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Article  

Theory of the Generalization of the Boltzmann’s 
Constant in Curved Space-Time. Shannon-Boltzmann 
Gibbs Entropy Relation and the Effective 
Boltzmann’s Constant 

Hector Gerardo Flores 1,* and Maria Isabel Gonçalvez de Souza 2,* 

1 Tucumán University, Argentina 
2 Universidad Federal de Campina Grande, Brazil 
* Correspondence: hectorisabel2011@hotmail.com (H.G.F.); isa271938@hotmail.com (M.I.G.d.S.) 

Abstract: Here we will model the curvature and contraction of space-time using as a basis the 
equation of state of an ideal gas and the Hawking´s equation for the temperature of a black hole. 
We will use this mathematical model to hypothesize that the Boltzmann´s constant depends on the 
state of matter, that is, there is a known Boltzmann´s constant for flat space-time and an effective 
Boltzmann´s constant for curved space-time. This model will allow us to quantify the structure of 
space-time and will serve as a basis to determine the origin of gravity and the origin of elementary 
particles. Using the Shannon-Boltzmann-Gibbs entropy relation, we will demonstrate that 
information is not lost and depends on the state of matter, the information is encoded and depends 
on the effective Boltzmann’s constant. 

Keywords: RLC electrical model; RC electrical model; cosmology; background radiation; Hubble’s 
law; Boltzmann’s constant; dark energy; dark matter; black hole; Big Bang and cosmic inflation; 
statistical physics; astronomy; astrophysics and condensed matter physics 

 

1. Generalization of the boltzmann´s constant in curved space-time 

Equation of state of an ideal gas as a function of the Boltzmann´ constant. 

P V = N Kʙ T                                      (1) 

Where, P is the absolute pressure, V is the volume, N is the number of particles, KB is 
Boltzmann's constant, and T is the absolute temperature. 

Boltzmann's constant is defined for 1 mole of carbon 12 and corresponds to 6.0221 10²³ atoms. 
Equation (1) applies for atoms, molecules and for normal conditions of pressure, volume and 

temperature. 
We will analyse what happens with equation (1) when we work in a degenerate state of matter. 
We will consider an ideal neutron star, only for neutrons. 
We will analyse the condition: 

(P V) / T = N Kʙ = constant                             (2) 

This condition tells us that the number of particles remains constant, under normal conditions 
of pressure, volume and temperature 

However, in an ideal neutron star, the smallest units of particles are neutrons and not atoms.  
This leads us to suppose that number of neutrons would fit in the volume of a carbon 12 atom, 

this amount can be represented by the symbol Dn. 
In an ideal neutron star, 

(P V) / T = Dn N Kʙ                                (3) 

Where Dn represents the number of neutrons in a carbon 12 atom. 
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However, equation (3) is not constant, with respect to equation (2), the number of particles 
increased by a factor Dn, to make it constant again, I must divide it by the factor Dn. 

(P V) / T = Dn N Kʙ / Dn                                                 (4) 

(P V) / T = N´ Kʙ´ = constant                                            (5) 

Where N' = (Dn N), is the new number of particles if we take neutrons into account and not 
atoms as the fundamental unit. 

Where Kʙ' = (Kʙ / Dn), is the new Boltzmann´s constant if we take neutrons into account and not 
atoms as the fundamental unit. 

We can say that equation (2) is equal to equation (5), equal to a constant 
Generalizing, it is the state in which matter is found that will determine Boltzmann's constant. 
A white dwarf star a will have a Boltzmann´s constant Kʙe, a neutron star will have a 

Boltzmann´s constant Kʙn, and a black hole will have a Boltzmann´s constant Kʙq. 
There is a Boltzmann´s constant KB that we all know for normal conditions of pressure, volume 

and temperature, for a flat space-time. 
There is an effective Boltzmann´s constant, which will depend on the state of matter, for curved 

space-time. 
The theory of general relativity tells us that in the presence of mass or energy space-time curves 

but it does not tell us how to quantify the curvature of space-time. 
Here we put forward the hypothesis that there is an effective Boltzmann´ constant that depends 

on the state of matter and through the value that the Boltzmann´ constant takes we can measure or 
quantify the curvature of space-time. 

2. Why is the theory of the generalization of the boltzmann´s constant correct? 

There is confusion about the concepts of heat and work. We believe that such confusion is caused 
by the amalgamation of axiomatic and empirical definitions and ideas that get mixed up when 
thermodynamics is explained to someone. 

Temperature definition: 
Temperature is a measure of the average of one kind of energy, the translational kinetic energy. 
Molecules have different components in their energy. Molecules can generally do three things: 

1) A molecule can move. Then we will have that its kinetic energy will be, (1/2)mv² (kinetic energy 
of its centre of mass). 

2) A molecule can rotate. Molecules generally have a three-dimensional structure and can have 
different rotations in different directions in space, which contributes energy. 

3) A molecule can vibrate. Molecules are a collection of atoms that are held together by chemical 
bonds. These links are not rigid, but rather behave like "springs" and the molecule can undergo 
vibrations. 

What we measure with temperature is the average translational kinetic energy of a set of 
molecules. 

The temperature does not take into account the rest of the components, so measuring the 
temperature is not the same as measuring the internal energy of a system. Or put another way, two 
systems with the same temperature need not have the same internal energy. 

When averaging generally, the result has the same dimensions and units as the concept of 
averaging, and here "generally" is used ironically. So, shouldn't we measure temperature in units of 
energy? The answer is yes, but historically we didn't realize that temperature was a measure of an 
energetic component of systems until relatively recently (since the work of Boltzmann and Gibbs). 

In summary, we have a historical problem with the units of temperature and this is where the 
Boltzmann´s constant (Kʙ) comes in, which is nothing more than the appropriate conversion factor 
to pass the temperature in degrees (whatever), which is a “unnatural” measure, for units of energy, 
like Joules, for example. 
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Boltzmann's constant is: 1.380 6488 (13) × 10⁻²³ J/K (in the international system and with the 
absolute temperature scale). 

As we have seen, Boltzmann's constant is simply a proportionality factor between the 
temperature measured in units of "temperature" and units of energy. In other words, what the 
constant actually does is correct the misunderstanding of the units we assign to temperature. 

In school we learned that an ideal gas obeys a very simple equation that relates the pressure, 
volume, and temperature of the gas to its content in moles. 

PV = nRT                                                       (6) 

In this equation we have an empirical constant (determined by experimental methods), the gas 
constant R. This constant is nothing more than the Boltzmann constant multiplied by Avogadro's 
number. 

R = KʙNᴀ                                                   (7) 

That is, the Boltzmann´ constant and the gas constant are essentially the same, only one refers to 
a mole and the other does not. 

Therefore, the equation of state for ideal gases can be written: 

PV = n Nᴀ (Kʙ T)                                             (8) 

The number of moles n times Avogadro's number Nᴀ is a dimensionless quantity that simply 
tells you the number of particles you have in the gas. One mole is equivalent to the number of 
components of one Avogadro; Actually, a mole is not a unit and neither is a radian, it is just a useful 
name to simplify the concepts. 

If we now study the dimensions of factor PV and factor KʙT, we will see how both have energy 
dimensions and everything is dimensionally consistent. 

By this we wanted to show that Boltzmann's constant is not a universal constant in the sense of 
revealing a general characteristic of the universe, like the speed of light or Planck's constant. This 
constant is just an artifact of a poor choice of temperature units. 

So far, we have analysed the conceptual importance of the Boltzmann´s constant, we are going 
to continue analysing and we are going to discover the true meaning of the Boltzmann´s constant. 

We continue with the generalization of the Boltzmann´s constant. 
The ideal gas law is the equation of state of the ideal gas, a hypothetical gas formed by point 

particles with no attraction or repulsion between them and whose collisions are perfectly elastic 
(conservation of momentum and kinetic energy). Kinetic energy is directly proportional to 
temperature in an ideal gas. The real gases that most closely approximate ideal gas behaviour are 
monatomic gases under conditions of low pressure and high temperature. 

Molecular kinetic theory: 
This theory was developed by Ludwig Boltzmann and Maxwell. It tells us the properties of an 

ideal gas at the molecular level. 

• Every ideal gas is made up of N small point particles (atoms or molecules). 
• Gaseous molecules move at high speeds, in a straight and disorderly way. 
• An ideal gas exerts a continuous pressure on the walls of the container that contains it, due to 

the collisions of the particles with the walls of this. 
• Molecular collisions are perfectly elastic. There is no loss of kinetic energy. 
• Molecular attraction and repulsion interactions are not taken into account. 
• The average kinetic energy of the translation of a molecule is directly proportional to the 

absolute temperature of the gas. 

If we analyse the kinetic theory of gases, we see that equation (8) applies to atoms and molecules 
and also to normal conditions of pressure, volume and temperature, that is, conditions that we are 
used to working with, in which the particles points are atoms and molecules. Now let us ask 
ourselves, what happens with equation (8) in a neutron star or in a plasma of quarks and gluons, 
where, in both cases, the point particles do not correspond to atoms or molecules? 
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Next, we will analyse these two situations: 

i) Equation of state of ideal gases and neutron stars. 

Idealizing, we are going to assume that neutron stars are formed solely by neutrons, that is, in 
this case the point particles would be neutrons. 

In quantum field theory, atoms are not represented by perfect spheres of radius r as was 
assumed at the beginning of the 20th century, but for practical purposes in order to perform the 
calculations we are going to re-do this assumption and use the radius atomic number provided in the 
periodic table of the chemical elements. 

Calculation of the scale factor of the Boltzmann´s constant when we work at the level of the 
atomic nucleus. 

Dc12= 1.5 10ˉ⁸ cm = 1.5 10ˉ¹⁰ m 

Where Dc12 is diameter of the C12 atom 

Rc12 = 0.75 10ˉ¹⁰ m 

Where Rc12 is radius of the C12 atom 

Dn = 0.8 10ˉ¹⁵ m 

Where Dn is diameter of the neutron 

Rn = 0.4 10ˉ¹⁵ m 

Where Rn is radius of the neutron 

VaC12 = (4/3) ᴨ R³ = (4/3) x 3.14 x (0.75 10ˉ¹⁰) ³ 

VaC12 = 1.76 10ˉ³⁰ m³ 

Where VaC12 is volume of the C12 atom 

Vn = (4/3) ᴨ R³ = (4/3) x 3.14 x (0.4 10ˉ¹⁵) ³ 

Vn = 0.267 10ˉ⁴⁵ m³ 

Where Vn is volume of the neutron 

Dn = VaC12 / Vn = 1.76 10ˉ³⁰ / 0.267 10ˉ⁴⁵ = 6.591 10¹⁵ 

Dn = 6.59 10¹⁵ 

Where Dn is scale factor of Boltzmann's constant for neutron stars. 
If we consider that at first N were formed by carbon 12 atoms (point particles); In a neutron star, 

the point particles correspond to neutrons and the number of point particles will be equal to the scale 
correction factor of the Boltzmann´s constant multiplied by N, that is, N´ = Dn x N 

With this, the equation of state becomes: 

P x V = N´x Kʙ x T                                                 (9) 

P x V = Dn x N x Kʙ x T                                          (10) 

Now, if we consider that (P x V) / T = constant, and in addition to fulfilling that, 
N increases by a factor Dn, then: 
Equation (10) remains: 

P x V = Dn x N x (Kʙ /Dn) x T                                  (11) 

P x V = N´x Kʙn x T                                                   (12) 

(P x V) / T = constant                                               (13) 
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If we consider the other option, Kʙ = constant, equation (11) becomes: 

P x V = (Dn N) x Kʙ x (T/ Dn)                                  (14) 

We see, for KB = constant, the temperature of the neutron star becomes zero. 

Kʙn = Kʙ / Dn = 1.38 10ˉ²³ / 6.59 10¹⁵ 

Kʙn = 2.0 10ˉ³⁹ J/K 

Where, Kʙn is approximate effective Boltzmann´s constant for a neutron star. 

ii) Equation of state of ideal gases and the plasma of quarks and gluons 

Idealizing, we are going to suppose that in a plasma of quarks and gluons the punctual particles 
are the quarks. 

Rc12 = 0.75 10⁻¹⁰ m 

Where Rc12 is radius of the C12 atom. 

Rq = 0.43 10⁻¹⁸ m 

Where Rq is quark radius. 

Vc12 = (4/3) ᴨ R³ = (4/3) x 3.14 x (0.75 10⁻¹⁰) ³ 

Vc12 = 1.76 10⁻³⁰ mᶾ 

Where Vc12 is volume of the C12 atom 

Vq = (4/3) ᴨ R³ = (4/3) x 3.14 x (0.43 10⁻¹⁸) ³ = 0.33 10⁻⁵⁴ mᶾ 

Where Vq is volume of the quark 

Dq = Vc12 / Vq = 1,76 10⁻³⁰ / 0,33 10⁻⁵⁴ = 5,33 10²⁴ 

Dq = 5,33 10²⁴ 

Where, Dq is scale factor of Boltzmann's constant for the plasma of quarks and gluons 
If we consider that at first N were formed by carbon 12 atoms (point particles), in a plasma of 

quarks and gluons, the point particles correspond to quarks and the amount of point particles will be 
equal to the scale correction factor of the Boltzmann constant multiplied by N, that is, N´ = Dq x N 

With this, the equation of state becomes: 

P x V = N´x Kʙ x T                                              (15) 

P x V = Dq x N x Kʙ x T                                      (16) 

if we consider that (P x V) / T = constant, and in addition to fulfilling that, 
N increases by a factor Dq, then: 
Equation (10) remains: 

P x V = Dq x N x (Kʙ /Dq) x T                            (17) 

P x V = N´x Kʙq x T                                            (18) 

(P x V) / T = constant                                        (19) 

If we consider the other option, Kʙ = constant, equation (17) becomes: 

P x V = Dq x N x Kʙ x (T/Dq) 

We see, for KB = constant, the temperature of the plasma of quarks and gluons is zero. 

Kʙq = Kʙ / Dq = 1.38 10⁻²³ / 5.33 10²⁴ = 0.25 10⁻⁴⁷ J/K 

Kʙq = 0.25 10⁻⁴⁷ J/K 

Where, Kʙq is effective Boltzmann´s constant, at quark level scale. 
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3. Application of the model and results 

For our calculations we are going to consider the Hawking´s equation of the temperature of a 
black hole as true: 

T = hc³ / (8ᴨKʙGM) 
Where h is Planck´s constant, c is speed light, Kʙ is Boltzmann´s constant, G is Newton´s 

gravitational constant and M es a mass. 

3.1. Calculation of the effective Boltzmann´s constant for white dwarf stars 

The masses of white dwarf stars vary from 0.5 Mϴ to 1.40 Mϴ. 
Where Mϴ is solar mass 
The temperature of the core of the star varies from 5 10⁶ K to 20 10⁶ K. 
We are going to use the following equation, T = hc³ / (8ᴨKʙGM) 

Kʙ = hc³ / (8ᴨTGM) 

i) For M = 0.5 Mϴ = 0.5 x 2 10³⁰ = 10³⁰ kg 

T = 5 10⁶ K 

Kʙ = hc³ / (8ᴨTGM) 

Kʙe = 6.63 10⁻³⁴ x 27 10²⁴ / 8 x 3.14 x 5 10⁶ x 6.67 10⁻¹¹ x 10³⁰ 

Kʙe = 179.01 10⁻¹⁰ / 837.75 10²⁵ = 0.2136 10⁻³⁵ 

Kʙe = 2.136 10⁻³⁶ J/K 

D = Kʙ / Kʙe, D = 1.38 10⁻²³ / 2.136 10⁻³⁶ = 0.646 10¹³ 

D = 6.46 10¹² 

Where D, scale contraction factor for a white dwarf star 

D = Vc12 / Ve, Ve = Vc12 / D = 1.33 x 3.13 x 0.4218 10⁻³⁰ / 6.46 10¹² 

Ve = 1.76 10⁻³⁰ / 6.46 10¹² = 0.272 10⁻⁴² 

Ve = 2,727 10⁻⁴³ mᶾ 

Where Mϴ is solar mass, T is temperature, Kʙe is Boltzmann´s constant for white dwarf stars, D 
is scale factor of Boltzmann´s constant and Ve is volume. 

ii) For M = 1.4 Mϴ = 1.4 x 2 10³⁰ = 2.8 10³⁰ kg 

T = 20 10⁶ K 

Kʙ = hc³ / (8ᴨTGM) 

Kʙe = 6.63 10⁻³⁴ x 27 10²⁴ / 8 x 3.14 x 20 10⁶ x 6.67 10⁻¹¹ x 2.8 10³⁰ 

Kʙe = 179.01 10⁻¹⁰ / 9382.82 10²⁵ = 0.01907 10⁻³⁵ 

Kʙe = 1.907 10⁻³⁷ J/K 

D = Kʙ / Kʙe, D = 1.38 10⁻²³ / 1.907 10⁻³⁷ = 0.7236 10¹⁴ 

D = 7.236 10¹³ 

Where D, scale contraction factor for a white dwarf star 

D = Vc12 / Ve, Ve = (Vc12 / D) = 1.33 x 3.13 x 0.4218 10⁻³⁰ / 7.236 10¹³ 

Ve = 1.76 10⁻³⁰ / 7.236 10¹³ = 0.2432 10⁻⁴³ 

Ve = 2.432 10⁻⁴⁴ mᶾ 
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Where Mϴ is solar mass, T is temperature, Kʙe is Boltzmann´s constant for white dwarf stars, D 
is scale factor of Boltzmann´s constant and Ve is volume. 

3.2. Calculation of the effective Boltzmann´s constant for neutron stars 

The masses of neutron stars vary from 1.4 Mϴ to 2.2 Mϴ 

Where Mϴ is solar mass. 
The temperature of the core of the neutron stars varies from 10¹¹ K to 10¹² K. 

We are going to use the following equation, T = hc³ / (8ᴨKʙGM) 

Kʙ = hc³ / (8ᴨTGM) 

i) For M = 1.4 Mϴ = 1.4 x 2 10³⁰ = 2.8 10³⁰ kg 

T = 10¹¹ K 

Kʙ = hc³ / (8ᴨTGM) 

Kʙn = 6.63 10⁻³⁴ x 27 10²⁴ / 8 x 3.14 x 10¹¹ x 6.67 10⁻¹¹ x 2.8 10³⁰ 

Kʙn = 179.01 10⁻¹⁰ / 469.14 10³⁰ = 0.3815 10⁻⁴⁰ 

KBn = 3.815 10⁻⁴¹ J/K 

D = Kʙ / Kʙn, D = 1.38 10⁻²³ / 3.815 10⁻⁴¹ = 0.361 10¹⁸ 

D = 3.61 10¹⁷ 

Where D, Scale contraction factor for a neutron star 

D = Vc12 / Vn, Vn = (Vc12 / D) = 1.33 x 3.13 x 0.4218 10⁻³⁰ / 3.61 10¹⁷ 

Vn = 1.76 10⁻³⁰ / 3.61 10¹⁷ = 0.4875 10⁻⁴⁷ 

Vn = 4.875 10⁻⁴⁸ mᶾ 

Where Mϴ is solar mass, T is temperature, Kʙn is Boltzmann´s constant for neutron stars, D is 
scale factor of Boltzmann´s constant and Vn is neutron volume. 

ii) For M = 2.2 Mϴ = 2.2 x 2 10³⁰ = 4.4 10³⁰ kg 

T = 10¹² K 

Kʙ = hc³ / (8ᴨTGM) 

Kʙn = 6.63 10⁻³⁴ x 27 10²⁴ / 8 x 3.14 x 10¹² x 6.67 10⁻¹¹ x 4.4 10³⁰ 

Kʙn = 179.01 10⁻¹⁰ / 737.22 10³¹ = 0.2428 10⁻⁴¹ 

Kʙn = 2.42 10⁻⁴² J/K 

D = Kʙ / Kʙn, D = 1.38 10⁻²³ / 2.42 10⁻⁴² = 0.5702 10¹⁹ 

D = 5.702 10¹⁸ 

Where D, Scale contraction factor for a neutron star 

D = Vc12 / Vn, Vn = (Vc12 /D) = 1.33 x 3.13 x 0.4218 10⁻³⁰ / 5.702 10¹⁸ 

Vn = 1.76 10⁻³⁰ / 5.702 10¹⁸ 

Vn = 3.086 10⁻⁴⁹ mᶾ 

Where Mϴ is solar mass, T is temperature, Kʙn is Boltzmann´s constant for white dwarf stars, D 
is scale factor of Boltzmann´s constant and Vn is neutron volume. 

3.3. Calculation of the effective Boltzmann´s constant for a black hole of three solar masses 

The mass of the black hole is 3.0 Mϴ 
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Where Mϴ is solar mass 
The temperature of a black hole at its formation is 10¹³ K. 

Here it is important to clarify that the temperature of a black hole is chosen when it is formed, T 
= 10¹³ K, equal to the temperature at which, in particle collisions, matter forms the soup of quarks and 
gluons. 

M = 3Mϴ = 3 x 2 10³⁰ = 6.0 10³⁰ kg 

T = 10¹³ K 

Kʙ = hc³ / (8ᴨTGM) 

Kʙq = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 10¹³ x 6.67 10⁻¹¹ x 6.0 10³⁰) 

Kʙq = 179.01 10⁻¹⁰ / 1005.30 10³² = 0.1780 10⁻⁴² = 1.78 10⁻⁴³ J/k 

Kʙq = 1.78 10⁻⁴³ J/K 

D = Kʙ / Kʙq, D = 1.38 10⁻²³ / 1.780 10⁻⁴³ = 0.7752 10²⁰ = 7.752 10¹⁹ 

D = 7.752 10¹⁹ 

Where D, Scale contraction factor for a black hole of three solar masses 

D = Vc12 / Vq, Vq = (Vc12 / D) = 1.33 x 3.13 x 0.4218 10⁻³⁰ / 7.752 10¹⁹ 

Vq = 1.76 10⁻³⁰ / 7.752 10¹⁹ = 0.2270 10⁻⁴⁹ = 2.270 10⁻⁵⁰ mᶾ 

Vq = 2,270 10⁻⁵⁰ mᶾ, volume of the quark. 

Where Mϴ is solar mass, T is temperature, Kʙq is Boltzmann´s constant for black hole, D is scale 
factor of Boltzmann´s constant and Vq is quark volume. 

V = (4/3) x π x R³, R = ᶾ √ (V / 1.33 x π) = ᶾ √ (2.270 10⁻⁵⁰ / 4.17) 

V = ᶾ √ 0.5435 10⁻⁵⁰ 

R = ᶾ √ 5.435 10⁻⁵¹ = 1.758 10⁻¹⁷ m 

R = 1.758 10⁻¹⁷ m 

Where R, corresponds to the radius of the quark when a black hole is formed. 

3.4. Determination of the curvature of space-time 

Calculation of the curvature of space-time of our planet earth 

curved spacetime: 

Kʙ = hc³ / (8ᴨTGM) 

M = 5.97 10²⁴ kg 

Where M is earth mass 

T = 6 10³ K 

Where T is temperature 

Kʙt = (6.62 10ˉ³⁴ x 27 10²⁴) / (8 x 3.14 x 6 10³ x 6.67 10ˉ¹¹ x 5.97 10²⁴) 

Kʙt = 178.74 10ˉ¹⁰ / 6000.65 10¹⁶ = 0.0297 10ˉ²⁶ = 2.97 10ˉ²⁸ J/K 

Kʙt = 2.97 10ˉ²⁸ J/K 

Where Kʙt is Boltzmann’s constant of earth 

Et = Kʙt x Tt 

Et = 2.97 10ˉ²⁸ J/K x 6 10³ K 
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Et = 17.82 10ˉ²⁵ J 

Et = h x ft 

Where Et is energy  

ft = Et / h = 17.82 10ˉ²⁵ / 6.62 10ˉ³⁴ = 2.69 10⁹ 

ft = 2.69 10⁹ Hz 

Where ft is frequency 

c = λt x ft; λt = c / ft 

λt = 3 10⁸ / 2.69 10⁹ = 1.11 10ˉ¹ = 0.11 m 

λt = 0.11 m 

Where λt is wavelength 

Degree = λt / 360 = 0.11 / 360 = 0.00030 m 

second of arc = degree / 3600 

second of arc = 0.00030 / 3600 = 0.0000000849 m 

second of arc = 0.0000000849 m 

second of arc = 8.49 10ˉ⁸ m 

We are going to carry out the same calculations but for Kʙ = 1.38 10ˉ²³ J/K 

Flat espace-time: 

E = Kʙ x Tt 

E = 1.38 10ˉ²³ J/K x 6 10³ K 

E = 8.28 10ˉ²⁰ J 

E = h x ft 

Where E is energy 

ft = Et / h = 8.28 10ˉ²⁰ / 6.62 10ˉ³⁴ = 1.25 10¹⁴ 

ft = 1.25 10¹⁴ Hz 

Where ft is frequency 

c = λt x ft; λt = c / ft 

λt = 3 10⁸ / 1.25 10¹⁴ = 2.4 10ˉ⁶ 

λt = 2.4 10ˉ⁶ m 

Where λt is wavelength 

Degree = λt / 360 = 2.4 10ˉ⁶ / 360 = 0.00666 10ˉ⁶ m 

second of arc = degree / 3600 

second of arc = 0.00666 10ˉ⁶ / 3600 = 1.85 10ˉ¹² 

second of arc = 1.85 10ˉ¹² m 

Cv = curved space time / flat space time 

Cv = 8.49 10ˉ⁸ m / 1.85 10ˉ¹² m 

Cv = 4.58 10⁴ times 
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1/Cv = 21.83 microsecond 

1/Cv, time correction in GPS for the curvature of space-time in a cycle /dia. 

Calculation of the force and acceleration of the earth 

F = - (G Mm) / r² 

m = 1 kg 

F = - 6.67 x 5.97 10²⁴ / (6.37 10⁶) ² 

F = - 9.81 N 

g = - 9.81 m/s² 

Calculation of the space-time curvature for the sun 

curved spacetime: 

Kʙ = hc³ / (8ᴨTGM) 

M = 1.98 10³⁰ kg 

T = 1.5 10⁷ K 

Kʙs = (6.62 10ˉ³⁴ x 27 10²⁴) / (8 x 3.14 x 1.5 10⁷ x 6.67 10ˉ¹¹ x 1.98 10³⁰) 

Kʙs = 178.74 10ˉ¹⁰ / 497.62 10²⁶ = 0.3591 10ˉ³⁶ 

Kʙs = 3.59 10ˉ³⁷ J/K 

Es = Kʙs x Ts 

Es = 3.59 10ˉ³⁷ x 1.5 10⁷ 

Es = 5.38 10ˉ³⁰ J/K 

Es = h x fs 

fs = Es / h = 5.38 10ˉ³⁰ / 6.62 10ˉ³⁴ = 0.81 10⁴ = 8.1 10³ Hz 

fs = 8.1 10³ Hz 

c = λs x fs; λs = c / fs 

λs = 3 10⁸ / 8.1 10³ = 0.37 10⁵ = 3.7 10⁴ =37,000 m 

λs = 3.7 10⁴ m 

Where M is earth mass, T is temperature, Kʙs is Boltzmann’s constant of sun, fs is frequency and  
λs is wavelength. 

Degree = λs / 360 = 37000 / 360 = 102.77 m 

second of arc = degree / 3600 

second of arc = 102.77 / 3600 = 0.0285 m 

second of arc = 0.0285 m 

We are going to carry out the same calculations but for Kʙ = 1.38 10ˉ²³ J/K 

Flat space-time: 

E = Kʙ x Ts 

E = 1.38 10ˉ²³ x 1.5 10⁷ 

E = 2.07 10ˉ¹⁶ J/K 

E = h x f 
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f = E / h = 2.07 10ˉ¹⁶ / 6.62 10ˉ³⁴ = 0.3126 10¹⁸ 

f = 3.12 10¹⁷ Hz 

c = λ x f; λ = c / f 

λ = 3 10⁸ / 0.312 10¹⁸ 

λ = 9.61 10ˉ¹⁰ m 

Degree = λ / 360 = 9.61 10ˉ¹⁰ / 360 = 0.02669 10ˉ¹⁰ m 

Segundo de arco = Degree / 3600 

Segundo de arco = 0.02669 10ˉ¹⁰ / 3600 

Segundo de arco = 0.02669 10ˉ¹⁰ / 3600 = 0.00000741 10ˉ¹⁰ 

Segundo de arco = 7.41 10ˉ¹⁶ m 

Cv = curved space time / flat space time 

Cv = 28.5 10ˉ³ m / 7.41 10ˉ¹⁶ m 

Cv = 3.84 10¹³ times 

Calculation of the force and acceleration of the sun 

F = - (G Mm) / r² 

m = 1 kg 

Fs = - 6.67 10ˉ¹¹ x 1.98 10³⁰ / (6.95 10⁸) ² = - 13.20 10¹⁹ / 48.30 10¹⁶ = 0.273 10³ 

Fs = - 2,73 10² N 

gs = - 2.73 10² m/s² 

Calculation of the space-time curvature for a white dwarf star 

Curved Space-time: 

Kʙ = hc³ / (8ᴨTGM) 

Kʙe = 1.97 10ˉ³⁷ J/K 

Ee = Kʙe x Te 

Ee = 1.9 10ˉ³⁷ x 2 10⁷ 

Ee = 3.8 10ˉ³⁰ J/K 

Ee = h x fe 

fe = Ee / h = 3.8 10ˉ³⁰ / 6.62 10ˉ³⁴ = 0.5740 10⁴ = 5.74 10³ 

fe= 5740 Hz 

c = λe x fe; λe = c / fe 

λe = 3 10⁸ / 5.740 10³ 

λe = 0.5226 10⁵ m = 52264 m = 5.224 10³ m 

Where Kʙe is Boltzmann´s constant for a white dwarf star, Ee is energy, fe is frequency and λe 
is wavelength. 

Degree = λe / 360 = 52264 / 360 = 145.17 m 

second of arc = degrees / 3600 

second of arc = 145.17 / 3600 
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second of arc = 0.0403 m 

We are going to carry out the same calculations but for Kʙ = 1.38 10ˉ²³ J/K 

Flat space-time: 

Kʙ = 1.38 10ˉ²³ J/K 

E = Kʙ x Te 

E = 1.38 10ˉ²³ x 2 10⁷ 

E = 2.76 10ˉ¹⁶ J/K 

E = h x fe 

fe = Ee / h = 2.76 10ˉ¹⁶ / 6,62 10ˉ³⁴ = 0.4123 10¹⁸ 

fe= 4.12 10¹⁷ Hz 

c = λe x fe; λe = c / fe 

λe = 3 10⁸ / 4.12 10¹⁷ = 0.72 10ˉ⁹ m 

Degree = λe / 360 

Degree = 0.72 10ˉ⁹ / 360 = 0.002 10ˉ⁹ m 

Degree = 0.002 10ˉ⁹ m 

second of arc = degrees / 3600 

second of arc = 0.002 10ˉ⁹ / 3600 = 5.55 10ˉ⁷ x 10ˉ⁹ 

second of arc = 5.55 10ˉ¹⁶ m 

Cv = curved space time / flat space time 

Cv = 0.0403 m / 5.55 10ˉ¹⁶ m 

Cv = 0.007.2 10¹⁶ 

Cv = 7.2 10¹³ times 

Calculation of the force and acceleration of gravity for a white dwarf star 

F = - (G M m) / r² 

m = 1 kg 

Fe = - 6,67 10ˉ¹¹ x 2.8 10³⁰ / (6.3 10⁶) ² = - 18.67 10¹⁹ / 39.69 10¹² = - 0,47 10⁷ 

Fe = - 4.7 10⁶ N 

ge = - 4.7 10⁶ m/s² 

Calculation of the curvature of space-time for a neutron star 

Curved space-time: 

Kʙ = hc³ / (8ᴨTGM) 

Kʙn = 2.42 10ˉ⁴² J/K 

En = Kʙn x Tn 

En = 2.42 10ˉ⁴² x 10¹² 

En = 2.42 10ˉ³⁰ J/K 

En = h x fn 
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fn= En / h = 2.42 10ˉ³⁰ / 6.62 10ˉ³⁴ = 0.3655 10⁴ 

fn = 3.655 10³ Hz 

c = λn x fn; λn = c / fn 

λn = 3 10⁸ / 3.655 10³ 

λn = 8.207 10⁴ m 

Where Kʙn is Boltzmann´s constant for neutron star, En is energy, fn is frequency and λn is 
wavelength. 

Degree = λn / 360 = 82070 / 360 = 227.99 m 

Degree = 227.99 m 

second of arc = degrees / 3600 

second of arc = 227.99 / 3600 

second of arc = 0.0633 m 

We are going to carry out the same calculations but for Kʙ = 1.38 10ˉ²³ J/K 

Flat space-time: 

Kʙ = 1.38 10ˉ²³ J/K 

E = Kʙ x Tn 

E = 1.38 10ˉ²³ x 10¹² 

E = 1.38 10ˉ¹¹ J/K 

E = h x fn 

Fn = En / h = 1.38 10ˉ¹¹ / 6.62 10ˉ³⁴ = 0.2084 10²³ 

Fn = 2.084 10²² Hz 

c = λn x fn; λn = c / fn 

λn = 3 10⁸ / 2.084 10²² 

λn = 1.43 10ˉ¹⁴ m 

Degree = λn / 360 = 1.43 10ˉ¹⁴ / 360 = 0.00397 10ˉ¹⁴ = 3.97 10ˉ¹⁷ m 

Degree = 3.97 10ˉ¹⁷ m 

second of arc = degrees / 3600 

second of arc = 3.97 10ˉ¹⁷ m / 3600 

second of arc = 3.97 10ˉ¹⁷ m / 3600 = 1.1 10ˉ²⁰ m 

second of arc = 1.1 10ˉ²⁰ m 

Cv = curved space time / flat space time 

Cv = 0.0633 m / 1.1 10ˉ²⁰ m = 6.33 10ˉ² / 1.1 10ˉ²⁰ = 5.75 10¹⁸ 

Cv = 5.75 10¹⁸ m 

Calculation of the force and acceleration of gravity for a neutron star 

F = - (G M m) / r² 

m = 1 kg 

Fn = - 6,67 10ˉ¹¹ x 4.4 10³⁰ / (12 10³) ² = - 29.34 10¹⁹ / 144 10⁶ = - 0,20 10¹³ 
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Fn = - 2.0 10¹² N 

gn = - 2.0 10¹² m/s² 

Calculation of the curvature of space-time for a black hole of three solar masses 

Curved space-time: 

Kʙ = hc³ / (8ᴨTGM) 

Kʙʜ = 1.78 10ˉ⁴³ J/K 

Eʙʜ = Kʙʜ x Tʙʜ 

Eʙʜ = 1.78 10ˉ⁴³ x 10¹³ 

Eʙʜ = 1.78 10ˉ³⁰ J 

Eʙʜ = h x fʙʜ 

fʙʜ = Eʙʜ / h = 1.78 10ˉ³⁰ / 6.62 10ˉ³⁴ = 0.2688 10⁴ 

fʙʜ = 2.688 10³ 

c = λ ʙʜ x fʙʜ; λʙʜ = c / fʙʜ 

λʙʜ = 3 10⁸ / 2.688 10³ 

λʙʜ = 1.11 10⁵ m 

Where Kʙʜ is Boltzmann´s constant for a Black Hole, Eʙʜ is energy, fʙʜ is frequency and λʙʜ is 
wavelength. 

Degree = λ / 360 = 111000 / 360 = 308.33 m 

Degree = 308.33 m 

second of arc = degree / 3600 

second of arc = 308.33 / 3600 

second of arc = 0.0856 m 

We are going to carry out the same calculations but for Kʙ = 1.38 10ˉ²³ J/K 

Flat space-time: 

Kʙ = 1.38 10ˉ²³ J/K 

E = Kʙ x Tʙʜ 

E = 1.38 10ˉ²³ x 10¹³ 

E = 1.38 10ˉ¹⁰ J 

E = h x fʙʜ 

fʙʜ = E / h = 1.38 10ˉ¹⁰ / 6.62 10ˉ³⁴ = 0.2084 10²⁴ 

fʙʜ = 2.084 10²³ 

c = λ ʙʜ x fʙʜ; λʙʜ = c / fʙʜ 

λʙʜ = 3 10⁸ / 2.084 10²³ 

λʙʜ = 1.439 10ˉ¹⁵ m 

Degree = λ / 360 = 1.439 10ˉ¹⁵ / 360 = 0.00399 10ˉ¹⁵ = 3.9910ˉ¹⁸ m 

Degree = 3.9910ˉ¹⁸ m 

second of arc = degree / 3600 
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second of arc = 3.99 10ˉ¹⁸ / 3600 = 1.108 10ˉ²¹ m 

second of arc = 1.108 10ˉ²¹ m 

Cv = curved space time / flat space time 

Cv = 0.0856 m / 1.108 10ˉ²¹ m = 0.0772 10²¹ 

Cv = 7.72 10¹⁹ 

Calculation of the force and acceleration of gravity of a black hole 

F = - (G M m) / r² 

m = 1 kg 

Fʙʜ = - 6,67 10ˉ¹¹ x 6 10³⁰ / (9 10³) ² = - 40.02 10¹⁹ / 81 10⁶ = - 0.5 10¹³ 

Fʙʜ = - 5.0 10¹² N 

gʙʜ = - 5.0 10¹² m/s² 

We must emphasize that the two methods used to calculate the characteristics of curved space-
time (Kʙ, E, f, λ,Cv, g, etc), are equivalent and give us the same result. 

The first method consists of taking the volume of the carbon 12 atom as a reference for a flat 
space-time and comparing it with the volume of a neutron or a quark, in order to calculate some 
fundamental characteristics of a curved space-time (Kʙ, E, f, λ,Cv, g, etc). see 2. i) and 2. ii). 

The second method consists of applying the Hawking temperature equation of a black hole, T = hc³ / (8ᴨKʙGM), in order to calculate some fundamental characteristics of curved space-time (Kʙ, E, f, λ,Cv, g, etc). see 3.). 
When we talk about the effective Boltzmann´s constant, we refer to a value between (1.38 10⁻²³ > Kв effective > 1.78 10⁻⁴³) J/K, for curved space-time. 
When we talk about Boltzmann´s constant for flat space-time, Kв =1.38 10⁻²³ J/K. 
We can also say that Newton's theory of gravity and Einstein's theory of general relativity are 

two sides of the same coin and as such we can use them in future calculations together with the theory 
of the generalization of Boltzmann's constant in curved space-time.  

Elegantly, using the theory of the generalization of the Boltzmann´s constant in curved 
spacetime, we have shown how to quantize the curvature of space-time. 

It is also important to note that the scale contraction factor of the Boltzmann´s constant D, for a 
white dwarf star, neutron star and a black hole, is equivalent to the curvature Cv, calculated for a 
curved space-time. In general, this relationship is always fulfilled, for any state of matter. 

Generally, we say in the presence of mass, space-time curves; however, we saw in our 

calculations that in the presence of mass, space-time curves and contracts. The curvature of space 

time is interpreted by Einstein's theory of general relativity, in the case of the earth we quantify it 

by Cv = 4.58 10⁴ times. The contraction of the space-time of the mass of the earth with respect to flat 

space-time, we can interpret it through Newton's theory of gravity, in the case of the earth we can 

quantify it through a gravitational force that exerts an acceleration on the bodies of g = 9.81 m/s² 

To finish with these comments, in Table 1, we observe that to form a black hole of three solar 
masses, space-time is reduced or contracted by a factor of 7.72 10¹⁹ times. This is the maximum 
curvature of space-time that it can support. As the black hole of three solar masses grows, a 
phenomenon occurs that we are going to explain below, the Planck´s length begins to decrease, 
according to the theory of the RLC electrical model of the universe, as the black hole grows, the 
Planck´s length decreases until a moment comes when the black hole disintegrates producing the Big 
Bang. 
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Table 1. We can observe in table 1, according to the state of matter, how the KB, frequency, 
wavelength, etc, vary; according to whether we are in a flat space-time or in a curved space-time. 

Earth Flat space-time Curved space-time units 

Kʙ (Boltzmann´s constant) 1.38 10ˉ²³  2.97 10ˉ²⁸  (J/K) 

f (frequency) 1.25 10¹⁴  2.69 10⁹  Hz 

λ (wavelength) 2.4 10ˉ⁶  0.11  m 

second of arc   1.85 10ˉ¹²  8.49 10ˉ⁸  m 

Cv (curvature) 1 4.58 10⁴  times 

g (gravity)   9.81 m/s² 

Sun Flat space-time Curved space-time units  

Kʙ (Boltzmann´s constant) 1.38 10ˉ²³  3.59 10ˉ³⁷  (J/K) 

f (frequency) 3.12 10¹⁷  8.1 10³  Hz 

λ (wavelength) 9.61 10ˉ¹⁰  3.7 10⁴  m 

second of arc   7.41 10ˉ¹⁶  0.0285  m 

Cv (curvature) 1 3.84 10¹³  times 

g (gravity)   2.73 10²  m/s² 

White dwarf star Flat space-time Curved space-time units  

Kʙ (Boltzmann´s constant) 1.38 10ˉ²³  1.97 10ˉ³⁷  (J/K) 

f (frequency) 4.12 10¹⁷  5.74 10³ Hz 

λ (wavelength) 0.72 10ˉ⁹  5.224 10³  m 

second of arc   5.55 10ˉ¹⁶  0.0403  m 

Cv (curvature) 1 7.2 10¹³  times 

g (gravity)   4.7 10⁶  m/s² 

Neutron star Flat space-time Curved space-time units  

Kʙ (Boltzmann´s constant) 1.38 10ˉ²³  2.42 10ˉ⁴² (J/K) 

f (frequency) 2.084 10²²  3.655 10³  Hz 

λ (wavelength) 1.43 10ˉ¹⁴  8.207 10⁴  m 

second of arc   1.1 10ˉ²⁰  0.0633  m 

Cv (curvature) 1 5.75 10¹⁸  times 

g (gravity)   2.0 10¹²  m/s² 

Black hole  Flat space-time Curved space-time  units 

Kʙ (Boltzmann´s constant) 1.38 10ˉ²³  1.78 10ˉ⁴³  (J/K) 

f (frequency) 2.084 10²³ 2.688 10³ Hz 

λ (wavelength) 1.439 10ˉ¹⁵  1,11 10⁵  m 

second of arc   1.108 10ˉ²¹ 0.0856  m 

Cv (curvature) 1 7.72 10¹⁹ times 

g (gravity)   5.0 10¹²  m/s² 

we can intuitively say that the Big Bang is the process by which space-time recovers its original 

size, that is, during the Big Bang, all the space-time that was compressed to form a black hole, or 

primordial atom, is recovered. 
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4. Shannon-Bgibbs entropy ratio and the effective boltzmann´s constant 

Information Theory applied to atomic systems 

As mentioned, the entropy concept can be interpreted in two ways: as a measure of the system's 
irreversibility, within the scope of thermodynamics; and the measure of the degree of disorder of the 
system, in Statistical Mechanics. In these two developments, both thermodynamic entropy and 
statistical entropy appear not as an initial concept of a theory, but after a whole treatment and 
physical predictions. Within the scope of Information Theory, Shannon's entropy appears as the 
starting point of a theory, as a measure of uncertainty of any probability distribution, without 
physical predictions. The a priori detachment of physical ideas for the construction of Shannon's 
entropy, contrary to seeming a disadvantage in its application in Physics, allows its applicability to 
more diverse situations, where statistical entropy cannot be applied directly, due to restrictions of the 
point of view of Physics. 

Being constructed based on a probability distribution, it is reasonable to analyze the probability 

density provided by Quantum Mechanics from the point of view of Information Theory. It is 
at this point that Information Theory comes into contact with Quantum Theory. For a continuous 

probability density distribution  provided by the wave function of the system in position space, 

that is, , the Shannon entropy for continuous systems, given by Eq. (2.7), takes the 
form: 

 

 
The Shannon entropy in position space, Sr, measures the uncertainty in the particle's location in 

space. For atomic systems, the case treated in the present work, where the movement of electrons 

under the action of an atomic nucleus is studied, the quantity , multiplied by the electronic 
charge of the system, q, represents the electronic probability density of the system. Thus, in particular, 
Sr is a measure of uncertainty in the location of the electron. 

By applying a Fourier Transform to the wave function in position space, , we can determine 

its representation in the space of moments, , and their respective probability distribution,
, In this case the Shannon entropy for continuous systems takes the form: 

 
The Shannon entropy in momentum space, Sp, measures the uncertainty in predicting the 

momentum of the particle, in particular the electron. 
(3.11) and (3.12) respectively give the Shannon entropies of the system in position space and in 

momentum space. Because it treats distributions other than the Gaussian well, the Shannon entropy 
is thought to be a more satisfactory measure of the uncertainty or spread of a probability distribution 
than the measure provided by the standard deviation. 

Iwo Bialynicki-Birula and Jerzy Mycielsh provide a proof for an important uncertainty relation 
based on Information Theory: 

 

where n is the dimension in position space. The entropy relation thus derived came to be known as 
the BBM relation or entropy sum St. Such an uncertainty relation involving the Shannon entropies Sr 
and Sp is more general than the Heisenberg uncertainty relation, in the sense that we can derive Eq. 
(3.10) of Eq. (3.13), but the opposite is not possible. 
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The entropic uncertainty relation has the clear meaning of presenting a minimum threshold 
value for the sum St, which is reached by Gaussian wave functions. The conjugate Shannon entropy 
in position space and Shannon entropy in momentum space have an inverse relationship. In this way, 
the more a probability distribution is wide in the space of positions, the narrower it will be in the 
space of moments and vice versa, obeying Eq. (3.13). 

The Shannon entropies referring to Eqs. (3.11), (3.12) and (3.13) are for probability densities for 
a particle. A generalization for a number N of particles is given by: 

 

 

where Sr(N ) and Sp(N ) are Shannon entropies where the probability densities  and 

, are normalized to a number N of particles. An interesting feature of the sum St(N ) is 

the fundamental role given the densities and , in the formalism used for 
Information Theory. 

Using the first functional model given by the Thomas-Fermi theory for neutral atoms, Eqs. (3.14) 
and (3.15), respectively, take the form: 

 

 

 
where N means the number of electrons in the atom. Comparing the relations (3.20) and (3.17) we 
have a very great similarity. 

Initially, it is conjectured that the sum St, involving the distribution of electrons in atoms using 
the quantities Sr(N ) and Sp(N ), where N is the number of electrons, can take the following form: 

 
Later works showed that the previous property is much more general, it is valid regardless of 

the types of constituent particles of the system (fermions or bosons), with α and β values close to 
depend on the type of particle in question. Thus, the form given by Eq. (3.21) is conjectured to be 
universal. 

5. Application of the model and results 

The equation (3.21) is the equation we are going to work with. 

 
Shannon-Gibbs Entropy Relationship 

R = St(ɴ) / Sɢ 
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Within the scope of Information Theory, Shannon's entropy appears as the starting point of a 
theory, as a measure of uncertainty of any probability distribution, without physical predictions. 

In 1902 Gibbs presents a formalization of Statistical Mechanics with a method based on the 
concept of ensembles, we will understand by ensemble the set of microstates accessible to the system. 

Sɢ entropy from a statistical mechanics point of view. 

Sɢ = Kʙ ln ω Kʙ, Boltzmann´s constant 

5.1. For a Carbon 12 atom 

A) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for 

a white dwarf star. 

a) Kвe = hc³/ (8ᴨTGM) 

Kвe = 1.90 10⁻³⁷ J/K, curved space-time. 

For M = 1.4 Mϴ = 1.4 x 2 10³⁰ = 2.8 10³⁰ kg 

T = 20 10⁶ K 

Kвe = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 20 10⁶ x 6.67 10⁻¹¹ x 2.8 10³⁰) 

Kвe = 1.90 10⁻³⁷ J/K 

D = Kв / Kвe, D = 1.38 10⁻²³ / 1.90 10⁻³⁷ = 0.7236 10¹⁴ 

D = 7,23 10¹³ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For a carbon 12 atom, the approximate BGibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ = 7.23 10¹³ x 1.90 10⁻³⁷ 

Sɢ = 13.73 10⁻²⁴ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 13,73 10⁻²⁴ J/K 

Shannon´s entropy 

 
N = D = 7.23 10¹³, N number of particles. 
St(ɴ) = 7.23 10¹³, α e β <<< N 
In the volume of a carbon 12 atom under normal conditions of pressure, volume and 

temperature we have the amount of D = 7.23 10¹³ carbon 12 atoms in a white dwarf star. 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / BGibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 7.23 10¹³ / 13.73 10⁻²⁴ = 0.52 10³⁷ 

R = 0,52 10³⁷ 

b) Kв = 1.38 10⁻²³ J/K, flat space-time. 
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BGibbs´s entropy 

 

S = Kʙ ln ω 

For a carbon 12 atom, the approximate BGibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ = 7.23 10¹³ x 1.38 10⁻²³ = 9.97 10⁻¹⁰ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 9.97 10⁻¹⁰ J/K 

Shannon´s entropy 

 
N = D = 7.23 10¹³, N number of particles. 
St(ɴ) = 7.23 10¹³, α e β <<< N 
n the volume of a carbon 12 atom under normal conditions of pressure, volume and temperature 

we have the amount of D = 7.23 10¹³ carbon 12 atoms in a white dwarf star. 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / BGibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 7,23 10¹³ / 9,97 10⁻¹⁰ = 0,72 10²³ 

R = 0,72 10²³ 

B) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for 

a neutron star. 

a) Kвn = hc³/ (8ᴨTGM) 

Kвn = 2.42 10⁻⁴² J/K, for curved space-time. 

For M = 2.2 Mϴ = 2.2 x 2 10³⁰ = 4.4 10³⁰ kg 

T = 10¹² K 

Kвn = 6.63 10⁻³⁴ x 27 10²⁴ / 8 x 3.14 x 10¹² x 6.67 10⁻¹¹ x 4.4 10³⁰ 

Kвn = 179.01 10⁻¹⁰ / 737.22 10³¹ = 0.2428 10⁻⁴¹ 

Kвn = 2.42 10⁻⁴² J/K 

D = Kв / Kвn; D = 1.38 10⁻²³ / 2.42 10⁻⁴² = 0.5702 10¹⁹ 

D = 5.702 10¹⁸ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For a carbon 12 atom, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 5.70 10¹⁸ x 2.42 10⁻⁴² = 13.79 10⁻²⁴ 
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Sɢ = 13.79 10⁻²⁴ J/K 

Shannon´s entropy 

 
N = D = 5.702 10¹⁸, N number of particles 
St(ɴ) = 5,702 10¹⁸, α and β <<< N 
In the volume of a carbon 12 atom under normal conditions of pressure, volume and 

temperature we have the amount D = 5,702 10¹⁸ neutrons, in an ideal neutron star. 

Shannon–Gibbs entropy relation 

R = Shannon entropy / Gibbs entropy 

R = St(ɴ) / Sɢ 

R = 5.70 10¹⁸ / 13.79 10⁻²⁴ = 0.41 10⁴² 

R = 0.41 10⁴² 

b) Kв = 1.38 10⁻²³ J/K, flat space-time 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For a carbon 12 atom, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 5.70 10¹⁸ x 1.38 10⁻²³ = 7.86 10⁻⁵ 

Sɢ = 7.89 10⁻⁵ J/K 

Shannon´s entropy 

 
N = D = 5.702 10¹⁸; N number of particles 
St(ɴ) = 5,702 10¹⁸, α and β <<< N 
In the volume of a carbon 12 atom under normal conditions of pressure, volume and 

temperature we have the amount of D = 5.702 10¹⁸ neutrons, in an ideal neutron star. 

Shannon-BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 5.70 10¹⁸ / 7.89 10⁻⁵ = 0.72 10²³ 

R = 0.72 10²³ 

C) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for 

a Black Hole of 3 solar masses. 

a) Kвq = 1.78 10ˉ⁴³ J/K 

Kвq = hc³/ (8ᴨTGM) 

M = 3Mϴ = 3 x 2 10³⁰ = 6.0 10³⁰ kg 

T = 10¹³ K 
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Kвq = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 10¹³ x 6.67 10⁻¹¹ x 6.0 10³⁰) 

Kвq = 1.78 10⁻⁴³ J/K; Boltzmann´s constant of a black hole. 

D = Kв / Kвq; D = 1.38 10⁻²³ / 1.780 10⁻⁴³ = 0.7752 10²⁰ = 7.752 10¹⁹ 

D = 7.75 10¹⁹ 
BGibbs´s entropy 

 S = Kʙ ln ω 
For a carbon 12 atom, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 7.75 10¹⁹ x 1.78 10⁻⁴³ 

Sɢ = 13.79 10⁻²⁴ 

Shannon´s entropy 

 
N = D = 7.75 10¹⁹, N number of particles 
St(ɴ) = 7.75 10¹⁹, α and β <<< N 
In the volume of a carbon 12 atom under normal conditions of pressure, volume and 

temperature we have the amount of D = 7.75 10¹⁹ quarks, in a Black Hole. 

Shannon-BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 7.75 10¹⁹ / 13.79 10⁻²⁴ = 0.56 10⁴³ 

R = 0,56 10⁴³ 

b) Kв = 1.38 10⁻²³ J/K, for flat space-time 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For a carbon 12 atom, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 7.75 10¹⁹ x 1.38 10⁻²³ 

Sɢ = 10.69 10⁻⁴ 

Shannon´s entropy 
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N = D = 7.75 10¹⁹, N number of particles 
St(ɴ) = 7.75 10¹⁹, α and β <<< N 
In the volume of a carbon 12 atom under normal conditions of pressure, volume and 

temperature we have the amount of D = 7.75 10¹⁹ quarks, in a Black Hole. 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 7.75 10¹⁹ / 10.69 10⁻⁴ = 0.72 10²³ 

R = 0,72 10²³ 

D) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant 

under normal conditions of pressure, volume and temperature. 

To carry out our calculations, we are going to use the calculations made in the Master's Thesis, 
written by Wallas Santos Nascimento entitled, on some characteristics of Shannon´s entropy for 
confined atomic systems. 

From the Paper, we take the following values of St(ɴ) 
Atoms with one electron: 

For confined hydrogen atoms, St(ɴ) = 6.5 

For confined ionized helium atom, St(ɴ) = 6.5 

For doubly ionized confined lithium atom, St(ɴ) = 6.5 

Atom with two electrons: 

For confined helium atom, St(ɴ) = 13.0 

For confined ionized lithium atom, St(ɴ) = 13.0 

Confined harmonic oscillator: 

For confined harmonic oscillator, St(ɴ) = 2.00 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For a carbon 12 atom, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 1 carbon 12 atom, we have: 

Sɢ = 1.38 10⁻²³ J/K 

Shannon´s entropy 

 

N = 1 

St(ɴ) = α 

If we look at the values of St(ɴ) calculated in the examples in the paper, we see that St(ɴ) takes 
values between 2, 6 and 13. 

i) St(ɴ) = α = 6 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 
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R = 6 10⁰ / 1.38 10⁻²³ = 4.34 10²³ 

R = 4.34 10²³ 

ii) St(ɴ) = α = 13 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 1.3 10¹ / 1.38 10⁻²³ = 0.94 10²⁴ = 0.94 10²⁴ 

R = 0.94 10²⁴ 

iii) St(ɴ) = α = 2 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 2 10⁰ / 1.38 10⁻²³ = 1.44 10²⁴ = 1.44 10²⁴ 

R = 1.44 10²⁴ 

5.2. For N = 6.02 10²³ particles 

A) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for 

a white dwarf star. 

a) Kвe = 1.90 10⁻³⁷ J/K, curved space-time. 

Kвe = hc³/ (8ᴨTGM) 

For M = 1.4 Mϴ = 1.4 x 2 10³⁰ = 2.8 10³⁰ kg 

T = 20 10⁶ K 

Kвe = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 20 10⁶ x 6.67 10⁻¹¹ x 2.8 10³⁰) 

Kвe = 1.90 10⁻³⁷ J/K 

D = Kв / Kвe; D = 1.38 10⁻²³ / 1.90 10⁻³⁷ = 0.7236 10¹⁴ 

D = 7.23 10¹³ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 6.02 10²³ particles, the approximate Gibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ = 6.02 10²³ x 1.9 10⁻³⁷ = 8.3 10⁻¹⁴ 

For N = 6.02 10²³: 

Sɢ = 8.3 10⁻¹⁴ J/K 

Shannon´s entropy 

 
N = 6.02 10²³; N number of particles 
St(ɴ) = 6.02 10²³; α and β <<< N 
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Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 6.02 10²³ / 8.3 10⁻¹⁴ = 0.72 10³⁷ 

R = 0.72 10³⁷ 

b) Kв = 1.38 10⁻²³ J/K, for flat spacetime 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 6.02 10²³ particles, the approximate BGibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ = 6.02 10²³ x 1.38 10⁻²³ = 8.3 

Para N = 6.02 10²³: 

Sɢ = 8.3 J/K 

Shannon´s entropy 

 
N = 6.02 10²³; N number of particles 
St(ɴ) = 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon entropy / Gibbs entropy 

R = St(ɴ) / Sɢ 

R = 6.02 10²³ / 8.3 = 0.72 10²³ 

R = 0.72 10²³ 

B) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for 

a neutron star 

a) Kвn = 2.42 10⁻⁴² J/K, for curved spacetime 

Kвn = hc³/ (8ᴨTGM) 

For M = 2.2 Mϴ = 2.2 x 2 10³⁰ = 4.4 10³⁰ kg 

T = 10¹² K 

Kвn = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 10¹² x 6.67 10⁻¹¹ x 4.4 10³⁰) 

Kвn = 2.42 10⁻⁴² J/K 

D = Kв / Kвn; D = 1.38 10⁻²³ / 2.42 10⁻⁴² = 0.5702 10¹⁹ 

D = 5.702 10¹⁸ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 6.02 10²³ particles, the approximate Gibbs entropy will be: 
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Sɢ = ΔE /T = PV/T = nR = N Kʙ 

Sɢ = 6.02 10²³ x 2.42 10⁻⁴² = 14.56 10⁻¹⁹ 

Sɢ = 1.45 10⁻¹⁸ J/K 

Shannon´s entropy 

 
N = 6.02 10²³; N number of particles 
St(ɴ) = 6.02 10²³; α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 6.02 10²³ / 1.45 10⁻¹⁸ = 4.15 10⁴¹ 

R = 4.15 10⁴¹ 

b) Kв = 1.38 10⁻²³ J/K, for flat space-time 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 6.02 10²³ particles, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 6.02 10²³ particles, we have: 

Sɢ = 6.02 10²³ x 1.38 10⁻²³ = 8.31 

Sɢ = 8.31 J/K 

Shannon´s entropy 

 
N = 6.02 10²³, N number of particles 
St(ɴ) = 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 6.02 10²³ / 8.31 = 0.72 10²³ 

R = 0.72 10²³ 

C) We will calculate the Shannon-BGibbs entropy relation considering the Boltzmann´s constant 

for a Black Hole of 3 solar masses. 

a) Kвq = 1.78 10⁻⁴³ J/K, for curved space-time 
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Kвq = hc³/ (8ᴨTGM) 

M = 3Mϴ = 3 x 2 10³⁰ = 6.0 10³⁰ kg 

T = 10¹³ K 

Kвq = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 10¹³ x 6.67 10⁻¹¹ x 6.0 10³⁰) 

Kвq = 1.78 10⁻⁴³ J/K, Boltzmann constant of a black hole 

D = Kв / Kвq, D = 1.38 10⁻²³ / 1.780 10⁻⁴³ = 0.7752 10²⁰ = 7.752 10¹⁹ 

D = 7.75 10¹⁹ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 6.02 10²³ particles, the approximate Gibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 6.02 10²³, we have: 

Sɢ = 6.02 10²³ x 1.78 10⁻⁴³ 

Sɢ = 1.07 10⁻¹⁹ 

Shannon´s entropy 

 
N = 6.02 10²³, N number of particles 
St(ɴ) = 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 6.02 10²³ / 1.07 10⁻¹⁹ = 5.6 10⁴² 

R = 5.6 10⁴² 

b) Kв = 1.38 10⁻²³ J/K, for flat spacetime 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 6.02 10²³ particles, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 6.02 10²³, we have: 

Sɢ = 6.02 10²³ x 1.38 10⁻²³ = 8.31 

Sɢ = 8.31 J/K 

Shannon´s entropy 
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N = 6.02 10²³, N number of particles 
St(ɴ) = 6.02 10²³, α and β <<< N 

Shannon-BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 6.02 10²³ / 8.31 = 0.72 10²³ 

R = 0.72 10²³ 

5.3. For N = 10¹⁵ 6.02 10²³ particles 

A) We will calculate the Shannon-BGibbs entropy relation considering Boltzmann's constant for 

a white dwarf star. 

a) Kвe = 1.907 10⁻³⁷ J/K, for curved space-time 

Kвe = hc³/ (8ᴨTGM) 

For M = 1.4 Mϴ = 1.4 x 2 10³⁰ = 2.8 10³⁰ kg 

T = 20 10⁶ K 

Kвe = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 20 10⁶ x 6.67 10⁻¹¹ x 2.8 10³⁰) 

Kвe = 1.907 10⁻³⁷ J/K 

D = Kв / Kвe, D = 1.38 10⁻²³ / 1.907 10⁻³⁷ = 0.7236 10¹⁴ 

D = 7.236 10¹³ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 10¹⁵ x 6.02 10²³, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ = 10¹⁵ 6.02 10²³ x 1.9 10⁻³⁷ = 8.3 10¹ 

For N = 10¹⁵ 6.02 10²³, we have: 

Sɢ = 8.3 10¹ J/K 

Shannon´s entropy 

 
N = 10¹⁵ 6.02 10²³, N number of particles 
St(ɴ) = 10¹⁵ 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 10¹⁵ 6.02 10²³ / 8.3 10¹ = 0.72 10³⁷ 

R = 0.72 10³⁷ 

b) Kв = 1.38 10⁻²³ J/K, for flat space-time 

BGibbs´s entropy 
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S = Kʙ ln ω 

For N = 10¹⁵ x 6.02 10²³ particles, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ = 10¹⁵ x 6.02 10²³ x 1.38 10⁻²³ = 8.3 10¹⁵ 

For N = 10¹⁵ x 6.02 10²³, we have: 

Sɢ = 8.3 10¹⁵ J/K 

Shannon´s entropy 

 
N = 10¹⁵ x 6.02 10²³, N number of particles 
St(ɴ) = 10¹⁵ x 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 10¹⁵ x 6.02 10²³ / 8.3 10¹⁵ = 0.72 10²³ 

R = 0.72 10²³ 

B) We will calculate the Shannon-Gibbs entropy relation considering Boltzmann's constant for a 

neutron star. 

a) Kвn = 2.42 10⁻⁴² J/K, for curved space-time 

Kвn = hc³/ (8ᴨTGM) 

For M = 2.2 Mϴ = 2.2 x 2 10³⁰ = 4.4 10³⁰ kg 

T = 10¹² K 

Kвn = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 10¹² x 6.67 10⁻¹¹ x 4.4 10³⁰) 

Kвn = 2.42 10⁻⁴² J/K 

D = Kв / Kвn, D = 1.38 10⁻²³ / 2.42 10⁻⁴² = 0.5702 10¹⁹ 

D = 5,702 10¹⁸ 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 10¹⁵ x 6.02 10²³ particles, the approximate Gibbs`s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 10¹⁵ x 6.02 10²³, we have: 

Sɢ = 10¹⁵ x 6.02 10²³ x 2.42 10⁻⁴² = 14.56 10⁻⁴ 

Sɢ = 1.45 10⁻³ J/K 

Shannon´s entropy 
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N = 10¹⁵ x 6.02 10²³, N number of particles 
St(ɴ) = 10¹⁵ x 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 10¹⁵ x 6.02 10²³ / 1.45 10⁻³ = 4.15 10⁴¹ 

R = 4,15 10⁴¹ 

b) Kв = 1.38 10⁻²³ J/K, for flat space-time 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 10¹⁵ x 6.02 10²³, the approximate Gibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 10¹⁵ x 6.02 10²³, we have: 

Sɢ = 10¹⁵ x 6.02 10²³ x 1.38 10⁻²³ = 8.31 10¹⁵ 

Sɢ = 8.31 10¹⁵ J/K 

Shannon´s entropy 

 
N = 10¹⁵ x 6.02 10²³, N number of particles 
St(ɴ) = 10¹⁵ x 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 10¹⁵ x 6.02 10²³ / 8.31 10¹⁵ = 0.72 10²³ 

R = 0.72 10²³ 

C) We will calculate the Shannon-Gibbs entropy relation considering the Boltzmann´s constant 

for a Black Hole of 3 solar masses. 

a) Kвq = 1.78 10⁻⁴³ J/K, for a curved space-time 

Kвq = hc³/ (8ᴨTGM) 

M = 3Mϴ = 3 x 2 10³⁰ = 6.0 10³⁰ kg 

T = 10¹³ K 

Kвq = 6.63 10⁻³⁴ x 27 10²⁴ / (8 x 3.14 x 10¹³ x 6.67 10⁻¹¹ x 6.0 10³⁰) 

Kвq = 1.78 10⁻⁴³ J/K Boltzmann´s constant of a black hole 

D = Kв / Kвq, D = 1.38 10⁻²³ / 1.780 10⁻⁴³ = 0.7752 10²⁰ = 7.752 10¹⁹ 

D = 7.75 10¹⁹ 

BGibbs´s entropy 
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S = Kʙ ln ω 

For N = 10¹⁵ x 6.02 10²³ particles, the approximate Gibbs´s entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 10¹⁵ x 6.02 10²³, we have: 

Sɢ = 10¹⁵ x 6.02 10²³ x 1.78 10⁻⁴³ 

Sɢ = 1,07 10⁻⁴ J/K 

Shannon´s entropy 

 
N = 10¹⁵ x 6.02 10²³, N number of particles 
St(ɴ) = 10¹⁵ x 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 10¹⁵ x 6.02 10²³ / 1.07 10⁻⁴ = 5.6 10⁴² 

R = 5.6 10⁴² 

b) Kв = 1.38 10⁻²³ J/K, for flat space-time 

BGibbs´s entropy 

 

S = Kʙ ln ω 

For N = 10¹⁵ x 6.02 10²³ particles, the approximate Gibbs entropy will be: 

Sɢ = ΔE /T = PV/T = nR = N Kʙ 

For N = 10¹⁵x 6.02 10²³, we have: 

Sɢ = 10¹⁵ x 6.02 10²³ x 1.38 10⁻²³ = 8.31 10¹⁵ 

Sɢ = 8.31 10¹⁵ J/K 

Shannon´s entropy 

 
N = 10¹⁵ x 6.02 10²³, N number of particles 
St(ɴ) = 10¹⁵ x 6.02 10²³, α and β <<< N 

Shannon–BGibbs entropy relation 

R = Shannon´s entropy / Gibbs´s entropy 

R = St(ɴ) / Sɢ 

R = 10¹⁵ x 6.02 10²³ / 8.31 10¹⁵ = 0.72 10²³ 

R = 0.72 10²³ 
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5.4. We will calculate the approximate Shannon-Gibbs relationship for white dwarf stars, neutron stars and 

black holes. 

A) Calculation of the Shannon-Gibbs relationship for white dwarf stars. 

a) Curve space-time: 

M = 0.76 solar masses 

R = 0.01 Radius of the sun 

M = 2 10³⁰ x 0.76 

M = 1.52 10³⁰ kg 

Where M is mass 

R = 0.01 x 6.96 10⁸ m 

R = 6.96 10⁶ m 

Where R is radius 

Vt = (4/3) x π x R³ 

Vt = 337.15 10²⁷ m³ 

Where Vt is Volume 

N = 337.15 10²⁷ / 2.43 10⁻⁴⁴ 

N = 138.74 10⁷¹ 

Where N is particles numbers 
Sɢ = N Kʙe = 138.74 10⁷¹ x 1.90 10⁻³⁷ 

Sɢ = 263.60 10³⁴ 

Sɢ = 2.63 10³⁶ J/K 

Where Sɢ is Gibbs´s entropy 

 

Figure 1. Solar masses vs solar radius. 
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St(N) = N = 138.74 10⁷¹ 

St(N) = 138.74 10⁷¹ = 1.38 10⁷³ 

Where St(N) Shannon´s entropy 

R = St(N) / Sɢ 

R = 138.74 10⁷¹ / 2.63 10³⁶ 

R = 5.27 10³⁶ 

Where R is Shannon-Gibbs entropy relation 
b) Flat space-time: 

Sɢ = N Kʙ = 138.74 10⁷¹ x 1.38 10⁻²³ 

Sɢ = 191.46 10⁴⁸ J/K 

Where Sɢ is Gibbs´s entropy 

St(N) = N = 138.74 10⁷¹ 

Where St(N) Shannon´s entropy 

R = St(N) / Sɢ 

R = 138.74 10⁷¹ / 191.46 10⁴⁸ 

R = 0.72 10²³ 

Where R is Shannon-Gibbs entropy relation 

B) Calculation of the Shannon-Gibbs relation for neutron stars 

a) Curved space-time: 

M = 1.5 Mass of the Sun 

Where M is mass 

R = 9500 m 

R = 9.5 10³ m 

Where R is radius 

Vt = (4/3) x π x R³ 

Vt = 3580.56 10⁹ m 

Where Vt is volume 

N = Vt / Vn = 3580.56 10⁹ / 4.87 10⁻⁴⁸ 

N = 735.22 10⁵⁷ = 73.52 10⁵⁸ 

Where N is particles number 

Sɢ = N Kʙe = 7.3510⁵⁹ x 3.81 10⁻⁴¹ 

Sɢ = 28,00 10¹⁸ J/K 

Where Sɢ is Gibbs´s entropy 

St(N) = N = 73.52 10⁵⁸ 

St(N) = 73.52 10⁵⁸ 

Where St(N) is Shannon´s entropy 

R = St(N) / Sɢ 
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R = 73.52 10⁵⁸ / 28.00 10¹⁸ 

R = 2.62 10⁴⁰ 

Where R is Shannon-Gibbs entropy relation 

 

Figure 2. neutron star. 

b) Flat space-time: 

Sɢ = N Kʙn = 7.3510⁵⁹ x 1.38 10⁻²³ 

Sɢ = 10.14 10³⁶ J/K 

Where Sɢ is Gibbs´s entropy 

St(N) = N = 7.35 10⁵⁹ 

Where St(N) is Shannon´s entropy 

R = St(N) / Sɢ 

R = 7.35 10⁵⁹ / 10.14 10³⁶ 

R = 0.72 10²³ 

Where R is Shannon-Gibbs entropy relation 

C) Calculation of the Shannon-BGibbs relation for black holes 

a) Curved space-time: 

M = 3 solar masses = 6 10³⁰ kg 

Where M is mass 

R = 8.89 10³ m 

Where R is radius 

Vt = (4/3) x π x R³ 

Vt = 2934,17 10³ m³ 

Where Vt is volume 

N = Vt / Vq = 2934,17 10⁹ / 2,27 10⁻⁵⁰ 
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N = 1292.17 10⁵⁹ = 12.92 10⁶¹ 

Where N is particles numbers 

Sɢ = N Kʙq = 12.92 10⁶¹ x 1.78 10⁻⁴³ 

Sɢ = 2.29 10¹⁹ J/K 

Where Sɢ is Gibbs´s entropy 

St(N) = N = 12.92 10⁶¹ 

St(N) = 12.92 10⁶¹ 

Where St(N) is Shannon´s entropy 

R = St(N) / Sɢ 

R = 12.92 10⁶¹ / 2.29 10¹⁹ 

R = 5.64 10⁴² 

Where R is Shannon-Gibbs entropy relation 

b) Flat space-time: 

Sɢ = N Kʙ = 12.92 10⁶¹ x 1.38 10⁻²³ 

Sɢ = 17.82 10³⁸ J/K 

Where Sɢ is Gibbs´s entropy 

St(N) = N = 12.92 10⁶¹ 

St(N) = 12.92 10⁶¹ 

Where St(N) is Shannon´s entropy 

R = St(N) / Sɢ 

R = 12.92 10⁶¹ / 17.82 10³⁸ 

R = 0.72 10²³ 

Where R is Shannon-Gibbs entropy relation 

5.5. Analysis and example 

If we look at Table 2, we see that the Shannon-Gibbs entropy relation depends on the effective 
Boltzmann´s constant. We see that for Kʙ = 1.38 10ˉ²³ J/K, the entropy relationship is the same for the 
different states of matter, if we change the effective Boltzmann´s constant, we see that it depends on 
the number of fundamental particles. 
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Table 2. In Table 2, we represent the relationship of the Shanonn-Gibbs entropy vs. the effective 
Boltzmann´s constant, for different states of matter. 

 

In conclusion, we define that the effective Boltzmann´s constant determines the Shannon-Gibbs 
entropy relation and this remains constant, that is, there is no loss of information, as long as the 
effective Boltzmann´s constant is the same. 

We can see that the information is encoded in the number of fundamental particles (neutrons, 
quarks, etc.); which we represent by the effective Boltzmann´s constant. Through this mechanism the 
information is always preserved. 

In the article, RLC electrical modelling of black hole and early universe. Generalization of Boltzmann's 

constant in curved space-time, there are many examples related to the effective Boltzmann´s constant. 
Next, we will present an extremely important example that will help us understand how the 

effective Boltzmann´s constant is related to the origin of elementary particles; In addition to helping 
us understand how the theory of the generalization of Boltzmann's constant allows us to unite the 
theory of general relativity and quantum mechanics. 

Example:  
Origin of the electron, the down quark and the top quark 

To determine the origin of the fundamental particles, it is important to use the generalization 
theory of Boltzmann's constant for curved space-time and also to understand the concept of 
symmetry breaking of the electroweak unification theory. 

The concept of symmetry breaking in electroweak unification theory basically explains how the 
Higgs field gives mass to fundamental particles. In a simple, didactic and non-technical way we are 
going to demonstrate how fundamental particles really acquire mass. 

The theory of the generalization of the Boltzmann´s constant for curved space-time teaches us 
that there is an electromagnetic energy and a gravitational energy, in other words, there is an 
electromagnetic temperature and a gravitational temperature, an electromagnetic frequency and a 
gravitational frequency and also a length electromagnetic wave and a gravitational wavelength. 

The generalization theory of Boltzmann's constant for curved spacetime associates 
electromagnetic energy to the field of strong and weak electromagnetic interactions; it also associates 
gravitational energy to space-time, that is, to the field of gravitational interactions. 

The theory of the generalization of the Boltzmann constant for curved space-time, allows us to 
unite the theory of general relativity and the theory of quantum mechanics, allowing us to define a 
spectrum of gravitational waves, gravitons, analogous to the spectrum of electromagnetic waves, 
photons; In this way, we are able to quantify the curvature of space-time in the presence of mass or 
energy. 

Spectrum of electromagnetic waves: 

Eε = h x fε 

Shannon-E Gibbs-E Shannon-E Gibbs-E Shannon-Gibbs/R Shannon-Gibbs/R Shannon-Gibbs/R Shannon-Gibbs/R

Bit J/K Bit J/K Kʙ = 1.38 10ˉ²³ Kʙ = 1.90 10ˉ³⁷ Kʙ = 2.42 10ˉ⁴² Kʙ= 1.78 10ˉ⁴³
N = 1 CARBON 12 ATOM

Confined harmonic oscillator α = 2 1.38 10ˉ²³ 1.44 10²⁴
Atom with a confined electron α = 6 1.38 10 ˉ²³ 4.34 10²³

Atom with two confined electrons α = 13 1.38 10ˉ²³ 0.94 10²⁴
White dwarf star 7.23 10¹³ 13.73 10ˉ²⁴ 7.23 10¹³ 9.97 10ˉ¹⁰ 0.72 10 ²³ 0.52 10³⁷
Neutron star 5.70 10¹⁸ 13.79 10ˉ²⁴ 5.70 10¹⁸ 7.89 10ˉ⁵ 0.72 10²³ 0.41 10⁴² 
Black Hole 7.75 10¹⁹ 13.79 10ˉ²⁴ 7.75 10¹⁹ 10.69 10ˉ⁴ 0.72 10²³ 0.56 10⁴³
N = 6.02 10²³ PARTICLES

White dwarf star 6.02 10²³ 8.30 10ˉ¹⁴ 6.02 10²³ 8.3 10⁰ 0.72 10²³ 0.72 10³⁷ 
Neutron star 6.02 10²³ 14.56 10ˉ¹⁹ 6.02 10²³ 8.3 10⁰ 0.72 10²³ 0.41 10⁴² 
Black Hole 6.02 10²³ 1.07 10ˉ¹⁹ 6.02 10²³ 8.3 10⁰ 0.72 10²³ 0.56 10⁴³
N = 10¹⁵ X 6.02 10²³ PARTICLES

White dwarf star 6.02 10³⁸ 8.3 10¹ 6.02 10³⁸ 8.31 10¹⁵ 0.72 10²³ 0.72 10³⁷ 
Neutron star 6.02 10³⁸ 1.45 10ˉ³ 6.02 10³⁸ 8.31 10¹⁵ 0.72 10²³ 0.41 10⁴² 
Black Hole 6.02 10³⁸ 1.07 10ˉ⁴ 6.02 10³⁸ 8.31 10¹⁵ 0.72 10²³ 0.56 10⁴³
FOR STELLAR BODIES

White dwarf star 1.38 10⁷³ 2.63 10³⁶ 1.38 10⁷³ 1.91 10⁵⁰ 0.72 10²³ 0.52 10³⁷
Neutron star 7.35 10⁵⁹ 2.80 10¹⁹ 7.35 10⁵⁹ 1.01 10³⁷ 0.72 10²³ 0.26 10⁴¹
Black Hole 1.29 10⁶² 2.29 10¹⁹ 1.29 10⁶² 1.78 10³⁹ 0.72 10²³ 0.56 10⁴³
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Cε = λε x fε 

Eε = h x Cε / λε 

Eε = Kʙε x Tε 

Kʙɛ = 1.38 10⁻²³ J/K 

Gravitational wave spectrum: 

Eɢ = h x fɢ 

Cɢ = λɢ x fɢ 

Eɢ = h x Cɢ / λɢ 

Eɢ = Kʙɢ x Tɢ 

Kʙɢ = 1.38 10⁻²³ J/K to 1.78 10⁻⁴³ J/K 

 

 
Einstein's equation of general relativity and the correspondence of Maldacena ADS = CFT, tells 

us that both matter (energy) and space-time have to be quantized and through the generalization 
theory of Boltzmann's constant we achieve that goal.  

Table 3. Physical characteristics of the electron, down quark and top quark. 

 

We consider T = 10¹⁰ K and a contraction of space-time in a dimension of 10⁵ times, with respect 
to flat space-time for Kʙ = 1.38 10⁻²³ J/K. 

In the analysis we performed on the item: 3.3. Calculation of the effective Boltzmann´s constant for a 

black hole of three solar masses; we see that the contraction factor of Boltzmann's constant, D, is equal to 
D = 7.52 10¹⁹, in three dimensions. In one dimension it would be approximately 10⁶. 

For the electron and down quark, we are going to consider a contraction factor in a dimension 
of the order of 10⁵, for a temperature of 10¹⁰ K. 

Let's calculate the wavelength of the electron: 

C = λ x f 

λ = C / f 

λ = 3 10⁸ / 1.23 10²⁰ = 2.44 10⁻¹² m 

λ / 2 = 1.22 10⁻¹² m 

DOWN TOP ELECTRON

MASS (kg) 8.55 10⁻³⁰ 308.0 10⁻²⁷ 0.910 10⁻³⁰
ENERGY (J) 7.69 10⁻¹³ 277.2 10⁻¹⁰ 0.819 10⁻¹³
FREQUENCY (Hz) 11.60 10²⁰ 41.8 10²⁴ 1.23 10²⁰
TEMPERATURE (K) 5.57 10¹⁰ 200.8 10¹³ 0.593 10¹⁰
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Where C is speed light, f is frequency and λ is wavelength for flat space-time. 
Calculation of the diameter of the electron: 
To calculate the diameter of the electron, we are going to consider the scale contraction factor of 

Boltzmann's constant for the electron, D = 10⁵. 

De = (λ/2) / 10⁵ = 1.22 10⁻¹² / 10⁵ = 1.22 10⁻¹⁷ m 

De = 1.22 10⁻¹⁷ m 

De, electron diameter 

Re = 6.1 10ˉ¹⁸ m 

Re, electron radius 
See reference article (2), the diameter of the electron must be less than < 10ˉ¹⁷ m, a value very 

close to the calculated De = 1.22 10⁻¹⁷ m, Rtq = 6.1 10ˉ¹⁸ m. 
In this example, intuitively, using the theory of the generalization of Boltzmann's constant in 

curved space-time, we have calculated the diameter and radius of the electron. 
The conceptual idea of the origin of the fundamental particles is simple and compatible with the 

theory of the Higgs´s field. 
It also gives us to understand the difference between Fermions and Bosons. 
Fermions are bosons that, upon reaching certain physical characteristics, get space-time to 

surround them, forming the fundamental particles, that condition, makes them move at a speed less 
than light. Bosons are energetic entities that cannot be enveloped or covered by space-time and 
therefore move at the speed of light. Temperature plays a fundamental role in this entire process. 

In the next article we will generalize for the rest of the fundamental particles. 
Above 10¹⁶ k, temperature at which the symmetry break occurs. 
Calculation of the diameter of the down quark 

C = λ x f 

λ = C / f 

λ = 3 10⁸ / 11.60 10²⁰ = 2.58 10⁻¹³ m 

λ / 2 = 1.29 10⁻¹³ m 

Where C is speed light, f is frequency and λ is wavelength for flat space-time. 
To calculate the diameter of the down quark, we are going to consider the scale contraction factor 

of Boltzmann's constant for down quark, D = 10⁵. 

Ddq = (λ/2) / D 

Ddq = (λ/2) / 10⁵ = 1.29 10⁻¹³ / 10⁵ = 1.29 10⁻¹⁸ m 

Ddq = 1.29 10⁻¹⁸ m 

Ddq, down quark diameter 

Rdq = 0.64 10⁻¹⁸ m 

Rdq, down quark radius 
See reference article (1), the radius of the quark is given by Rq = 0.43 10ˉ¹⁸ m, a value very close 

to the calculated Rdq = 0.64 10⁻¹⁸ m. 
Calculation of the diameter of the top quark 
For top quark, we are going to consider a contraction factor in a dimension of the order of 10⁶, 

for a temperature of 10¹⁵ K. 

E = Kʙ x T 

E = 1.38 10ˉ²³ x 2 10¹⁵ = 2.76 10ˉ⁸ J 

E = h x f 
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f = E / h = 2.76 10ˉ⁸ / 6.62 10ˉ³⁴ = 0.41 10²⁶ = 4.1 10²⁵ Hz 

c = λ x f 

λ = c/f = 3 10⁸ / 4.1 10²⁵ = 0.73 10ˉ¹⁷m 

λ = 7.3 10ˉ¹⁸ m 

Where C is speed light, f is frequency, λ is wavelength for flat space-time. 
To calculate the diameter of the top quark, we are going to consider the scale contraction factor 

of Boltzmann's constant for top quark, D = 10⁶. 

Dtq = (λ/2) / D 

Dtq = (λ/2) / 10⁶ = 3.65 10⁻¹⁸ / 10⁶ = 3.65 10⁻²⁴ m 

Dtq = 3.65 10⁻²⁴ m 

Dtq, diameter of the top quark 

Rtq = 1.82 10⁻²⁴ m 

Rtq = radius of the top quark 

In the examples given, in the calculation of the diameter of the electron, of the down quark and 
the top quark, by means of a simple conceptual idea, given by the theory of the generalization of the 
Boltzmann´s constant in curved space-time, we can perceive how the theory Quantum joins the 
theory of gravity to explain the origin of elementary particles. 

It is important to clarify that temperature is a very important parameter in determining the scale 
factor of Boltzmann's constant in curved space-time. 

Above the temperature 10¹⁶ K, symmetry break, it is understood that the force of disintegration 
or repulsion is much greater than the force of compression of space-time, in this situation, it is not 
possible to form particles of matter. 

6. Conclusions 

We have shown that the theory of the generalization of the Boltzmann´s constant in curved 
space-time allows us to quantify or measure the curvature and contraction of space-time, that is: in 
the presence of a mass in the structure of space-time, we can quantify the curvature and contraction 
of space-time by means of the following parameters, Cv (curvature of space-time), D (space-time 
compression or expansion factor of space-time) and g (gravitational acceleration). This simple 
conceptual idea is what we use to determine the origin of fundamental particles, specifically, we use 
the contraction factor of Boltzmann's constant D, to quantify the radius of the fundamental particles. 

In order to quantify the curvature and contraction of space-time, we have developed the concept 
of effective Boltzmann´s constant, which is nothing more than considering the variable Boltzmann´s 
constant, which depends on the state of matter. In other words, there is a Boltzmann´s constant for 
flat space-time (Kʙ = 1.38 10⁻²³ J/K) and an effective Boltzmann´s constant (Kʙ = 1.38 10⁻²³ J/K to 1.78 
10⁻⁴³ J/K), for curved space-time. 

We have also shown by means of the Shannon-Boltzmann-Gibbs entropy relation that there is 
no loss of information, the information is encoded in the number of particles and depends on the 
state of matter, in other words, depends of the effective Boltzmann´s constant. 

Finally, we must remember that in the presence of mass, space-time is curved and contracted, 
precisely the concept of curvature and contraction of space-time is what allows us to quantify it, using 
this simple conceptual idea, through the theory of generalization of the Boltzmann´s constant in 
curved space-time, we managed to unite the theory of gravity with the theory of quantum mechanics, 
which we try to demonstrate through simple examples in which we calculate the radius of the 
electron, down quark and top quark. 
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