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Abstract: Image registration (IR) is a process that deforms images to align them with respect to a
reference space, making it easier for medical practitioners to examine various medical images in a
standardized reference frame, such as having the same rotation and scale. This document introduces
image registration using a simple numeric example. It provides a definition of image registration
along with a space-oriented symbolic representation. This review covers various aspects of image
transformations, including affine, deformable, invertible, and bidirectional transformations, as well
as medical image registration algorithms such as Voxelmorph, Demons, SyN, Iterative Closest
Point, and SynthMorph. It also explores atlas-based registration and multistage image registration
techniques, including coarse-fine and pyramid approaches. Furthermore, this survey paper
discusses medical image registration taxonomies, datasets, evaluation measures, such as
correlation-based metrics, segmentation-based metrics, processing time, and model size. It also
explores applications in image-guided surgery, motion tracking, and tumor diagnosis. Finally, the
document addresses future research directions, including the further development of transformers.
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2
Nomenclature & Abbreviations

Table 1.A. Nomenclature.
bx translation on the X-axis
by translation on the Y-axis
b translation on the Z-axis
Cﬁq correspondence of image p in space i and image q in space j
DT average training time
E the total number of elements in a set
e (as in xe) stands for the order of an element in a set Xgi = {xlgi,XZgi,x3gi, XEgi}, Ygi = {ylgi,yzgi,y3gi, ...yEgi}
Fg a mapping between Xﬁ & Yipj’ such that Yil; = Fg (Xﬁ )
15, (orI?) <X%;, Yg;> an image P that connects X5, and Yy,
Lo labels associated with I} that describe properties of elements in If; such as a segmentation category
Lp the number of points in image P
Mgi a set of marks that includes selected elements or points of image P such that Mgi € lgi
Mp the number of landmarks in image P
N the number of examples/samples in a dataset
©) an objective function that yields a smaller value when the registration is closer to the desired. For example,

O = Zg=1(ng - Yi']? 2 which measures the square difference between a registered codomain Yi‘].) and a

ground truth Yg,

RT average registration runtime

T a domain mapping between Xg; & Xg;

tF srart the time at which image p is loaded to an IR model

tf’ end the time at which image p is registered

[l length of vector v

Xgi (orx?) domain values of an image p in space i, where @ is a reference unknown codomain (used with raw data).

p is an index of a registration example in a dataset.

Xj the transformed domain after applying Tj; to Xg; such that Xj = T;;(Xg;)
Xi—j the outcome of applying T;_; to Xg; such that X;_; = T;_;j(Xp;) but before any postprocessing like resampling
xe element number e in a set X, Xgi = {xlgi,XZSi,x?;gi, ngi},

Ygi (or Yip) codomain values of an image p in space i, where @ is a reference unknown codomain (used with raw data).

p is an index of a registration example in a dataset.

Yi codomain values after a transformation T;_; but before any post-processing (e.g., interpolation)
ye element number e inasetY, Yy, = {y15,y25,y35, ... .. yE5;}

AE a displacement field that transforms image p from spacei toj.

<Pf; a registration field that transforms image p from space i to j.

0 rotation angle

the apostrophe indicates ground truth, for example, < X’ﬁ, Y’ﬁ> is the ground truth outcome <domain and
codomain> of image p after IR to space j.

the ~ sign indicates a post-transformation outcome.

# number of

X standard deviation
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n Intersection
u Union

Table 1.B. Abbreviations.
2D two dimensional
3D three dimensional
Al artificial intelligence
CcC cross-correlation
CcOM center of mass
CMYK a color system in which cyan, magenta, yellow, and black are the basic colors
CT computerized tomography
CNNs convolutional neural networks
Dist distance measure
DL deep learning
DSC dice score
e.g. for example
F1 F score
FN false negative
FP false positive
GANs generative adversarial networks
HD Hough distance
IR image registration
Inf Infimum
ie. that is
J Jacobian
JOCA the determinant of Jacobian
MIR medical image registration
ML machine learning
MR magnetic resonance imaging
MSE mean square error
N No
nCC normalized cross-correlation
nLCC normalized local cross-correlation
NN neural networks
PET positron emission tomography
Prox a proximity measure
RGB a color system in which red, green, and blue are the basic colors
RL reinforcement learning
RMSE root mean square error

ROI region of interest
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SDlog] standard deviation of log Jacobian
Sup Supremum
TRE target registration error
TN true negative
TP true positive
w/o Without
us ultra-sound
Y Yes

1.0. Image registration etymology

1.1. Registration in Dictionaries

When a novice human reads or hears the concept of “image registration” for the first time, the
word “registration” may not provide a clue about what image registration engineers do. A curious
non-native English speaker may look for a hint in a dictionary such as Oxford or Cambridge, but no
related senses (Table 2). In the dictionary, the word “registration” is mainly associated with an entry
in an official record or list, such as the addition of a new citizen to a national register or the enrollment
of a student in a course (an entry in the record of enrolled students). Similarly, the license plate on a
car is called a registration number in British English (an entry in the record of licensed cars). A related
sense is found in Merriam-Webster's dictionary under the word “register,” but not under the word
“registration,” which defines “register” (noun) as a correct alignment.

Table 2. Registration in dictionaries (Oxford, Cambridge, Meriam Webster).

Dictionary Word Link

Oxford Registration https://www.oxfordlearnersdictionaries.com/definition/english/registration?q=registration
Oxford Register (noun) https://www.oxfordlearnersdictionaries.com/definition/english/register_2

Oxford Register (verb) https://www.oxfordlearnersdictionaries.com/definition/english/register_1?q=register
Cambridge Registration https://dictionary.cambridge.org/dictionary/english/registration

Cambridge Register https://dictionary.cambridge.org/dictionary/english/register

Meriam webster Registration https://www.merriam-webster.com/dictionary/registration

Meriam webster Register https://www.merriam-webster.com/dictionary/register

1.2. Registration in the printing industry

In the printing industry, registration is the process of getting an image printed at the same
location on the paper each time. It also means the perfect alignment of printing components (e.g.,
dots, lines, colors) with respect to each other. Figure 1 shows an example of printing misalignments.
The misalignment in early printing machines depended on the initial settings in addition to the
movement of a paper while it runs through the printing machine. Hence, marks like crosshairs were
used to be printed on paper boundaries to check a popper alignment/registration (Stallings, 2010).
You may have seen a crosshair like the one shown on the right of Figure 1 in some old documents. In
addition to ink printing on papers, registration covered other kinds of printing such as embossing
and metallic foiling.

In color printing, basic colors were printed one color after another. For example, the basic colors
of the CMYK color model are cyan, magenta, yellow, and key/black, which form the acronym of
CMYK. A misalignment between colors may result in overlapping replicas (Wikipedia 2023).
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It may give some practical results, s not why we do it

difference between knowing the n3M€ °f S0mething and
knowing g5 mething.”
serve the same social functions “' " - to define,

classify, control, and ......”

Figure 1. An example of printing misalignment and a crosshair on the right boundary. Crosshairs
were used in the early printing industry to check misalignments like the misalignment between
copies/pages.

In summary, the concept of image registration in computer vision seems to have been influenced
by the printing industry. In computer vision, it is common to call a computer image that will be
aligned a “moving image” and the reference image a “fixed image”. The naming of a “moving” and
a “fixed” image suit the movement of a paper in a printing process, however, it is still very common
to read “moving image” and “fixed image” in computer image registration papers, despite the lack
of a moving part as IR is done digitally by computer algorithms only. The sense of registration in the
printing industry can be seen as a narrow case of an expanding IR arena. IR includes aligning
identical images, aligning images of non-rigid objects, and aligning images of different objects and/or
different dimensions (like aligning a 2D X-ray image with a 3D MRI image).

In the previous paragraphs, a connection was drawn between the concept of IR and the
registration printing industry. A potential, but less obvious, connection is between IR and registration
in the music industry. Registration is known to organists (musicians who play organ) as the selection
of organ stops. An organ stop is a part of an organ that controls the flow of the air to certain pipes,
hence basically a musician combines stops to generate sounds. What is common between organ
registration and IR is that both are processes of finding a configuration for an intended outcome. That
outcome is a melody in the case of organ registration and an aligned image in the case of IR. Can
organ registration be considered a type of IR? Answering such questions entails a full technical
definition of image registration.

2.0. Image registration definition

Humans align objects mentally before deciding whether two rotated objects are similar or not
according to cognitive psychology (Cooper, 1975). Likewise, it is easier for medical practitioners to
compare aligned medical images. To demonstrate this, a reader can compare the left side and the
right side of Figure 2.

Before registration After registration

Are they the same shoe? Rotational alignment
r— ™~ N\ = T LI
S L 5 — F —
'/ 1 \\ \ I '1
M " e = J
\\‘.// i—
Same size? Rotational and translational alignment

Figure 2. Examples of mental alignment.
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2.1. IR definitions in the literature

Image registration definitions in the literature of medical image registration can be categorized
into three main definitions:

Definition 1. Finding a transformation between two images that are related to each other such that the images
are of the same object or similar objects, the same region, or similar regions (Stewart et al., 2004).

Definition 2. The process of overlaying two or more images of the same scene taken at different times, from
different viewpoints, and/or by different sensors (Zitova et al., 2003).

Definition 3. The process of transforming different images into one coordinate system with matched content
(Chen, X., Wang, et al, 2022).

Each definition imposed a constraint. The first definition limited registration to two images like
the definitions in (Decuyper et al., 2021; Talwar et al., 2021; Fitzpatrick et al., 2000). The second
definition limited registration to images of the “same scene” like the definition in (Abbasi et al., 2022).
The third definition entailed a “coordinate system” like the definitions in (Haskins et al., 2020; Chen,
X. et al 2021).

2.2. IR definition

Briefly, Image registration is an alignment of images. The alignment is finding a space k (not
necessarily a coordinate system) in which a correspondence relation is satisfied such that
correspondent elements are in proximity. For instance, given an image I, =<Xg, Y5> and Ij, =<Xg,,
Y/;> with a correspondence set between them ¢} = {(xeg;, yeg,)<>( xeg;, yes;)}, the images p and q
can be registered if there is a space k in which the correspondent points are positioned at the same
location or nearby locations. That can be expressed as in Equation 1.

Tix(xey;, ve;) = Ti(xeg;, yeg;) for V correspondence points € ¢/} (1)
where - (xej;, yeg)>( xeg;, yes;) are correspondent points between image p in space i, and image q
in space j,
- T, T j transformations map spaces i, and j (respectively) to space k.

An image is a representation of a function that maps a space/set X called domain to a space/set
Y called co-domain. This definition may seem a generic definition that goes beyond digital graphics
in the sense that a mathematical function y=x?> can be considered an image under this definition,
which is true. The discussion of what is an image and what is not is beyond the scope of this
document. However, interested readers are referred to (Mitchel, 1984) who provided an interesting
discussion based on Wittgenstein’s philosophy, in which Mitchell thinks of a family of images that
includes graphical, optical, mental, and verbal images. This definition aligns with the classical
concept of a digital image. A digital graphical image, which is a discrete function, can be thought of
as a set of samples (e.g., recorded by a sensor) from a continuous function. That continuous function
is a scene/object/manifold in the world. However, a sensor is no longer essential to acquire a digital
graphical image since digital graphical images can be created virtually, using graphics tools or deep
learning (GANSs for example).

3.0. Introductory example

Readers who have some knowledge of image processing or modern algebra are advised to skip
this section which targets novice readers. This section demonstrates an image transformation pipeline
using a simple example (see Figure 3).
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Xoi Xij
Foi Ey
Yy Yi‘.
Image in Image in
Space i Space j

Figure 3. A transformation of an image from space i to space j.

3.1. Image representations

Let P be a 2D digital image of 2x2 pixels in a Euclidean space as shown in Figure 4. The domain
values Xj; can be represented in a set of tuples {(m, n)} where m, n are integers, 0 Sm <2, 0 <n <
2. Explicitly Xg; = {(0,0), (0,1), (1,0), (1,1)}, where the first number in the tuple is the row and the
second is the column in which a pixel is located such that counting starts from the top left corner of
the image. The codomain values Yj; is a set of 2x2 = 4 items, each item represents a color. Y;; ={(a),
(b), (), (d)}. Colors in this example were represented as symbols for simplicity. There are multiple
other ways to represent the domain/codomain values. For example, the codomain values of an RGB
image consist of 3 numbers that represent the intensities of the basic colors (red, green, blue), which
if mixed yield the color of the pixel.

A b Igi ={(0,0): a, (0,1): b, (1,0): d, (1,1): ¢}
D C
Euclidean representation Non-Euclidean representation

Figure 4. Two representations of an image: Euclidean (left), and non-Euclidean (right).

FJ; is a mapping between X7, & Y}, like how the blue lines in Figure 5 connect elements in the
left rectangle (domain values) to elements in the right rectangle (co-domain values). Fy, can be
represented, in some other cases, by an algebraic expression between X and Y.

3.2. Image transformation

A toy example of image transformation is represented in Figure 5. Tj is a domain transformation
that relocates pixels 1 unit in a counterclockwise rotation. Tij shown in Figure 5B replaced the domain
values with new ones. For example, the domain value (0,0) in Figure 5A became (1,1) in Figure 5C.
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5B. A domain transformation that
maps the domain values XJ; of

5C. The wrapped image

15: <XF, ¥}> in space j after the

application of Tij

5A. Image P of domain values Xgi
inside the left rectangle, and co-
domain values Yé’i inside the right space i (left rectangle) to X5 in

rectangle. A mapping Fir; is

represented by the blue lines.

space j (right rectangle)

Figure 5. An image transformation.

3.3.1. Image deformation using a displacement field

A displacement field AX represents domain relocation distances (see Equation 2), such that a 2D
displacement value of <1,-1> moves a pixel 1 unit on the horizontal axis and -1 unit on the vertical
axis.

xP =T ;(Xp) = Xp; + AX )

Figure 6 shows a displacement field AX estimated by an algorithm given a pair of fixed and
moving images. The moving image Igi ={0,0" a, ‘0,1 b, “1,0": d, ‘1,1": c}.The displacement field
estimated by a registration algorithm is AX = {*0,0": <1,0>, ‘0,1": <0,-1>, ‘1,0": <0,2>, ‘1,1": <-1,0>}. The
goal is to obtain a transformed image If; by deforming the moving image Ij;.

fixed image

d

B
/

b

d

C

Algorithm

<1,0> | <0.-1>

v

<0,2> | <-1,0>

Moving image

Figure 6. A displacement field estimated by an algorithm is used to register a moving image.

The wrapping operation ‘0’ shown in Figure 6 consists of a domain deformation of a moving

image followed by resampling. The replacement of the domain of the moving image Xg; by the
domain of the wrapped image before any post-processing X ; yields a wrapped image I

i shown

below. Figure 7 demonstrates how X7 ; was obtained by the addition of AX to Xg;.
Igi ={0,0:a,’0,1:b,“1,0": d, “1,1": ¢}

I7; ={107:a,’0,0:b,"1,2:d,0,1": c}
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The domain of the Displacement The new domain of the
moving image field moving image
Xy + AX > Xt
001 01 <1,0> | <0,-1> 1,0 0,0
1,0 | 1,1 <0,2> | <1,0> 1,2 0,1

Figure 7. The displacement field transforms the domain of the moving image.

3.3. post-processing

A domain transformation may relocate pixels to locations that violate space constraints. A
constraint that is commonly violated after a domain transformation of a digital graphical image is
that domain values should be uniformly distributed integers. For example, a domain value of (0.3,
0.17) violates the mentioned constraint since 0.3 and 0.17 are not integers. Such violations can be fixed
in a post-processing step called ‘resampling’. Resampling estimates codomain values Y/ for post-
processed domain values X[, that don’t violate the space constraints. The selection of X}, is known
in the literature as ‘grid generation’. Resampling is done under the assumption that the post-
processed image <X}, ¥/> and the preprocessed image <X/ ;,¥;” > are discrete samples from the same
function/manifold. Hence Yi’; can be interpolated based on Y i The Interpolations list includes but
is not limited to linear, bilinear, and spline interpolations.

An example of post-processing is shown in Figure 8. Pixel d is out of the image boundaries. A
potential fix is just to move the pixel d one step to the left to be in the empty cell at <1,1>. Another
option is just to delete pixel d without filling the empty cell, another option is to fill the empty cell
with the average of its surrounding pixels.

I ; Option 1 Option 2 Option 3

b|c ) || b c b c

a d ald a a| (atb+c+d)/4

Figure 8. Examples of image interpolation.

4.0. Review criterion

This work reviewed medical image registration (MIR). The list of surveyed work was collected
by searching using the keywords medical image registration in the Scopus database. The search query
was limited to open-access MIR papers written in English and published between 2021 and 2022. The
number of retrieved records was 270, out of which 38 papers were excluded based on the abstract for
their irrelevance (e.g., they are about medical images but not MIR). Other 41 papers were excluded
as the authors could not find open-access versions of those papers as of December 2022. Out of 191
papers, 96 have been reviewed at the time of writing this draft in addition to 10 papers published
before 2021. The research questions and sub-questions of this work are shown in Table 3.
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Scopus search query:

Key words in title/abstract/keywords: medical “image registration”
Source type: Journal or conference proceedings

Year: 2021 and 2022

Language: English

open access

Table 3. The questions of interest in this survey.

Research question Sub-questions

What was the research pipeline of What were the proposed approaches of MIR?

MIR in 2021 and 2022? What were the evaluation criteria?

What MIR datasets were used

What were the applications/use cases of MIR?

5.0. Related survey papers

Table 4 compares this work to related survey papers that appeared in the search query in section
6. Two highly cited review papers (Zitova et al., 2003; Haskins et al., 2020) were added to the table
although they were published before 2021.

It could be in the interest of novice readers to read about the evolvement of IR concept and its
etymology (see section 1) in addition to a simple numeric example that demonstrates the basics of IR
(see section 3) since no review paper was found that addresses these parts to the best of the authors’
knowledge. Advanced users could be interested in the novel constraint-based analyses of IR
introduced in the previous sections. Different from other survey papers shown in Table 4 which
were mainly descriptive with no or just a few equations, this survey introduced a symbolic
framework of the IR components (see the nomenclature) that has been used to express tens of
equations.

Zitova et al. (2003) structured their paper based on the classical IR pipeline starting with feature
detection, followed by feature matching, mapping function, image transformation, and resampling.

Haskins, et al. (2020) tracked the development of MIR algorithms covering 1) deep iterative
methods that are based on similarity estimation, 2) supervised transformation estimation which
entails ground truth labels that are not easily affordable, and 3) unsupervised transformation
estimation methods which overcome the challenge of ground truth labels. Finally, 4) weakly
supervised approaches were discussed.

Chen, X. et al. (2021) first provided a framework for image registration. Then explained the basic
units of DL and reviewed DL methods such as deep similarity, supervised, unsupervised, weakly
supervised, and RL. The authors discussed the challenges of MIR: 1) different preprocessing steps
lead to different results, 2) a few studies quantify the uncertainty of predicted registration, and 3)
limited data (small scale). Finally, possible research directions were highlighted: 1) hybrid models
(classical methods and deep learning), and 2) Boosting MIR performance with priors.
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Table 4. Comparison of related MIR survey papers.

Paper Review Taxonomy/ survey criterion
period

symbolic
framework

-

Scope limit
=| Etymology
=<| Equations

This 2021- See the Taxonomy section and appendix
2022
(Zitova et al., 1992- - feature-based, intensity-based -
2003) 2002
(Haskins, ¢t 2012- - MIR algorithms; decp iterative, supervised, unsupervised, Intensity-bascd
al. 2020) 2020 - Deformability: rigid. detformable
- Modality type: MR, CT....

-ROI

- Dataset: real, synthetic

- Loss function

(Chen, X. et 2013- - MIR algorithms: Deep similarity, supervised, unsupervised, N Y N
al., 2021) 2021 weakly supervised, RL

- Model

-ROI

- Modality: unimodal, multimodal
- Modality type: MR, CT, ...

- Dimensionality: 2D, 3D

- link to code

- Datasets

(Dossun et al., | 2010- - Evaluation metrics: Overlap (e.g., DSC), Volume (e.g., 7)), Deformable N N N
2022) 2022 information theory (¢.g., mutual information), probabilistic (¢c.g., MIR in
correlation), distance based radiotherapy
- MIR tool: commercial, opensource, in-house treatment

- MIR algorithms: DL, Atlas, ....

- Bvaluation mctrics

- Threshold

- Groundtruth (# observers)

- Dosimetric analysis (Y/N)

- Correlation among metrics (Y/N)
- Year of publication
(Abbasietal.. | 2013- - Deformability: rigid, deformable Unsupervised N N N
2022) 2021 - Modality type: MR, C'T,...
-ROI

- Datasets

- Model

- Similarity metrics

- Evaluation metrics

(Xiao et al., 2016- -ROI 3D N Y N
2021) 2020 - Modality type: MR, CT, ...

- Evaluation metrics.

- Datasets

- Deformability: rigid, deformable

- Method: deep iterative, supervised, unsupervised.
(Chen, X., 2016- -Year N N N
Wang ct al, 2019 -Application

2022) -Model

-Dataset

-Contributions/ highlights
(Huang et al.. 1997- - MIR algorithims: deep iterative, supervised, unsupervised. Brain tumor N N N
2022) 2020 -Tumor type

- Modality

- Model

- Evaluation metrics.
- Result in numbers
- Dataset size
(Decuyper et 2016- - MIR algo.: deep similarity metrics, supervised, unsupervised, RL Nuclear N Y N
al., 2021) 2020 - Summary medicine and
Radiology
(Zhang, Y. ct No info | - Featurcs: intcrnal (image)/ external (info beyond image such as Breast cancer N N N
al., 2021) patient age)

- Ground truth: expert labeling, simulation

Z
~
z

z
z
z

Dossun et al. (2022) reviewed the performance of deformable IR in radiotherapy treatments in
real patients. First, the scope of the paper and the paper selection process were explained. Then a
taxonomy of MIR evaluation metrics was mentioned but no explanation or formula was provided. A
table of 7 pages compared the surveyed papers. Then, statistics and figures summarized the results
showing, for example, that the distribution of the ROIs was 36% for the prostate, 33% for the head
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and neck, and 26% for the thorax. Another figure showed the most frequent evaluation metrics
ordered as the following: DSC > HD > TRE.

Abbasi et al. (2022) reviewed the evaluation metrics of unsupervised MIR in a sample of 55
papers. The statistics showed that: 1) the majority of papers were handling unimodal registration
(82%), 2) a private dataset was more likely to be used than a publicly available dataset, 3) most papers
worked with MR images (61%), and 4) the most researched ROI was the brain at 44%, then the heart
at 15%.

Xiao et al. (2021) started with a brief introduction to deep learning, then provided a statistical
analysis of a selected sample of 3D MIR papers that covered the distribution of ROI (Brain 40%, lung:
24%), modality (MR-MR: 46%, CT-CT: 24%), MIR methods: (unsupervised: 43%, supervised: 40%,
deep iterative: 19%), and evaluation metrics (74% label based, 18% deformation based, 12% image-
based). The MIR methods were reviewed based on the taxonomy (deep iterative methods,
supervised, and unsupervised).

Chen, X., Wang, et al. (2022) reviewed medical image analysis covering four areas: image
classification, detection, segmentation, and registration. First, the paper gave an overview of deep
learning and its methods: supervised, unsupervised, and semi-supervised. Then it addressed ideas
of DL that were shown to improve the outcomes: attention, involvement of domain knowledge, and
uncertainty estimation. Then the paper briefly reviewed classification, detection, segmentation, and
registration. Finally, the paper highlighted ideas for future improvement that included the idea of a
fully end-to-end deep learning model for MIR. In addition to the incorporation of domain knowledge.
They also highlighted important points for large-scale applications of deep learning in clinical
settings such as having large datasets publicly available as well as producible codes. They also
highlighted the need for more clinical-based evaluation and the involvement of domain experts from
the medical field in the evaluation rather than limiting the evaluation to theoretical evaluation
metrics.

Huang et al. (2022) reviewed AI applications in brain tumor imaging from a medical
practitioner’s perspective. They pointed out the lack and the need for studies about the use of Al tools
in routine clinical practice to characterize the validity and utility of the developed Al tools.

Zhang, Y. et al. (2021) elaborated on Al registration success, and highlighted challenges 1) the
lack of large databases with precise annotation, 2) the need for guidance from medical experts in
some cases, 3) having different opinions of experts in the case of some ambiguous images. 4)
excluding non-imaging data of the patient, like age, and medical history, and 5) the interpretability
of Al models.

Decuyper et al. (2021) started with an explanation of DL components covering neural network
layers (CNNSs, activations, normalization, pooling, and dropout), and DL architecture (e.g., Resnet,
GANs, U-Net). Then the paper explained medical image acquisition and reconstruction. After a brief
elaboration on IR categories, the paper elaborated on their challenges: 1) traditional iterative methods
work well with unimodal images but poorly with multimodal images, or in the presence of noise, 2)
deep iterative methods imply non-convex optimization that is difficult to converge, 3) In RL,
deformable transformation results in a high dimensional space of possible actions, which makes it
computationally difficult to train RL agents. Most previous works dealt with rigid transformation
(low dimensional search space), 4) supervised learning approaches need ground-truth labels, and 5)
unsupervised approaches face difficulty in back-propagating the gradients due to the multiple
different steps. Finally, specific application areas were reviewed: chest pathology, breast cancer,
cardiovascular diseases, abdominal diseases, neurological diseases, and whole-body imaging.

6.0. Taxonomies

A registration algorithm consists of a set of assumptions (prior knowledge), and a margin of
uncertainty (the unknown part), which is expressed using variables (e.g., model parameters). For
example, if a programmer knows exactly how to register any images in a similar way to having a
formula that finds the roots of any quadratic equation, then s/he will just embed that prior knowledge
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(the formulae) in the code. However, there is no such a generic formula yet for most IR cases.
Accordingly, variables are made and adjusted using an optimization method.

6.1. Deformation types

Transformation functions in MIR can be categorized based on their deformability into rigid,
affine, and deformable transformations as shown in Figure 9.

In physics, the shape and size of a rigid body do not change under force. When you push a small
solid steel bar, the location and/or the orientation of the bar may change, but the bar itself remains
the same (e.g., the same mass, shape, and size). Likewise, a rigid transformation preserves the
distances between every pair of points. Accordingly, rotations and translations are rigid
transformations or proper rigid transformations in the distinction of reflections which are called
improper rigid transformations as they do not preserve the handedness.

A rigid transformation Tj preserves the distances between any two points on the object of

interest, such that the constraint | |k, — x| —xIP. || holds for every pair of points k, 1 € the

set Mp. A rigid transformation can be expressed as in Equatlon 6.

where v~ is a newly transformed vector after the application of a rigid transformation to a vector v,
which could be a position of a point in Euclidian space. b is a translation vector, and A is an

orthogonal transformation (see the appendix for definition) such as orientation.

A rigid transformation is a subcategory of a bigger group of transformations called Affine
transformations. Affine transformations preserve parallelism and lines, but no constraints on the
preservation of distances. Thus, it can be expressed as in Equation 6 above used earlier for rigid
transformation except that A is a linear transformation/matrix with no orthogonality constraint. In
an affine registration, the transformation Tj imposes the constraint Tj; (xkgi - xlgi) =T (xkgi) -
T;j (xlgi) = xkfj - xlfj for every point k, 1 € the set Mp. Scaling and shear mapping are examples of
an affine, but not rigid, transformation.

Affine

Eﬁgﬂ% H’ -

Transformation types Rigid transformation Affine transformation Deformable
transformation

Rigid

Figure 9. Examples of deformation types.

The formula of a 2D proper rigid transformation (rotation and translation) is shown in Equation

7. The variables are the rotation angle 0, the translation on the x-axis bx, and the translation on the
y-axis by.

- [cos(G) —sin(0) bx]

sin(8)  cos(08) v by

The formula of a proper rigid transformation in a 3D space consists of 6 unknown variables: 3
rotation angles (6x,0y,0z), and 3 translations (bx, by, bz) as shown in Equation 8, where the
subscriptions x, y, z are 3 perpendicular coordinates.

@)

1 0 0 cos(8y) 0 sm(Gy) cos(Bz) —sin(06z) O bx
v = [0 cos(6x) —sin(Gx)] [ 0 ] [sm(ﬂz) cos(ez) 0|v+|by 8)
0 sin(0x) cos(6x) |L—sin(By) 0 cos(Gy) 1 bz
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Transformations that do not preserve the rigidity or affinity constraints are called deformable
transformations.

6.2. Optimization phase

Image registration entails an optimization step in which a model’s parameters are adjusted to
minimize/maximize an objective function. Optimization can occur, as shown in Figure 10, 1) during
the development phase as in DL approaches, or 2) during the running phase such as in iterative
methods, or 3) in both e.g., active learning approaches, or a test-time training as called in (Zhu et al.,
2021). The objective function of MIR is expressed in Equation 9 as a weighted sum of two components:
the first quantifies the registration error that represents the proximity between the predicted
registration and the correct one, and the second is a regularization component.

Loss = registration_error + regularization )

The optimization methods such as gradient descent, evolutionary algorithms, and search are
iterative. Hence the optimization step adds a time overhead to the phase in which it takes place. Thus,
DL approaches take a long training time, but shorter registration time.

Approaches that run optimization in both phases aim at further improving the registration
despite a slight increase in the computation time. To reduce the run-time overhead, the bulk
optimization of the model parameters occurs in the training phase while just slight finetuning occurs
during the run phase to customize the results (Zhu et al., 2021).

) O
Training phase typical DL
approaches
( ) )
Parameters are Run phase non-DL
optimized in p methods
\ J -—
) )
Hybrid Active learning
N — N —

Figure 10. Optimization phase.

6.3. MIR algorithms

This section discusses selected registration algorithms. Mainly the algorithms that were used as
baselines against which the performance of a new algorithm is compared. A taxonomy of MIR

algorithms is shown in Figure 11.

G )
calssical ICP, Demons,
methods SyN,...
— —
MIR —
algorithms Supervised
. -« i
deep learning —— d‘;f;gﬁg;ﬁﬁnH Voxelmorph ]
— Unsupervised
- J with synthetic
data generation Synthrmorph ]

Figure 11. MIR methods taxonomy.
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6.3.1. Deep learning approaches

Deep learning approaches use multiple layers of neural networks. Neural networks can estimate
the transformation function in the registration problem entirely using unknown variables (called
neurons). Hence, the transformation function in this case is considered an implicit function in
distinction with explicit transformation functions which assumes a tractable formula of the
transformation functions such as rigid transformations shown in Equations 6-8. DL approaches were
also called earlier “non-parametric methods”.

a. directly supervised deep learning approaches.

The diagram of directly supervised image registration approaches is shown in Figure 12.
Initially, input images are fed to neural networks which produce a registration field. The
registration field is applied to the fixed image to relocate its pixels in a process called spatial
transformation represented as a yellow circle in the figures below.

The main question is how neural networks learn to estimate the registration field. In the
directly supervised approach, A ground truth label is provided during the training phase.
The ground truth label could be the registration field as shown in Figure 12 (left), or the
wrapped image as shown in Figure 12 (right). A challenge of directly supervised MIR
approaches is their need for ground truth labels, which entails medical experts annotating a
large number of images. To overcome ground truth labels, unsupervised MIR has been
proposed.

NN~= g g P NNS=— g
NNX® & = A f P \Y N\N~N=~=-sr/
v, e i)
eurak Lpow sy v o % !‘3. 7 Neural e 2o s i °
networks fA TSN Y &' )
Ay KMt o \d 7 networks} LIRS e
PTG N il PP QN
p p |
P I;j o5
2 p
v Smoothlng(qlu)-r ‘
. P —
Tliliig 685 = Smoothmg(q)p‘/. )p+ Groumjl;ruth 18' Training loss = Proximity([’ﬁ,lfj) = [’PA
= Sl i . ) “ i
Proximity (¢ i Pij ) ) ij ] J

Figure 12. Supervised MIR approaches: supervision using ground truth output image (right), and
supervision using ground truth registration field (left).

b. Unsupervised deep learning approach: Voxelmorph

Unsupervised MIR approaches do not entail an external supervision signal. Instead, the fixed
image (input) was assumed to replace the ground truth label of the registered image <
Xi';-', Yl.?’ >~ < X5 i qu’j > as in Voxelmorph (Balakrishnan et el., 2019). This assumption is
useful when the fixed image and the moving image have similar modalities/co-domains.
However, the assumption may not work well if the fixed image and the registered image are
of different modalities (e.g., one is 3D MRI, and the other is 2D X-ray) unless a way is
developed to bridge the gap between the two modalities. This has been reported by the
results shown in Synthmorph (Hoffmann et al., 2021). Even for images of the same
modality, co-domain dissimilarities can be a problem with this approach. For example, if the
contrast of the fixed image is different than that of the moving image, then the mean square
error MSE(Y;]., Y/}) may not represent the error adequately. However, another loss function
like cross-correlation “CC” is more resilient against the contrast problem than MSE due to its
scale invariance property. CC (Y1, Y2) = CC (Y1, axY2) where a is a scale number.

MIR using Voxelmorph yielded results much faster than non-deep learning MIR methods
without degradation of the registration quality. Voxelmorph cut the registration runtime to
minutes/seconds compared to hours needed by non-deep learning methods used before
Voxelmorph. Voxelmorph superseded non-deep learning methods when segmentation
labels were added to the registration.

c.  Unsupervised approach with synthetic data: Synthrmorph
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If it is difficult to get ground-truth labels, why not generate them? Synthmorph (Hoffmann
et al., 2021) proposed training Voxelmorph on synthetic data (randomly generated fixed and
moving images). Synthmorph generated images in two steps, first segmentation labels were
generated randomly, then fixed, and moving images were generated given the segmentation
label. The results yielded by Synthrmorph were superior to classical methods even when the
images were of different modalities.

6.3.2. non-deep learning methods:

MIR methods that do not involve deep neural networks are called ‘non-deep learning methods’,
‘classical methods’, or ‘iterative methods.”

a. Iterative Closest Point (ICP)

ICP (Arun, 1987; Estépar, 2004; Bouaziz, 2013) alternates between two goals: the
establishment of a correspondence Ci’;q, and finding a transformation T;; that optimizes a
loss function. A loss function quantifies the quality of a registration (see section 7). A
demonstration of the ICP process is shown in Figure 13. Let the moving image be a blue line
of 4 marked points, and the fixed image a similar black line. The loss function can be a point-
wise Euclidean distance. First, 1) a correspondence is established between the points on each
line such that each point is matched with its closest neighboring point. Notice that the
correspondence is not 1-to-1 as the two bottom black points are matched with the same point,
and the top blue point is not matched, 2) the blue line was translated to minimize the distance
between the two lines, 3) another correspondence was found (1-to-1 correspondence this
time), and 4) the black line was transformed (rotation and translation) based on the new
correspondence.

Neural
networks

Smoothing(q)?f) Q,//

e Proximity (Igi,llpj )
2 ) Training Loss

Figure 13. Unsupervised MIR approach.

ICP, like other iterative approaches, takes longer registration time than DL approaches. The
establishment of a correspondence between nearest neighbors is straightforward but not always

optimal and it sticks in local optima.

(/

Correspondence | Transformation Correspondence | Transformation

Figure 14. A demonstration of ICP registration.
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b. Demons

A deformable IR approach was proposed by Thirion (1996). The name of the Demons approach
was influenced by Maxwell’'s Demons paradox in Thermodynamics. Maxwell assumed a
membrane that allows particles of type A to pass in one direction, while particles of type B can
pass in the opposite direction, which will end up having all particles of type A on one side of the
membrane and particles of type B on the other side as shown in Figure 15. That state of organized
particles corresponds to a decrease in entropy, which contradicts the second law of
thermodynamics. The solution to that paradox was that the demons generate entropy to organize
the particles resulting in a greater total entropy than that was before the separation of the
particles.

¢ ¢ 0

1

i

<
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i
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o © . o
i

Membrane

Figure 15. Maxwell’s membrane with demons.

Influenced by Maxwell’s demons, Thirion suggested distributing particles (demons) on the
boundaries of an object (see Figure 16) such that a demon will push locally either inside or outside
the object based on a prediction of a binary classifier. It has been shown that what Thirion’s
demons do is object matching using optical flow.

Figure 16. How demons work as explained in Thirion, J. P. (1996, June).

c. Symmetric Image normalization (SyN)
The main idea of SyN is to assume a symmetric and invertible transformation. Instead of
transforming space i to j, SyN symmetrically transforms both space i & space j to an intermediate
space such that Tj, = T;'. In this case T, can be seen as half a step forward towards space j,
and Tj, is half a step backward towards i (see Figure 17). The symmetric invertibility constraint
of SyN can be expressed as in Equation 10
Ak € space : T;;(I;) = Tyj (T (1)), where Ty; = Tj.! (10)

SyN was shown to supersede Demons in providing correlated results with human experts
(Avants et al., 2008).
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Figure 17. A demonstration of symmetry in SyN. A Transformation Tij, which rotates an image 180
degrees counterclockwise, can be decomposed into 2 symmetric rotations each of 90 degrees.

d. Registration software tools.

NiftyReg is a publicly available software for image registration. The software was developed
initially by University College London and then King’s College London. The software uses two
methods: 1) Reg Aladin, which is a block matching algorithm for global registration based on
Ourselin et. al. (2001). 2) RegF3D (fast free form deformation) based on Modat et al (2010).
Advance Normalization Tools (ANT) is another stable software for MIR and statistical analysis.
ANT yields stable results such that the registration does not change every time the software is
run (Avants et al,, 2014). A Python version of NiftyReg and ANTs was wrapped in a package
called Nipype (Neuroimaging in Python pipelines & interfaces).

ANTs on Github: https://github.com/ANTsX/ANTs

Chen, T. et al,, (2002) compared three registration tools: SPM12, FSL, and AFNI. SPM12 was
recommended for novice users in the area of medical image analysis. It provided stable outcome
images of “maximum contrast information” needed for tumor diagnosis. AFNI was
recommended for advanced users and researchers due to the advanced capabilities needed for
tasks such as volume estimation. FSL was considered for mid-level users.

6.4. Correspondence space

MIR alignment occurs in a correspondence space k. The correspondence space can be the space
in which an input image is located (internal), or it can be a new space (external). MIR in an internal
correspondence space has been the most common among MIR methods. Examples of MIR in an
internal space can be seen in the methods mentioned earlier, which included a transformation from
the space of a moving image (i) to the space of the fixed image (j). An example of MIR in external
space is Atlas-based registration.

Atlas-based registration

An Atlas is a standard or a reference image that represents a population of images. One way to
form an Atlas of a brain is by finding the average image of a population of brain images, which is
expected to be smooth and symmetrical. However, that is not the only way. (Dey et al., 2021)
suggested an atlas generated by GANS. Another way to form an atlas is by IR in an external
correspondence space. An example of atlas-based registration is the Aladdin framework (Ding, Z. et
al., 2022) shown in Figure 18. Aladdin transformations are bidirectional and invertible.
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Figure 18. Invertible bidirectional Atlas-based transformations.

e Invertibility: for a transformation Tj;, there is an inverse transformation T;;!

e Bidirectionality: A bidirectional registration maps spaces in both directions from i to k and
vice versa ( Tjox: Tyr, and Tj;). Accordingly, a bidirectional IR model (Ding, W. et al.,2022; Ye
et al.2021) can yield two wrapped images I;j,[; . On the other side, a unidirectional
registration maps a single space i into another j but not vice versa. An example of an invertible
bidirectional MIR model in an internal correspondence space, namely Inversenet (Nazib et

al., 2022), is shown in Figure 19.
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Figure 19. An example of a MIR model that estimates a transformation field and its inverse

(InverseNet).

The bidirectionality in an external correspondence space enables more transformation paths
between spaces given three anchors as shown in Figure 18: fixed image I, moving image I, and an
external correspondence space/Atlas I«. Potential transformation paths were expressed in Equations
11-17 below. The dissimilarities between the left and right sides of the equations below were used as
losses of an MIR model (Ding, Z. et al. 2022).

Tiei (Tie C(lgi)) = I (11)
Tii (T (Io5)) = loi (12)
Teilp;) = i = Igi (13)
Tij (T (Ioj)) = Io; (14)
Tij (T gi)) = Ig; (15)
Tiej(pr) = Iy = Ip; (16)

Ti(gi) = Tjx(p;j) (17)
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Directionality Classical MIR (2 input images, internal Generic MIR (multiple input images, external
corrcspendence space) correspondence space)

Space 1 N
IR Space 1 or 2 Space 1
Unidireetional Space 2 - gr}:';lggﬁ_l Space k

m images were transformed into a correspondence space k.
k is an external correspondence space it k¢ {1..., m}.

Space 1< Space 1<
Bidirectional ‘ Space 1 or 2 Sgace 2« IR < Space k
Space 2 < Space m*

m images were transformed into a correspondence space k,
and an image in space k was transformed in the spaces
§£1..., m} .k is an external correspondence space it ke {1,
mj,

Figure 20. illustrates diagrams of IR in an internal correspondence space (left) and an external
correspondence space (right).

6.5. Correspondence relation

Correspondence relations can be categorized into isomorphic and non-isomorphic.
Isomorphism entails a one-to-one correspondence relation between images. A special case of
isomorphism is diffeomorphism which entails invertible and differentiable transformation. An
example of non-isomorphism is a change of the topology such as that shown in Figure 22. A special
case of non-isomorphism is a many-to-many correspondence as in metamorphism.

1:1
. hi
Correspondence isomorphic
relation
non-
isomorphic
Figure 21. Correspondence relation taxonomy Figure 22. An example of metamorphism

The spatial transformation unit imposes isomorphism, since the registration field just maps a
single pixel from one location to another single point only, which is a 1:1 correspondence. However,
the resampling step can affect the 1:1 correspondence relation, for example, if two nearby points are
merged in the target image, which makes metamorphism possible but no guarantees.
Diffeomorphism can be achieved by an integral [  before a spatial transformation.

Metamorphosis (Maillard et al., 2022) is a deep learning model that addresses metamorphic
registration. Metamorphosis estimated the wrapped image without an explicit spatial transformation
unit. However, alternative constraints were added as 2 equations embedded in the network as layers.
However, no information if a spatial transformation holds implicitly. Metamorphosis superseded
diffeomorphic registration methods especially when the ground truth correspondence was
metamorphic. However, its runtime was 10-20 times that of Voxelmorph. The runtime is defined in

section 7 (evaluation measures).
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6.6. Multistage image registration

Instead of solving the registration problem for high-resolution images entirely in a big
dimensional space, the registration problem can be conquered into multiple registration problems of
various scales. Figure 23 shows a taxonomy of multistage image registration. Multistage MIR
approaches save computational resources and time in addition to the enhancement of registration
results.

1 stage Default

( \
Registration Feature based

staces Coarse - Fine then internsity
& ) based
) Rigid then
. deformable
Pyramid

Figure 23. Taxonomy of image registration stages.

6.6.1. Coarse-fine registration:

A coarse-fine registration (Himthani et al., 2022; Naik et al., 2022; Saadat et al., 2022; Van Houtte
et al.,2022) consists of two stages: The first stage is called coarse registration, which aims at finding a
fast registration solution but not optimal. That solution is fine-tuned later in the second stage. For
example, the coarse registration could be an affine registration that aligns the position and orientation
while the fine-tuned registration could be a deformable registration method that aligns deformed
parts.

The parameters of a rigid transformation of a high-resolution image can be found using a
downscaled version of the image, which would save computation time and energy. The parameters
of a rigid transformation are either independent of the scale (e.g., rotation) or linearly dependent
(translations). Assume an image of 1000x1000 pixels and its lower resolution version of 100x100
(downscaling by 10). Scaling does not affect angles, hence if an object is rotated by 30 degrees in the
downscaled image, it will be also rotated by the same angle in the high-resolution image. However,
distances between objects do change according to a fixed scale. If the distance between 2 objects in
the low-resolution image is 25 units, then the equivalent distance in the high-resolution image will
be 10x25 = 250, where 10 is the scaling ratio between the two images. Hence a solution for a rigid
registration problem can be solved in a downscaled version of the images and then transferred to the
higher resolution image.

6.6.2. Pyramid image registration.

A pyramid consists of multi-scale images, where registration occurs at multiple stages. The idea
of a pyramid representation has been well-studied in classical computer vision (Adelson et al., 1984)
and utilized later in deep learning architectures such as Pyramid GANs (Denton et al., 2015; Lai et
al., 2017). A pyramid registration (Wang et al., 2022; Chen, J. et al. 2022, Zhang, L. et al., 2021) starts
with a downscaled version of the moving image followed by several operations of registration and
upscaling as shown in Figure 24. After every registration step, the proximity between the wrapped
image and the downscaled fixed image improves. Multi-stage registration can be seen as a sort of
curriculum learning (Bengio et al., 2009) such that the first stages learn to solve easier problems and
later stages learn the more difficult tasks.
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Figure 24. Pyramid registration of three stages.

6.7. Space Geometry

A taxonomy of spaces has been proposed GDL is shown in Figure 25. A space can be Euclidean-
like RGB images (pixels distributed regularly in a rectangle). Non-Euclidean spaces are represented
in sets, graphs, meshes, or manifolds. Examples of MIR for non-Euclidean data, specifically 3D point
clouds, have been presented in (Terpstra et al., 2022; Su et al., 2021).

1D
sequences

2D images

Eucledian (pixcls)

3D images
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Figure 25. Space geometry taxonomy.
6.8. Other taxonomies

6.8.1. Feature-based and pixel-based

Feature-based and pixel-based taxonomy depends on the type of inputs to the registration
algorithm. A feature-based registration involves an explicit feature extraction or selection, thus the
input to the registration algorithm is not the image itself but representative features of that image
such as its histogram (Ban et al., 2022). In pixel-based approaches, images are fed directly to the
model without feature extraction. In general, DL registration approaches are pixel-based as neural
networks can extract features implicitly.

6.8.2. Medical imaging modalities

Medical imaging modalities are imaging techniques (Kasban et al., 2015) used to visualize the
body and its components. The main medical imaging modalities in MIR are:

a. X-ray

X-ray uses ionizing radiation (X-rays) to produce two-dimensional images of bones and dense
tissues. X-rays are absorbed differently by different tissues, allowing visualization of structures like
bones, lungs, and some organs. X-rays are quick and relatively inexpensive, thus suitable for some
diagnostic purposes, such as detecting fractures, lung infections, and dental issues. However, they
provide limited details about soft tissues.
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b. Computed Tomography (CT) scan

CT scan, also known as CAT (Computerized Axial Tomography), is a non-invasive imaging
technique that uses X-rays to create detailed cross-sectional images of the body. A CT scan provides
a more detailed view of bones, blood vessels, and solid organs compared to traditional X-rays. It is
especially useful for imaging areas like the brain, chest, abdomen, and pelvis. However, they involve
exposure to ionizing radiation, and repeated scans should be minimized to reduce radiation
exposure. During a CT scan, the X-ray source rotates around the patient, and multiple X-ray images
are captured from different angles. These images are then processed by a computer to create cross-
sectional slices, allowing doctors to visualize the body in detail. CT scans are commonly used in
emergencies, trauma cases, and cancer staging, among other applications.

c. Magnetic Resonance Imaging (MR)

MRI uses strong magnetic fields and radio waves to create detailed images of tissues, organs,
and the central nervous system. It provides high-resolution, multi-planar images, making it ideal for
diagnosing conditions in the brain, spinal cord, muscles, and joints. MRI does not use ionizing
radiation, which makes it safer, but it can be more time-consuming and expensive compared to X-
rays and CT scans.

d. Ultrasound (US)

Ultrasound, also known as sonography, uses high-frequency sound waves to create real-time
images of internal organs and structures. It is commonly used for imaging the abdomen, pelvis, heart,
and developing fetus during pregnancy. Ultrasound is non-invasive and does not involve ionizing
radiation. It provides real-time imaging and is excellent for assessing blood flow and certain soft
tissue abnormalities. However, it may not provide as detailed images as MRI and CT.

e. Positron Emission Tomography (PET)

PET is a functional imaging technique that provides information about metabolic activity and
cellular function. It involves the injection of a radioactive tracer that emits positrons. The interaction
between the tracer and tissues produces gamma rays, which are detected by the PET scanner. PET is
valuable in oncology (cancer imaging) and neurology (e.g., detecting Alzheimer's disease). PET can
be combined with CT imaging to provide both functional and anatomical information in a single
scan.

MIR is considered “unimodal” when there are no modality differences between the images
involved in the registration process, otherwise, the registration is considered “multimodal”. See
Figure26. An example of a unimodal registration is when both moving and fixed images are X-rays.
An example of multimodal registration is when a fixed image is of the T1-weighted MRI modality
and the moving image of the T2-weighted MRI. T2-weighted MRI enhances the signal of the water
and suppresses the signal of the fatty tissue while MRI/T1 does the opposite.

Multimodal

MIR
modalities

Figure 26. MIR taxonomy based on the modalities.

7.0. Evaluation measures

IR evaluation measures can be categorized as shown in Figure 27 into 1) time-based measures
that focus on the time needed to finish a task, 2) size-based measures that focus on the memory
resources that an MIR algorithm occupies, 3) smoothness measures that focus on the smoothness of
the registration field (expressed by Jacobian), and 4) proximity-based measures that find the
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deviation of a registration outcome from the ground-truth. proximity can be expressed using
distances between objects in a space, overlap between sets, or correlations between variables.

Evaluation The higher is
Metrics better
The lower is .
better Overlap Correlation
I
[ I I 1
Time Size Smoothness Distance DSC cC
Runtime # parameters HJl — TRE, NTRE Daccard nLCC
Training time # bytes SDlog - 1%2%%5%
— HD

Figure 27. Evaluation Metrics.

7.1. Time

a) Average registration runtime RT:

The runtime (RT) is the average registration time per image. The registration time is

measured from the moment tf ., at which an image p is loaded until obtaining the

registered image at time t;.,,, including the post-processing time. See Equation 18. Where

N is the number of examples in a dataset.
NP v
_ Zp:l(tr,end_ tr,start)

RT = < (18)

In practice, getting the registration outcome in a short time is a desired property. The
Voxelmorph algorithm, which uses deep learning for medical image registration, has shown
an RT reduction from hours to seconds while keeping almost the same performance. The
computation time of a registration process depends on the software as well as the hardware
(Alcain et al., 2021). Thus, a fair comparison of registration algorithms entails testing the
computation time on the same hardware. The shorter RT of Voxelmorph compared to
iterative approaches can be attributed partially to the hardware, where matrix multiplication
processes used in DL are faster when run with a GPU. However, even on CPUs, Voxelmorph
remains faster than iterative methods on a scale of minutes for voxelmorph to hours for
iterative methods. The main reason for the longer RT in iterative approaches is the
optimization done during the runtime, however, Voxelmorph-like approaches do not
optimize the variables during the run phase, instead, all the variables are optimized in the
training phase before the run time.

b) Average training time DT is the training time divided by the number of examples in the

training dataset.

7.2. Distance-based measures

The distance can be chosen to be between co-domain values or domain values. The distance can
be measured between selected points (landmarks) or all points.

a) Codomain distance: MSE, RMSE
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The Euclidean point-wise distance between codomain values can be calculated using the
mean square error (MSE), and root mean square error (RMSE) measure as in Equations 19,

and 20 respectively.
1 1 . '
MSE =~ zgz%zgzlmst(ye P yel)? (19)
RMSE = VMSE (20)

b) Domain distance: TRE

TRE (target registration error) is a distance-based metric that measures the deviation between
points of two domains. See the deviation between estimated and ground truth points in
Figure 28. The distance is used to represent the registration error since a perfect registration
would locate correspondent points ideally at the same position. In the case of ground truth

labels X; ; and predictions X;;, TRE is shown in Equation 21.

TRE =RMSE (X}; , X;j)= \/% Yp-error(M'], M{)? = \/% TN TP Dist(xe'};, xe]; )? (21)

p p D D . 17 p
where xe;; € Ml.j ,xe'; € M ij with a corrosondence (xe i< xe(aj)

e estimated

e

+ ground truth N
— distance

o

Figure 28. TRE components.

¢) Domain distance: NTRE

TRE is affected by the scale of an image as well as the number of landmarks, the more
landmarks in an image the higher the accumulative error could be. The normalized target to
registration error (NTRE) is scale independent as shown in Equation 22.

o Dist(xer?, xel)?
NTRE = \jl N 1 J ] (22)

=1 M
N =P ey (xerf))?

d) Domain distance: Hausdorff distance HD

HD measures how far two sets are from each other as in Equations 23 and 24 below.

HD(A,B) = max{sup( inf(Dist(a, b))),sup( inf(Dist(a,b))} (23)
aca DEB peBp Q€A

HD(M'}, MF) =

%Zgzlmax{ sup( gnf?(Dist(m’p m{)), su

b’ p(p M
m;.€ mr..€
mrijEMri]. ij- i EML.]. Jj

Jnf (Dist(m'7,m}))  (24)
ij gy

where

- sup() is the supremum

- inf() is the infimum

- Dist (a,b) is the distance between point a in the first set and point b in the second set.

zi;lelg (d(a, b)) is the infimum distance between point a and all the points in set B

HD95 metric replaces the supremum in the equation by the 95 percentile, which results in

less sensitivity to outliers.
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e) Domain distance: Center of mass COM measures the displacement between two the
center of two sets A, B as shown in Equations 25 and 26
COM(A, B) = dist( Center(A), Center(B) ) (25)
Center(A) = mean(x), Vx € A (26)
7.3. Segmentation measures
a) The dice similarity coefficient (DSC) measures the overlap between two segmentation
sets Ly, LY; asin Equation 27 below.
p p~ _ 2llgnLyl
DSC(LG; L) = T 27)

DSC is equivalent to the F1 score used in classification problems, where the segmentation
problem is a classification problem on the pixel level, in which a pixel/point is assigned
to a segmentation label that could be true or false. F1 = 2TP/(FP+FN +2TP).

b) The daccard coefficient is similar to DSC with a slight modification shown in Equation
28.

D 14
1L 12|

Daccard(Ly;, L) = (28)

P 3
ILg; ULyl

7.4. Correlation measures

It has been reported that cross-correlation is a better objective function than MSE, and RMSE for
image registration (Zitova et al., 2003; Haskins et al., 2020). cross-correlation “CC” is more resilient
against the contrast problem than MSE due to its scale invariance property. CC (Y1, Y2) = CC (Y1,
axY2) where a is a scale number.

7.5. The smoothness of the registration field

A non-smooth registration field can relocate a pixel far away from all its adjacent pixels after
registration, however, a smooth registration field is more likely to keep nearby pixels relatively close
to each other after relocation. The smoothness can be expressed using the determinant of the
Jacobian | J( ¢ ) |

7.6. Model size

A model size can be expressed by the number of bytes that a model occupies in a storage device
or the total number of its parameters.

7.7. Clinical-based evaluation

Virtual evaluation using computer-based metrics (above) may not always align perfectly with
the practical evaluation by medical experts. Thus, clinical-based evaluation and involvement of
domain experts from the medical field have been recommended by Chen, X., Wang et al. (2022) to
characterize the reliability of MIR tools (Huang et al., 2022).

The challenges of MIR assessment included 1) the lack of ground truth labels in practical
scenarios makes it difficult to evaluate an MIR outcome convincingly. 2) Medical experts” assessment
could be subjective and may vary among experts. 3) Instable outcomes of some MIR algorithms,
which yield different outcomes of different registration qualities for the same input image. 4) the
quality of data can have a substantial impact on registration results, making it challenging to compare
algorithms across datasets with varying quality (Chen, T. et al.,2022).
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A list of public datasets used in the literature was summarized in Table 5. The datasets were
categorized based on the region of interest (ROI) such as brain, chest, ...etc., and the medical imaging

type.
Table 5. Medical images datasets.
ROI Modality Dataset Link
Brain MR OASIS: Open Access Series  https://www.oasis-brains.org/
of Imaging Studies
MR LPBA40: The LONI  https://www.loni.usc.edu/research/atlases
Probabilistic Brain Atlas
MR ADNI: Alzheimer’s  https://adni.loni.usc.edu/
Disease ~ Neuroimaging
Initiative
MR IX1 https://brain-development.org/ixi-dataset/
MR IBIS
MR IBSR: The Internet Brain https://www.nitrc.org/projects/ibsr
Segmentation Repository
MR ADHD-200: Attention  http://fcon_1000.projects.nitrc.org/indi/adhd200/
Deficit Hyperactivity
Disorder
MR PPMI https://www.ppmi-info.org/access-data-
specimens/download-data/
MR CUMC12, MGH10 https://www.synapse.org/#!Synapse:syn3207203
MR ABIDE: Autism Brain http://fcon_1000.projects.nitrc.org/indi/abide/
Imaging Data Exchange
MR BraTS2017: Brain Tumor https://www.med.upenn.edu/sbia/brats2017/data.html
Segmentation
MR Mindboggle https://mindboggle.info/data.html
MR BrainWeb https://brainweb.bic.mni.mcgill.ca/brainweb/
simulated
MR /US BITE: Brain Images of https://nist.mni.mcgill.ca/data/
Tumors for Evaluation
database
MR/ US CuRIOUS2018 https://curious2018.grand-challenge.org/Data/
MR / US RESECT: a clinical ~ https://archive.norstore.no/pages/public/datasetDetail.jsf?i
database of pre-operative d=10.11582/2017.00004
MRI and intra-operative
ultrasound in low-grade
glioma surgeries
Prostate MR Prostate-3T https://wiki.cancerimagingarchive net/display/Public/Prost

ate-3T
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MR PROMISE12: Prostate MR  https://zenodo.org/record/8026660
Image Segmentation 2012

MR Prostate Fused-MRI-  https://wiki.cancerimagingarchive.net/pages/viewpage.acti
Pathology on?pageld=23691514

Spine CT, MR SpineWeb library http://spineweb.digitalimaginggroup.ca/Index.php?n=Mai

depending n.Datasets

on the

dataset

Knee MR OAI https://nda.nih.gov/oai/

Chest CT NLST https://cdas.cancer.gov/datasets/nlst/

CT SPARE https://image-x.sydney.edu.au/spare-challenge/
XRAY NIH ChestXray14 https://nihcc.app.box.com/v/ChestXray-NIHCC
XRAY JSRT: Japanese Society of http://db.jsrt.or,jp/eng.php
Radiological Technology http://imgcom. jsrt.or.jp/minijsrtdb/
XRAY Tuberculosis image https://lhncbc.nlm.nih.gov/LHC-
datasets downloads/downloads.html#tuberculosis-image-data-sets
Lung CT POPI https://www.creatis.insa-lyon.fr/rio/popi-
model_original_page
CT NLST https://cdas.cancer.gov/datasets/nlst/
CT SPARE https://image-x.sydney.edu.au/spare-challenge/
Heart MR/CT MM-WHS: Multi-Modality  http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmw
Whole Heart Segmentation  hs/
MR SCD: The Sunnybrook https://www.cardiacatlas.org/sunnybrook-cardiac-data/
Cardiac Data

Liver CT sliver07 https://sliver07.grand-challenge.org/Home/

Kidney CT KITS23 https://kits-challenge.org/kits23/

Pancreas CT Pancreas-CT https://opendatalab.com/Pancreas-CT_Dataset
https://wiki.cancerimagingarchive.net/display/public/panc
reas-ct

Abdomen CT Anatomy3 https://visceral.eu/benchmarks/anatomy3-open/

(kidney,

liver, Spleen,

Pancreas)

10 ROIs MRor CT  Medical Segmentation  https://decathlon-10.grand-challenge.org/

Decathon challenge

9.0. Medical applications

Changing the frame of reference might mislead humans (like the phenomenon of not
recognizing an object if it has been flipped (e.g., old/young lady face in Figure 2). Hence, it is easier
for medical practitioners to evaluate a medical image in a standard reference frame (e.g., orientation,
scale). Thus, registration is an essential part of medical diagnoses that depend on imaging
technologies. IR was applied in retina imaging (Ho et al., 2021), breast imaging (Ringel et al., 2022;

doi:10.20944/preprints202309.0223.v1


https://doi.org/10.20944/preprints202309.0223.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2023 doi:10.20944/preprints202309.0223.v1

29

Ying et al., 2022), HIFU treatment of heart arrhythmias (Dahman et al., 2022), and cross-staining
alignment (Wang et al., 2022). Selected applications of MIR are discussed below.

9.1. Image-guided surgery

Image-guided surgery (IGS) incorporates imaging modalities such as CT, and US to assist
surgeons during surgical procedures. For example, surgeons can visualize internal anatomy,
pinpoint the location of tumors or lesions, and determine optimal incision points. Image-guided
surgery enables surgeons to precisely target specific areas, and avoid critical structures during a
procedure.

Before an IGS, a patient's preoperative images are loaded into a software or surgical navigation
system. The collected images are then aligned with images taken during the surgery (inter-operative)
using registration algorithms. Having images with key points/landmarks improves the registration
process in terms of speed and precision. The landmarks can be selected manually by medical experts
on computer software (Schmidt et al., 2022; Wang, Y. et al., 2022), or they could be fiducial markers,
which are small devices placed in a patient’s body such as the injection of gold seeds to mark a tumor
before radiation therapy. The number of landmarks needed for a precise registration can be reduced
by the integration of semantic segmentation in addition to the use of a standard template (atlas)
instead of preoperative images as shown by (Su et al., 2021). An alignment with no landmarks was
tested by (Robertson et al., 2022) for catheter placement in non-immobilized patients.

To mention some examples of the use of MIR for IGS, 2D inter-operative and 3D preoperative
images were aligned in real-time surgical navigation systems (Ashfaq et al., 2022). A similar
alignment of 2D-3D was needed for the deep brain stimulation procedure which involves the
placement of neuro-electrodes into the brain to treat movement disorders such as Parkinson, and
Dystonia (Uneri et al., 2021). A real-time biopsy navigation system was developed by (Dupuy et al.,
2021) to align 2D US inter-operative images with 3D TRUS preoperative images and to estimate in
real-time the biopsy target of a prostate based on its previous trajectory.

9.2. Tumor diagnosis and therapy

A tumor is an abnormal mass or growth of cells in the body. Tumors can develop in various
tissues or organs and can be either benign or malignant. Benign tumors are non-cancerous and
typically do not invade nearby tissues or spread to other parts of the body. Benign tumors are
generally not life-threatening, but medical attention and/or treatment are still required. Malignant
tumors, on the other side, are cancerous. They have the potential to invade surrounding tissues and
can spread to other parts of the body through the bloodstream or lymphatic system. Malignant
tumors grow rapidly and can be life-threatening. Medical experts often diagnose a tumor and plan
therapy depending on the tumor’s growth over time as recorded in aligned medical images.
Accordingly, MIR has been used for radiotherapy (Fu et al., 2022; Vargas-Bedoya et al., 2022) and
proton therapy (Hirotaki et al., 2022).

9.3. Motion processing

The human body experience normal deformation over time, some deformations occur at a
slower pace such as the growth of bones over a lifetime (e.g., a human height grows from afew feet
in newborns to several feet in adults) while some deformations occur at a faster pace such as
heartbeats. The heart experiences alternating contractions and relaxations while pumping blood at a
frequency of 1-3 beats per second. MIR helps to analyze such temporospatial deformations and
resulting movements.

The cardiac motion was tracked by (Ye et al., 2021) using tagging magnetic resonance imaging
(t-MRI), where an unsupervised bidirectional MIR model estimated the motion field between
consecutive frames. (Upendra et al., 2021) focused on motion extraction from 4D cardiac CMRI (Cine
Magnetic Resonance Imaging), mainly the development of patient-specific right ventricle (RV)
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models based on kinematic analysis. A DL deformable MIR was used to estimate the motion of the
RV and generate isosurface meshes of cardiac geometry.

Respiratory movement can affect the quality of medical imaging by causing motion blur. To
overcome this (Hou et al., 2022) proposed an unsupervised MIR framework for respiratory motion
correction in PET (Positron Emission Tomography) images. (Chaudhary et al., 2022) focused on lung
tissue expansion which is typically estimated by registering multiple scans. To reduce the number of
needed scans, Chaudhary et al., (2022) proposed the use of generative adversarial learning to estimate
local tissue expansion of lungs from a single CT scan.

2D-3D motion registration of bones was addressed in (Djurabekova et al., 2022) by manipulating
segmented bones from static scans and matching digitally reconstructed radiographs to X-ray
projections. The bones were, particularly foot and ankle structure.

10.0. Other research directions

10.1. Transformers

Transformers are a DL architecture that uses the attention mechanism solely dispensing with
conventional and recurrent units (Vaswani et al., 2017). Transformers have contributed to noticeable
improvements in computer vision, audio processing, and language processing tasks (Lin et al, 2022).
The improvement can be seen in products like GPT-2, and ChatGPT which are examples of
Generative Pre-trained Transformers (GPT). Transformers can be decomposed into basic/abstract
mathematical components that distinguished them from recurrent and convolutional networks: 1)
the position encoding, which explicitly feeds the position of a token as an input, 2) the product
operation between features which is manifested explicitly in the product between the key and the
query of the attention mechanism, and implicitly within the exponential function of the SoftMax
(e**? = e® x eP). 3) the exponential function which represents a transformation into another space.

In MIR, (Mok et al., 2022) proposed the use of the attention mechanism for affine MIR such that
multi-head attention was used in the encoder, and convolutional units in the decoder. Transformers
were embedded partially for deformable MIR in Transmorph (Chen, J. et al., 2022). Transmorph is a
coarse-fine IR such that affine alignment is conducted in the first stage followed by deformable
alignment in the second stage. The latter stage is a Voxelmorph-like registration with U-Net
architecture except that the encoder part consists of transformers instead of ConvNets. Transmorph
introduced transformers (self-attention blocks) as a part of the encoder only but not the decoder. Ma
et al. (2022) attributed the difficulty of developing transformers for MIR to the large number of
trainable parameters of a transformer unit compared to convolutional units. To reduce the number
of parameters, the authors proposed the use of both convolution units and transformer units in an
MIR model - SymTrans (Ma et al., 2022). SymTrans embedded transformers in both the encoder and
the decoder (2 blocks in the encoder and 2 in the decoder).

The utilization of transformers in MIR was not as fast and revolutionary as it was in other
domains. That could be attributed to the relatively small number of images in MIR datasets compared
to other tasks. For example, millions of images were used for the ViLT model (Kim et al., 2021), and
up to 0.8 billion images for the GiT model (Wang, J. et al., 2022).

10.2. No Registration

Another potential research direction is the elimination of the image registration step from the
medical image analysis pipeline. In theory, an end-to-end deep learning model learns an automatic
medical image analysis task (e.g., disease detection) without an explicit registration step. In (Chen,
X., Zhang, et al, 2022), the authors proposed the elimination of the registration step entirely by the
development of a breast cancer prediction model using vision transformers and multi-view images.

11.3 Other research directions explored before include Fourier transform-based IR (Zitova et al.,
2003), Reinforcement learning based IR (Chen, X. et al., 2021; George et al., 2021; Sutton et al., 1994),
and GANs-based MIR (Xiao et al., 2021; Chaudhary et al., 2022; Dey et al., 2021; Goodfellow et al.,
2020). There could be further research interest in the mentioned MIR research directions in the future.
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Appendix A. Comparison table of surveyed papers

Paper Modality Modals  Directionality Correspondence Stages Approach ROI
(Andreadis et al.,, 2022) Unimodal Uni 1-to-1 1 Classical Bladder
(Ashfaq et al., 2022) Multimodal MR Uni 1-to-1 1 Classical Brain
(Ban et al., 2022) Multimodal CT-Xray  Uni 1-to-1 1 Classical Head
(Bashkanov et al., 2021) Multimodal MR - TRUS Uni 1-to-1 Coarse-f.  Supervised Prostate
Brain &
(Begum et al., 2022) Multimodal CT-MR  Uni Classical Abdome
n
(Burduja et al., 2021) Unimodal CT Uni 1-to-1 1 Unsupervised  Liver
(Chaudhary et al.,, 2022) Unimodal CT Uni 1-to-1 1 Unsupervised  Lung
(Chen, J. et al., 2022) Uni 1-to-1 Pyramid  Unsupervised  Brain
(Dahman et al., 2022)  Multimodal US-CT  Uni 1-to-1 1 Supervised Heart
(Dey et al., 2021) Unimodal MR Uni 1-to-1 Unsupervised  Brain
(Dida et al., 2022) Unimodal CT Uni 1-to-1 1 Classical Lung
(Ding, W. etal., 2022) Multimodal CT-MR  Bi 1-to-1 1 Unsupervised
(Ding, Z. etal.,, 2022)  Unimodal MR Bi 1-to-1 1 Unsupervised  Knee
;]?;;abekova etal, Multimodal 2D - 3D Uni 1-to-1 1 Classical Bones
(Dupuy et al., 2021) Multimodal US - TRUS Uni 1-to-1 1 Supervised Prostate
(Fu et al., 2022) Unimodal CT Uni Software Liver
(Gao et al., 2022) Unimodal CT Uni 1-to-1 Coarse-f. Unsupervised  Spine
(George et al., 2021) Unimodal Uni 1-to-1 1 RL Eye
(Himthani et al., 2022) Unimodal MR Uni 1-to-1 Coarse-f.  Classical Brain
Lung,
(Hirotaki et al., 2022) ~ Multimodal CT-Xray  Uni 1-to-1 1 Software head,
neck
(Ho etal,, 2021) Unimodal Uni 1-to-1 Coarse-f. Unsupervised  Eye
(Hou et al., 2022) Unimodal PET Uni 1-to-1 1 Unsupervised Heart
(Kujur et al., 2022) Multimodal MR Uni 1-to-1 1 Classical Brain
(Lee et al., 2022) Unimodal CT Uni 1-to-1 1 Supervised Kidney
(Li et al., 2022) Unimodal MR Uni 1-to-1 1 Unsupervised  Brain
(Liu et al., 2021) Unimodal Uni 1-to-1 1 Classical Tissues
(Ma et al., 2022) Unimodal MR Uni 1-to-1 1 Unsupervised  Brain
(Maillard et al., 2022)  Unimodal MR Uni Metamorphic m:nl Neuro-symbolic Brain
(Meng et al., 2022) Unimodal MR Uni 1-to-1 1 Unsupervised  Brain
(Mok et al., 2022) Unimodal MR Uni 1-to-1 Coarse-f. Unsupervised  Brain
(Naik et al., 2022) Multimodal CT-Xray  Uni 1-to-1 Coarse-f.  Classical Spine
(Nazib et al., 2021) Unimodal MR Bi 1-to-1 1 Unsupervised  Brain
(Park et al., 2022) Unimodal CT/MR Uni 1-to-1 1 Unsupervised
(Ringel et al., 2022) Unimodal MR Uni 1-to-1 1 Classical Breast
. CT/MR -
(Robertson et al., 2022) Multimodal video 1-to-1 Coarse-f.  Software Head
CT-
(Saadat et al., 2022) Multimodal Fluoroscop Uni 1-to-1 Coarse-f. Classical Bones
y
(Saiti et al., 2022) Multimodal CT Uni 1-to-1 1 Supervised
(Santarossa et al., 2022) Multimodal ;IXF JOCT Uni 1-to-1 1 Classical Eye
(Schmidt et al., 2022) Uni 1-to-1 Coarse-f.  Unsupervised  Veins
(Su et al., 2021) Unimodal CT/MR Uni 1-to-1 Classical
(Terpstra et al., 2022) MR Uni 1-to-1 1 Supervised :bdome
(Uneri et al., 2021) Unimodal Uni 1-to-1 Classical Brain
(a?,p ze S;l;a' & Hasan et MR Uni 1-to-1 1 Unsupervised Heart
(Upendra, & Hasan et Unimodal MR Uni 1-to-1 1 Supervised Blood
al., 2021)
(Van et al., 2022) Multimodal CT-Xray Uni 1-to-1 Coarse-f. Unsupervised  Bones
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Brain &

(Vargas-Bedoya et al, Unimodal CT Uni 1-to-1 1 Classical Abdome
2022) N
(Vijayan et al., 2021) Multimodal CT Uni 1-to-1 1 Bones
(Wang, C. etal,, 2022) Unimodal Uni 1-to-1 Coarse'- £+ Classical Breast &

pyramid prostate
(Wang, H. etal., 2022) Unimodal IR Uni 1-to-1 1 Classical Breast
(Wang, D. etal,, 2022) Unimodal CT Uni 1-to-1 Coarse-f. Classical Bones
(Wang, Z. etal,, 2022) Unimodal MR Brain
(Wu et al., 2022) Unimodal MR Uni 1-to-1 1 Classical Brain

Abd

(Xu et al., 2021) Multimodal CT-MR  Uni 1-to-1 Coarse-f.  Unsupervised N bdome
(Yang, Q.etal, 2021) Unimodal MR Uni 1-to-1 1 Unsupervised  Prostate
(Yang, Y.etal,2021)  Unimodal greyscale Uni 1-to-1 Coarse-f.  Classical Brain
(Yang et al., 2022) Multimodal MR Uni 1-to-1 1 Unsupervised  Prostate
(Ye etal., 2021) Unimodal MR Bi 1-to-1 1 Unsupervised Heart
(Ying et al., 2022) Unimodal MR Uni 1-to-1 1 Classical Breast
(Zhang, G. et al., 2021) Unimodal Uni 1-to-1 Pyramid = Unsupervised  Brain
(Zhang, L. etal,, 2021) Unimodal MR Uni 1-to-1 Pyramid  Unsupervised  Brain
(Zhu et al., 2021) Unimodal MR Uni 1-to-1 Pyramid Unsupervised = Head
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