102]J/K
E=Ks x Tsn
E=1.3810%x101
E=1.38107]
E=hxfsn
fen=E/h=1.381071/6.62 1073 =0.2084 10%
fBu=2.084 10
c=ABHX fBH; ABH =/ fBH
Asn=3108/2.084 10
ABn=1.43910"m
Degree =A /360 =1.439 1075 / 360 = 0.00399 1075 =3.99107* m
Degree =3.9910718 m

second of arc = degree / 3600
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second of arc=3.99 1078 / 3600 = 1.108 107! m
second of arc=1.108 107! m
Cv = curved space time / flat space time
Cv=0.0856 m /1.108 10 m = 0.0772 10!
Cv=7.7210"
Calculation of the force and acceleration of gravity of a black hole
=-(GMm)/r2
m=1kg
Feu=-6,6710"x 6 10% /(9 10%) 2=-40.02 10"/ 81 106 = - 0.5 10
Fen=-5.0102N
gah =- 5.0 102 m/s?

We must emphasize that the two methods used to calculate the characteristics of curved space-
time (K8, E, f, A,Cv, g, etc), are equivalent and give us the same result.

The first method consists of taking the volume of the carbon 12 atom as a reference for a flat
space-time and comparing it with the volume of a neutron or a quark, in order to calculate some
fundamental characteristics of a curved space-time (K8, E, f, A,Cv, g, etc). see 2. i) and 2. ii).

The second method consists of applying the Hawking temperature equation of a black hole, T =
hc® / (8nKBGM), in order to calculate some fundamental characteristics of curved space-time (K8, E, f,
ACv, g, etc). see 3.).

When we talk about the effective Boltzmann's constant, we refer to a value between (1.38 10723
> Ka effective > 1.78 107*%) /K, for curved space-time.

When we talk about Boltzmann's constant for flat space-time, Ks =1.38 107 J /K.

We can also say that Newton's theory of gravity and Einstein's theory of general relativity are
two sides of the same coin and as such we can use them in future calculations together with the theory
of the generalization of Boltzmann's constant in curved space-time.

Elegantly, using the theory of the generalization of the Boltzmann’s constant in curved
spacetime, we have shown how to quantize the curvature of space-time.

It is also important to note that the scale contraction factor of the Boltzmann's constant D, for a
white dwarf star, neutron star and a black hole, is equivalent to the curvature Cv, calculated for a
curved space-time. In general, this relationship is always fulfilled, for any state of matter.

Generally, we say in the presence of mass, space-time curves; however, we saw in our
calculations that in the presence of mass, space-time curves and contracts. The curvature of space
time is interpreted by Einstein’s theory of general relativity, in the case of the earth we quantify it
by Cv =4.58 10* times. The contraction of the space-time of the mass of the earth with respect to flat
space-time, we can interpret it through Newton's theory of gravity, in the case of the earth we can
quantify it through a gravitational force that exerts an acceleration on the bodies of g =9.81 m/s?

To finish with these comments, in Table 1, we observe that to form a black hole of three solar
masses, space-time is reduced or contracted by a factor of 7.72 10* times. This is the maximum
curvature of space-time that it can support. As the black hole of three solar masses grows, a
phenomenon occurs that we are going to explain below, the Planck’s length begins to decrease,
according to the theory of the RLC electrical model of the universe, as the black hole grows, the
Planck’s length decreases until a moment comes when the black hole disintegrates producing the Big
Bang.
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wavelength, etc, vary; according to whether we are in a flat space-time or in a curved space-time.

Earth Flat space-time Curved space-time units
Ks (Boltzmann's constant) 1.38 1072 2971072 (J/K)
f (frequency) 1.25 10 2.69 10° Hz
A (wavelength) 24107 0.11 m
second of arc 1.8510712 8.49 1078 m
Cv (curvature) 1 4.58 104 times
g (gravity) 9.81 m/s?
Sun Flat space-time Curved space-time units
KB (Boltzmann's constant) 1.38 1072 3.59107% J/K)
f (frequency) 3.12 10V 8.1108 Hz
A (wavelength) 9.61 10710 3.7 104 m
second of arc 741107 0.0285 m
Cv (curvature) 1 3.84 1013 times
g (gravity) 2.73102 m/s?
White dwarf star Flat space-time Curved space-time units
Ks (Boltzmann's constant) 1.38 1072 1.97 107%7 (J/K)
f (frequency) 412107 5.74 10° Hz
A (wavelength) 0.72 107 5.224 103 m
second of arc 5.55 10716 0.0403 m
Cv (curvature) 1 72103 times
g (gravity) 4.7 10¢ m/s?
Neutron star Flat space-time Curved space-time units
Kz (Boltzmann's constant) 1.38 1072 24210 (J/K)
f (frequency) 2.084 102 3.655 10° Hz
A (wavelength) 14310714 8.207 10* m
second of arc 11107 0.0633 m
Cv (curvature) 1 5.751018 times
g (gravity) 2.0 102 m/s?
Black hole Flat space-time Curved space-time units
Kz (Boltzmann's constant) 1.38 1072 1.78 107 (J/K)
f (frequency) 2.084 10% 2.688 10° Hz
A (wavelength) 1.439 10715 1,11 10° m
second of arc 1.108 107 0.0856 m
Cv (curvature) 1 7.72 10 times
g (gravity) 5.0 102 m/s?
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we can intuitively say that the Big Bang is the process by which space-time recovers its original

size, that is, during the Big Bang, all the space-time that was compressed to form a black hole, or
primordial atom, is recovered.
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4. Shannon-Bgibbs entropy ratio and the effective boltzmann’s constant
Information Theory applied to atomic systems

As mentioned, the entropy concept can be interpreted in two ways: as a measure of the system's
irreversibility, within the scope of thermodynamics; and the measure of the degree of disorder of the
system, in Statistical Mechanics. In these two developments, both thermodynamic entropy and
statistical entropy appear not as an initial concept of a theory, but after a whole treatment and
physical predictions. Within the scope of Information Theory, Shannon's entropy appears as the
starting point of a theory, as a measure of uncertainty of any probability distribution, without
physical predictions. The a priori detachment of physical ideas for the construction of Shannon's
entropy, contrary to seeming a disadvantage in its application in Physics, allows its applicability to
more diverse situations, where statistical entropy cannot be applied directly, due to restrictions of the
point of view of Physics.

Being constructed based on a probability distribution, it is reasonable to analyze the probability

A3
density p(7) provided by Quantum Mechanics from the point of view of Information Theory. It is
at this point that Information Theory comes into contact with Quantum Theory. For a continuous

probability density distribution / (1) provided by the wave function of the system in position space,

1 12
that is, / () = |9 (7)] , the Shannon entropy for continuous systems, given by Eq. (2.7), takes the
form:

H(p(x)) = p(x)logp(x)dr . 2.7)

2~y

S, = r//)(r*)ln/)(r“)(lr*: /\z'(F)f")ln(|(,'(F)f"))(1F. (3.11)

The Shannon entropy in position space, Sr, measures the uncertainty in the particle's location in
space. For atomic systems, the case treated in the present work, where the movement of electrons
- 12
under the action of an atomic nucleus is studied, the quantity |* (7t)] , multiplied by the electronic
charge of the system, g, represents the electronic probability density of the system. Thus, in particular,
Sr is a measure of uncertainty in the location of the electron.

U(r),

, we can determine

v(p)

By applying a Fourier Transform to the wave function in position space,

. Lo U(p).
its representation in the space of moments, (P)
, In this case the Shannon entropy for continuous systems takes the form:

Sy = —/ﬁ.(ﬁ)]u*,(lﬂdﬁ: r/|L‘(]_)‘)|2]ll(|l.‘(17)|2)(11—).. (3.12)

The Shannon entropy in momentum space, Sp, measures the uncertainty in predicting the
momentum of the particle, in particular the electron.

(3.11) and (3.12) respectively give the Shannon entropies of the system in position space and in
momentum space. Because it treats distributions other than the Gaussian well, the Shannon entropy
is thought to be a more satisfactory measure of the uncertainty or spread of a probability distribution
than the measure provided by the standard deviation.

Iwo Bialynicki-Birula and Jerzy Mycielsh provide a proof for an important uncertainty relation
based on Information Theory:

, and their respective probability distribution,

St=Sr+Sp>2n(l+Inx), (3.13)

where n is the dimension in position space. The entropy relation thus derived came to be known as
the BBM relation or entropy sum St. Such an uncertainty relation involving the Shannon entropies Sr
and Sp is more general than the Heisenberg uncertainty relation, in the sense that we can derive Eq.
(3.10) of Eq. (3.13), but the opposite is not possible.
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The entropic uncertainty relation has the clear meaning of presenting a minimum threshold
value for the sum St, which is reached by Gaussian wave functions. The conjugate Shannon entropy
in position space and Shannon entropy in momentum space have an inverse relationship. In this way,
the more a probability distribution is wide in the space of positions, the narrower it will be in the
space of moments and vice versa, obeying Eq. (3.13).

The Shannon entropies referring to Egs. (3.11), (3.12) and (3.13) are for probability densities for
a particle. A generalization for a number N of particles is given by:

Sriny = / [Py oo ) I (s o PN )P )y dF (3.14)

Sp(N) = - /I('(;’)’l.....;)'.\')Izllx(]1,'(1)'1.....;{\-)fz)tll)'l...(liii\' : (3.15)

Sy = Sy + Spiwy 2 3V (1 +1n7) = 2N In(N) . (3.16)

.'--‘,,;_.H-L =S.(ay + :\'I" Ay = N(6.43-2In(N)) , 3.17
Ty, rN)

where Sr(N ) and Sp(N ) are Shannon entropies where the probability densities

Y(P1e s PN . . . . -
1Py PN }, are normalized to a number N of particles. An interesting feature of the sum St(N ) is

PATLse "N) andn" (P1:.. PN }, in the formalism used for

the fundamental role given the densities
Information Theory.
Using the first functional model given by the Thomas-Fermi theory for neutral atoms, Eqgs. (3.14)

and (3.15), respectively, take the form:

a2 N(5,59 —2In(N)) (3.18)
Sp(n) = N(1,06 +In(N)) (3.19)
Sy 4 Hfﬂl-\'h = N(6,65 —In(N)), (3.20)

where N means the number of electrons in the atom. Comparing the relations (3.20) and (3.17) we
have a very great similarity.

Initially, it is conjectured that the sum St, involving the distribution of electrons in atoms using
the quantities Sr(N ) and Sp(N ), where N is the number of electrons, can take the following form:

Suny = Sr(ny + Sp(xy = aN + BN In(N)). (3.21)

Later works showed that the previous property is much more general, it is valid regardless of
the types of constituent particles of the system (fermions or bosons), with a and 3 values close to
depend on the type of particle in question. Thus, the form given by Eq. (3.21) is conjectured to be
universal.

5. Application of the model and results

The equation (3.21) is the equation we are going to work with.
Syn) = Sp(n) + Spvy = aN + SN In(N)). (3.21)

Shannon-Gibbs Entropy Relationship
R =5t(~) /Sa
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Within the scope of Information Theory, Shannon's entropy appears as the starting point of a
theory, as a measure of uncertainty of any probability distribution, without physical predictions.

In 1902 Gibbs presents a formalization of Statistical Mechanics with a method based on the
concept of ensembles, we will understand by ensemble the set of microstates accessible to the system.

Sc entropy from a statistical mechanics point of view.

Se=KsInw

KB, Boltzmann's constant

5.1. For a Carbon 12 atom

A) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for
a white dwarf star.

a) Kse = hc¥/ (8uTGM)
Kse =1.90 10%” J/K, curved space-time.
ForM=14M6=14x210%=2810%kg
T=20100K
Kge =6.63 1073 x 27 1024 / (8 x 3.14 x 20 106 x 6.67 10711 x 2.8 10%0)
Kse =1.90 10" J/K
D =Ks/Kse, D=1.38 102 /1.90 10-%7 = 0.7236 104
D=7,23101
BGibbs’s entropy
S=- -K.'JZJ- P;In P;

S=Kslnw
For a carbon 12 atom, the approximate BGibbs’s entropy will be:
Sc=AE /T=PV/T=nR=NKs=7.2310" x 1.90 10
Sc=13.7310%
For N =1 carbon 12 atom, we have:
Sc=13,7310#]/K

Shannon’s entropy
Syn) = Sr(n) + Spvy = aN + SN In(N)). (3.21)

N =D =7.23 10", N number of particles.

St(x)=7.2310%, ae B<<<N

In the volume of a carbon 12 atom under normal conditions of pressure, volume and
temperature we have the amount of D = 7.23 10 carbon 12 atoms in a white dwarf star.

Shannon-BGibbs entropy relation
R =Shannon’s entropy / BGibbs's entropy
R =St(n) / Sc
R=7.2310%/13.73 1024=0.52 10"
R=0,5210%
b) Ks =1.38 102 J/K, flat space-time.
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BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For a carbon 12 atom, the approximate BGibbs’s entropy will be:
Sc=AE /T=PV/T=nR=NKs=7.2310%x 1.38 102 =9.97 10710
For N =1 carbon 12 atom, we have:
Sc=9.97 101 J/K

Shannon’s entropy
Syn) = Sr(n) + Spvy = aN + SN In(N)). (3.21)

N =D =7.2310%, N number of particles.

St(n)=7.2310%, ae p<<<N

n the volume of a carbon 12 atom under normal conditions of pressure, volume and temperature
we have the amount of D =7.23 103 carbon 12 atoms in a white dwarf star.

Shannon-BGibbs entropy relation
R = Shannon'’s entropy / BGibbs’s entropy
R =S5t(v)/Sc
R=7,2310%/9,97 101°=0,72 10%
R=0,7210%

B) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for
a neutron star.

a) Ksn = hc¥/ (8nTGM)

Ksn =2.42 102 J/K, for curved space-time.

ForM=22M6=22x210%=4.410"kg
T=1012K
KBn =6.63 103 x 27 10% /8 x 3.14 x 1012 x 6.67 10-1! x 4.4 10%°
Ksn =179.01 10710/ 737.22 1031 = 0.2428 104
Ken=242104%]/K
D=Ks/Ksn; D=1.38 102 /2.42 1042 =0.5702 10"
D =5.702 108

BGibbs’s entropy

S=-KB3Y,;PjnP,

S=Kslnw
For a carbon 12 atom, the approximate Gibbs entropy will be:
Se=AE /T=PV/T=nR=N Ks
For N =1 carbon 12 atom, we have:

Sc=5.70 108 x 2.42 1042 =13.79 1024
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Sc=13.79 102 J/K

Shannon'’s entropy
Syn) = Sr(n) + Spvy = aN + SN In(N)). (3.21)

N =D =5.702 108, N number of particles

St(n) =5,702 10%, a and 3 <<< N

In the volume of a carbon 12 atom under normal conditions of pressure, volume and
temperature we have the amount D = 5,702 108 neutrons, in an ideal neutron star.

Shannon-Gibbs entropy relation
R = Shannon entropy / Gibbs entropy
R=St(x)/Sc
R=5.7010%/13.79 102 = 0.41 10*
R =0.41 104
b) Ks =1.38 102 J/K, flat space-time
BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For a carbon 12 atom, the approximate Gibbs entropy will be:
Se=AE /T=PV/T=nR=N Ks
For N =1 carbon 12 atom, we have:
Sc=5.7010'8 x 1.38 102 =7.86 10-°
S¢=7.8910°]J/K

Shannon’s entropy
Syn) = Sr(n) + Spvy = aN + SN In(N)). (3.21)

N =D =5.702 10'8; N number of particles

St(n) =5,702 10%, a and 3 <<< N

In the volume of a carbon 12 atom under normal conditions of pressure, volume and
temperature we have the amount of D = 5.702 108 neutrons, in an ideal neutron star.

Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =St(n) / Sc
R=5.7010%/7.89 105=0.72 10%
R=0.7210%

C) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for
a Black Hole of 3 solar masses.

a) Ksq=1.78 10 J/K
Ksq = he?/ (8n1TGM)
M =3M6 =3x210%=6.0 10° kg
T=108K
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KBq=6.63 1034 x 27 10%*/ (8 x 3.14 x 10™ x 6.67 107 x 6.0 10%°)
KBq =1.78 10 J/K; Boltzmann's constant of a black hole.
D=Ks/Ksq; D=1.38102/1.780 1043 = 0.7752 1020 = 7.752 10%°
D=7.7510"
BGibbs’s entropy
S=-= !{.'}ZJ- P;In P;
S=Kslnw
For a carbon 12 atom, the approximate Gibbs entropy will be:
Sc=AE /T=PV/T=nR=NKs
For N =1 carbon 12 atom, we have:
Sc=7.7510"x 1.78 10*
Sc=13.79 10

Shannon’s entropy
SNy = Srwvy + Sp(ny = aN + SN In(N)). (3.21)

N =D =7.7510%, N number of particles

St(n) =7.7510%, a and 3 <<< N

In the volume of a carbon 12 atom under normal conditions of pressure, volume and
temperature we have the amount of D =7.75 10 quarks, in a Black Hole.

Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =5t(~) / Sc
R=7.7510%/13.79 1024 = 0.56 104
R=0,56 10%
b) Ks =1.38 10-2% J/K, for flat space-time
BGibbs’s entropy

S=- K.'}ZJ- PJ- In PJ,-
S=Kslnw

For a carbon 12 atom, the approximate Gibbs entropy will be:

Sc=AE /T=PV/T=nR=NK-s

For N =1 carbon 12 atom, we have:

Sc=7.7510"x1.38 102
Sc=10.69 10+

Shannon’s entropy

SNy = Srwvy + Sp(ny = aN + SN In(N)). (3.21)
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N =D =7.75 10", N number of particles

St(n) =7.7510%, a and 3 <<< N

In the volume of a carbon 12 atom under normal conditions of pressure, volume and
temperature we have the amount of D =7.75 10*° quarks, in a Black Hole.

Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =5t(~) / Sc
R=7.7510"/10.69 104 =0.72 10%
R=0,7210%

D) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant
under normal conditions of pressure, volume and temperature.

To carry out our calculations, we are going to use the calculations made in the Master's Thesis,
written by Wallas Santos Nascimento entitled, on some characteristics of Shannon'’s entropy for
confined atomic systems.

From the Paper, we take the following values of St(x)

Atoms with one electron:

For confined hydrogen atoms, St(n) = 6.5

For confined ionized helium atom, St(n) = 6.5

For doubly ionized confined lithium atom, St(N) = 6.5

Atom with two electrons:

For confined helium atom, St(n) = 13.0

For confined ionized lithium atom, St(n) = 13.0

Confined harmonic oscillator:

For confined harmonic oscillator, St(n) = 2.00

BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For a carbon 12 atom, the approximate Gibbs entropy will be:
Sc=AE /T=PV/T=nR=NKs
For N =1 carbon 12 atom, we have:
Sc=1.38102]/K

Shannon’s entropy

Suny = Srny + Spv) = aN + BN In(N)). (3.21)

N=1
St(N) =

If we look at the values of St(n) calculated in the examples in the paper, we see that St(~) takes
values between 2, 6 and 13.

i)y Stn)=a=6
Shannon-BGibbs entropy relation
R = Shannon's entropy / Gibbs’s entropy
R =5t(~) / Sc
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R=610°/1.38102=4.34 10
R=4.3410%
ii) StN)=a=13
Shannon-BGibbs entropy relation
R = Shannon'’s entropy / Gibbs’s entropy
R =5t(~) / Sc
R=1.310"/1.38102°=0.94 10% = 0.94 10>
R=0.9410%
iii) St(n)=a=2
Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =5t(~) / Sc
R=210°/1.38102=1.44 10%*=1.44 10
R=1.4410*

5.2. For N = 6.02 10% particles

do0i:10.20944/preprints202309.0301.v1

24

A) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for

a white dwarf star.
a) Kse =1.90 10%7 J/K, curved space-time.
Kse = hc¥/ (8uTGM)
ForM=14M6=14x210%=2810%kg
T=20100K
Kse =6.63 1034 x 27 102/ (8 x 3.14 x 20 106 x 6.67 101 x 2.8 10%%)
Kse=1.90 10 J/K
D=Ks/Kse; D=1.38 102 /1.90 10% = 0.7236 104
D=72310®
BGibbs’s entropy

S=-KB3Y,;PjnP,

S=Kslnw
For N = 6.02 10% particles, the approximate Gibbs’s entropy will be:
Sc=AE /T=PV/T=nR=NKs=6.0210%x1.910%7=8.3 10"
For N =6.02 102
Sc=8.310"1]/K
Shannon'’s entropy
Sy Ny = Sp(n) + Spvy =aN + AN In(N)). (3.21)

N = 6.02 10%; N number of particles
St(n) =6.02 10%; a and 3 <<< N
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Shannon-BGibbs entropy relation
R = Shannon'’s entropy / Gibbs’s entropy
R =5t(~) / Sc
R=6.0210%/8.310=0.72 10
R=0.7210%
b) Ks =1.38 102 J/K, for flat spacetime
BGibbs’s entropy

S=-KB3Y,;PjnP,

S=Kslnw
For N = 6.02 102 particles, the approximate BGibbs’s entropy will be:
Se=AE /T=PV/T=nR=NKs=6.0210%x1.38 102 =8.3
Para N =6.02 10%:
Sc=8.3]/K

Shannon’s entropy
Sy Ny = Sp(n) + Spvy =aN + AN In(N)). (3.21)

N = 6.02 10%%; N number of particles
St(n) =6.02 10%, a and f <<< N

Shannon-BGibbs entropy relation
R = Shannon entropy / Gibbs entropy
R =5t(~) / Sc
R=6.0210%/8.3=0.7210%
R=0.7210%

B) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for
a neutron star

a) Ken=2.42 104 J/K, for curved spacetime

Ksn = hc¥/ (8uTGM)

ForM=22M6=22x210%=4.410%kg
T=102K
KBn=6.63 10734 x 27 10%* / (8 x 3.14 x 102 x 6.67 10711 x 4.4 10%0)
Ken=242104%]J/K
D=Ks/Ksn; D=1.38102/2.42 104 =0.5702 10*
D =5.702 1018

BGibbs’s entropy

S=-KB3Y,;PjnP,

S=Kslnw

For N = 6.02 10% particles, the approximate Gibbs entropy will be:
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Sc=AE /T=PV/T=nR=NKs
Sc = 6.02 102 x 2.42 1042 = 14.56 101
Sc =1.45 10718 J/K

Shannon'’s entropy
Sy Ny = Sp(n) + Spvy =aN + AN In(N)). (3.21)

N = 6.02 10%; N number of particles
St(n) =6.02 10%; a and f <<< N

Shannon-BGibbs entropy relation

R = Shannon'’s entropy / Gibbs’s entropy
R =St(n) / Sc
R=6.0210%/1.45101%=4.15 104
R=4.15104

b) Ks =1.38 102 J/K, for flat space-time
BGibbs’s entropy

S=-KB3Y,;PjnP,

S=Kslnw
For N = 6.02 10% particles, the approximate Gibbs entropy will be:
Sc=AE /T=PV/T=nR=NKs
For N =6.02 10% particles, we have:
Sc =6.0210% x 1.38 102 =8.31
Sc=831]J/K

Shannon’s entropy
Sy Ny = Sp(n) + Spvy =aN + AN In(N)). (3.21)

N =6.02 10, N number of particles
St(n) =6.02 10%, a and 3 <<< N

Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =St(v) / Sc
R=6.0210%/8.31=0.72 10»
R=0.7210%

C) We will calculate the Shannon-BGibbs entropy relation considering the Boltzmann’s constant
for a Black Hole of 3 solar masses.

a) Keq=1.78 10-2 J/K, for curved space-time
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Ksq = hc¥/ (8nTGM)
M=3M6=3x210%=6.010% kg
T=108K
KBq=6.63 1034 x 27 10?* / (8 x 3.14 x 10 x 6.67 1071 x 6.0 10%°)
Ksq=1.78 10 J/K, Boltzmann constant of a black hole
D=Ks/Ksq, D=1.38102%/1.780 1043 = 0.7752 102° = 7.752 10%°
D=7.7510%
BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For N = 6.02 10% particles, the approximate Gibbs’s entropy will be:
Se=AE /T=PV/T=nR=N Ks
For N =6.02 1023, we have:
S6=6.0210%°x 1.78 104
Sc=1.07 10"
Shannon’s entropy
SNy = Sp(n) + Spvy =aN + SN In(N)). (3.21)
N =6.02 10%, N number of particles
St(n) =6.02 102, a and B <<< N
Shannon-BGibbs entropy relation
R = Shannon's entropy / Gibbs’s entropy
R =St(~N) / Sc
R=6.0210%/1.07 10 = 5.6 10%?
R=5.610%
b) Ks =1.38 10-2 J/K, for flat spacetime
BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For N = 6.02 10% particles, the approximate Gibbs entropy will be:
Sc=AE /T=PV/T=nR=NKs
For N =6.02 102, we have:
Sc =6.0210% x 1.38 102 =8.31
Sc=8.31]J/K

Shannon’s entropy

SNy = Srwvy + Sp(ny = aN + SN In(N)). (3.21)
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N =6.02 10%, N number of particles
St(x) = 6.02 10%, a and p <<< N
Shannon-BGibbs entropy relation
R = Shannon's entropy / Gibbs’s entropy
R =St(~N) / Sc
R=6.0210%/8.31=0.72 10
R=0.7210%

5.3. For N =10 6.02 10% particles

A) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for
a white dwarf star.

a) Kse =1.907 107 J/K, for curved space-time
Kse = hc¥/ (8uTGM)
ForM=14M6=14x210%=2810%kg
T=2010¢K
Kse =6.63 1034 x 27 1024 / (8 x 3.14 x 20 10° x 6.67 10711 x 2.8 10%°)
Kse =1.907 107 J/K
D =Ks/Kse, D=1.38 102% / 1.907 10-*” = 0.7236 104
D =7.23610%
BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For N =10% x 6.02 10%, the approximate Gibbs entropy will be:
Sc=AE /T=PV/T=nR=N Kz =10%6.0210% x 1.9 10" = 8.3 10!
For N =107 6.02 10%, we have:
S¢=8.310'"J/K
Shannon’s entropy
Syn) = Sr(n) + Spvy = aN + SN In(N)). (3.21)
N =10 6.02 10, N number of particles
St(n) =105 6.02 10%, a and 3 <<<N
Shannon-BGibbs entropy relation
R = Shannon's entropy / Gibbs’s entropy
R =5t(n) /Sc
R=10%6.0210% /8.3 10 = 0.72 10%”
R=0.7210%
b) Ks =1.38 1022 J/K, for flat space-time

BGibbs’s entropy
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S=-KB3Y,;PjnP,

S=Kslnw
For N =10% x 6.02 102 particles, the approximate Gibbs entropy will be:
Se=AE /T=PV/T=nR=NKs=10"x 6.02 102 x 1.38 1022 = 8.3 10%
For N =10% x 6.02 102, we have:
Sc=8.310]J/K

Shannon’s entropy
Sy Ny = Sp(n) + Spvy =aN + AN In(N)). (3.21)

N =10 x 6.02 102, N number of particles
St(x) =10" x 6.02 102, a and  <<< N

Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =St(n) / Sc
R=10%x6.0210% /8.3 10> =0.72 10
R=0.7210%

B) We will calculate the Shannon-Gibbs entropy relation considering Boltzmann's constant for a
neutron star.

a) Ken=2.42 10 J/K, for curved space-time

Ksn = hc3/ (8nTGM)
ForM=22M6=22x210%=4.410"°kg
T=1012K
KBn =6.63 103 x 27 10%*/ (8 x 3.14 x 102 x 6.67 10711 x 4.4 103°)
Ksn =242 104%]J/K
D =Ks/Ksn, D=1.38 102 /2.42 104 = 0.5702 10%
D =5,702 108
BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For N =107 x 6.02 10? particles, the approximate Gibbs's entropy will be:
Sc=AE /T=PV/T=nR=NKs
For N =10 x 6.02 102, we have:
Sc =10% x 6.02 10% x 2.42 1042 =14.56 10+
Sc=145103]/K

Shannon'’s entropy

Suny = Sr(ny + Sp(xy = aN + BN In(N)). (3.21)
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N =10 x 6.02 10, N number of particles
St(x) = 105 x 6.02 103, at and B <<< N
Shannon-BGibbs entropy relation
R = Shannon's entropy / Gibbs’s entropy
R =St(~n) / Sc
R=10x6.0210%/1.45103=4.15 10
R=4,15104
b) Ks =1.38 102 J/K, for flat space-time
BGibbs’s entropy

S=-KB3Y,;PjnP,

S=Kslnw
For N =10 x 6.02 10?3, the approximate Gibbs’s entropy will be:
S¢=AE /T=PV/T=nR=N Ks
For N =10 x 6.02 102, we have:
Sc =10%x 6.02 10 x 1.38 10- = 8.31 10%®
Sc=8.3110"5J/K
Shannon’s entropy
Syn) = Sr(n) + Spvy = aN + SN In(N)). (3.21)
N =10%x 6.02 10%, N number of particles
St(n) =105 x 6.02 10%, a and 3 <<< N
Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =St(n) / Sc
R=10%x6.0210%/8.31 10> =0.72 10%
R=0.7210%

C) We will calculate the Shannon-Gibbs entropy relation considering the Boltzmann’s constant
for a Black Hole of 3 solar masses.

a) Keq=1.78 102 J/K, for a curved space-time

Ksq =hc?/ (8uTGM)
M=3M6=3x210%=6.010%kg
T=102K
KBq=6.63 1034 x 27 10%*/ (8 x 3.14 x 10™ x 6.67 107 x 6.0 10%°)
Ksq =1.78 10 J/K Boltzmann's constant of a black hole
D=Ks/Ksq, D=1.38102/1.780 1043 = 0.7752 1020 = 7.752 10%°
D=7.7510%
BGibbs’s entropy
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S=-KB3Y,;PjnP,

S=Kslnw
For N =10% x 6.02 10% particles, the approximate Gibbs’s entropy will be:
Sc=AE /T=PV/T=nR=N Ks
For N =10% x 6.02 102, we have:
Sc =10 x 6.02 102 x 1.78 1043
Sc=1,0710+]/K

Shannon’s entropy
SNy = Srwvy + Sp(ny = aN + SN In(N)). (3.21)

N =10 x 6.02 102, N number of particles
St(x) =10" x 6.02 102, a and  <<< N

Shannon-BGibbs entropy relation
R = Shannon’s entropy / Gibbs’s entropy
R =5t(~) / Sc
R=10"x 6.0210%/1.07 10 = 5.6 104
R=5.610%
b) Ks =1.38 102 J/K, for flat space-time
BGibbs’s entropy
S=-KBY;P;lnP;

S=Kslnw
For N =10% x 6.02 10? particles, the approximate Gibbs entropy will be:
Sc=AE /T=PV/T=nR=NKs
For N = 10%x 6.02 1023, we have:
Sc =10 x 6.02 10° x 1.38 102* = 8.31 105
Sc=8.31101J/K
Shannon’s entropy
SNy = Sp(n) + Spvy =aN + AN In(N)). (3.21)
N =10 x 6.02 10, N number of particles
St(n) =105 x 6.02 10, o and B <<< N
Shannon-BGibbs entropy relation
R = Shannon'’s entropy / Gibbs’s entropy
R =5t(n) /Sa
R=10"%x6.0210%/8.31 10> =0.72 10%
R=0.7210%


https://doi.org/10.20944/preprints202309.0301.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2023 do0i:10.20944/preprints202309.0301.v1

32
5.4. We will calculate the approximate Shannon-Gibbs relationship for white dwarf stars, neutron stars and
black holes.
A) Calculation of the Shannon-Gibbs relationship for white dwarf stars.
a) Curve space-time:
M = 0.76 solar masses
R =0.01 Radjius of the sun
M=210%x0.76
M=1.5210%kg
Where M is mass

R=0.01x6.96 108 m

R=6.96 106 m
Where R is radius
Vt=(4/3) x T x R3
Vt=337.15 10 m3
Where Vtis Volume

N =2337.1510%/2.43 10-*
N =138.74 10"

Where N is particles numbers
Sc =N Kse =138.74 107 x 1.90 10-%"

Sc =263.60 103+
Sc =2.6310% J/K

Where Sc is Gibbs's entropy
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Figure 1. Solar masses vs solar radius.
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St(N) =N =138.74 10"
St(N) =138.74 107 = 1.38 107
Where St(N) Shannon’s entropy
R=5t(N)/Sc
R=138.74 107 / 2.63 10%
R=5.2710%

Where R is Shannon-Gibbs entropy relation
b) Flat space-time:

Sc =N Ks=138.74 107 x 1.38 10-%
Sc =191.46 10*¢ J/K
Where Sc is Gibbs’s entropy
St(N) =N =138.74 10"
Where St(N) Shannon’s entropy
R=St(N)/Sc
R=138.74107 / 191.46 10
R=0.7210%
Where R is Shannon-Gibbs entropy relation
B) Calculation of the Shannon-Gibbs relation for neutron stars
a) Curved space-time:
M = 1.5 Mass of the Sun
Where M is mass
R =9500 m
R=9510°m
Where R is radius
Vt=(4/3) x txR?
Vit =3580.56 10° m
Where Vtis volume
N =Vt/Vn=_3580.56 10°/ 4.87 10
N =735.22 105 = 73.52 1058
Where N is particles number
Sc =N Kse =7.3510% x 3.81 104
Sc=28,00 108 J/K
Where Sc is Gibbs’s entropy
St(N) =N =73.52 10%
St(N) =73.52 10%
Where St(N) is Shannon'’s entropy
R =St(N)/Sc
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R=73.5210%/28.00 10'¢
R=2.6210%

Where R is Shannon-Gibbs entropy relation

Estrella de neutrones
Masa : 1.5 veces el sol
Diametro: — 19 km

Coraza Gruesa
Grueso : ~ 1.5 km

Interior liquido pesado
Mas que todo neutrones,
con otras particulas

Figure 2. neutron star.

b) Flat space-time:
Sc =N Ksn =7.3510% x 1.38 10~

Sc =10.14 10% J/K

Where Sc is Gibbs’s entropy
St(N) =N =7.3510%

Where St(N) is Shannon'’s entropy
R=S5t(N) /Sc
R=7.3510%/10.14 10%
R=0.7210%
Where R is Shannon-Gibbs entropy relation
C) Calculation of the Shannon-BGibbs relation for black holes

a) Curved space-time:
M = 3 solar masses = 6 10%° kg

Where M is mass
R=8.8910°m

Where R is radius
Vt=(4/3) x tx R?

Vt=2934,17 10° m?

Where Vt is volume
N=Vt/Vq=2934,17 10°/ 2,27 107
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N =1292.17 10%° = 12.92 10!
Where N is particles numbers
Sc =N Ksq =12.92 10 x 1.78 103
Sc=2.2910"]/K
Where Sc is Gibbs’s entropy
St(N) =N =12.92 10¢!
St(N) =12.92 10
Where St(N) is Shannon's entropy
R=St(N)/Sc
R=12.9210¢/2.29 10%°
R =5.64 104
Where R is Shannon-Gibbs entropy relation
b) Flat space-time:
Se=NKs=12.9210¢ x 1.38 102
Sc=17.8210% J/K
Where Sc is Gibbs’s entropy
St(N) =N =12.92 10
St(N) =12.92 105!
Where St(N) is Shannon'’s entropy
R =S5t(N) /Sc
R=129210¢/17.8210%
R=0.7210%
Where R is Shannon-Gibbs entropy relation

5.5. Analysis and example

If we look at Table 2, we see that the Shannon-Gibbs entropy relation depends on the effective
Boltzmann's constant. We see that for Ke = 1.38 107 J/K, the entropy relationship is the same for the
different states of matter, if we change the effective Boltzmann's constant, we see that it depends on
the number of fundamental particles.
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Table 2. In Table 2, we represent the relationship of the Shanonn-Gibbs entropy vs. the effective
Boltzmann'’s constant, for different states of matter.

Shannon-E Gibbs-E Shannon-E Gibbs-E Shannon-Gibbs/R | Shannon-Gibbs/R [ Shannon-Gibbs/R | Shannon-Gibbs/R
Bit J/K Bit J/K Ks=13810"% Ks=1.9010"%" Ks=2.4210"% Ks=1.78107%
N =1CARBON 12 ATOM
Confined harmonic oscillator a=2 1.38107% 1.4410%
Atom with a confined electron a=6 1381072 434102
Atom with two confined electrons a=13 1.38107% 0.94 10
White dwarf star 7.2310% 13.7310°% 7.2310" 9.97107° 0.7210% 0.5210*
Neutron star 5.70 10" 13.7910°% 5.70 10" 7.8910°° 0.7210% 0.4110*
Black Hole 7.75 10" 13.79107% 7.75 10" 10.6910°* 0.7210% 0.5610%
N =6.02 10%® PARTICLES
White dwarf star 6.0210% 830107 6.0210% 8.310° 0.7210% 0.7210*
Neutron star 6.0210% 14.56 10" 6.0210% 8310° 0.7210% 0.4110%
Black Hole 6.0210% 1,07107" 6.0210% 8.310° 0.7210% 0.5610%
N = 10" X 6.02 10%* PARTICLES
White dwarf star 6.0210% 8310 6.0210% 8.3110" 0.7210% 0.7210%
Neutron star 6.0210% 1451073 6.0210% 8.3110" 0.7210% 0.4110%
Black Hole 6.0210% 1.07107* 6.0210% 8.3110" 0.7210% 0.56 10*
FOR STELLAR BODIES
White dwarf star 1.38107 2.6310% 1.38107 1.9110%° 0.7210% 0.5210*
Neutron star 7.3510%° 2.8010" 7.3510% 1,01 10%7 0.7210% 0.26 10"
Black Hole 1.29 10 2.2910" 1.2910% 1.7810*° 0.7210% 0.56 10*

In conclusion, we define that the effective Boltzmann's constant determines the Shannon-Gibbs
entropy relation and this remains constant, that is, there is no loss of information, as long as the
effective Boltzmann's constant is the same.

We can see that the information is encoded in the number of fundamental particles (neutrons,
quarks, etc.); which we represent by the effective Boltzmann’s constant. Through this mechanism the
information is always preserved.

In the article, RLC electrical modelling of black hole and early universe. Generalization of Boltzmann's
constant in curved space-time, there are many examples related to the effective Boltzmann's constant.

Next, we will present an extremely important example that will help us understand how the
effective Boltzmann's constant is related to the origin of elementary particles; In addition to helping
us understand how the theory of the generalization of Boltzmann's constant allows us to unite the
theory of general relativity and quantum mechanics.

Example:

Origin of the electron, the down quark and the top quark

To determine the origin of the fundamental particles, it is important to use the generalization
theory of Boltzmann's constant for curved space-time and also to understand the concept of
symmetry breaking of the electroweak unification theory.

The concept of symmetry breaking in electroweak unification theory basically explains how the
Higgs field gives mass to fundamental particles. In a simple, didactic and non-technical way we are
going to demonstrate how fundamental particles really acquire mass.

The theory of the generalization of the Boltzmann's constant for curved space-time teaches us
that there is an electromagnetic energy and a gravitational energy, in other words, there is an
electromagnetic temperature and a gravitational temperature, an electromagnetic frequency and a
gravitational frequency and also a length electromagnetic wave and a gravitational wavelength.

The generalization theory of Boltzmann's constant for curved spacetime associates
electromagnetic energy to the field of strong and weak electromagnetic interactions; it also associates
gravitational energy to space-time, that is, to the field of gravitational interactions.

The theory of the generalization of the Boltzmann constant for curved space-time, allows us to
unite the theory of general relativity and the theory of quantum mechanics, allowing us to define a
spectrum of gravitational waves, gravitons, analogous to the spectrum of electromagnetic waves,
photons; In this way, we are able to quantify the curvature of space-time in the presence of mass or
energy.

Spectrum of electromagnetic waves:

Ee=hxfe
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Ce=Ae x fe
Ee=hxCe/Ae
Ee =Kse x Te

Kse =1.38 102 J/K
Gravitational wave spectrum:
Ec=hxfc
Ce=Acx fc
Ec=hxCc/Ac
Ec =Ksac x Tc
KBc=1.38102]/K to 1.78 10 J/K

1
Ry, - iRgl“’ +Aguw = —Tw

ADS = =

Einstein's equation of general relativity and the correspondence of Maldacena ADS = CFT, tells
us that both matter (energy) and space-time have to be quantized and through the generalization
theory of Boltzmann's constant we achieve that goal.

Table 3. Physical characteristics of the electron, down quark and top quark.

DOWN TOP ELECTRON
MASS (kg) 8.55 10730 308.0 10 0.91010°%°
ENERGY (J) 7.691073 277.2 107° 0.819 10~
FREQUENCY (Hz) 11.60 10%° 41.810% 1.23 10%°

TEMPERATURE (K) 5.5710'° 200.8 103 0.593 10'°

We consider T = 10%° K and a contraction of space-time in a dimension of 10° times, with respect
to flat space-time for K = 1.38 107%* ] /K.

In the analysis we performed on the item: 3.3. Calculation of the effective Boltzmann's constant for a
black hole of three solar masses; we see that the contraction factor of Boltzmann's constant, D, is equal to
D =7.52 10%, in three dimensions. In one dimension it would be approximately 10°.

For the electron and down quark, we are going to consider a contraction factor in a dimension
of the order of 10°, for a temperature of 101 K.

Let's calculate the wavelength of the electron:

C=Axf
A=C/f
A=310%/12310%0=2.4410"2m
A/2=12210"12m
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Where C is speed light, f is frequency and A is wavelength for flat space-time.

Calculation of the diameter of the electron:

To calculate the diameter of the electron, we are going to consider the scale contraction factor of
Boltzmann's constant for the electron, D = 10°.

De=(A/2)/105=1.221012/10°=1.22 107 m
De=1.2210"m
De, electron diameter
Re=6.110"8m

Re, electron radius

See reference article (2), the diameter of the electron must be less than < 1077 m, a value very
close to the calculated De =1.22 1077 m, Rtq =6.1 1078 m.

In this example, intuitively, using the theory of the generalization of Boltzmann's constant in
curved space-time, we have calculated the diameter and radius of the electron.

The conceptual idea of the origin of the fundamental particles is simple and compatible with the
theory of the Higgs's field.

It also gives us to understand the difference between Fermions and Bosons.

Fermions are bosons that, upon reaching certain physical characteristics, get space-time to
surround them, forming the fundamental particles, that condition, makes them move at a speed less
than light. Bosons are energetic entities that cannot be enveloped or covered by space-time and
therefore move at the speed of light. Temperature plays a fundamental role in this entire process.

In the next article we will generalize for the rest of the fundamental particles.

Above 10% k, temperature at which the symmetry break occurs.

Calculation of the diameter of the down quark

C=Axf
A=C/f
A=3108/11.60102°=2.58 10> m
A/2=12910"8m

Where C is speed light, f is frequency and A is wavelength for flat space-time.
To calculate the diameter of the down quark, we are going to consider the scale contraction factor
of Boltzmann's constant for down quark, D = 10°.

Ddq=(A/2) /D
Ddq=(A/2) /105=1.29 1013 /10°=1.29 10-* m
Ddq=1.2910% m
Ddq, down quark diameter
Rdq=0.64 10* m

Rdg, down quark radius

See reference article (1), the radius of the quark is given by Rq =0.43 1078 m, a value very close
to the calculated Rdq =0.64 1078 m.

Calculation of the diameter of the top quark

For top quark, we are going to consider a contraction factor in a dimension of the order of 10°,
for a temperature of 10> K.

E=KsxT
E=138102x2101%5=2761078]
E=hxf
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f=E/h=276107%/6.6210734=0.4110¢=4.110*® Hz

c=Axf
A=c/f=3108/4.1105=0.73 10"m
A=7310"18m

Where C is speed light, f is frequency, A is wavelength for flat space-time.
To calculate the diameter of the top quark, we are going to consider the scale contraction factor
of Boltzmann's constant for top quark, D = 10¢.

Dtq=(A/2)/D
Dtq=(A/2) /106=3.6510718 /106 =3.65 102* m
Dtq=3.6510%m
Dtq, diameter of the top quark
Rtq=1.82102*m
Rtq = radius of the top quark

In the examples given, in the calculation of the diameter of the electron, of the down quark and
the top quark, by means of a simple conceptual idea, given by the theory of the generalization of the
Boltzmann's constant in curved space-time, we can perceive how the theory Quantum joins the
theory of gravity to explain the origin of elementary particles.

It is important to clarify that temperature is a very important parameter in determining the scale
factor of Boltzmann's constant in curved space-time.

Above the temperature 10'¢ K, symmetry break, it is understood that the force of disintegration
or repulsion is much greater than the force of compression of space-time, in this situation, it is not
possible to form particles of matter.

6. Conclusions

We have shown that the theory of the generalization of the Boltzmann’s constant in curved
space-time allows us to quantify or measure the curvature and contraction of space-time, that is: in
the presence of a mass in the structure of space-time, we can quantify the curvature and contraction
of space-time by means of the following parameters, Cv (curvature of space-time), D (space-time
compression or expansion factor of space-time) and g (gravitational acceleration). This simple
conceptual idea is what we use to determine the origin of fundamental particles, specifically, we use
the contraction factor of Boltzmann's constant D, to quantify the radius of the fundamental particles.

In order to quantify the curvature and contraction of space-time, we have developed the concept
of effective Boltzmann's constant, which is nothing more than considering the variable Boltzmann's
constant, which depends on the state of matter. In other words, there is a Boltzmann's constant for
flat space-time (Ks = 1.38 10-% J/K) and an effective Boltzmann’s constant (Ks = 1.38 102 J/K to 1.78
10 J/K), for curved space-time.

We have also shown by means of the Shannon-Boltzmann-Gibbs entropy relation that there is
no loss of information, the information is encoded in the number of particles and depends on the
state of matter, in other words, depends of the effective Boltzmann's constant.

Finally, we must remember that in the presence of mass, space-time is curved and contracted,
precisely the concept of curvature and contraction of space-time is what allows us to quantify it, using
this simple conceptual idea, through the theory of generalization of the Boltzmann’s constant in
curved space-time, we managed to unite the theory of gravity with the theory of quantum mechanics,
which we try to demonstrate through simple examples in which we calculate the radius of the
electron, down quark and top quark.


https://doi.org/10.20944/preprints202309.0301.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2023 do0i:10.20944/preprints202309.0301.v1

40

About the authors

HECTOR GERARDO FLORES (ARGENTINA, 1971). I studied Electrical Engineering with an
electronic orientation at UNT (Argentina); I worked and continue to work in oil companies looking
for gas and oil for more than 25 years, as a maintenance engineer for seismic equipment in companies
such as Western Atlas, Baker Hughes, Schlumberger, Geokinetics, etc.

Since 2010, I study theoretical physics in a self-taught way.

In the years 2020 and 2021, during the pandemic, I participated in the course and watched all
the online videos of Cosmology I and Cosmology II taught by the Federal University of Santa
Catarina, UFSC.

MARIA ISABEL GONCALVEZ DE SOUZA (Brazil, 1983). I studied professor of Portuguese
language at the Federal University of Campina Grande and professor of pedagogy at UNOPAR
University, later I did postgraduate, specialization. I am currently a qualified teacher and I work for
the Sao Joao do Rio do Peixe Prefecture, Paraiba. I am Hector's wife and my studies served to
collaborate in the formatting of his articles, corrections, etc; basically, help in the administrative part
with a small emphasis in the technical part analysing and sharing ideas.

Conflicts of Interests: The authors declares that there are no conflicts of interest.

References

1.  ZEUS Collaboration, 2016. Limits on the effective quark radius from inclusive ep scattering at HERA.
Accepted for publication in Physics Letters B. https://arxiv.org/pdf/1604.01280.pdf

2. Reinaldo Augusto da Costa Bianchi. UNIVERSIDADE DE SAO PAULO, INSTITUTO DE FISICA
PARTICULAS ELEMENTARES: A PROCURA DAS PARTICULAS W E Z.
https://fei.edu.br/~rbianchi/publications/particulas-elementares.pdf

3. Flores, H.G; Preprints 2023, 2023052246. Rlc Electrical Modelling of Black Hole and Early Universe.

Generalization of Boltzmann’s Constant in Curved Space-Time.

https://doi.org/10.20944/preprints202305.2246.v3

Laurent Pitre *, Mark D. Plimmer, Fernando Sparasci, Marc E. Himbert; 2019. Determinations of the

Boltzmann constant. https://hal.science/hal-02166573/file/1-s2.0-S1631070518301348-main.pdf

Eisberg Resnick, Fisica Cuantica.

Eyvind H. Wichmann. Fisica cuantica.

Sears — Zemansky. Fisica Universitaria con Fisica Moderna Vol II.

Dissertac¢dao de Mestrado, Wallas Santos Nascimento, Universidade Federal da Bahia, Instituto de Fisica,

Programa de Pés-Graduagao em Fisica, Junho de 2013. Dissertagao intitulada: Sobre algumas caracteristicas

da entropia de Shannon para sistemas atomicos confinados.

https://repositorio.ufba.br/bitstream/ri/28664/1/disserta%C3%A7%C3%A30 wallas final.pdf

9. La Constante de Boltzmann y la temperature https://cuentoscuanticos.com/2011/10/08/constante-de-
boltzmann-temperatura/

=

® N o T

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://arxiv.org/pdf/1604.01280.pdf
https://fei.edu.br/~rbianchi/publications/particulas-elementares.pdf
https://doi.org/10.20944/preprints202305.2246.v3
https://hal.science/hal-02166573/file/1-s2.0-S1631070518301348-main.pdf
https://repositorio.ufba.br/bitstream/ri/28664/1/disserta%C3%A7%C3%A3o_wallas_final.pdf
https://cuentoscuanticos.com/2011/10/08/constante-de-boltzmann-temperatura/
https://cuentoscuanticos.com/2011/10/08/constante-de-boltzmann-temperatura/
https://doi.org/10.20944/preprints202309.0301.v1

