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Abstract: The flow field around a straight chain of multiple slip spherical particles rotating steadily 

in an incompressible Newtonian fluid about their line of centers is analyzed at low Reynolds 

numbers. The particles may vary in radius, slip coefficient, and angular velocity, and they are 

permitted to be unevenly spaced. Through the use of a boundary collocation method, the Stokes 

equation governing the fluid flow is solved semi-analytically. The interaction effects among the 

particles are found to be noteworthy under appropriate conditions. For the rotation of two spheres, 

our collocation results for their hydrodynamic torques are in good agreement with the analytical 

asymptotic solution in the literature obtained by using a method of twin multipole expansions. For 

the rotation of three spheres, the particle interaction effect indicates that the existence of the third 

particle can influence the torques exerted on the other two particles noticeably. The interaction effect 

is stronger on the smaller or less slippery particles than on the larger or more slippery ones. Torque 

results for the rotation of chains of many particles visibly show the shielding effect among the 

particles.  

Keywords: axisymmetric rotation; multiple slip particles; creeping flow; hydrodynamic torque  

 

1. Introduction  

The translation and rotation of small particles in Newtonian fluids at low Reynolds numbers 

play important roles in a variety of technological and industrial processes such as centrifugation, 

sedimentation, aggregation, microfluidics, suspension rheology, and aerosol technology. The 

analysis of this subject was initiated by Stokes [1,2] on the motions of an isolated nonslip spherical 

particle in a viscous fluid. The phenomena that viscous fluids in creeping flow can frictionally slip at 

particle surfaces occur for numerous situations such as a colloidal particle with lyophobic surface [3–

7], an aerosol particle in low-density gas [8–10], and a porous particle [11,12]. The slip velocity is 

presumably proportional to the shear stress of the fluid at the particle surface with the proportionality 

constant 1−β  as the slip coefficient [13–15].  

The hydrodynamic torque exerted on a slip sphere of radius a  rotating with angular velocity 

Ω  in a fluid of viscosity η  was obtained by Basset [13] as  

(0) 3 18π
1 3 /

T a Ω
a

η
η β

= −
+

,  (1)

where βη /  signifies a slip length. In the limiting case of the stickiness/slip parameter / 0aβ η =

, the particle is perfectly slip (like a gas bubble in a liquid) and 
(0) 0T = . In the other limit 

/aβ η → ∞ , the particle is nonslip and Eq. (1) becomes the Stokes result. More recently, the 

creeping-flow rotation of slip particles has been examined for a slightly deformed sphere [16], an 

axisymmetric particle such as spheroid [17–19], and a circular cylinder [20].  

In many technical applications, slip particles are not isolated. Thus, it is imperative to determine 

if the attendance of adjoining particles meaningfully affects the particle movement [21,22]. Through 
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an exact representation in spherical bipolar coordinates, the axisymmetric slow translation of two 

slip spherical particles was investigated semi-analytically and numerical results were calculated for 

the cases of identical spheres with equal magnitude of velocities [23] and arbitrary spheres with 

arbitrary velocities [24]. On the other hand, the translational and rotational motions of two arbitrarily 

oriented spheres with arbitrary radii and slip coefficients were analyzed using a method of twin 

multipole expansions [25]. Subsequently, the creeping flow around two arbitrary slip spheres 

translating along and rotating about their line of centers was studied by using a boundary collocation 

method [26]. It was found from these investigations that the two-sphere interaction effect decreases 

with increasing slip coefficients of the particles, may be pronounced as the distance between particle 

surfaces approaches zero, and is greater on the smaller particles than on the larger ones.  

For a concentrated suspension, the interaction amongst multiple particles may be important. The 

objective of this article is to analyze the slow rotation of a chain of coaxial slip spherical particles 

about the axis. The particles may vary in radius, slip coefficient, and angular velocity, and they are 

permitted to be unevenly spaced. Through the use of the boundary collocation method, the Stokes 

equation is solved semi-analytically and the torques exerted on the particles by the fluid are obtained 

with excellent convergence. For the simple case of rotation of two spherical particles, our collocation 

solutions for the torques agree well with the asymptotic solutions resulted from the method of twin 

multipole expansions [25] and with some numerical calculations [26].  

2. Analysis  

As shown in Figure 1, we consider the steady slow rotation of a straight chain of N  neutrally-

buoyant spherical particles in a boundless, quiescent, incompressible Newtonian fluid of viscosity 

η  about the line through their centers ( z  axis), where the fluid may slip frictionally at the particle 

surfaces. The spherical coordinates ( , , )i ir θ φ  are measured from the center of particle i  (with 

radius ia ) for 1=i , 2, …, and N , and the origin of the circular cylindrical coordinates ( , , )zρ φ  

is set at the center of particle 1. The particles may vary in size, surface slippage, and angular velocity, 

and they are permitted to be unevenly spaced. The purpose is to obtain the correction to Eq. (1) for 

the rotational motion of each particle owing to the presence of the other ones.  

 

Figure 1. Geometric sketch for the rotation of a chain of coaxial slip spheres about their axis. 

The Stokes equation governing the creeping flow around the rotating particles is  

2 2 2
2

1 1( ) { ( ) [ ( sin )]} 0
sini i

i i i i i i

v
v r v

r r r

φ
φ φρ θ

θ θ θ
−

∂∂ ∂ ∂
∇ − = + =

∂ ∂ ∂ ∂
,  (2)
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where ),( iirv θφ  or ( , )v zφ ρ  is the φ  (only nontrivial) component of the fluid velocity 

distribution (with 1 1r a≥ , 2 2r a≥ , …, and 
N Nr a≥ ), the continuity equation is satisfied, and the 

dynamic pressure is constant everywhere. In Eq. (2), any coordinate system ( , , )i ir θ φ  can be 

chosen. Because the slip velocity is proportional to the nontrivial tangential stress locally at each 

particle surface [13], the fluid velocity satisfies the boundary conditions  

i ir a= : 
1sin

ii i i r

i

v Ωaφ φθ τ
β

= + ,    1=i , 2, …, and N ,  (3)

2 2 1/2( )zρ + → ∞ :     0vφ = ,  (4)

where iΩ  is the angular velocity of particle i ,  

)(
ii

ir
r

v

r
r

i

φ
φ ητ

∂

∂
= ,  (5)

which is the relevant shear stress, and 1 / iβ  is the Navier slip coefficient about the particle i .  

We can express a sufficiently general solution of the fluid velocity in the form  

1 1

1 1
(cos )

N
n

jn j n j

j n

v A r Pφ θ
∞

− −

= =

= ,  (6)

where 
1
nP  is the associated Legendre function of the first kind of order n  and degree 1, and 

jnA  

are the unknown constants to be determined. The boundary condition (4) is satisfied immediately by 

Eq. (6), in which the solutions in N  spherical coordinate systems can be superimposed due to the 

linearity of Eq. (2). Substituting Eq. (6) into Eq. (3), we obtain  

1 1

1 1
{ [1 ( 2) ] (cos )} sin

i i

N
n

jn j n j r a i i i

j n i j

A r n P Ω a
r

η
θ θ

β

∞
− −

=
= =

+ + = ,    1=i , 2, …, and N .  (7)

To express Eqs. (6) and (7) in a single coordinate system, one can use the conversion formulas between 

the coordinates ( , )j jr θ  and ( , )zρ ,  

2 2 1/2
1[ ( ) ]j jr z dρ= + − ,  (8)

1cos ( ) /j j jz d rθ = − ,  (9)

where 
ijd  denotes the distance between the centers of particles i  and j  (thus 0jjd = ).  

The satisfaction of the boundary conditions in Eq. (7) on the particle surfaces requires the 

solution of the unknown constants 
jnA . The collocation technique [27–29] permits these boundary 

conditions to be imposed at M  points along the longitudinal arc of each sphere and the infinite 

series in Eq. (6) is truncated after the M  terms, leading to NM  simultaneous algebraic equations 

in the truncated form of Eq. (7). For sufficiently large number of M , these equations can be 

numerically solved to yield the NM  constants 
jnA  required in the truncated form of Eq. (6). The 

details of the adopted boundary collocation arrangement were given in an early article on the 

translation of a chain of fluid spheres along their line of centers [30].  

The hydrodynamic torque acting on the particle i  is the integral of the product of the shear 

force 
2( ) sin d d

ir i i i i ir a aφτ θ θ φ=  exerted on a differential surface element and the lever arm 

sini ia θ  of that element over the particle surface, resulting in  
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18πi iT Aη= ,    1=i , 2, …, and N .  (10)

The previous formula shows that only the lowest-order constants 1iA  contribute to the 

hydrodynamic torques iT .  

The torque results can be expressed as  

(0)

1

N

i ij j

j

T g T
=

= ,  (11)

with  

(0) 38π
3

j j

j j j

j j

a
T a Ω

a

β
η

β η
= −

+
,  (12)

which is the torque acting on the isolated particle j  given by Eq. (1). The torque correction 

parameters 
ijg  are functions of the scaled radii, separation distances, and surface slippages of the 

particles. When the separation distances are infinite, obviously, 
ijg  equals unity if j i=  and zero 

if j i≠ .  

3. Results for Two Particles  

In this section, we present the boundary collocation results for the rotation of two slip spheres (

2N = ) about their line of centers. Once the unknown constants 1nA  and 2nA  in Eq. (6) for the fluid 

velocity are solved from the truncated form of Eq. (7), Eq. (10) can be used to calculate the torque 

exerted by the fluid on each particle. Numerical results of the four torque correction parameters 11g

, 12g , 21g , and 22g  in Eq. (11) are presented in Table 1 for the case of two identical spheres (

1 2a a a= = , 1 2β β β= = , 11 22g g= , and 12 21g g= ) with various values of the stickiness/slip 

parameter /aβ η  and spacing parameter 122 /a d . In Table 2, collocation solutions of the torque 

correction parameters 11g , 12g , 21g , and 22g  for the axisymmetric rotation of two nonslip spheres 

( 1 2β β= → ∞ ) with different radii (choosing 2 1/a a  equal to 2 and 5) at various values of the 

spacing parameter 1 2 12( ) /a a d+  are given. In Table 3, we list typical collocation results of these 

torque correction parameters for cases of two slip spheres differing in either size or slippage at 

various values of the spacing parameter 1 2 12( ) /a a d+ . All of our results converge to at least five 

digits after the decimal point.  

Table 1. The torque correction parameters 11g , 12g , 21g , and 22g  for the axisymmetric 

rotation of two identical spheres ( 1 2a a a= = , 1 2β β β= = ). The asymptotic solution is 

calculated from Eqs. (13)-(19) for comparison. 

aβ

η
 

12

2a
d

 

Collocation solution  Asymptotic solution  

11 22g g=  12 21g g=  11 22g g=  12 21g g=  

1 

0.2 1.00000 -0.00033 1.00000 -0.00025 

0.3 1.00000 -0.00123 1.00000 -0.00084 

0.4 1.00001 -0.00322 1.00000 -0.00200 

0.5 1.00006 -0.00691 1.00002 -0.00391 
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0.6 1.00023 -0.01306 1.00005 -0.00675 

0.7 1.00079 -0.02260 1.00011 -0.01072 

0.8 1.00247 -0.03676 1.00026 -0.01600 

0.9 1.00738 -0.05761 1.00052 -0.02278 

0.99 1.02224 -0.08900 1.00092 -0.06064 

1.0 1.02693 -0.09567 1.00098 -0.06250 

10 

0.2 1.00000 -0.00079 1.00000 -0.00077 

0.3 1.00001 -0.00271 1.00001 -0.00260 

0.4 1.00005 -0.00653 1.00004 -0.00615 

0.5 1.00020 -0.01295 1.00014 -0.01202 

0.6 1.00068 -0.02273 1.00043 -0.02077 

0.7 1.00199 -0.03674 1.00109 -0.03298 

0.8 1.00529 -0.05612 1.00242 -0.04923 

0.9 1.01351 -0.08313 1.00491 -0.07010 

0.99 1.03508 -0.12286 1.00870 -0.01971 

1.0 1.04120 -0.13103 1.00925 -0.02031 

∞ 

0.2 1.00000 -0.00100 1.00000 -0.00100 

0.3 1.00001 -0.00338 1.00001 -0.00338 

0.4 1.00007 -0.00800 1.00007 -0.00800 

0.5 1.00030 -0.01563 1.00030 -0.01563 

0.6 1.00097 -0.02704 1.00096 -0.02703 

0.7 1.00273 -0.04306 1.00268 -0.04301 

0.8 1.00702 -0.06485 1.00669 -0.06451 

0.9 1.01727 -0.09494 1.01539 -0.09280 

0.99 1.04336 -0.13974 1.03082 -0.12569 

1.0 1.05097 -0.14943 1.03320 -0.12988 

Table 2. The torque correction parameters 11g , 12g , 21g , and 22g  for the axisymmetric 

rotation of two no-slip spheres ( 1 2β β= → ∞ ). The values in parentheses are the asymptotic 

solution calculated from Eqs. (13)-(19) for comparison. 

2

1

a

a
 

 
    

2 

0.5 1.00024 -0.00463 -0.03705 1.00019 

(1.00024) (-0.00463) (-0.03705) (1.00019) 

0.6 1.00086 -0.00801 -0.06406 1.00058 

(1.00084) (-0.00801) (-0.06406) (1.00058) 

0.7 1.00271 -0.01275 -0.10197 1.00153 

1 2

12

a a

d

+
11g 12g 21g 22g
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(1.00250) (-0.01273) (-0.10187) (1.00152) 

0.8 1.00795 -0.01917 -0.15335 1.00363 

(1.00673) (-0.01908) (-0.15262) (1.00358) 

0.9 1.02335 -0.02800 -0.22396 1.00809 

(1.01667) (-0.02737) (-0.21897) (1.00769) 

0.99 1.06197 -0.04126 -0.33012 1.01787 

(1.03560) (-0.03691) (-0.29532) (1.01444) 

1.0 1.09395 -0.04449 -0.35606 1.02075 

(1.03861) (-0.03812) (-0.30497) (1.01544) 

5 

0.5 

 

1.00007 -0.00058 -0.07234 1.00004 

(1.00007) (-0.00058) (-0.07234) (1.00004) 

0.6 

 

1.00030 -0.00100 -0.12504 1.00013 

(1.00027) (-0.00100) (-0.12503) (1.00013) 

0.7 

 

1.00110 -0.00159 -0.19873 1.00033 

(1.00086) (-0.00159) (-0.19862) (1.00033) 

0.8 

 

1.00412 -0.00238 -0.29764 1.00074 

(1.00247) (-0.00237) (-0.29679) (1.00074) 

0.9 

 

1.01743 -0.00344 -0.43050 1.00156 

(1.00653) (-0.00339) (-0.42353) (1.00152) 

0.99 

 

1.09830 -0.00508 -0.63487 1.00318 

(1.01468) (-0.00453) (-0.56594) (1.00274) 

1.0 1.14324 -0.00556 -0.69390 1.00368 

(1.01601) (-0.00467) (-0.58361) (1.00291) 

Table 3. The torque correction parameters 11g , 12g , 21g , and 22g  for the axisymmetric 

rotation of two spheres differing in size or slippage. 

1 2

12

a a

d

+
 

11g  12g  21g  22g  

2 1/ 1a a = , 1 1 / 1aβ η = , 2β → ∞   

0.2 1.00000 -0.00033 -0.00100 1.00000 

0.3 1.00000 -0.00123 -0.00338 1.00000 

0.4 1.00003 -0.00322 -0.00800 1.00003 

0.5 1.00014 -0.00691 -0.01563 1.00013 

0.6 1.00049 -0.01307 -0.02702 1.00046 

0.7 1.00155 -0.02263 -0.04298 1.00140 

0.8 1.00449 -0.03688 -0.06453 1.00387 

0.9 1.01258 -0.05814 -0.09382 1.01021 
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0.99 1.03642 -0.09147 -0.13622 1.02710 

1.0 1.04514 -0.09962 -0.14624 1.03280 

2 1/ 2a a = , 1 1/ 3aβ η = , 2 1β β=   

0.2 1.00000 -0.00016 -0.00169 1.00000 

0.3 1.00000 -0.00055 -0.00588 1.00000 

0.4 1.00002 -0.00134 -0.01438 1.00002 

0.5 1.00011 -0.00271 -0.02901 1.00009 

0.6 1.00042 -0.00482 -0.05184 1.00028 

0.7 1.00143 -0.00788 -0.08532 1.00079 

0.8 1.00459 -0.01216 -0.13272 1.00201 

0.9 1.01496 -0.01813 -0.20015 1.00479 

0.99 1.05306 -0.02690 -0.30147 1.01124 

1.0 1.06789 -0.02888 -0.32475 1.01311 

In Tables 1–3, for all values of 2 1/a a , 1 1 /aβ η , and 2 2 /aβ η , the parameters 11g  and 22g  

are positive and increase with an increase in 1 2 12( ) /a a d+  from unity at 1 2 12( ) / 0a a d+ = , while 

12g  and 21g  are negative and whose magnitudes also increase with an increase in 1 2 12( ) /a a d+  

but from zero at 1 2 12( ) / 0a a d+ = . These results manifest that the particles’ interaction rises with 

diminishing gap thickness between them. In general, this interaction can be significant as 

1 2 12( ) / 1a a d+ →  and its influence is stronger on a smaller or less slippery (stickier) particle than 

on a larger or more slippery (less sticky) one for any given value of 1 2 12( ) /a a d+ .  

Using a method of twin multipole expansions, Keh and Chen [25] analytically obtained the 

following power-series formulas of the torque correction parameters 11g , 12g , 21g , and 22g  for 

the axial rotation of two spheres with 1 1 2 2a a aβ β β= = :  

1 2 2
11 22 2

0
( , ) ( , ) ( )(1 ) k k

k

k

g s g s f sλ λ λ λ
∞

− − −

=

= = + ,  (13)

1 2 4 2 1
12 21 2 1

0
( , ) ( , ) 8 ( )(1 ) k k

k

k

g s g s f sλ λ λ λ
∞

− − − − −
+

=

= = − + ,  (14)

where  

12

1 2

2d
s
a a

=
+

,  (15)

2

1

a

a
λ = ,  (16)

1 2 4 5 7 0f f f f f= = = = = ,  (17)
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0 1f = ,    3
3 8

3
a

f
a

β
λ

β η
=

+
,    3 2

6 64 ( )
3
a

f
a

β
λ

β η
=

+
.  (18)

Thus, there are two independent torque correction parameters to be determined for 0 λ≤ < ∞  and 

2 s≤ < ∞ . Alternatively, we could determine all four parameters in the range 1 λ≤ < ∞  and 

2 s≤ < ∞ . In the particular case of 1 2β β= → ∞  (two nonslip spheres), more terms of ( )kf λ  are 

available [31]:  

5
8 768f λ= ,   6

9 512f λ= ,   7
10 6144f λ= ,   6 8

11 6144( )f λ λ= + .  (19)

The asymptotic solutions for the torque correction parameters obtained from the previous formulas 

are also listed in Tables 1 and 2 for comparison. It is found that our collocation results are in good 

agreement with these asymptotic solutions as 1 2 12( ) /a a d+  is small. However, the errors of these 

asymptotic solutions become significant when 1 2 12( ) /a a d+  gets close to unity.  

Using the reciprocal theorem of Lorentz [15] for the axisymmetric rotation of any two slip 

spheres with 1 1 2 2a aβ β= , we obtain  

321 2

12 1

( )g a

g a
= .  (20)

The collocation results in Tables 1 and 2 satisfy Eq. (20) and the relations 11 21 1g g+ ≤  and 

12 22 1g g+ ≤  (with 11g  and 22g  being positive and 12g  and 21g  negative), indicating that the 

rotation of one particle is enhanced (its hydrodynamic torque is reduced) by another nearby particle 

rotating with a comparable or larger angular velocity in the same direction but is hindered (the 

resisting torque is augmented) by another particle rotating with an arbitrary angular velocity in the 

opposite direction.  

4. Results for Multiple Particles  

We now present the boundary collocation results for the rotation of a chain of three or more slip 

spheres about their line of centers. From Eq. (11), the general problem requires nine torque correction 

parameters to represent the hydrodynamic torques on the three-sphere chain. For the sake of brevity, 

here we only consider the rotation of three coaxial spheres with the same slip coefficient (

1 2 3β β β β= = = ) in a symmetric configuration, i.e. the spheres at both ends have equal radii (

3 1a a= ) and are equally distant from the central sphere ( 23 12d d d= = ). For this symmetric case, it 

is clear that the torque correction coefficients  

11 33g g= , 12 32g g= ,     23 21g g= ,     31 13g g= .  (21)

In Table 4, collocation results of the torque correction parameters in Eq. (11) for the axisymmetric 

rotation of three identical slip spheres ( 1 2 3a a a a= = = ) with different values of the stickiness 

parameter /aβ η  and spacing parameter 2 /a d  are offered. In Table 5, the numerical results of 

the torque correction parameters for the rotation of three nonslip spheres ( β →∞ ) for two typical 

cases of relative particle sizes ( 2 1/a a  equal to 2 and 1/2) at various values of the spacing parameter 

1 2( ) /a a d+  are given. In Table 6, we list results of the torque correction parameters for the rotation 

of three slip spheres (with 2 / 1aβ η =  and 2 1/a a  equal to 2 and 1/2) at various values of 

1 2( ) /a a d+ . In general, particle interactions increase with decreasing gap thickness between two 

adjacent particles. When the central particle is greater than the end ones, however, the torque 

correction parameters 13g  and 31g  are not always monotonical functions of 1 2( ) /a a d+ . Again, 
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Eq. (20) holds in Tables IV and V for the axisymmetric rotation of the three-sphere chain and the effect 

of particle interactions on the hydrodynamic torques is greater for smaller or less slippery particles 

than for larger or more slippery ones for a given value of 1 2( ) /a a d+ .  

Table 4. The torque correction parameters for the axisymmetric rotation of three identical slip spheres 

( 1 2 3a a a a= = =  and 1 2 3β β β β= = = ) with equal spacings ( 23 12d d d= = ). 

/aβ η  
2a
d

 22g  11 33g g=  
12 32

21 23

g g

g g

=

= =
 13 31g g=  

1 

0.2 1.00000 1.00000 -0.00033 -0.00004 

0.3 1.00000 1.00000 -0.00123 -0.00013 

0.4 1.00002 1.00001 -0.00322 -0.00032 

0.5 1.00012 1.00006 -0.00691 -0.00063 

0.6 1.00046 1.00023 -0.01305 -0.00110 

0.7 1.00158 1.00080 -0.02256 -0.00171 

0.8 1.00493 1.00247 -0.03666 -0.00244 

0.9 1.01473 1.00739 -0.05740 -0.00322 

0.99 1.04441 1.02225 -0.08866 -0.00392 

1.0 1.05330 1.02724 -0.09501 -0.00399 

10 

0.2 1.00000 1.00000 -0.00079 -0.00010 

0.3 1.00002 1.00001 -0.00271 -0.00032 

0.4 1.00010 1.00005 -0.00652 -0.00075 

0.5 1.00040 1.00020 -0.01293 -0.00142 

0.6 1.00136 1.00069 -0.02267 -0.00232 

0.7 1.00396 1.00200 -0.03660 -0.00341 

0.8 1.01054 1.00531 -0.05582 -0.00461 

0.9 1.02693 1.01355 -0.08259 -0.00586 

0.99 1.06996 1.03511 -0.12204 -0.00695 

1.0 1.08354 1.04192 -0.13082 -0.00707 

∞ 

0.2 1.00000 1.00000 -0.00100 -0.00012 

0.3 1.00002 1.00001 -0.00337 -0.00041 

0.4 1.00014 1.00007 -0.00799 -0.00094 

0.5 1.00059 1.00030 -0.01560 -0.00175 

0.6 1.00193 1.00098 -0.02695 -0.00282 

0.7 1.00545 1.00275 -0.04286 -0.00409 

0.8 1.01397 1.00705 -0.06445 -0.00546 

0.9 1.03439 1.01732 -0.09423 -0.00687 

0.99 1.08644 1.04341 -0.13864 -0.00812 

1.0 1.10321 1.05182 -0.14909 -0.00826 
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Table 5. The torque correction parameters for the axisymmetric rotation of three no-slip spheres (

1 2 3β β β= = → ∞ ) with 3 1a a=  and 23 12d d d= = . 

1 2 3: :a a a  1 2a a

d

+
 22g  11 33g g=  12 32g g=  21 23g g=  13 31g g=  

1:2:1 

0.2 1.00000 1.00000 -0.00030 -0.00237 -0.00004 

0.3 1.00002 1.00001 -0.00100 -0.00800 -0.00012 

0.4 1.00009 1.00006 -0.00237 -0.01896 -0.00026 

0.5 1.00037 1.00024 -0.00463 -0.03703 -0.00045 

0.6 1.00116 1.00087 -0.00800 -0.06402 -0.00067 

0.7 1.00306 1.00271 -0.01273 -0.10188 -0.00088 

0.8 1.00726 1.00795 -0.01915 -0.15320 -0.00103 

0.9 1.01616 1.02335 -0.02797 -0.22373 -0.00110 

0.99 1.03572 1.07433 -0.04123 -0.32982 -0.00110 

0.999 1.04058 1.09059 -0.04397 -0.35177 -0.00110 

1.0 1.04136 1.09376 -0.04445 -0.35557  -0.00110 

2:1:2 

0.2 1.00000 1.00000 -0.00237 -0.00030 -0.00030 

0.3 1.00002 1.00001 -0.00799 -0.00100 -0.00099 

0.4 1.00011 1.00005 -0.01892 -0.00236 -0.00233 

0.5 1.00049 1.00021 -0.03685 -0.00461 -0.00447 

0.6 1.00172 1.00064 -0.06346 -0.00793 -0.00756 

0.7 1.00536 1.00169 -0.10038 -0.01255 -0.01165 

0.8 1.01568 1.00396 -0.14971 -0.01871 -0.01681 

0.9 1.04600 1.00872 -0.21645 -0.02706 -0.02308 

0.99 1.14694 1.01894 -0.31689 -0.03961 -0.02980 

0.999 1.17932 1.02142 -0.33813 -0.04227 -0.03054 

1.0 1.18582 1.02188 -0.34194 -0.04274 -0.03062 

Table 6. The torque correction parameters for the axisymmetric rotation of three slip spheres with 

1 2 3β β β β= = = , 3 1a a= , 2 / 1aβ η = , and 23 12d d d= = . 

1 2 3: :a a a  1 2a a

d

+
 22g  11 33g g=  12 32g g=  21 23g g=  13 31g g=  

1:2:1 

0.2 1.00000 1.00000 -0.00006 -0.00083 -0.00001 

0.3 1.00000 1.00000 -0.00023 -0.00322 -0.00002 

0.4 1.00001 1.00001 -0.00061 -0.00865 -0.00006 

0.5 1.00006 1.00004 -0.00133 -0.01896 -0.00011 

0.6 1.00021 1.00017 -0.00254 -0.03657 -0.00017 

0.7 1.00069 1.00067 -0.00442 -0.06463 -0.00024 

0.8 1.00202 1.00254 -0.00720 -0.10748 -0.00030 

0.9 1.00549 1.00977 -0.01125 -0.17256 -0.00033 
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0.99 1.01456 1.04047 -0.01731 -0.27461 -0.00030 

0.999 1.01694 1.05118 -0.01849 -0.29502 -0.00030 

1.0 1.01726 1.05328 -0.01864 -0.29841 -0.00030 

2:1:2 

0.2 1.00000 1.00000 -0.00114 -0.00009 -0.00013 

0.3 1.00000 1.00000 -0.00417 -0.00033 -0.00046 

0.4 1.00002 1.00001 -0.01070 -0.00083 -0.00113 

0.5 1.00011 1.00005 -0.02252 -0.00174 -0.00228 

0.6 1.00047 1.00017 -0.04185 -0.00320 -0.00406 

0.7 1.00175 1.00052 -0.07142 -0.00541 -0.00658 

0.8 1.00619 1.00141 -0.11479 -0.00855 -0.00995 

0.9 1.02229 1.00358 -0.17814 -0.01300 -0.01428 

0.99 1.08748 1.00878 -0.27514 -0.01954 -0.01910 

0.999 1.10984 1.01016 -0.29470 -0.02083 -0.01964 

1.0 1.11423 1.01033 -0.29798 -0.02096 -0.01970 

It may be interesting to realize how much the presence of a third particle influences the 

hydrodynamic torques of its two neighbors. The normalized torques 
(0)/iT T  of three identical 

spheres ( 1 2 3a a a a= = = , 1 2 3β β β β= = = , and 
(0) (0) (0) (0)

1 2 3T T T T= = = ) rotating at equal 

angular velocities ( 1 2 3Ω Ω Ω Ω= = = ) about their line of centers at equal spacings ( 12 23d d d= = ) 

are plotted versus the spacing parameter 2 /a d  by solid curves for various values of the stickiness 

parameter /aβ η  in Figure 2. For comparison, the corresponding results of normalized torques of 

the first and second particles in the absence of the third one, which agree well with those obtained by 

Saad [26], are plotted in the same figure by dashed curves. Clearly, the presence of the third particle 

reduces the torques of the other two particles. As expected, the reduction in torque is much more 

pronounced on the center particle than on the end ones. When the particles are in contact with each 

other ( 2 / 1a d = ), the presence of the third particle reduces the torque on the first (end) particle by 

merely about 0.8% in the case of no-slip particles ( /aβ η →∞) and about 0.3% in the case of slip 

particles with / 1aβ η = , as shown in Figure 2a (and Tables 1 and 4). In contrast, as shown in Figure 

2b (and Tables 1 and 4), the torque on the second (center) particle is reduced by 10.7% in the case of 

no-slip particles and by 7.3% in the case of slip particles with / 1aβ η =  when the particles touch 

each other. Note that, due to the configurational symmetry, the torque results presented in Table 1 

and Figure 2 for two identical slip spheres a distance d  apart and rotating at identical angular 

velocity are the same as those for an isolated slip sphere rotating at equal angular velocity at a 

distance / 2d  from a large planar free surface (with vanishing shear stress) normal to the axis of 

rotation.  
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(a) (b) 

Figure 2. Normalized torques on three coaxial, identical, equally spaced, slip spheres rotating at equal 

angular velocities about their axis versus the separation parameter 2 /a d  with various values of the 

stickiness parameter /aβ η : (a) the first (end) sphere; (b) the second (center) sphere. For 

comparison, the dashed curves are plotted for the torques when only two spheres are present. 

The solution to the problem of chains consisting of different numbers of N  (up to 101) 

identical slip spheres ( ia a= , iβ β= , and 
(0) (0)
iT T= ) with equal spacings ( ( 1)i id d+ = ), rotating 

about their line of centers with equal angular velocities ( iΩ Ω= ), has also been obtained by the 

boundary collocation method. Results of the normalized torques 
(0)/iT T  for these chains with 

2 / 0.8a d =  are plotted against the particle number i  in Figure 3. It can be seen that the torques 

on the central particles decrease with increasing chain length, indicating a shielding effect of the 

particle chain. When approaching the ends of the chain, the relative torques of neighboring particles 

change rapidly, demonstrating a strong end effect. As the chain length increases for a relatively long 

chain, the torques on the central particles change slowly. The torque on each particle will be the same 

in the limit of an infinite chain. The dashed curves in Figure 3 represent the change in torque of the 

ith particle in the chain as more particles are added to the chain. These curves are leveled out as the 

chain length is increased, again demonstrating the shielding effect exhibited by particle chains.  

  
(a) (b) 
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Figure 3. Normalized torques on N  coaxial, identical, equally spaced, slip spheres rotating at equal 

angular velocities about their axis versus the sphere number i  with 2 / 0.8a d = : (a) /aβ η → ∞

; (b) / 1aβ η = . 

Figure 4 represents a plot of the normalized torques 
(0)/iT T  versus the particle number i  for 

a chain of nine identical and equally spaced slip particles with 2 / 0.8a d =  rotating with equal 

angular velocities at different values of the stickiness parameter /aβ η . These results show that as 

/aβ η  increases, the torque on each particle in the chain decreases. Particle interactions are strictest 

for no-slip particle chains and weaker for corresponding more slippery particle chains.  

 

Figure 4. Normalized torques on nine coaxial, identical, equally spaced, slip spheres rotating at equal 

angular velocities about their axis versus the sphere number i  with 2 / 0.8a d =  and various 

values of the stickiness parameter /aβ η . 

To examine the effect of particle spacing, the normalized torques 
(0)/iT T  versus the particle 

number i  are plotted in Figure 5 for the chain containing nine identical and equally spaced particles 

rotating at equal angular velocities with 2 /a d  as a parameter. Both the case of no-slip ( /aβ η →∞

) particle chains and a case of partly slip (with / 1aβ η = ) particle chains are shown. The results in 

this figure illustrate that end effects decrease with increasing spacing (decreasing 2 /a d ). As 

expected, the torque of each particle in the chain decreases as the particles get closer together.  
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Figure 5. Normalized torques on nine coaxial, identical, equally spaced, no-slip spheres (

/aβ η → ∞ , solid curves) and slip spheres (with / 1aβ η = , dashed curves) rotating at equal 

angular velocities about their axis versus the sphere number i  with various values of the separation 

parameter 2 /a d . 

5. Concluding Remarks  

The slow rotation of a straight chain of multiple slip spheres about their line of centers in a 

Newtonian fluid is analyzed in this article. The spheres may vary in radius, slip coefficient, and 

angular velocity, and they are permitted to be unevenly spaced. The boundary collocation method 

has been employed to obtain the fluid velocity field semi-analytically. The solutions of the 

hydrodynamic torques exerted on the particles can be obtained even when the number of particles is 

large and the particles touch one another. Section 2 presents the linear algebraic collocation 

formulations for solving the general axisymmetric problem of multi-sphere rotations, and numerical 

results of the torques for two-sphere, three-sphere, and multi-sphere systems to correct Eq. (1) are 

given in Sections 3 and 4. The interaction effects among the particles are found to be noteworthy 

under appropriate conditions.  

The results for the resistance problem are presented in previous sections, in which the 

hydrodynamic torques iT  experienced by a chain of particles are calculated for specified angular 

velocities iΩ  according to Eqs. (11) and (12). In a mobility problem, on the other hand, the applied 

torques on the particles are specified and the resultant angular velocities need to be determined. For 

the axisymmetric rotation of N  slip spheres, the angular velocity of particle i  can be expressed as  

0
1

N

i ij j

j

Ω m Ω
=

= ,    1=i , 2, …, and N ,  (22)

with  

0 3

3
8π

j j

j j

j j j

a
Ω T

a a

β η

η β

+
= − ,  (23)
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which is the angular velocity of particle j  subject to an applied torque jT−  in the absence of the 

other particles, and the mobility parameters 
ijm  are functions of the scaled radii, separation 

distances, and surface slippages of the particles. For the case of two particles ( 2N = ), one can use 

Eqs. (11), (12), (22), and (23) to obtain  

1
11 11 12 21 22( / )m g g g g −= − ,  (24)

3 12 2 2 1 1
12 21 11 22 12

1 1 1 2 2

( 3 )( ) ( / )
( 3 )

a a a
m g g g g

a a a

β β η

β β η
−+

= −
+

,  (25)

where the corresponding expressions for 22m  and 21m  can be determined from the previous 

formulas by interchanging subscripts 1 and 2. The mobility parameters 11m , 12m , 21m , and 22m  

can thus be calculated from using the torque correction parameters 11g , 12g , 21g , and 22g  

obtained in Section 3 for its resistance problem.  
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