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1. Introduction

Let Q) be a bounded domain of C" and H(Q) the class of all holomorphic functions on () . Then
consider a holomorphic self-map ¢ of () and a function ¢ € H(Q)). The linear operator

(YCof)(2) = ¢(2)f(¢(2)),

is referred to as a weighted composition operator for f € H(Q). If ¢(z) = 1, it reduces to the
composition operator, whereas for ¢(z) = z it becomes the multiplication operator. For any given
holomorphic function f, ({Cy f)(z) represents a generalised composition/multiplication operator. The
reader is referred to book[1] for an extensive introduction to the topic.

In this paper, we study the boundedness and the compactness of weighted composition operators
from a-Bloch spaces B* to Bers-type spaces built on generalised Hua domains of the first kind. On
GHE; the a-Bloch space B* consists of all f € H(GHEj) such that

Ifllge == [£(0,0)|+ sup [det(I—ZZ)* —||&|3]*|VF(Z,&)| < oo,
(Z,&) eGHE;

where

_ (9f(Z,5) 9f(2,G) 9f(Z¢) 9f(2,6) 9f(Z4)
VAZ.E) = ( ozi1 9z 1 Ozw T 05 T 9G, )
It is clear that B%(GHE]) is a Banach space.
In 1930, Cartan [2] was the the first to characterise the six types of irreducible bounded symmetric
domains, which consist of four types of bounded symmetric classical domains, also referred to as
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Cartan domains, and two exceptional domains whose complex dimension are 16 and 27, respectively.
The Cartan domains are defined as follows:

Ri(m,n) = {Z € C"™" . I,, — ZZ >0},

p(p+1)

Ru(p) == {Z eC™? :I,-77 >0,Z= Z'},

2(q-1)

Rin(q) := {Ze(C 2 :Im—ZZ/>O,Z——Z/},

Ry (n) := {z €C": 1+ |zz P —222 >0,1— |z |* > 0}.

where Z’ denotes the transpose of Z, Z denotes the conjugate of Z, and m, n, p, q are positive integers.
In 1998, building on the notion of bounded symmetric domains, Yin and Roos constructed a new type of
domain called the Cartan-Hartogs domain[3], and Yin introduced the so-called Hua domains[4], which
include the Cartan-Hartogs domains, the Cartan-Egg domains, the Hua domains, the generalized Hua
domains, and the Hua construction. The generalized Hua domains are defined as follows:

GHEI(Nll NZ/ e /Nt’; m,n, pl/ pZ/ e /Pnk>
r
= {gj e CNi,Z € Ri(m,n) : Y |&; < det(I - 2Z')K,j=1,2,-- ,r}
j=1
GHEH(N],NZ, e /N}’; P/ P1/ P2/ e /Pr/k)

T
= {(:f eCN,Z e Ru(p): Y |1&7 < det(I - 2Z)k,j=1,2,-- ,r}
=1

GHEH[(Nl,NZ, e /NT; q,P1, P2, s Prs k)
T
= {gj € (CerZ € %IH(Q) : 2 |€j‘2pi < det(I+ZZ)k,] =12, rr}
j=1
GHEIV(N1, NZ/ T /Nr} n;pi,p2, - /Prrk)

r
= {CJ e CNi,z e Ry(n) : Y |Cj|2pj <A+ zZ P22 =12, ,r}
=1

where §; = (j, - ,gf]-Nj), j=1,---,rR(mn),Ru(p), Rm(q), Rv(n) denote respectively the Cartan
domains of the first type, second type, third type and fourth type, Z’ denotes the transpose of Z, Z
denotes the conjugate of Z, Ny, - - -, N;, m, n, p, q are positive integers , and py, - - - , pr are positive real
numbers. Fork =1,m =1,p; = - -- = py = 1, the generalized Hua domain of the first kind reduces to
the unit ball. Without loss of generality, we may assume that N;=1, then gj € Cj=1---,ré=

(G1,++ /&) and |15 = Xf_y |&;[?1. We define
(G t)p = (T )Pt + (Co, t2)P2 + - - + (G )P

We also write

(& E)pl < [(Co, b)) [+ (G2 02)P2| 4+ -+ + [(Er )P
SIS T I L e (A L L
= [(a, B)] < [al[B] = [ICNplIEllps
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Where |€l|pl = D‘l/‘tl|pl = ﬁl(l = 1/' t /r)/‘x == (all. o /lxi’)/ﬁ = (‘Bl, ot /ﬁl’)'

For the sake of convenience, the four types of generalized Hua domains will be referred to as
GHE;, GHEy;, GHEy;, GHE}y.
On GHEj, a Bers-type space A consists of all f € H(GHE;) such that

£l == . [det(I — 2Z')* — ||E|3)F|£(Z,€)| < oo
/6)E 1

It is easy to see that Ag(GHE) is a Banach space with norm || - |.

The boundedness and the compactness of weighted composition operators on (or between) spaces
of holomorphic functions on various domains received a large attention. Wang and Liu [5] studied the
boundedness and the compactness of the weighted composition operators on the Bers-type space on
the open unit disc, whereas Zhou and Xu [6] characterised the boundedness and the compactness of
the weighted composition operators between a-Bloch space and S-Bloch space, and Li [11] investigated
the boundedness and the compactness of the weighted composition operators from Hardy space to
Bers-type space, Zhu [19] characterised the boundedness and compactness of Dy , : B — Hy°. For
the unit poly-disk, Li and Stevi¢ [7][8] presented some necessary and sufficient conditions for the
boundedness and the compactness of the weighted composition operators between H* and «-Bloch
space, whereas for the open unit ball, Li and Stevi¢ [9] studied the boundedness and the compactness
of the weighted composition operators between H* and Bloch space [see also [14]-[17]].

Jiang[10] has charaterised the boundedness and the compactness of the weighted composition
operators on the Bers-type space on the Hua domains. On the other hand, the boundedness and
the compactness of the weighted composition operators from a-Bloch to A4 have not been studied
in details. In this paper, we obtain some necessary conditions and sufficient conditions for the
boundedness and the compactness of the weighted composition operators from a-Bloch to .Ag on
generalised Hua domain of the first kind by using a generalisation of Hua’s inequalities.

2. Preliminaries

Lemma 2.1 Let B > 0, then

[1£11.44

Z,0)| < — :
) [det(I — ZZ)k — ||¢I13]P

@.1)
forall (Z,¢) € GHEyand f € Ag(GHE).

Proof. By the very definition of Bers-type space .Ag, we know that

1£ 145 = . [det(I — 2Z") = |31 £(Z, )] < oo,
/6)E 1

and so,

£ 1.4,
[det(I — ZZ')k — ||&|2]f

f(2,9)] <

O

Lemma22 Let0<a<1,0<b<1andb < a,qisa positive integer, then

a—b< q(ﬁ —b%) (22)

do0i:10.20944/preprints202309.0291.v1
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Proof. . )
a—b=(a1)1— (b1)7
= (a7 — b7)(a1 <V g2 ¥ 0 Dps oy pr¥ D))
1 1
< q(at — b7)
O
Lemma 2.3 (see[12]) Let x > —1,if0 < a < 1, then
(14+x)*<1+ax, (2.3)
ifoa < Oora>1,then
(T4+x)*>1+ax, (2.4)
and ” =" holds if and only if x = O or & = 1.
Lemma 2.4 (see[12]) Let ay > 0,k =1,2,--- ,m, then
(a1-a2--~am)%Sa1+a2+.“+am, (2.5)
m
where the equality holds if and only if a1 = ap = - - - = ay,.
Lemma 2.5 (see[12]) Let a € C,if p > 1, then
n n P 1 n
Yol < | Llard| <o 1Y gl 26)
k=1 k=1 k=1
If0 < p <1, then
n n P 71 n
Yl = | Llal| =0t Y, e7)
k=1 k=1 k=1
where the equality holds if and only if p > 1, then |a1| = - - - = |ay|. If p = 1, the equality always holds. If

0 < p <1, then at most one of the ay, - - - , ay, is not zero.
Lemma 2.6 (see[13]) Let

Z11 Z12 . Z1n

Z21 Z20 ... Zoy
7 =

Zml  Zm2  --- Zmn

be an m x n matrix (m < n). Then, there exist an m x m unitary matrix U and an n x n unitary matrix V

such that
A O ... 0 O ... 0
0 A, ... 0 O0 ... 0
z=Uu| . . . V(M zA >
0 O Am 0 0
and
M0 0
/ 0 /\22 0 —y
Z7Z =U ] u,


https://doi.org/10.20944/preprints202309.0291.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2023 do0i:10.20944/preprints202309.0291.v1

5o0f 27

where A12, <+, A2 are the characteristic values of 77 177 >0+ A<
Lemma 2.7 (see[13]) Let

A1 O 0
0 A 0
A= . . (M2A > 2 Ay >0),
: : .0
0 0 ... Ay
0 0
0 U2 0
A= . 0 (W1 = p2 > > pm > 0),
0 0 W

satisfying
A <1(jk=1,---,m),

Then, there exists a square matrix P such that

inf | det(I — AqUALT V)| = |det(I — A;PA,P)|,
ut'=1, vv'=I

and the minimum value is obtained for U = OP and V = I, where

e 0 ... 0
0 €% ... 0
Q= ) ..
: : . 0
0 0 ... elm

Lemma 2.8 (see[12] Minkowski inequality of integration formula ) Let ai, by >0, k=1,2---,n,
then

1
n

[ﬁ(ﬂiﬁ-bk)rl > (klf[lak>; + <1f[1bk> , (2.8)

k=1

where the equal sign holds if and only if ap = chp,k =1,2,--- ,n.
Lemma2.9 Letp; (i =1,2,---,r) be positive integers, 0 < km < 1,and t € [0,1], then

1—det(I — #22Z')F + ||#2])? < 2 {1 —det(I — 2Z ) + ||g||§,},

for (Z,¢) € GHE].

Proof. Decomposition in polar coordinates gives

m
det(I—tzZ)F = (1 — tA2).
i=1

Given )\1.2 =h;,i=1,2,---,m, we may consider the function
m

f(t) =TT —-tn)*, telo1]

i=1
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m
Inf(t) =k)_ In(1—tn),
i=1
Upon differentiating with respect to ¢, we obtain
(0= FOkY. — <
f - i 1—th; — !
1 ! ¢ —h; - hz
_ _ 1
m . 2 m K2
= f(t k2< : ) —fkY, —Lt—
L N,
(B ) £
f® H1-th l; (1—th;)?
An application of (2.6) then gives
" ¢ hi 2 L h‘z
0=ron (L) L
< f(t)k|(km—1 Z]
k|t =) B
<0.
This shows that f(t) is a concave function. It follows that
- k
gty =1—f(t)=1-]J(1—tn)*, te0,1],
i=1
is a convex function and we have
m m
1-TT —tm)* <1 =TT - m)". (2.9)
i=1 i=1
The very definition of ||¢ ||%, shows that
16115 = #6117 + (622> + - -+ [tG, [P
< PGP + 18222 4+ 5 7) (2.10)

= 223
Hence, by inequalities (2.9) and (2.10), we obtain
1—det(I — 22Z')* + ||#2])3 < 2 {1 —det(I—2Z ¥ + |3 |.

O

Lemma 210 Let us consider 0 < mk < 1, some positive intergers p; (j = 1,2,---,r), t €
[0,1],(Z,¢) € GHE}, g = max{py, p2,- - - , pr}. Then, the following inequality holds

Z,8) < M\/l — det(I - 2Z)1 + ||§||§,
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where M = max{ \/%, \/E}

Proof. If t € [0,1),¥(Z,&) € GHEy, then (tZ,¢) € GHEy, |Z2 = tr(ZZ') = A2+ A2 + - - - + A%. By

Lemma 2.4 and (2.3), we get
mk
— k mn PN " 2\ L T
det(I-zZ)1 =]Ja -7 = [JA—Ap)m
i=1 i=1
1 " T
i=1
m m
- U>_A1,22Afyf
<1 Mk 1|Z|2
q
—1-Zjzp,
q
then .
172 < %[1—det(1—zz’)ﬁ]. 2.11)
Using (2.7) one has
2 1
II§H£ = (|61 P+ [P 4 - -+ G20
1 2r1 2pp 2pr.
A (ST [ I R S (YA
1_
(&P el 1)
=122
=ri g2,
then
2 ALz
11" <7 1gllp- (2.12)

Therefore, by combining (2.12) and (2.11) we have

[(Z, )] =/ |Z>+[2]?
q k 1-1 2
<\ — det(1 - 2Z) 1) + 0 gl 2.13)

| /\

k 2
\/1 —det(I—2Z')7 + ||g|l;),

1
where M = max{\/g, VrTil O

Lemma 2.11 Given 0 < km < 1, p; some positive integers (Gj=12---,r),Y(Z¢) € GHE,q =
max{py, p2, - -, pr} and f a holomorphic function on B*(GHEy), then there exists a constant C such that

C|I fll O<a<1
2
Cll Il In o a=1
£(2,8)| < det(I - 2Z')* — |1¢3 (214)
1
Clf s a1

[det(I — 2Z')k — ||g][3]*1
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where (Z/ C) = (2111212/ * s Zmny g]_/ 62/ o /61’)-

Proof. According to Lemmas 2.2, 2.9 and (2.13),

A0 =100+ [ (V/02,10), Z D)

V0.0 + [ 1V02,8)[Z Dl

[det(I — #2Z)k — IItCII%]"‘IVf(tz,tC)Idt
[det(I — 2ZZ')k — ||t&][2]*

o 22
! “ [det(I — 22Z )k — ||t§||]%]“dt] Il
I 1 1(Z,8)]

_1+/0 [1— (1— det(I - 22Z ) + |12[3)]*
- \/1—det(I—ZZ)q+||§|;

_H / [1—2(1—det(I— ZZ' )k + 1¢112)]* ]”f”m

\/1 — L(det(1 — 2Z')k — |I&|12)

_1+ / [1—t%( 1—* (det(I — ZZ')k —[1g11%))]*

_ 1+M/ — adt} 111+

~1f0.0)+ Z 3 [

IN

|

IN

IN

] s

R

- :HM/ (=)

+
[ R
1 +M/ t(\)a :| ||f||Ba,

ﬂd$mm

IN

where & = \/1 — L(det(1 - zZ')k — |2]3).
Casel:0<a <1,
fal< i+ 2= -9 il

< @+ 7201l 219

< Clfllsx

where C =1+ %
Case2:n =1,

.
20l < [rom [ a1l

[ 1
= — " 2.1
1+ Min £l 216

[ 1+
— _1+Mln (1_%)(1_’_%)} ||fHBA
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< |14+ Min - }Ilfllsa

: 1 2

<

< gy —ge +MIn g Il
[ 1

< [+ M) 2l

2q

—7 7
det(I = ZZ')* =[5

= C[fllg In

_ 1
where C = 5 + M.
Case3:a > 1,

Fzol< 1+ 25 (g =) | e

< [+ (g 1) Wl

1
= C/ y ——————
e

(1+S)*!
[(1=3)(A+ )]t

1
-1
<2t C,Hf”lfﬂm

(2.17)
= C'|| fll =

= C| fllps

1
[det(I — ZZ)k — ||&|2]«1
where C = (2¢9)*1C/, C' = max{1, %}

By combining (2.15)(2.16) and (2.17), the proof of the Lemma is complete. [J

Lemma 2.12 Let ¢ = (P11, P12 - - - Pmn+r) be a holomorphic self-map of GHEy and ¢ € H(GHEy). The
weighted composition operator yCyp : B*(GHE;) — Ag(GHEy) is compact if and only if Cy is bounded and
for any bounded sequence { f, },>1 in B*(GHE;) converging to 0 uniformly on compact subsets of GHEj,
[9Cofull.ay — 0asn — co.

Proof. Assume that ¢Cy : B*(GHE;) — Ag(GHE]) is compact. Let {f },>1 be a bounded sequence
in B*(GHEj) and f, — 0 uniformly on compact subsets of GHE] as n — oo.
If [ Cg full 45 — O asn — oo, then there exists a subsequence {fy, }j>1 of {f }s>1 such that

inf [[§Copfu;ll.4; > 0.

Since Cy is compact, there exists a subsequence of the bounded sequence { f, };>1(without loss of
generality, we still write {fy; };>1), such that

Jim, [$Cofn; = fllay =0, f € Apg(GHE)).

Let K be a compact subspace of GHEj. From Lemma 2.1, it follows that

19Cyfu, — flla,

Cofn. — f)(Z, ,
0oty =200 < o i
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for V(Z,¢) € K C GHE|. Thus, ¢Cyfy; — f — 0 uniformly on K. This means that for arbitrary
e > 0,3N; > 0, such that for j > Nj, we have

9(Z,8) fn;(9(2,8)) = F(Z,0)] <.

for all (Z,¢) € K. Since f;, — 0 on compact subsets of GHEj as j — oo, also there exists a positive
integer No, [fu;(¢(Z,¢))| < € for (Z,§) € K whenever j > Np. Let N = max{N;, N>} and M =
maxz s ek [$(Z,¢)|, whenever j > N, we have

F(Z, D] < 1fu;(9(Z,0))] (g:?éKllP(ZrC)l +e< (M+1)g V(Z,$) €K

From the arbitrariness of ¢, we obtain f(Z,¢) =0, V(Z, &) € K. By the uniqueness theorem of analytic
functions, we have f(Z,¢) = 0, V(Z,¢) € GHE;. This shows that lim; e [|C fu, || A = 0, which
contradicts the assumption infjen || Co fu,[| .45 > O.

Conversely, suppose that { f, },>1 is a bounded sequence in B*(GHEj), then || f,||p« < D1, for
all n. Clearly {f},>1 is uniformly bounded on compact subsets of GHE;. By Montel’s theorem,
there exists a subsequence {fy; }>1 of { fu}n>1 such that f,; — f uniformly on every compact subset
of GHE; and f € B*(GHE;). For all (Zy,Go) € GHE], there exists a compact set Kz, « ) such that
(Z0,60) € K(zy,,) C GHEy. By Weierstrass’s theorem and because f,, — f as j — oo, for (Z,¢) €
K(ZO,%), we obtain V fnj — Vf asj — oo. Then, there exists a Jy > 0, such that for j > [y, we
have |V fy,(Z,8) = Vf(Z,8)| < 1,for (Z,8) € K(z,z,)- In addition, [Vf(Zo,&)| < |Vf(Zo, &) —
V fu;(Zo,G0)| + |V fn;(Zo, §o)|, which suffices to obtain

[det(I — ZoZy )~ [120lly?)* IV £ (Zo, &)

< [det(I - ZoZg )* — [1€ol3)* |V £(Zo, &0) — V fr;(Z0,80)|
+ [det(I — ZoZg )k — 180l[3)41V £, (Z0, €0

< 1+ [|fn,ll B

<1+ D.

For all (Z,¢) € GHE;, [det(I — zZ’)k — ||(',‘||%,]"‘|Vf(Z,§)| < 1+ Dy. We thus have ||f||g« <1+ Dy
and || fu; — fllge < |l fu;llge + || fllge <2D1+1and fu, — f — 0 on every compact subset of GHE] as
j — oo. Consequently, we have

jlggo 19Cop(fn; — F)llag = ]13{}0 19Cofn; — 9Coflla, =0,
which shows that yCy : B*(GHE;) — Ag(GHEj) is compact. [
Lemma 2.13 Let (Z,¢),(S,t) € GHELif0 < km < 1,then
det(L, — ZZ ¥ + det(I,, — SS)* < 2| det(I,, — ZS')¥|, (2.18)
and " =" holds if and only if (Z,&) = (S,t). If km > 1,then

det(I, — ZZ)* + det(I,, — S5 )k < 2"¥| det(I,, — Z5')¥|. (2.19)
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Proof. For m = n, since (Z,¢), (S,t) € GHE], there exist two m x m unitary matrices Uj, U, and two
n X n unitary matrices Vi, V, (by Lemma 2.6) such that

A O .0
0 Ay ... 0

Zz=U\| . . | o i=uMV (> M >0 2> >4, 20)
0 0 ... Ay
1231 0 0
0 Ha ... 0

S=1UU o ) Vo=WMAVo 1>p1>pp> ... 2 pm >0).
0 O Mm

Then, one has

det(I — Z5') = det(I — U1 Ay Vi VA AL U
= det(Uh U — Uy A i V2 AT )
= det Uy det(U; — A1 V2 AL )
=det(I — MV V3 A VoV ViV T, Uy).

By Lemma 2.7, there exists a square matrix P such that

m
|det(I - ZS)| > | det(I = AiPALP')| = [ T(1 = Aips,),
i=1

where ki, ky, - - -,k is a permutation of 1,2, - - -, m.
If 0 < km < 1,and using(2.7) and Lemma 2.8, we get

2| det(I — zG )F| = 21"k . 2k | det(I — ZS')¥|
= 21-mk[pm | det(1 — ZG')|]¥

m k
> otk [2'" [1a- )‘i.uki)]

i=1

mk
>2" mk{{H (1= A2+ (1= )1}3«}
>21—mk{[ﬁ(1_)\iz)r [ﬁl_yk }}’"" (2.20)

i=1
>21 mk 2mk 1{|:ﬁ
=1

= [f1a-an] + [fl-m }k
= det(I — ZZ')* + det(I — SS)*.
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If km > 1, by using (2.6) and Lemma 2.8, we get
2"K| det(I — Z§)¥| = [2™| det(I — ZS')||F

> [T - Amk»r

il (2.21)

|
Q—l L — | — |
—
I
R
N
[
=~
+
| —
—=
_
I
~
~
)
[
=~

According to (2.20), we have

2| det(I — ZS')k| = 2| det(I — Z,5; )|
> det(I — Z1Z1 )* + det(I — 5151 )
> det(I — Z1Z1 ¥ + det(I — 5151 — 5,5, )
= det(I — ZZ)¥ + det(I — SS')k.
Thus, the inequality
2| det(I — Z§)¥| > det(I — ZZ')* + det(I — SS'), (2.22)

holds when m < n, whereas the equal sign holds if and only if Z = S.
According to (2.21), we see that

2"K| det(I — Z§')¥| = 2| det(I — Z1 51 )¥|
> det(I — Z1Z1 )* + det(I — 5157 )F
> det(I — Z1Z1 )* + det(I — $151 — $,55 )F
= det(I — ZZ')* + det(I — SS')*.
Thus, the inequality
2"K| det(I — 25 )| > det(I — ZZ')* + det(I — SS')k, (2.23)

holds when m < n, with the equality holding if and only if Z = S and mk = 1.
O

Lemma 2.14 Assume (Z,¢),(S,t) € GHEpand 0 < km < 1, then

[det(Lu — Z2Z')* — ||E15] + [det(ln — SS)* — [[#]}] < 2| det(Lu — ZS) | — &l llEll,  (224)


https://doi.org/10.20944/preprints202309.0291.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2023 do0i:10.20944/preprints202309.0291.v1

13 of 27
with equality that holds if and only if (Z,&) = (S, t).

Proof. Starting from the inequality a? + b? > 2ab, we obtain
IEN5 + E15 > 2018 p1El]p-
Then, by (2.18), we get

— —/
2| det(I — 28" )¥| — ||&llplItll,| = 2| det(I — Z8 )| — 2|l I ¢l],
> det(I — ZZ')* + det(I — S5')F — [|¢|2 — |1£]]2
= [det(I — ZZ')* — ||&|13] + [det(I — S )k — ||¢][3].

This completes the proof. [

Lemma 2.15 Assume (Z,§),(S,t) € GHEand 0 < km < 1, then

[det(lm — 27k - ||§||§] [det(lm — S5k — ||t||§] < || det(Ln — Z8 )| = €, lIEl,2  (2.25)

Proof. By the elementary inequality # > v/ ab and Lemma 2.14, we have

| et — 22y~ |13  det(hn — 55 = 113

_ [ [det(ly — ZZ)* — |23 + [det(n — S5)* — [1#]5] >
A 2 |

—/
< || det(Lm — Z8) | = g lplItl], I

O

Lemma 2.16 (see[18]) Assume Z,S € R(m,n), then there exists a constant C such that

1
. _ _ 2
| det (I, — Zs’)|{ Yo |tr[(In — zs’)—lrgls’nz} <C. (2.26)
1<e<
1<i<n

where Iy is an m X n matrix where the elements of the gth row and Ith column are one and the other elements
are zero.

3. Boundedness of Cy : B* — Ag

Theorem 3.1 Assumethata =1,5 > 0,0 < km < 1, and that pj (j =1,2,--- ,r)are positive integers.
Let ¢ = (P11, P12 - - - Pnn-+r) be a holomorphic self-map of GHE;, with € H(GHEy) and (Zy,Cp) = ¢(Z,C).
If
00, (3.1)

_ 2q
Ki:= sup [9(Z,&)|[det(I—2Z)* ]3] In = <
(2,6)eGHE; P det(I— ZpZy )k — 112

then the weighted composition operator Cyp : B*(GHE]) — Ag(GHEy) is bounded.
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Conversely, if the weighted composition operator Cy : B*(GHEy) — Ag(GHE;) is bounded, then

Kyi= sup |p(Z,&)|[det(I — ZZ')* — |]2)P det(I — ZyZy')'
(Z,&)eGHE;
) (3.2)

7 \k 2 <
det(I — ZpZy )* — [IGoll5

x In

Proof. Assume that (3.1) holds. By Lemma 2.11 and for f € B*(GHEj), we know that
[det(T = ZZ') 2 1P| (4Cpf)(Z, )|
= [det(I - 2Z)* ~ IEI51F19(Z, &)l f (9(Z,0))]

— 2
< Cly(z,2)|[det(I — ZZ'f* — 2P x 1 2 T
v ) P = 2oz~ legn

< CKql fll -
For all (Z,¢) € GHEj, we have

[$Cpflla, = sup [det(I—ZZ )"~ ||E|2)P|(9Copf)(Z,8)] < CKi|f| 5,
(Z,&)eGHE;

which implies that ¢Cy : B*(GHE;) — Az(GHE;) is bounded.
Conversely, assume that $Cy : B*(GHE;) — Ag(GHE]) is bounded. For any (S,t) € GHEj, let
us introduce a test function f(s ;) € H(GHE;) such that

2
det(I — Z5' )k — (¢, 1),

fis)(2,€) = det(I - S5') ¥ In

This means that

d . _ 7a k-1, _ qd\1-k _ _ _
fisyy _ k-det(I-ZS) ! det(I—SS)'* det(1 - Z8)te((1 - 28) 11,5,
0zg) det(I — ZS )k — (g, 1),

1<g<m1<I<n,
—/\1_ pi—1—p:
a¢; det(I — 25 )k — (¢, 1),

In view of (2.18), it follows that
2| det(I — Z8')|# > det(I — ZZ')# + det(I — S5'),
then
2R [ det(I — Z5') |15 > [det(I — ZZ')7 + det(I — S )m]™(1-H)

> [det(I — S§'ym]m(1=k),

which means that
2m1=K)| det(I — Z8')|1* > det(I — SS')1*. (3.3)
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According to (3.3) and Lemmas 2.14, 2.16 , there exists a constant C; > 0 such that

[det( — ZZ)* — |]12)V f(s,)(Z, )]
det(I-ZZ)F— ||l
[ det(I - Z8)k - (&,1),|

x det(I — S§')1 7k x {k2| det(I — 28 )k=12

1

— —I 1, = ! i—1—p. 5| 2

x Y |det(I—2ZS)u[(I-ZS) 1Ig15]|2+2|pj§ff t]-pf|2}
1<g<m j=1
1<I<n

_ [det(1 - 77k — ||§|§,] x det(I — S§')1-k
|| det(I — ZS)K| =[G, 1)

x {k| det(I — z8')[F!
1

1
_ _ _ 2 r 172
x{ Y |det(1—zs’)|2tr[(1—zs’)11g,s’]|2] +[2|pjg]’.’f 1t/’f|2} }
1<g<m j=1
1<i<n
[det(I — 2Z')k — |1&|2]

=< =
|| det(I = ZS )| = [IZ ][It

1
_ _ r . 2 _
x {kC1|det(I — 75|k 1 x det(I — SS')1 K + [Z ;e ' 2] x det(I — ss’)lk}
j=1

_ 77k _ 2 r 3
< 73[det(1 Z7) ||‘:||p]7/ « {Zm(l_k)kcl n [Z Pj|2] }
[det(I — ZZ')* — ||¢II3] + [det(I — SS)* — [|¢]|3] =1

2[det(I — ZZ' )k — ||&|12 r 5
det(I - 2Z')* [ =

1
r 2
<2x {2’”(1k)kcl + [ |pj|2] }
j=1

<C.
Since f(54)(0,0) < In2, one has
Ifsllse = |fsn(0,0)|+  sup [det(I—2ZZ )" — |&I3)*|V fis,(Z,0)

(Z,&)€GHE;
< C+In2.

Therefore, we have

0 > (C+In2)|[¢Cpl| g4,
> 19Cofisnll.ag
= sup [det(I—ZZ))* — |ERIFIW(Z, &) fis (¢(Z,0))]

(Z,£)€GHE;
2

det(I — ZpS )k — (Ep 1)y |

> |9(2,0)|[det(I - 2Z')* — ||g][3)F det(I — S5)' x |In

Let us now consider

(Sr t) = (Z¢’ 547) = (P(Z, é)r
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so that
=k 216 SNk 2
sup |¢P(Z,¢)|[det(I —ZZ )" — ||¢||3]F det(I — ZpZp )" " In — < o0
(2,6)cGHE, ¢ vee det(I — Z,7¢ )k — [|24 12

The proof is thus completed. [

Theorem 3.2 Assumethata > 1,5 > 0,0 < km <1, and that pjare positive integers (j = 1,2,- - ,r).
Let ¢ = (P11, P12 - - - Pmn-++) be a holomorphic self-map of GHE;, with € H(GHEy) and (Zy,p) = ¢(Z,C).

If
[det(1 — ZZ')* — ||2])°
K= sup  [p(Z,0) ot
(,£)<GHE, [det(I = ZpZy )* = [1ZlI7]
then the weighted composition operator Cyp : B*(GHE]) — Ag(GHEy) is bounded.
Conversely, if the weighted composition operator Cy : B*(GHE;) — Ag(GHE;) is bounded, then

00, (3.4)

det(I — ZZ' )k — ||E||2]B det(I — ZyZy )1k
K= sup (2| I Pdett = ZoZe ) 7 (3.5)
(Z,%)€GHE, [det(I — ZpZy )k — [IGpll3]*

Proof. Assume that (3.4) holds. By Lemma 2.11 and for f € B*(GHEj), we have

[det(I — ZZ')* — ||E|21P|(pCyp ) (Z,E)| = [det(I — ZZ')* — ||E|21PI(Z, &) - (Cof)(Z, )]
= [det(I — ZZ")F — [|E]21Plp(Z, O f (#(Z,€))]

d _ —/ k _ 218

[det(I — 2Z')* — ]3] |l

< Clp(Z,¢)] —
[det(I — ZpZy )k —[15pl13]*

< CKs||fllBe-
For all (Z,&) € GHEj, we obtain

S
l9Cofllag = sup [det(I—ZZ)* —~|IElF)P|(¥Cyf)(Z,&)| < CKs] 5.
(2,&)eGHE;
which implies that $Cy : B*(GHE;) — Ag(GHEj) is bounded.
Conversely, assume that ¢Cy : B*(GHEp) — Ag(GHE;) is bounded. For(S, t) € GHEj, define a
test function f(s ;) € H(GHE;) such that

det(I — SS')1-k
[det(I — Z8 )k — (g, t),]*~1

f(S,t)(Z/ ¢) =

For the test function f, we have

fisy  k(a—1)-det(I—Z8 k1. det(I — S5 )1k
9z [det(I — ZS' )k — (&,t), ]
x det(I - zS )[(I-25)'uS], 1<g<m1<I<n,
P _
s (x — 1)p]-§ff £P - det(I — S5')1 %

_ , i=1,---,r.
¢ [det(I — ZS )k — (&,t) ] : r
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From (3.3) and Lemmas 2.14, 2.16, there exists a constant C; > 0 such that
[det(I — ZZ' )k — |82V f(5,0)(Z,8)]

_ [det(I — 2Z')¥ — ||][3]"
| det(I — ZS' )k — (&, 1) |

x det(I — SS)F x (a — 1) x {k2|det( — 28 1

1
_ _ _ r I 2
x Y. [det(I—Z8)u[(1—-28) S |2+ ) i) 1t,»”f|2}
1<g<m j=1
1<I<n
_ ldet(1- 77 ")k~ [|lI2]* x det(I — SS)1 K
|| det(I — Z8") [k — (&, £)p[*
1
x{ Y (det(I - Z8) (1 - 28) 1y |2] {Elm i t"ﬂ }
1<g<m
1<I<n

[det(I — 2Z')F — ||][2]*
|l det(I — Z8 )k — [|g ][It ]

1
r 1. 5|2 _
| L lpie) | dentr - 58
=1

. { 2(det(I - 2Z)" — |&]}}]
[det(I — ZZ')k — |||12] + [det(I — SS')k — [|]3
S{2([;1(::(1 Zj) IICIZPJ} (@
et(1—2Z' )7 — ||¢|I2
<2%(a—1)C3
= Cy.

X (@ —1) x {k| det(I — Z5') |1

x (a—1) x {kc1 det(I — S5')' K| det(I — Z5') |-

| }“(a —1) x (kC;2"(17K 4 Gy)

—1) x (kC;2"07K) 4 )

Since f(5+)(0,0) < 1, we obtain

Ifesllse = (s, (0.0)[+ sup [det(I—ZZ)* — |21V f(s,)(Z,€)|
(Z,&)eGHE;

< Cy+1.

It follows that

> (Ca+ DIYCollpemsag = 19Cofslla,
= sup [det(I - ZZ ) — |81 2F19(Z, &) frs . (9(Z,2))]

(Z,&)€GHE;
[det(I — ZZ')k — ||&[|2]P det(I — S5')'
| det(I — ZgS )k — (Ep, 1) |1

> [$(Z,0)]

We write (S,t) = (Z¢,8p) = ¢(Z,), then

[det(I — ZZ )k — ||&||2]P det(I — ZyZg )1 F
sup  [9(Z,)| <
(2,2)€GHE; [det(I — ZpZyp )* — [|Cp|3]*

O

This completes the proof of the theorem.
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Corollary 1. Fora > 1, k=m =1,p; = --- = p, = 1, we have the case of the unit ball B = {z € C"*" :
|z|> < 1} and Cy : B*(B) — Ag(B) is bounded if and only if

o @I = PP
AP ©

when B = 0. This result is equivalent to that obtained by Li and Stevic in [9].

4. Compactness of ¢Cy : B* — Ag

Theorem 4.1 Assume thata = 1,8 > 0,0 < km <1, and that p; (j = 1,2,- - -, r) are positive integers.
Let ¢ = (P11, P12 - - - Pmnr) be a holomorphic self-map of GHEy, with ¢ € H(GHE;) and (Zy,Cy) = ¢(Z,8).
IfllJ S Aﬁ and

19(2,¢)|[det(I — ZZ) )t — ||¢2]P In 24 —0, @)

lim —
¢(2,8)—dGHE det(I — ZpZp )* —|Cyl3

then the weighted composition operator $Cy : B*(GHEy) — Ag(GHE;) is compact.
Conversely, if the weighted composition operator $Cp : B*(GHE;) — Ag(GHE]) is compact, then

lIJ [S Aﬁ and
_ _ 2
lim Z,&)|[det(I — ZZ Yk — |E11218 det(I — ZyZg )1 x In Sl —0.
2 ACHE, [$(Z,¢)[[det( ) =lelly] ( ¢Zp ) detll — 7973 ) - AL
(4.2)
Proof. Assume that (4.1) holds. We have
sup  [(Z,8)|[det(I - 2Z)* — ]3] In = < o0
(2,)eGHE; P det(I - ZpZy )k — ||Eg 12

If Cy is bounded, consider the bounded sequence { fi }¢>1 in B*(GHE;) , which converges to 0
uniformly on compact subsets of GHE; . Hence, there exists M; > 0 such that || f||g« < My, k =
1,2,---. By (4.1), this means that Ve > 0, 36 € (0,1), such that for dist(¢(Z, &), 0GHE]) < J, we have

2q

Z,8)|[det(I — ZZ Yk — ||[|2]P1 1 <e. (4.3)
ol S ez e <
According to Lemma 2.11, we obtain
[det(I — 2Z')* — ||E121P| (¥ Cy fi) (Z,8)]
= [det(I - ZZ)* ~ [lEI2)P19(Z,€) - (Cpfi) (Z,0)]
= [det(I — ZZ')* — | &I21Ply(Z, &)||fi(¢(Z, )]
< Clyp(Z,8)|[det(1 — ZZ')* — ||2121P | fill 4
2q
x In —
det(I — ZpZp )* — [|8y3

< CM18.

On the other hand, let us introduce the set

Es := {(Z,&) € GHE; : dist(¢(Z, &), 0GHE;) > 6},
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which is a compact subset of GHE]. By the assumptions, f converges to 0 uniformly on any compact
subset of GHE;. From this, and since ¢ € Aﬁ, for such ¢, we have

(det(I — 2Z)* ~ €121 |($Cpfe) (Z,©)|

— [det(I - ZZ)t — |E121P19(Z, ) - (Cpf) (2,)]
= [det(I — 2Z))* ~ |€121P[9(Z O)Ii(#(Z,8))
< [l age.

(4.5)

Combining (4.4) and (4.5), we have

19Cofillay = sup [det(I—ZZ')* = [&I31PI(¥Cpfi) (Z,§)| = 0, k — oo,
(2,2)€GHE;
Consequently, making use of Lemma 2.12, we finally have that yCy : B*(GHE;) — Ag(GHE]) is

compact.
Conversely, suppose ¢Cy : B*(GHE]) — Ag(GHE;) is compact. Let f = 1, we have

[det(I — 2Z)* — IE151P19(Z,6)| = [det(l — ZZ)* ~ |Gl 1P|($Cof)(Z,8)] < co.

This shows that ¢ € Ajg. Consider now a sequence (S, t') = ¢(Z’,&’) in GHE; such that ¢(Z/, &) —
OGHEj as i — oo. If such a sequence does not exist, then condition (4.2) obviously holds. Moreover, let
us introduce the following sequence of test functions { f; };>1:

2 -1 2 2
72,0 ={m 2——} x{m = —}
det(I — SISt )k — ||t1||p det(I — ZSt )k — (g, tl>p
x det(I — Sigl)lfk.

Differentiation gives

— — 1 2

f; 2k x det(I — 28 )*1 det(I — SISV )1k y " Get1=Z5 (e 1,
0z, ok ' S

st det(I —Z5")F = (¢, ) det(I-SiST )k—||ti]|>

x det(I— 28" ) x tr[(1— Z57 ) 157, 1<g<ml<i<n,
pi—1—p, — 1 72,

of _ % 17 x det(I -5 x el 75V j=1 =12,
a X - 7/ k . E/ 7 - 7 7 . - a 4

6 det(I —ZS")¥ = (¢, 1)y n det(I-S'ST )k —||t]|>


https://doi.org/10.20944/preprints202309.0291.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2023 do0i:10.20944/preprints202309.0291.v1

20 of 27

From (3.3) and Lemmas 2.14, 2.16, there exists a constant C5 > 0 such that

[det(1 = ZZ))* — ||}V £i(Z, )]
— — 2
det(1 = 27 — |3 det(1 = $57)1 1 G 75 e,

—/ . 2
— ZSi )k — det(1—S15 Yo— |# ]2
| det(I — ZS" )k — (g, t),| det(I-Sis7 )k ¢

X {4k2\ det(I — zS k=112

1
_ _ _ r 2
x Y |det(l - Z8 yul(1 - Z57) Uy STI2 + 4 Y i) 1t].r’f|2}
1<g<m j=1
1<i<n

> g\ 1- 1 — +
_ et = 2Z))" — |g|] det(1 — S5+ N N

—/ . 2
et =25 ¥ = & ] PR

x {2k| det(I — Z87)[k~1

1

1
— — — 2 r 172
x[ Y |det(1—zsi’)tr[(1—zsi’)11g,si']|2] +2[2|pj§]’,’f 1t]-pf|2] }
1<g<m j=1
1<i<n

‘ 2 +

In = ,
| det(I—Z87 )k—(&t),|

det(I — 2Z )k —||¢|13

— —/ . 2 _

|| det(I —Z5' )k| - H§||P||tl||lﬂ| In det(175i§,)k7\|ti\|i

1
_ — r 1. -]z —
X {ZkC5| det(I — 28" )<L det(I — §'S7 )17k 4 2 [ Y |pjg]’?f 1tj”f 2] det(I — stsz’)lk}
j=1
2fdet( - ZZ ) — |12} T

< p | det(I—ZS" )k—(C,t1)p]
— 2

— —/
[det(l 4 )k - H§||%] + [det(l — S5 )k - ”tH%] det(175i§,)k7|\ti|\lzﬂ

X

{2kC5| det(I — ZS!')[*"1 det(I — S'S7 )1k + Cé}

2
2[det(I — ZZ )k — |&|12 ’1n 5yl
_ 2ldet( 7/) IENE] 1 Jderi—zs (et X (2KCs - 2M1K) 4 ¢y
det(I — ZZ' )k — |1z|12 det(1—857 i [2

‘ n f, - + 7T
<2 % (2kCs - 217K 4 cg) x ‘IU:W*ZSI )sz@’w
det(I1-SS7 )k —||si|>
2
<G x | det(1-ZS' )k2—<g,tf>,,|

det(I-SS7 )k —||ri|2

We have now two cases.
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Case Ay. If | det(I — ZS7 )k — (&, #1),| < 2, then
n 2 — |+ In 2 ,
| det(I=ZS" )k—(Z,t)| < _|det(I-Z8’ K= (Gt pl
n—2—— = In—2%
det(1-5/57 )k #i]2 det(I-5/57 )k [#i]2
ln 7‘,2 X
< _|det(I-Z8’ KI=1glpll# 1l
= 2
n———
det(1-5i57 )k #]2
n 4
det(1—2Z )|~ |12 +[det(1—SiSI Yk —||# ]2
< [det( Y=g [Z( Y=l 121y 4.6)
In e —
det(I-STST )k —|ti]2
In—24
det(I—S7S" )k—||t[|3
- ln—2—
det(I-SiS? )k—||ti]3
U
<24 .
det(I-S57 )k —||ri[>
S CS/
where Cg = 2+ .
Case Aj. If | det(I — Z?l)k — (& t1)p| > 2, then
In 2 — |+ =k ;
| det(I—2ZS" )k—(&,t), | _ |In2—1In|det(I — ZS" )" — (&, t')pl| + 7 4.7)
— In——2%
det(1-SiST )k —[ti]2 det(1-SiST )k —[ti]2

_ In| det(1 - 28Tk — (& 1), | + 7
- In——2%
det(I—-SiST k][>
_ In(|det( = Z87 ¥ + |{&, #),]) + 7
- In2 '

—/ .. .
Since ZS' = C = (cij)mxm, cij = Z§:1 ZigSig (i, =1,---,m), we may write | —-C = D =

n
1—(Zzigs]'g) i=j
=1
dij={ ° (4.8)
— ) ZigSjg 7]
g=1

Using (4.8), we have det(I — C) = ¥ ;,...j,, (—1)T(j1j2“'jm)d1]~ld2j2 <+ dpy, and

|det(I-C)| <m!(n+1)" =G

do0i:10.20944/preprints202309.0291.v1
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Hence,

n =2 — |+ k i k
|det(1-257 )~ @)yl | (G A [IE]pllfllp) + 7 _ In(GF+1) + 7

n—2—— - In2 - In2
det(I-SiSi )k—Htal

< Co.

By using both cases A; and A, we have [det(I — zZ’) - ||§||%vaz(zsz)| < QCy and then
| fillgx < QCz, which means that | fi||g« is bounded, where Q = max{Cg, Co}. It follows that
{fi}i>1 € B*(GHEj) and

2 2
det(I — ZS" )k — (&£,

5 -1
—/ k . 2 X
det(I — S'S" )k —[|t]|,
x det(I — §iGi" )17k
S {hl .E./ .2
det(I — SiSt )k — ||tl||p

4

If | det(I — ZS¥ ) — (&, #),| < 2, then

(28 ={m

In

-1
} x det(I — §'57 )1k

2
—|—7T}.

2
| det(I — ZS7 )k — (&, 1),

In

2
—/ 02
det(I - S's" )k — ]2

2
X {ln 7‘,2 — + 7'[}
| det(I— 28 )| = [{g, )]

-1
< {m ‘i, — } x det(I — sisl‘/>17k
det(I — SISt )k — 1115

Ifi(Z,8)] < {m }_1 x det(I — 57 )1k

) 2
X {ln — : +7r}
| det(I—ZS")¥[ = ISyl
2
S {11'1 —/ 02
det(I — STS7 )k — ||£i]]3

-1
} x det(I — ')1K

4 2
X {ln — 5 —; — —i—n}
[det(I — ZZ)k —||¢|[,] + [det(I — S'ST)k — [|]],]

< {ln ‘E‘, —
det(I — SISt )k — ||tl||p

-1
} x det(I — §'S7 )1k

2
4
X {ln = >+ 7'(}
det(I —ZZ')* — |¢l[;

Since 0 < det(I — Sigl)l_k < 1, we take i — oo and obtain (S,#) — dGHE;. This implies

-1

— .0 .

det(I — §'S" )k — |||, = 0, then § In ——2——— — 0. Let us now consider a compact subset
p det(I—S7S7 )k—||ti]|>
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E of GHE]. For (Z,¢) € E,itis easy to see that det(I — Z?’)k — ¢ ||%, has a positive lower bound. Thus,
we have f;(Z,&) — 0, i — oo on all compact subsets of GHE]. If | det(I — Z?l)k — (& #)y| > 2, then

2
det(I — STS7 )k — || #i[2

-1
fi(Z,8)] < {ln } x det(I — §'S7 )1k

2
X {|ln2 — In(| det(I — Z?l)k — (&t + n}

2
S {11’1 —/ .02
det(I — SiST )k — |||

-1
} « det(I — §'s7 )1k

x { In(| det(I — ZS7)¥| + (& £),]) + n}
S {ln .E./ L2
det(I — /7 )k — ||#]3
x {In(G* +1) + }?

-1
} x det(I — Sigi" )1k

-1
From 0 < det(I — SiSi/)l’k < 1and {ln2,2} — 0 asi — oo, one concludes that
det(1-S'S7 )e—|#|3

fi(Z,8) =0, i — oo.
The above proof shows that f;(Z, &) — 0, i — oo on all compact subsets of GHE]. By Lemma 2.12,
this implies that |[Cg f; || 4 s — 0. Therefore, we conclude that

0 < [l¢Cyfill 4,
-1
= 2
— sup[det(1 - 22~ [Pz, Ol { n 2
$(2,8)€GHE; det(I — S'ST )k — [11]]3
2 2 —
x |In — — | xdet(I - S§'s")1k
det(I — Z¢Sl )k — <§¢, i’l>p

— . . . _1
> det(1 - 27 - Pz e fm 2
det(1— 55 — |12

o2
det(I — SiSi

2
x det(I — §igi" )1k
)k —[IE]12

2

- :

e
det(I — SIST )k — ||#i|12

= [9(Z, &) [det(I — Z'Z1 ) — ||§]2]F det(I — S'ST)'* x In

O

Theorem 4.2 Assume that « > 1, > 0,0 < km < 1, and that p; are some positive integers
(j=1,2,---,r). Let ¢ = (P11, P12 - - - Pmn-+r) be a holomorphic self-map of GHE}, with ¢ € H(GHEy) and
(Zp/8p) = ¢(Z,8). If p € A and

’ d - 7/k_ 2/5
@D - 2Z) 2P (49)
9(Z8)0GHE:  [det(] — ZpZy )k — [|EpI3)2

then the weighted composition operator $Cy : B*(GHEy) — Ag(GHE]) is compact.
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Conversely, if the weighted composition operator $Cp : B*(GHE;) — Ag(GHE]) is compact, then
P e .A/g and

_ 77k _ 21p
| WENG 22 w10
9(Z8)~GHE  [det(I — ZpZy )k — [|8p|3]%

Proof. Assume that (4.9) holds. We have

[$(Z,§)|[det(I — ZZ)F — ||&]13)°
sup — < oo
(28)eGHE;  [det(I — ZpZy )k — ||Gp3]*

From Theorem 3.2, it follows that ¢Cy : B*(GHE;) — Ag(GHEj) is bounded. Let {fi};>1 be a
bounded sequence in B*(GHE|) with f; that converges to 0 uniformly on compact subsets of GHEj.
There exists M, > 0 such that || fx||p« < My, k =1,2,---. By (4.9), for any € > 0, there is a constant
4 € (0,1) such that

9(Z,&)|[det(I — ZZ )k — ||¢|131F
< g

— 4.11)
[det(I — ZyZy )< = 1[5
for dist(¢(Z, ¢), 0GHE]) < 4. Using Lemma 2.11 we have
[det(I - 2Z)* — [I2151P1(¥Cpfi)(Z,0)]
= [det(I — 2Z')* — |Ig[3)F[9(Z,8) - (Cofi) (Z,€)]
= — 77"k — ||&|121P
det(1 — 27— |13 P90, 0l fe@(Z,)) )

[det(1 — 2Z')k — ||z 2]1°
[det(I — ZyZy )k — ||2]3]2 1

< Clp(Z, D)l fill =
< CMpye.

On the other hand, if we set
Es := {(Z,&) € GHE; : dist(¢(Z, &), 0GHE;) > 6},

we have that E; is a compact subset of GHE;. For ¢ defined in (4.11), fx converges to 0 uniformly on
any compact subset of GHE;. For ¢ € Aﬁ, we have

[det(1 = ZZ))* = 151 (¥Cpfi) (Z,0)]
= [det(1 = ZZ)* — 211 19(Z, ) - (Cpfi) (Z,0)]
= [det(I = ZZ)* — ZI1P19(Z, )l fe(#(Z,2)]

< 1]l age-

(4.13)

According to inequalities (4.12) and (4.13), we see that

19Cofillay =  sup [det(I = ZZ') = |EI[}1PI($Cpfi) (Z,8)| = 0, Kk — co.
(Z,&)eGHE;

Consequently, making use of Lemma 2.12, we have that ¢Cy : B*(GHE;) — Ag(GHE;) is compact.
Conversely, suppose that ¢Cy : B*(GHE;) — Ag(GHE]) is compact. Then, ¢Cy : B*(GHEy) —
Ag(GHEj) is bounded. Let f = 1, we get

[det(I — 2Z')k — |21 [p(Z,&)| = [det(I — ZZ' ) — |21 (pCpf)(Z, &) < co.
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This shows that y € .Ag. Consider now a sequence (Si,t) = ¢(Z,&) in GHE; such that
¢(Z!,&) — 0GHEy as i — oo. If such a sequence does not exist, then condition (4.10) obviously holds.

Moreover, let us introduce a sequence of test functions { f; };>1:

= 291
[det(I — S'ST )k — [|#]|, ] -1+

fiz:6):= [det(I — ZS87 )k — (&, ti),]2x-1
Differentiation gives
of, (20 — 1)k - det(I — ZS7 ) [det(I — S'57 )k — |[#[7]F -1+
dzg [det(I — ZS7 )k — (£, #) ]2
x det(I — ZS )tr[(I— 257 ) 157,
of, (20— Vel B [det(1 — S5 )k — 1|51+
ET [det(I — Z57 )k — (&, ), ]2 ’

From (3.3) and Lemma 2.15, it follows that there exists a constant C;y > 0 such that
[det(1 = ZZ))F ~|IZI31*IV £i(Z,0)
— =/ 2,1
_ (2a—1)[det(I— 22 )¥ = 111131 [det(I — §7ST )k — [[#][,,]x 1+
| det(l — Z87 )k — (g, ti), =

X {k2| det(I — zS7 k=112

1

— N r pi—1—p. 2
x Y |det(I—ZS )tr[(I—2S") 'yST]P+ Y pic;’ t]-”f|2}
1<¢<m j=1

1<i<n
< (20 —1)[det(I — ZZ')* — ||¢]|3]*[det(I - S'ST )k — IItil\i]“

—7 .
|det(I — ZST )k — (g, t), |2«

X {k| det(I — Z57)[F1 x [det(I — S'ST )F — [|#]|7]F !
1

i J— i 2
X [ y |det(1—zsi’)tr[(1—zsi’)—llg,si’nz}
1<g<m
1<I<n

A — iGNk 21
+ X lpig) HUP| x [det(I - S'ST)T —[|E][,]%
j=1
< (2a—1) x {k - Cy| det(I — 287 )|F[det(I — S'ST KT~ + cw}
< (x—1)x {k - Cy| det(I — Z87 Y[k det(I — S'S7 )1k + cm}

< (2a — 1) X {Cl -k - 2m(-k) +C10}

< C//
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This shows that f; € B*(GHE;) ,i = 1,2,--- and

— 1271
[det(I — S'ST )k — |||, ] -1+

fi(Z,8)] = — .
|det(I — ZST )k — (g, t), |21
[det(T — §'S7 )k — ||ti\|i]%*1+“
= —/ .
| det(1 — Z87 k| — |{g, #1) | |21
[det(I — S'ST)k — [|¢|[7]E 1+
> — .
| det(I — 257 k| — [|&]| | #]] -1
§ 22"‘*1[det(1 . Si§/)k . ”tiHi]%—lﬂx

" [det(I — ZZ))F — ||€]2 + det(I — S'ST )k — || ]3] 1
) zzafl[det(l . si§’)k _ HtiHi]%flﬁx
[det(I — 2Z')k — [zt

Taking i — oo, we have (S',#)) — dGHE;. This implies that det(I — Si§/)k — ||t’||%, — 0. IfEisa
compact subset of GHE}, for (Z, ) € E, we have that det(I — Zzl)k —|Ig ||%, has a positive lower bound.

Thus, we have f;(Z,&) — 0, i — oo on all compact subsets of GHE|. According to Lemma 2.12, we
have that [|Cyfi|| 4, — 0. Hence,

— 1291
[det(I — SIS )k — [|#]|,] k12

04 [[$Cpfilla, = sup [det(I—ZZ ) —[|I[21Fl¢(Z,¢)] — 4
¢(Z,8)€GHE; | det(I — ZpS? )k — (g, 1) p|221
> ldet(1 — 2Z)t — | ¢2)F wzLE)l

. — . 1’
[det(I — ZZy )F — |25 /151"

O

Corollary 2. Fora > 1, k = m = 1,p1 = --- = p, = 1, we are back to the case of the unit ball
B={ze€C"":|z]? <1}, and $Cy : B*(B) — Ag(B) is compact if and only if € Ag and

e @I EPP
o508 (1= ()]

when B = 0. Also in this case, the result is analogue to that obtained by Li and Stevic¢ in [9].
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