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Abstract: The flow field around a straight chain of multiple slip spherical particles rotating steadily
in an incompressible Newtonian fluid about their line of centers is analyzed at low Reynolds
numbers. The particles may vary in radius, slip coefficient, and angular velocity, and they are
permitted to be unevenly spaced. Through the use of a boundary collocation method, the Stokes
equation governing the fluid flow is solved semi-analytically. The interaction effects among the
particles are found to be noteworthy under appropriate conditions. For the rotation of two spheres,
our collocation results for their hydrodynamic torques are in good agreement with the analytical
asymptotic solution in the literature obtained by using a method of twin multipole expansions. For
the rotation of three spheres, the particle interaction effect indicates that the existence of the third
particle can influence the torques exerted on the other two particles noticeably. The interaction effect
is stronger on the smaller or less slippery particles than on the larger or more slippery ones. Torque
results for the rotation of chains of many particles visibly show the shielding effect among the
particles.
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1. Introduction

The translation and rotation of small particles in Newtonian fluids at low Reynolds numbers
play important roles in a variety of technological and industrial processes such as centrifugation,
sedimentation, aggregation, microfluidics, suspension rheology, and aerosol technology. The
analysis of this subject was initiated by Stokes [1,2] on the motions of an isolated nonslip spherical
particle in a viscous fluid. The phenomena that viscous fluids in creeping flow can frictionally slip at
particle surfaces occur for numerous situations such as a colloidal particle with lyophobic surface [3—
7], an aerosol particle in low-density gas [8-10], and a porous particle [11,12]. The slip velocity is
presumably proportional to the shear stress of the fluid at the particle surface with the proportionality
constant ' as the slip coefficient [13-15].

The hydrodynamic torque exerted on a slip sphere of radius a rotating with angular velocity

€2 in a fluid of viscosity 7] was obtained by Basset [13] as

1
79 =-8xn 39—, 1
T 307 Ba @

where 77/ 3 signifies a slip length. In the limiting case of the stickiness/slip parameter fa /7 =0

, the particle is perfectly slip (like a gas bubble in a liquid) and T =0. In the other limit
Paln — oo, the particle is nonslip and Eq. (1) becomes the Stokes result. More recently, the
creeping-flow rotation of slip particles has been examined for a slightly deformed sphere [16], an
axisymmetric particle such as spheroid [17-19], and a circular cylinder [20].

In many technical applications, slip particles are not isolated. Thus, it is imperative to determine
if the attendance of adjoining particles meaningfully affects the particle movement [21,22]. Through
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an exact representation in spherical bipolar coordinates, the axisymmetric slow translation of two
slip spherical particles was investigated semi-analytically and numerical results were calculated for
the cases of identical spheres with equal magnitude of velocities [23] and arbitrary spheres with
arbitrary velocities [24]. On the other hand, the translational and rotational motions of two arbitrarily
oriented spheres with arbitrary radii and slip coefficients were analyzed using a method of twin
multipole expansions [25]. Subsequently, the creeping flow around two arbitrary slip spheres
translating along and rotating about their line of centers was studied by using a boundary collocation
method [26]. It was found from these investigations that the two-sphere interaction effect decreases
with increasing slip coefficients of the particles, may be pronounced as the distance between particle
surfaces approaches zero, and is greater on the smaller particles than on the larger ones.

For a concentrated suspension, the interaction amongst multiple particles may be important. The
objective of this article is to analyze the slow rotation of a chain of coaxial slip spherical particles
about the axis. The particles may vary in radius, slip coefficient, and angular velocity, and they are
permitted to be unevenly spaced. Through the use of the boundary collocation method, the Stokes
equation is solved semi-analytically and the torques exerted on the particles by the fluid are obtained
with excellent convergence. For the simple case of rotation of two spherical particles, our collocation
solutions for the torques agree well with the asymptotic solutions resulted from the method of twin
multipole expansions [25] and with some numerical calculations [26].

2. Analysis

As shown in Figure 1, we consider the steady slow rotation of a straight chain of N neutrally-
buoyant spherical particles in a boundless, quiescent, incompressible Newtonian fluid of viscosity
1) about the line through their centers (z axis), where the fluid may slip frictionally at the particle

surfaces. The spherical coordinates (7;,0,,) are measured from the center of particle I (with
radius @, )for i=1,2,...,and N, and the origin of the circular cylindrical coordinates (0, ®,z)

is set at the center of particle 1. The particles may vary in size, surface slippage, and angular velocity,
and they are permitted to be unevenly spaced. The purpose is to obtain the correction to Eq. (1) for
the rotational motion of each particle owing to the presence of the other ones.

p

61
alj B W NG g,

Figure 1. Geometric sketch for the rotation of a chain of coaxial slip spheres about their axis.

The Stokes equation governing the creeping flow around the rotating particles is

_ 1 o
(VZ—PZ)V¢:7{a—r( :) £[7£(v sing)]} =0, )

1
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where V¢(I;,9i) or V¢L0, Z) is the @ (only nontrivial) component of the fluid velocity
distribution (with # 2a,, , 2a,, ..., and r, 2 a, ), the continuity equation is satisfied, and the
dynamic pressure is constant everywhere. In Eq. (2), any coordinate system (7,,6,,¢) can be

chosen. Because the slip velocity is proportional to the nontrivial tangential stress locally at each
particle surface [13], the fluid velocity satisfies the boundary conditions

) 1 )
r=a.: v¢:Qiaism0i+—z' i=1,2,..,and N, ®3)

1 i y;¢/
1

(p>+2°)"? > oo v,=0, )

where €2, is the angular velocity of particle I,
Jd Y
Ty=m=—(—), 5
i arl " ®)

which is the relevant shear stress, and 1/ /3, is the Navier slip coefficient about the particle I .

We can express a sufficiently general solution of the fluid velocity in the form

N
Z Z A.in”j_n_le] (cosd)), (6)

Jj=1 n=l1

Vo

where Pnl is the associated Legendre function of the first kind of order 7 and degree 1, and 4,

are the unknown constants to be determined. The boundary condition (4) is satisfied immediately by

Eq. (6), in which the solutions in /N spherical coordinate systems can be superimposed due to the
linearity of Eq. (2). Substituting Eq. (6) into Eq. (3), we obtain

N
=

To express Egs. (6) and (7) in a single coordinate system, one can use the conversion formulas between
the coordinates (7;,6,) and (p,z),

N —n— n . _
1Aj"{rj ][1+(”+2)f]311(C059,—)}r,:a[ =Qassing, i=1,2,..,and N. @)

7,

7}» :[p2 +(Z_dlj)2]l/2 , (8)

cost, =(z—d ;) /r,, )

where dij denotes the distance between the centers of particles 7 and j (thus d 7 =0).

The satisfaction of the boundary conditions in Eq. (7) on the particle surfaces requires the
solution of the unknown constants A4, . The collocation technique [27-29] permits these boundary

conditions to be imposed at M points along the longitudinal arc of each sphere and the infinite
series in Eq. (6) is truncated after the M terms, leading to NM simultaneous algebraic equations
in the truncated form of Eq. (7). For sufficiently large number of M , these equations can be
numerically solved to yield the NM constants 4 |, required in the truncated form of Eq. (6). The
details of the adopted boundary collocation arrangement were given in an early article on the
translation of a chain of fluid spheres along their line of centers [30].

The hydrodynamic torque acting on the particle I is the integral of the product of the shear

force 7,,(r; =al.)ai2 sinfd@d¢ exerted on a differential surface element and the lever arm

a,sin @ of that element over the particle surface, resulting in
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T,=8nnA4,, i=1,2,...,and N. (10)

The previous formula shows that only the lowest-order constants A, contribute to the

hydrodynamic torques 7; .
The torque results can be expressed as

N

r=28T" an

J=1

with

.Aa.
T =—8nna,’Q, —'B’ ,
B.a;+3n

which is the torque acting on the isolated particle j given by Eq. (1). The torque correction

(12)

parameters g, are functions of the scaled radii, separation distances, and surface slippages of the
particles. When the separation distances are infinite, obviously, g, equals unity if J =1 and zero
if j#I.

3. Results for Two Particles

In this section, we present the boundary collocation results for the rotation of two slip spheres (
N =2)about their line of centers. Once the unknown constants 4,, and 4, inEq.(6)for the fluid

velocity are solved from the truncated form of Eq. (7), Eq. (10) can be used to calculate the torque

exerted by the fluid on each particle. Numerical results of the four torque correction parameters g,
, &5, &, and g, in Eq. (11) are presented in Table 1 for the case of two identical spheres (
a=a,=a, f,=4,=0, &,=8,, and g, =&,,) with various values of the stickiness/slip
parameter fa/1n and spacing parameter 2a/d,,. In Table 2, collocation solutions of the torque
correction parameters g,,, &£,, £, and g,, forthe axisymmetric rotation of two nonslip spheres
(B, =B, > ) with different radii (choosing a, /a, equal to 2 and 5) at various values of the

spacing parameter (a,+a,)/d,, are given. In Table 3, we list typical collocation results of these
torque correction parameters for cases of two slip spheres differing in either size or slippage at
various values of the spacing parameter (@, +a,)/d,,. All of our results converge to at least five

digits after the decimal point.

Table 1. The torque correction parameters &1, 8p, &1, and &y, for the axisymmetric

rotation of two identical spheres (4 =d, =4, ,81 = ﬂz = ﬂ ). The asymptotic solution is

calculated from Egs. (13)-(19) for comparison.

IB a 2a Collocation solution Asymptotic solution
n d 818 & =8 &1=8» 8 =&
0.2 1.00000 -0.00033 1.00000 -0.00025
0.3 1.00000 -0.00123 1.00000 -0.00084
! 04 1.00001 -0.00322 1.00000 -0.00200

0.5 1.00006 -0.00691 1.00002 -0.00391
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0.6 1.00023 -0.01306 1.00005 -0.00675
0.7 1.00079 -0.02260 1.00011 -0.01072
0.8 1.00247 -0.03676 1.00026 -0.01600
0.9 1.00738 -0.05761 1.00052 -0.02278
0.99 1.02224 -0.08900 1.00092 -0.06064
1.0 1.02693 -0.09567 1.00098 -0.06250
0.2 1.00000 -0.00079 1.00000 -0.00077
0.3 1.00001 -0.00271 1.00001 -0.00260
0.4 1.00005 -0.00653 1.00004 -0.00615
0.5 1.00020 -0.01295 1.00014 -0.01202
0.6 1.00068 -0.02273 1.00043 -0.02077
10 0.7 1.00199 -0.03674 1.00109 -0.03298
0.8 1.00529 -0.05612 1.00242 -0.04923
0.9 1.01351 -0.08313 1.00491 -0.07010
0.99 1.03508 -0.12286 1.00870 -0.01971
1.0 1.04120 -0.13103 1.00925 -0.02031
0.2 1.00000 -0.00100 1.00000 -0.00100
0.3 1.00001 -0.00338 1.00001 -0.00338
0.4 1.00007 -0.00800 1.00007 -0.00800
0.5 1.00030 -0.01563 1.00030 -0.01563
0.6 1.00097 -0.02704 1.00096 -0.02703
” 0.7 1.00273 -0.04306 1.00268 -0.04301
0.8 1.00702 -0.06485 1.00669 -0.06451
0.9 1.01727 -0.09494 1.01539 -0.09280
0.99 1.04336 -0.13974 1.03082 -0.12569
1.0 1.05097 -0.14943 1.03320 -0.12988

Table 2. The torque correction parameters 811, &2, &»1, and &y, for the axisymmetric

rotation of two no-slip spheres ( ﬂl = ﬁ2 —> ©0). The values in parentheses are the asymptotic

solution calculated from Egs. (13)-(19) for comparison.

a, a, +a,
- 8 8 821 8
4 dy
0.5 1.00024 -0.00463 -0.03705 1.00019
(1.00024)  (-0.00463)  (-0.03705)  (1.00019)
2 0.6 1.00086 -0.00801 -0.06406 1.00058

(1.00084)  (-0.00801)  (-0.06406)  (1.00058)
0.7 1.00271 -0.01275 -0.10197 1.00153
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(1.00250)  (-0.01273)  (-0.10187)  (1.00152)

0.8 1.00795 -0.01917 -0.15335 1.00363
(1.00673)  (-0.01908)  (-0.15262)  (1.00358)

0.9 1.02335 -0.02800 -0.22396 1.00809
(1.01667)  (-0.02737)  (-0.21897)  (1.00769)

0.99 1.06197 -0.04126 -0.33012 1.01787
(1.03560)  (-0.03691)  (-0.29532)  (1.01444)

1.0 1.09395 -0.04449 -0.35606 1.02075
(1.03861)  (-0.03812)  (-0.30497)  (1.01544)

05 1.00007 -0.00058 -0.07234 1.00004
(1.00007)  (-0.00058)  (-0.07234)  (1.00004)

0.6 1.00030 -0.00100 -0.12504 1.00013
(1.00027)  (-0.00100)  (-0.12503)  (1.00013)

0.7 1.00110 -0.00159 -0.19873 1.00033
(1.00086)  (-0.00159)  (-0.19862)  (1.00033)

5 0.8 1.00412 -0.00238 -0.29764 1.00074
(1.00247)  (-0.00237)  (-0.29679)  (1.00074)

0.9 1.01743 -0.00344 -0.43050 1.00156
(1.00653)  (-0.00339)  (-0.42353)  (1.00152)

0.99 1.09830 -0.00508 -0.63487 1.00318
(1.01468)  (-0.00453)  (-0.56594)  (1.00274)

1.0 1.14324 -0.00556 -0.69390 1.00368
(1.01601)  (-0.00467)  (-0.58361)  (1.00291)

Table 3. The torque correction parameters &1, &, &r1, and &y for the axisymmetric

rotation of two spheres differing in size or slippage.

a, +a,
dlz

8

8

&

8x»

a,/a =1, Ba/n=1, B, >

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.00000
1.00000
1.00003
1.00014
1.00049
1.00155
1.00449
1.01258

-0.00033
-0.00123
-0.00322
-0.00691
-0.01307
-0.02263
-0.03688
-0.05814

-0.00100
-0.00338
-0.00800
-0.01563
-0.02702
-0.04298
-0.06453
-0.09382

1.00000
1.00000
1.00003
1.00013
1.00046
1.00140
1.00387
1.01021
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7
0.99 1.03642 -0.09147 -0.13622 1.02710
1.0 1.04514 -0.09962 -0.14624 1.03280
a,/a =2, Bal/n=3, p,=p,
0.2 1.00000 -0.00016 -0.00169 1.00000
0.3 1.00000 -0.00055 -0.00588 1.00000
0.4 1.00002 -0.00134 -0.01438 1.00002
0.5 1.00011 -0.00271 -0.02901 1.00009
0.6 1.00042 -0.00482 -0.05184 1.00028
0.7 1.00143 -0.00788 -0.08532 1.00079
0.8 1.00459 -0.01216 -0.13272 1.00201
0.9 1.01496 -0.01813 -0.20015 1.00479
0.99 1.05306 -0.02690 -0.30147 1.01124
1.0 1.06789 -0.02888 -0.32475 1.01311

In Tables 1-3, for all values of a, / a, ,@al / n, and ,32612 / 1, the parameters g,, and g,,
are positive and increase with an increase in (@, +a,)/d,, from unity at (@, +a,)/d,, =0, while
g, and g,, are negative and whose magnitudes also increase with an increase in (@, +a,)/d,,

but from zero at (@, +a,)/d,, =0. These results manifest that the particles’ interaction rises with
diminishing gap thickness between them. In general, this interaction can be significant as
(a,+a,)/d, —1 and its influence is stronger on a smaller or less slippery (stickier) particle than
on a larger or more slippery (less sticky) one for any given value of (a,+a,)/d,,.

Using a method of twin multipole expansions, Keh and Chen [25] analytically obtained the
following power-series formulas of the torque correction parameters g,,, &,, &5, and g, for

the axial rotation of two spheres with fBa, = B,a, = Ba:

g1(s,4) =g, (s, ﬂvil) = Z.ka D+ 1)721( s, (13)

k=0
gn(s, ) =g, (s,A") = —82 Fop DA+ )7 (14)

k=0

where
__ 2,

T a, +a, ' (15)
A= Z—Z (16)

1

f=h=L=t=/=0, (17)
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fi=1, f :813%, £ :64/13(%)2. (18)

Thus, there are two independent torque correction parameters to be determined for 0 < A4 <eo and
2<§<eco. Alternatively, we could determine all four parameters in the range 1< A <eo and
2 < § <oo.In the particular case of ,31 = ,32 —> oo (two nonslip spheres), more terms of f, (A) are
available [31]:

fi=T7684°,  f,=5124°, f,,=614417, f, =6144(1°+1%). (19)

The asymptotic solutions for the torque correction parameters obtained from the previous formulas
are also listed in Tables 1 and 2 for comparison. It is found that our collocation results are in good

agreement with these asymptotic solutions as (@, +a,)/d,, is small. However, the errors of these
asymptotic solutions become significant when (@, +a,)/d,, gets close to unity.

Using the reciprocal theorem of Lorentz [15] for the axisymmetric rotation of any two slip
spheres with S,a, = f3,a,, we obtain

8 _ by
(a)- (20)

& 1
The collocation results in Tables 1 and 2 satisfy Eq. (20) and the relations g, +g,; <1 and
g, t8g, <1 (with g, and g,, being positive and g;, and g,, negative), indicating that the

rotation of one particle is enhanced (its hydrodynamic torque is reduced) by another nearby particle
rotating with a comparable or larger angular velocity in the same direction but is hindered (the
resisting torque is augmented) by another particle rotating with an arbitrary angular velocity in the
opposite direction.

4. Results for Multiple Particles

We now present the boundary collocation results for the rotation of a chain of three or more slip
spheres about their line of centers. From Eq. (11), the general problem requires nine torque correction
parameters to represent the hydrodynamic torques on the three-sphere chain. For the sake of brevity,
here we only consider the rotation of three coaxial spheres with the same slip coefficient (

B=p5= ﬂ3 = [3) in a symmetric configuration, i.e. the spheres at both ends have equal radii (

@, = a,) and are equally distant from the central sphere (d,; =d,, =d ). For this symmetric case, it

is clear that the torque correction coefficients

811 =83 812 = 8xn 823 =8/ &1 =83 1)

In Table 4, collocation results of the torque correction parameters in Eq. (11) for the axisymmetric
rotation of three identical slip spheres (a, = a, = a, = a ) with different values of the stickiness
parameter pal/n and spacing parameter 2a/d are offered. In Table 5, the numerical results of
the torque correction parameters for the rotation of three nonslip spheres ( ,B —> 0 for two typical
cases of relative particle sizes (&, / @, equal to 2 and 1/2) at various values of the spacing parameter
(a,+a,)/d are given.In Table 6, we list results of the torque correction parameters for the rotation
of three slip spheres (with ,Ba2 /M=1 and a,/a, equal to 2 and 1/2) at various values of
(a,+a,)/d . In general, particle interactions increase with decreasing gap thickness between two

adjacent particles. When the central particle is greater than the end ones, however, the torque

correction parameters g,; and g,, are not always monotonical functions of (@, +a,)/d . Again,
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Eq. (20) holds in Tables IV and V for the axisymmetric rotation of the three-sphere chain and the effect
of particle interactions on the hydrodynamic torques is greater for smaller or less slippery particles

than for larger or more slippery ones for a given value of (¢, +a,)/d.

Table 4. The torque correction parameters for the axisymmetric rotation of three identical slip spheres

(a,=a,=a,=a and B, =, = =) with equal spacings (d,;, =d, =d).

Bain 2 g, gy =g, 08 € =8
d =81 ~8xn

02 100000  1.00000 -0.00033 -0.00004

03 100000  1.00000 20.00123 20.00013

04 100002  1.00001 20.00322 20.00032

05 100012  1.00006 20.00691 -0.00063

06 100046  1.00023 1001305 20.00110
Y07 1oms8 100080 10.02256 20.00171
08 100493  1.00247 1003666 1000244

0.9 1.01473 1.00739 -0.05740 -0.00322

0.99 1.04441 1.02225 -0.08866 -0.00392

1.0 1.05330 1.02724 -0.09501 -0.00399

02 100000  1.00000 -0.00079 -0.00010

03 100002  1.00001 -0.00271 -0.00032

04 100010  1.00005 -0.00652 -0.00075

05 100040  1.00020 1001293 -0.00142

06 100136  1.00069 10.02267 20.00232

Y 07 100396 1.00200 2003660 -0.00341
08 101054  1.00531 1005582 20.00461

09 102693  1.01355 10.08259 2000586

099 10699  1.03511 1012204 10.00695

1.0 1.08354 1.04192 -0.13082 -0.00707

0.2 1.00000 1.00000 -0.00100 -0.00012

0.3 1.00002 1.00001 -0.00337 -0.00041

04 100014  1.00007 -0.00799 -0.00094

05 100050  1.00030 -0.01560 -0.00175

06 100193  1.00098 -0.02695 -0.00282

T 07 100545  1.00275 1004286 20.00409
08 101397  1.00705 1006445 20.00546

09 103439  1.01732 10.09423 -0.00687

099 108644  1.04341 1013864 20.00812

1.0 1.10321 1.05182 -0.14909 -0.00826
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ﬂ1=ﬂ2:ﬂ3%°°)with a; =a, and d23:d12:d.
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Co a +a, — — — —

@ -a,.a, J &xn En=8s 8nuT8n 8En=8n 83T 8
0.2 1.00000 1.00000 -0.00030 -0.00237 -0.00004
0.3 1.00002 1.00001 -0.00100 -0.00800 -0.00012
0.4 1.00009 1.00006 -0.00237 -0.01896 -0.00026
0.5 1.00037  1.00024 -0.00463 -0.03703 -0.00045
0.6 1.00116 1.00087 -0.00800 -0.06402 -0.00067
1:2:1 0.7 1.00306 1.00271 -0.01273 -0.10188 -0.00088
0.8 1.00726 1.00795 -0.01915 -0.15320 -0.00103
0.9 1.01616 1.02335 -0.02797 -0.22373 -0.00110
0.99 1.03572 1.07433 -0.04123 -0.32982 -0.00110
0.999 1.04058 1.09059 -0.04397 -0.35177 -0.00110

1.0 1.04136 1.09376 -0.04445 -0.35557  -0.00110
0.2 1.00000 1.00000 -0.00237 -0.00030 -0.00030
0.3 1.00002 1.00001 -0.00799 -0.00100 -0.00099
0.4 1.00011 1.00005 -0.01892 -0.00236 -0.00233
0.5 1.00049 1.00021 -0.03685 -0.00461 -0.00447
0.6 1.00172 1.00064 -0.06346 -0.00793 -0.00756
2:1:2 0.7 1.00536 1.00169 -0.10038 -0.01255 -0.01165
0.8 1.01568 1.00396 -0.14971 -0.01871 -0.01681
0.9 1.04600 1.00872 -0.21645 -0.02706 -0.02308
0.99 1.14694 1.01894 -0.31689 -0.03961 -0.02980
0.999 1.17932 1.02142 -0.33813 -0.04227 -0.03054
1.0 1.18582 1.02188 -0.34194 -0.04274 -0.03062

Table 6. The torque correction parameters for the axisymmetric rotation of three slip spheres with

ﬂlzﬂzzﬂ3:ﬂr a; =aq, ﬂa2/77=1,and d23:d12:d~

X X a, + a, _ _ _ _
a,-a, . a, p &xn En1=8:n 8n=8n &178x 83T &
0.2 1.00000  1.00000 -0.00006 -0.00083 -0.00001
0.3 1.00000 1.00000 -0.00023 -0.00322 -0.00002
0.4 1.00001 1.00001 -0.00061 -0.00865 -0.00006
0.5 1.00006 1.00004 -0.00133 -0.01896 -0.00011
2l 0.6 1.00021 1.00017 -0.00254 -0.03657 -0.00017
0.7 1.00069  1.00067 -0.00442 -0.06463 -0.00024
0.8 1.00202  1.00254 -0.00720 -0.10748 -0.00030
0.9 1.00549  1.00977 -0.01125 -0.17256 -0.00033
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0.99 1.01456  1.04047 -0.01731 -0.27461 -0.00030
0999 1.01694 1.05118 -0.01849 -0.29502 -0.00030
1.0 1.01726  1.05328 -0.01864 -0.29841 -0.00030
0.2 1.00000  1.00000 -0.00114 -0.00009 -0.00013
0.3 1.00000  1.00000 -0.00417 -0.00033 -0.00046
0.4 1.00002  1.00001 -0.01070 -0.00083 -0.00113
0.5 1.00011  1.00005 -0.02252 -0.00174 -0.00228
0.6 1.00047  1.00017 -0.04185 -0.00320 -0.00406
2:1:2 0.7 1.00175  1.00052 -0.07142 -0.00541 -0.00658
0.8 1.00619  1.00141 -0.11479 -0.00855 -0.00995
0.9 1.02229  1.00358 -0.17814 -0.01300 -0.01428
0.99 1.08748  1.00878 -0.27514 -0.01954 -0.01910
0999 110984 1.01016 -0.29470 -0.02083 -0.01964
1.0 1.11423  1.01033 -0.29798 -0.02096 -0.01970

It may be interesting to realize how much the presence of a third particle influences the

hydrodynamic torques of its two neighbors. The normalized torques 7, /T’ @ of three identical

spheres (a,=a,=a,=a, Bi=F=0=F,and T =T\ =T =T'?) rotating at equal
angular velocities (€2, = £, =, = ) about their line of centers at equal spacings (d,, =d,, =d )
are plotted versus the spacing parameter 2a/d by solid curves for various values of the stickiness
parameter [a/7 in Figure 2. For comparison, the corresponding results of normalized torques of
the first and second particles in the absence of the third one, which agree well with those obtained by
Saad [26], are plotted in the same figure by dashed curves. Clearly, the presence of the third particle
reduces the torques of the other two particles. As expected, the reduction in torque is much more
pronounced on the center particle than on the end ones. When the particles are in contact with each
other (2a/d =1), the presence of the third particle reduces the torque on the first (end) particle by
merely about 0.8% in the case of no-slip particles ( Pa/1n—>c) and about 0.3% in the case of slip
particles with Pa/n=1, as shown in Figure 2a (and Tables 1 and 4). In contrast, as shown in Figure
2b (and Tables 1 and 4), the torque on the second (center) particle is reduced by 10.7% in the case of
no-slip particles and by 7.3% in the case of slip particles with fa/1=1 when the particles touch
each other. Note that, due to the configurational symmetry, the torque results presented in Table 1
and Figure 2 for two identical slip spheres a distance d apart and rotating at identical angular
velocity are the same as those for an isolated slip sphere rotating at equal angular velocity at a
distance d/2 from a large planar free surface (with vanishing shear stress) normal to the axis of
rotation.

do0i:10.20944/preprints202309.0266.v1
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Figure 2. Normalized torques on three coaxial, identical, equally spaced, slip spheres rotating at equal
angular velocities about their axis versus the separation parameter 2a/d with various values of the
stickiness parameter ,Ba /M : (a) the first (end) sphere; (b) the second (center) sphere. For

comparison, the dashed curves are plotted for the torques when only two spheres are present.

The solution to the problem of chains consisting of different numbers of N (up to 101)

identical slip spheres (a, = a, B. =/, and ];(0) =T) with equal spacings (d iy = d ), rotating
about their line of centers with equal angular velocities (£2, =£2), has also been obtained by the

boundary collocation method. Results of the normalized torques 1, /T © for these chains with

2a/d =0.8 are plotted against the particle number I in Figure 3. It can be seen that the torques
on the central particles decrease with increasing chain length, indicating a shielding effect of the
particle chain. When approaching the ends of the chain, the relative torques of neighboring particles
change rapidly, demonstrating a strong end effect. As the chain length increases for a relatively long
chain, the torques on the central particles change slowly. The torque on each particle will be the same
in the limit of an infinite chain. The dashed curves in Figure 3 represent the change in torque of the
ith particle in the chain as more particles are added to the chain. These curves are leveled out as the
chain length is increased, again demonstrating the shielding effect exhibited by particle chains.
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Figure 3. Normalized torques on N coaxial, identical, equally spaced, slip spheres rotating at equal
angular velocities about their axis versus the sphere number I with 2a/d =0.8: (a) ﬁ aln—eo

;(b) Baln=1.

Figure 4 represents a plot of the normalized torques 7, /T © versus the particle number I for

a chain of nine identical and equally spaced slip particles with 2a/d =0.8 rotating with equal
angular velocities at different values of the stickiness parameter [a/17]. These results show that as
paln increases, the torque on each particle in the chain decreases. Particle interactions are strictest

for no-slip particle chains and weaker for corresponding more slippery particle chains.

0.98 T T T

0.96 |-

0.94

i
T(U)
092 - R

0.90 - -

0.88 -

0.86 n 1 i 1 i 1 n 1

Figure 4. Normalized torques on nine coaxial, identical, equally spaced, slip spheres rotating at equal
angular velocities about their axis versus the sphere number i with 2a/d=0.8 and various

values of the stickiness parameter ,Ba /n.

. . . . 0 .
To examine the effect of particle spacing, the normalized torques 1, /T' @ Versus the particle

number I are plotted in Figure 5 for the chain containing nine identical and equally spaced particles
rotating at equal angular velocities with 2a/d as a parameter. Both the case of no-slip ( fa /17 —> o
) particle chains and a case of partly slip (with fBa /7 =1) particle chains are shown. The results in

this figure illustrate that end effects decrease with increasing spacing (decreasing 2a/d ). As
expected, the torque of each particle in the chain decreases as the particles get closer together.
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Figure 5. Normalized torques on nine coaxial, identical, equally spaced, no-slip spheres (
Pa/n —> oo, solid curves) and slip spheres (with fa /1 =1, dashed curves) rotating at equal

angular velocities about their axis versus the sphere number [ with various values of the separation

parameter 2ald.

5. Concluding Remarks

The slow rotation of a straight chain of multiple slip spheres about their line of centers in a
Newtonian fluid is analyzed in this article. The spheres may vary in radius, slip coefficient, and
angular velocity, and they are permitted to be unevenly spaced. The boundary collocation method
has been employed to obtain the fluid velocity field semi-analytically. The solutions of the
hydrodynamic torques exerted on the particles can be obtained even when the number of particles is
large and the particles touch one another. Section 2 presents the linear algebraic collocation
formulations for solving the general axisymmetric problem of multi-sphere rotations, and numerical
results of the torques for two-sphere, three-sphere, and multi-sphere systems to correct Eq. (1) are
given in Sections 3 and 4. The interaction effects among the particles are found to be noteworthy
under appropriate conditions.

The results for the resistance problem are presented in previous sections, in which the

hydrodynamic torques 7, experienced by a chain of particles are calculated for specified angular

velocities €2, according to Egs. (11) and (12). In a mobility problem, on the other hand, the applied
torques on the particles are specified and the resultant angular velocities need to be determined. For

the axisymmetric rotation of N slip spheres, the angular velocity of particle i can be expressed as
N

Q=>YmQ,, i=12.,ad N, 22)
j=1

with

Ba;+3n

- 3
8nna; pa,

o T, (23)
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which is the angular velocity of particle j subject to an applied torque — T ;j inthe absence of the
other particles, and the mobility parameters m; are functions of the scaled radii, separation
distances, and surface slippages of the particles. For the case of two particles (/N =2, one can use

Egs. (11), (12), (22), and (23) to obtain

my, =(g), — &8 /gzz)_l > (24)

m, = (&)3 Bra,(Bia, +317)
a," Ba(Ba,+3n)

where the corresponding expressions for m,, and m,, can be determined from the previous

(82— 81182 /g12)71 > (25)

formulas by interchanging subscripts 1 and 2. The mobility parameters n,,, m,,, m,,, and m,,

can thus be calculated from using the torque correction parameters &,,, &£,, &, and g,

obtained in Section 3 for its resistance problem.
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