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Abstract: Image registration (IR) is a process that deforms images to align them with respect to a 

reference space, making it easier for medical practitioners to examine various medical images in a 

standardized reference frame, such as having the same rotation and scale. This document introduces 

image registration using a simple numeric example. It provides a definition of image registration 

along with a space-oriented symbolic representation. This review covers various aspects of image 

transformations, including affine, deformable, invertible, and bidirectional transformations, as well 

as medical image registration algorithms such as Voxelmorph, Demons, SyN, Iterative Closest 

Point, and SynthMorph. It also explores atlas-based registration and multistage image registration 

techniques, including coarse-fine and pyramid approaches. Furthermore, this survey paper 

discusses medical image registration taxonomies, datasets, evaluation measures, such as 

correlation-based metrics, segmentation-based metrics, processing time, and model size. It also 

explores applications in image-guided surgery, motion tracking, and tumor diagnosis. Finally, the 

document addresses future research directions, including the further development of transformers. 
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Nomenclature & Abbreviations 

Table 1.A. Nomenclature. 

bx translation on the X-axis 

by translation on the Y-axis 

bz translation on the Z-axis C୧୨୮୯
 correspondence of image p in space i and image q in space j 

DT average training time 

E the total number of elements in a set 

e (as in xe) stands for the order of an element in a set X∅୧୮ = {x1∅୧୮ , x2∅୧୮ , x3∅୧୮ , … … xE∅୧୮ }, Y∅୧୮ = {y1∅୧୮ , y2∅୧୮ , y3∅୧୮ , … … yE∅୧୮ } F୧୨୮  a mapping between  X୧୨୮ & Y୧୨୮ such that Y୧୨୮ =  F୧୨୮(X୧୨୮ ) I∅୧୮  (orI୧୮) <X∅୧୮ , Y∅୧୮
> an image P that connects X∅୧୮

 and Y∅୧୮
 L∅୧୮

 labels associated  with I∅୧୮   that describe  properties of elements in I∅୧୮  such as a segmentation category 

Lp the number of points in image P M∅୧୮
 a set of marks that includes selected elements or points of image P such that  M∅୧୮ ∈ I∅୧୮   

Mp the number of landmarks in image P 

N the number of examples/samples in a dataset 

O an objective function that yields a smaller value when the registration is closer to the desired. For example, 

O = ∑ ( Y∅୨୮ −  Y୧୨୮)ଶ୒୮ୀଵ  which measures the square difference between a registered codomain Y୧୨୮  and a 

ground truth Y∅୨୮
 

RT average registration runtime T ୧୨ a domain mapping between  X∅୧ & X∅୨  𝑡௥,௦௧௔௥௧௣  the time at which image p is loaded to an IR model 𝑡௥,௘௡ௗ௣  the time at which image p is registered 

|| v || length of vector v X∅୧୮  ൫or X୧୮൯ domain values of an image p in space i, where ∅ is a reference unknown codomain (used with raw data). 

p is an index of a registration example in a dataset.  X୧୨ the transformed domain after applying T ୧୨ to X∅୧ such that  X୧୨ =  T ୧୨(X∅୧)  X୧ି୨ the outcome of applying T ୧ି୨ to X∅୧ such that X୧ି୨ =  T ୧ି୨(X∅୧) but before any postprocessing like resampling 

xe element number e in a set X, X∅୧୮ = {x1∅୧୮ , x2∅୧୮ , x3∅୧୮ , … … xE∅୧୮ }, Y∅୧୮  ൫or Y୧୮൯ codomain values of an image p in space i, where ∅ is a reference unknown codomain (used with raw data). 

p is an index of a registration example in a dataset. Y୧ି୨ codomain values after a transformation  T ୧ି୨ but before any post-processing (e.g., interpolation) 

ye element number e in a set Y, Y∅୧୮ = {y1∅୧୮ , y2∅୧୮ , y3∅୧୮ , … … yE∅୧୮ } ∆୧୨୮ a displacement field that transforms image p from space i to j. φ୧୨୮ a registration field that transforms image p from space i to j.  

θ rotation angle ᇱ the apostrophe indicates ground truth, for example, < X′୧୨୮, Y′୧୨୮> is the ground truth outcome <domain and 

codomain> of image p after IR to space j. ~ the ~ sign indicates a post-transformation outcome. 

# number of 

Σ standard deviation 
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∩ Intersection 

∪ Union 

  

  

Table 1.B. Abbreviations. 

2D two dimensional 

3D three dimensional 

AI artificial intelligence 

CC cross-correlation 

COM center of mass 

CMYK a color system in which cyan, magenta, yellow, and black are the basic colors 

CT computerized tomography 

CNNs convolutional neural networks 

Dist distance measure 

DL deep learning 

DSC dice score 

e.g. for example 

F1 F score 

FN false negative 

FP false positive 

GANs generative adversarial networks 

HD Hough distance 

IR image registration 

Inf Infimum 

i.e. that is 

J Jacobian 

JOCA the determinant of Jacobian 

MIR medical image registration 

ML machine learning 

MR magnetic resonance imaging 

MSE mean square error 

N No 

nCC normalized cross-correlation 

nLCC normalized local cross-correlation 

NN neural networks 

PET positron emission tomography 

Prox a proximity measure 

RGB a color system in which red, green, and blue are the basic colors 

RL reinforcement learning 

RMSE root mean square error 

ROI region of interest 
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SDlogJ standard deviation of log Jacobian 

Sup Supremum 

TRE target registration error 

TN true negative 

TP true positive 

w/o Without 

US ultra-sound 

Y Yes 

1.0. Image registration etymology 

1.1. Registration in Dictionaries 

When a novice human reads or hears the concept of “image registration” for the first time, the 

word “registration” may not provide a clue about what image registration engineers do. A curious 

non-native English speaker may look for a hint in a dictionary such as Oxford or Cambridge, but no 

related senses (Table 2). In the dictionary, the word “registration” is mainly associated with an entry 

in an official record or list, such as the addition of a new citizen to a national register or the enrollment 

of a student in a course (an entry in the record of enrolled students). Similarly, the license plate on a 

car is called a registration number in British English (an entry in the record of licensed cars). A related 

sense is found in Merriam-Webster's dictionary under the word “register,” but not under the word 

“registration,” which defines “register” (noun) as a correct alignment. 

Table 2. Registration in dictionaries (Oxford, Cambridge, Meriam Webster). 

Dictionary Word Link 

Oxford Registration https://www.oxfordlearnersdictionaries.com/definition/english/registration?q=registration 

Oxford Register (noun) https://www.oxfordlearnersdictionaries.com/definition/english/register_2 

Oxford Register (verb) https://www.oxfordlearnersdictionaries.com/definition/english/register_1?q=register 

Cambridge Registration https://dictionary.cambridge.org/dictionary/english/registration 

Cambridge Register https://dictionary.cambridge.org/dictionary/english/register 

Meriam webster Registration https://www.merriam-webster.com/dictionary/registration  

Meriam webster Register https://www.merriam-webster.com/dictionary/register 

1.2. Registration in the printing industry 

In the printing industry, registration is the process of getting an image printed at the same 

location on the paper each time. It also means the perfect alignment of printing components (e.g., 

dots, lines, colors) with respect to each other. Figure 1 shows an example of printing misalignments. 

The misalignment in early printing machines depended on the initial settings in addition to the 

movement of a paper while it runs through the printing machine. Hence, marks like crosshairs were 

used to be printed on paper boundaries to check a popper alignment/registration (Stallings, 2010). 

You may have seen a crosshair like the one shown on the right of Figure 1 in some old documents. In 

addition to ink printing on papers, registration covered other kinds of printing such as embossing 

and metallic foiling. 

In color printing, basic colors were printed one color after another. For example, the basic colors 

of the CMYK color model are cyan, magenta, yellow, and key/black, which form the acronym of 

CMYK. A misalignment between colors may result in overlapping replicas (Wikipedia 2023). 
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Figure 1. An example of printing misalignment and a crosshair on the right boundary. Crosshairs 

were used in the early printing industry to check misalignments like the misalignment between 

copies/pages. 

In summary, the concept of image registration in computer vision seems to have been influenced 

by the printing industry. In computer vision, it is common to call a computer image that will be 

aligned a “moving image” and the reference image a “fixed image”. The naming of a “moving” and 

a “fixed” image suit the movement of a paper in a printing process, however, it is still very common 

to read “moving image” and “fixed image” in computer image registration papers, despite the lack 

of a moving part as IR is done digitally by computer algorithms only. The sense of registration in the 

printing industry can be seen as a narrow case of an expanding IR arena. IR includes aligning 

identical images, aligning images of non-rigid objects, and aligning images of different objects and/or 

different dimensions (like aligning a 2D X-ray image with a 3D MRI image). 

In the previous paragraphs, a connection was drawn between the concept of IR and the 

registration printing industry. A potential, but less obvious, connection is between IR and registration 

in the music industry. Registration is known to organists (musicians who play organ) as the selection 

of organ stops. An organ stop is a part of an organ that controls the flow of the air to certain pipes, 

hence basically a musician combines stops to generate sounds. What is common between organ 

registration and IR is that both are processes of finding a configuration for an intended outcome. That 

outcome is a melody in the case of organ registration and an aligned image in the case of IR. Can 

organ registration be considered a type of IR? Answering such questions entails a full technical 

definition of image registration. 

2.0. Image registration definition 

Humans align objects mentally before deciding whether two rotated objects are similar or not 

according to cognitive psychology (Cooper, 1975). Likewise, it is easier for medical practitioners to 

compare aligned medical images. To demonstrate this, a reader can compare the left side and the 

right side of Figure 2. 

 

Figure 2. Examples of mental alignment. 
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2.1. IR definitions in the literature 

Image registration definitions in the literature of medical image registration can be categorized 

into three main definitions: 

Definition 1. Finding a transformation between two images that are related to each other such that the images 

are of the same object or similar objects, the same region, or similar regions (Stewart et al., 2004). 

Definition 2. The process of overlaying two or more images of the same scene taken at different times, from 

different viewpoints, and/or by different sensors (Zitova et al., 2003). 

Definition 3. The process of transforming different images into one coordinate system with matched content 

(Chen, X., Wang, et al, 2022). 

Each definition imposed a constraint. The first definition limited registration to two images like 

the definitions in (Decuyper et al., 2021; Talwar et al., 2021; Fitzpatrick et al., 2000). The second 

definition limited registration to images of the “same scene” like the definition in (Abbasi et al., 2022). 

The third definition entailed a “coordinate system” like the definitions in (Haskins et al., 2020; Chen, 

X. et al 2021).  

2.2. IR definition 

Briefly, Image registration is an alignment of images. The alignment is finding a space k (not 

necessarily a coordinate system) in which a correspondence relation is satisfied such that 

correspondent elements are in proximity. For instance, given an image 𝐼∅௜௣
 = <𝑋∅௜௣ , 𝑌∅௜௣ >, and 𝐼∅௝௤

 = <𝑋∅௝௤ , 𝑌∅௝௤ > with a correspondence set between them 𝐶௜௝௣௤ = {(𝑥𝑒∅௜௣ , 𝑦𝑒∅௜௣ )↔( 𝑥𝑒∅௝௤ , 𝑦𝑒∅௝௤ )}, the images p and q 

can be registered if there is a space k in which the correspondent points are positioned at the same 

location or nearby locations. That can be expressed as in Equation 1. 

Tik(𝑥𝑒∅௜௣ , 𝑦𝑒∅௜௣ ) ≈ Tjk(𝑥𝑒∅௝௤ , 𝑦𝑒∅௝௤ ) for ∀ correspondence points ∈ 𝐶௜௝௣௤    (1) 

where - (𝑥𝑒∅௜௣ , 𝑦𝑒∅௜௣ )↔( 𝑥𝑒∅௝௤ , 𝑦𝑒∅௝௤ )  are correspondent points between image p in space i, and image q 

in space j, 

- 𝑇 ௜௞, 𝑇 ௝௞ transformations map spaces i, and j (respectively) to space k. 

An image is a representation of a function that maps a space/set X called domain to a space/set 

Y called co-domain. This definition may seem a generic definition that goes beyond digital graphics 

in the sense that a mathematical function y=x2 can be considered an image under this definition, 

which is true. The discussion of what is an image and what is not is beyond the scope of this 

document. However, interested readers are referred to (Mitchel, 1984) who provided an interesting 

discussion based on Wittgenstein’s philosophy, in which Mitchell thinks of a family of images that 

includes graphical, optical, mental, and verbal images. This definition aligns with the classical 

concept of a digital image. A digital graphical image, which is a discrete function, can be thought of 

as a set of samples (e.g., recorded by a sensor) from a continuous function. That continuous function 

is a scene/object/manifold in the world. However, a sensor is no longer essential to acquire a digital 

graphical image since digital graphical images can be created virtually, using graphics tools or deep 

learning (GANs for example). 

3.0. Introductory example 

Readers who have some knowledge of image processing or modern algebra are advised to skip 

this section which targets novice readers. This section demonstrates an image transformation pipeline 

using a simple example (see Figure 3). 
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Figure 3. A transformation of an image from space i to space j. 

3.1. Image representations 

Let P be a 2D digital image of 2x2 pixels in a Euclidean space as shown in Figure 4.  The domain 

values 𝑋∅௜௣  can be represented in a set of tuples {(m, n)} where m, n are integers, 0 ≤ 𝑚 < 2, 0 ≤ 𝑛 <2. Explicitly 𝑋∅௜௣  = {(0,0), (0,1), (1,0), (1,1)}, where the first number in the tuple is the row and the 

second is the column in which a pixel is located such that counting starts from the top left corner of 

the image. The codomain values 𝑌∅௜௣  is a set of 2x2 = 4 items, each item represents a color. 𝑌∅௜௣  = {(a), 

(b), (c), (d)}. Colors in this example were represented as symbols for simplicity. There are multiple 

other ways to represent the domain/codomain values. For example, the codomain values of an RGB 

image consist of 3 numbers that represent the intensities of the basic colors (red, green, blue), which 

if mixed yield the color of the pixel. 

 

A b 

D c 
 

 𝐼∅௜௣  = {(0,0): a, (0,1): b, (1,0): d, (1,1): c} 

 

Euclidean representation Non-Euclidean representation 

  

Figure 4. Two representations of an image: Euclidean (left), and non-Euclidean (right). 𝐹∅௜௣  is a mapping between 𝑋∅௜௣  & 𝑌∅௜௣  like how the blue lines in Figure 5 connect elements in the 

left rectangle (domain values) to elements in the right rectangle (co-domain values). 𝐹∅௜௣  can be 

represented, in some other cases, by an algebraic expression between X and Y. 

3.2. Image transformation 

A toy example of image transformation is represented in Figure 5. Tij is a domain transformation 

that relocates pixels 1 unit in a counterclockwise rotation. Tij shown in Figure 5B replaced the domain 

values with new ones. For example, the domain value (0,0) in Figure 5A became (1,1) in Figure 5C.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2023                   doi:10.20944/preprints202309.0223.v1

https://doi.org/10.20944/preprints202309.0223.v1


 8 

 

 

Figure 5. An image transformation. 

3.3.1. Image deformation using a displacement field 

A displacement field ∆X represents domain relocation distances (see Equation 2), such that a 2D 

displacement value of <1,-1> moves a pixel 1 unit on the horizontal axis and -1 unit on the vertical 

axis. 𝑋௜ି௝௣ = 𝑇௜ି௝൫𝑋∅𝑖𝑝 ൯ =  𝑋∅𝑖𝑝 + ∆X      (2) 

Figure 6 shows a displacement field ∆X estimated by an algorithm given a pair of fixed and 

moving images. The moving image 𝐼∅௜௣  = {‘0,0’: a, ‘0,1’: b, ‘1,0’: d, ‘1,1’: c}.The displacement field 

estimated by a registration algorithm is ∆X = {‘0,0’: <1,0>, ‘0,1’: <0,-1>, ‘1,0’: <0,2>, ‘1,1’: <-1,0>}. The 

goal is to obtain a transformed image  𝐼௜௝௣  by deforming the moving image 𝐼∅௜௣ . 

 

Figure 6. A displacement field estimated by an algorithm is used to register a moving image. 

The wrapping operation ‘o’ shown in Figure 6 consists of a domain deformation of a moving 

image followed by resampling. The replacement of the domain of the moving image 𝑋∅௜௣  by the 

domain of the wrapped image before any post-processing 𝑋௜ି௝௣
 yields a wrapped image 𝐼௜ି௝௣  shown 

below. Figure 7 demonstrates how 𝑋௜ି௝௣
 was obtained by the addition of ∆X to 𝑋∅௜௣ . 𝐼∅௜௣    = {‘0,0’: a, ‘0,1’: b, ‘1,0’: d, ‘1,1’: c} 𝐼௜ି௝௣

  = {‘1,0’: a, ‘0,0’: b, ‘1,2’: d, ‘0,1’: c} 
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The domain of the 

moving image 

 Displacement 

field 

 The new domain of the 

moving image 𝑋∅௜௣  + ∆X   𝑋௜ି௝௣  

 

 

0,0 0,1 

1,0 1,1 

 
 

<1,0> <0,-1> 

<0,2> <-1,0> 

  
 

1,0 0,0 

1,2 0,1 

Figure 7. The displacement field transforms the domain of the moving image. 

3.3. post-processing 

A domain transformation may relocate pixels to locations that violate space constraints. A 

constraint that is commonly violated after a domain transformation of a digital graphical image is 

that domain values should be uniformly distributed integers. For example, a domain value of (0.3, 

0.17) violates the mentioned constraint since 0.3 and 0.17 are not integers. Such violations can be fixed 

in a post-processing step called ‘resampling’. Resampling estimates codomain values 𝑌௜௝௣ for post-

processed domain values 𝑋௜௝௣  that don’t violate the space constraints. The selection of 𝑋௜௝௣  is known 

in the literature as ‘grid generation’. Resampling is done under the assumption that the post-

processed image <𝑋௜௝௣ , 𝑌௜௝௣> and the preprocessed image <𝑋௜ି௝௣ , 𝑌௜ି௝௣
> are discrete samples from the same 

function/manifold. Hence 𝑌௜௝௣ can be interpolated based on 𝑌௜ି௝௣
. The Interpolations list includes but 

is not limited to linear, bilinear, and spline interpolations. 

An example of post-processing is shown in Figure 8. Pixel d is out of the image boundaries. A 

potential fix is just to move the pixel d one step to the left to be in the empty cell at <1,1>. Another 

option is just to delete pixel d without filling the empty cell, another option is to fill the empty cell 

with the average of its surrounding pixels. 

𝐼௜ି௝௣   Option 1  Option 2  Option 3 

 

b c  

a  d 

  

 

b c 

a d 

   

 

b c 

a  

 
 

b c 

a (a+b+c+d)/4 

Figure 8. Examples of image interpolation. 

4.0. Review criterion 

This work reviewed medical image registration (MIR). The list of surveyed work was collected 

by searching using the keywords medical image registration in the Scopus database. The search query 

was limited to open-access MIR papers written in English and published between 2021 and 2022. The 

number of retrieved records was 270, out of which 38 papers were excluded based on the abstract for 

their irrelevance (e.g., they are about medical images but not MIR). Other 41 papers were excluded 

as the authors could not find open-access versions of those papers as of December 2022. Out of 191 

papers, 96 have been reviewed at the time of writing this draft in addition to 10 papers published 

before 2021. The research questions and sub-questions of this work are shown in Table 3.  
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Table 3. The questions of interest in this survey. 

Research question Sub-questions 

What was the research pipeline of 

MIR in 2021 and 2022? 

What were the proposed approaches of MIR? 

What were the evaluation criteria? 

What MIR datasets were used 

What were the applications/use cases of MIR? 

5.0. Related survey papers 

Table 4 compares this work to related survey papers that appeared in the search query in section 

6. Two highly cited review papers (Zitova et al., 2003; Haskins et al., 2020) were added to the table 

although they were published before 2021. 

It could be in the interest of novice readers to read about the evolvement of IR concept and its 

etymology (see section 1) in addition to a simple numeric example that demonstrates the basics of IR 

(see section 3) since no review paper was found that addresses these parts to the best of the authors’ 

knowledge. Advanced users could be interested in the novel constraint-based analyses of IR 

introduced in the previous sections.  Different from other survey papers shown in Table 4 which 

were mainly descriptive with no or just a few equations, this survey introduced a symbolic 

framework of the IR components (see the nomenclature) that has been used to express tens of 

equations.  

Zitova et al. (2003) structured their paper based on the classical IR pipeline starting with feature 

detection, followed by feature matching, mapping function, image transformation, and resampling. 

Haskins, et al. (2020) tracked the development of MIR algorithms covering 1) deep iterative 

methods that are based on similarity estimation, 2) supervised transformation estimation which 

entails ground truth labels that are not easily affordable, and 3) unsupervised transformation 

estimation methods which overcome the challenge of ground truth labels. Finally, 4) weakly 

supervised approaches were discussed. 

Chen, X. et al. (2021) first provided a framework for image registration. Then explained the basic 

units of DL and reviewed DL methods such as deep similarity, supervised, unsupervised, weakly 

supervised, and RL. The authors discussed the challenges of MIR: 1) different preprocessing steps 

lead to different results, 2) a few studies quantify the uncertainty of predicted registration, and 3) 

limited data (small scale). Finally, possible research directions were highlighted: 1) hybrid models 

(classical methods and deep learning), and 2) Boosting MIR performance with priors. 
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Table 4. Comparison of related MIR survey papers. 

 

Dossun et al. (2022) reviewed the performance of deformable IR in radiotherapy treatments in 

real patients. First, the scope of the paper and the paper selection process were explained. Then a 

taxonomy of MIR evaluation metrics was mentioned but no explanation or formula was provided. A 

table of 7 pages compared the surveyed papers. Then, statistics and figures summarized the results 

showing, for example, that the distribution of the ROIs was 36% for the prostate, 33% for the head 
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and neck, and 26% for the thorax. Another figure showed the most frequent evaluation metrics 

ordered as the following: DSC > HD > TRE. 

Abbasi et al. (2022) reviewed the evaluation metrics of unsupervised MIR in a sample of 55 

papers. The statistics showed that: 1) the majority of papers were handling unimodal registration 

(82%), 2) a private dataset was more likely to be used than a publicly available dataset, 3) most papers 

worked with MR images (61%), and 4) the most researched ROI was the brain at 44%, then the heart 

at 15%.   
Xiao et al. (2021) started with a brief introduction to deep learning, then provided a statistical 

analysis of a selected sample of 3D MIR papers that covered the distribution of ROI (Brain 40%, lung: 

24%), modality (MR-MR: 46%, CT-CT: 24%), MIR methods: (unsupervised: 43%, supervised: 40%, 

deep iterative: 19%), and evaluation metrics (74% label based, 18% deformation based, 12% image-

based). The MIR methods were reviewed based on the taxonomy (deep iterative methods, 

supervised, and unsupervised). 

Chen, X., Wang, et al. (2022) reviewed medical image analysis covering four areas: image 

classification, detection, segmentation, and registration. First, the paper gave an overview of deep 

learning and its methods: supervised, unsupervised, and semi-supervised. Then it addressed ideas 

of DL that were shown to improve the outcomes: attention, involvement of domain knowledge, and 

uncertainty estimation. Then the paper briefly reviewed classification, detection, segmentation, and 

registration. Finally, the paper highlighted ideas for future improvement that included the idea of a 

fully end-to-end deep learning model for MIR. In addition to the incorporation of domain knowledge. 

They also highlighted important points for large-scale applications of deep learning in clinical 

settings such as having large datasets publicly available as well as producible codes. They also 

highlighted the need for more clinical-based evaluation and the involvement of domain experts from 

the medical field in the evaluation rather than limiting the evaluation to theoretical evaluation 

metrics. 

Huang et al. (2022) reviewed AI applications in brain tumor imaging from a medical 

practitioner’s perspective. They pointed out the lack and the need for studies about the use of AI tools 

in routine clinical practice to characterize the validity and utility of the developed AI tools. 

Zhang, Y. et al. (2021) elaborated on AI registration success, and highlighted challenges 1) the 

lack of large databases with precise annotation, 2) the need for guidance from medical experts in 

some cases, 3) having different opinions of experts in the case of some ambiguous images. 4) 

excluding non-imaging data of the patient, like age,  and medical history, and 5) the interpretability 

of AI models. 

Decuyper et al. (2021) started with an explanation of DL components covering neural network 

layers (CNNs, activations, normalization, pooling, and dropout), and DL architecture (e.g., Resnet, 

GANs, U-Net). Then the paper explained medical image acquisition and reconstruction. After a brief 

elaboration on IR categories, the paper elaborated on their challenges: 1) traditional iterative methods 

work well with unimodal images but poorly with multimodal images, or in the presence of noise, 2) 

deep iterative methods imply non-convex optimization that is difficult to converge, 3) In RL, 

deformable transformation results in a high dimensional space of possible actions, which makes it 

computationally difficult to train RL agents. Most previous works dealt with rigid transformation 

(low dimensional search space), 4) supervised learning approaches need ground-truth labels, and 5) 

unsupervised approaches face difficulty in back-propagating the gradients due to the multiple 

different steps. Finally, specific application areas were reviewed: chest pathology, breast cancer, 

cardiovascular diseases, abdominal diseases, neurological diseases, and whole-body imaging. 

6.0. Taxonomies 

A registration algorithm consists of a set of assumptions (prior knowledge), and a margin of 

uncertainty (the unknown part), which is expressed using variables (e.g., model parameters). For 

example, if a programmer knows exactly how to register any images in a similar way to having a 

formula that finds the roots of any quadratic equation, then s/he will just embed that prior knowledge 
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(the formulae) in the code. However, there is no such a generic formula yet for most IR cases. 

Accordingly, variables are made and adjusted using an optimization method. 

6.1. Deformation types 

Transformation functions in MIR can be categorized based on their deformability into rigid, 

affine, and deformable transformations as shown in Figure 9.  

In physics, the shape and size of a rigid body do not change under force. When you push a small 

solid steel bar, the location and/or the orientation of the bar may change, but the bar itself remains 

the same (e.g., the same mass, shape, and size). Likewise, a rigid transformation preserves the 

distances between every pair of points. Accordingly, rotations and translations are rigid 

transformations or proper rigid transformations in the distinction of reflections which are called 

improper rigid transformations as they do not preserve the handedness.  

A rigid transformation Tij preserves the distances between any two points on the object of 

interest, such that the constraint ቚห𝑥𝑘∅௜௣ − 𝑥𝑙∅௜௣ หቚ = ቚห𝑥𝑘௜௝௣ − 𝑥𝑙௜௝௣ หቚ holds for every pair of points k, l ∈ the 

set Mp. A rigid transformation can be expressed as in Equation 6.  𝑣~ =  𝑇௜௝(𝑣) = 𝑨 𝑣 + 𝑏       (6) 

where v~ is a newly transformed vector after the application of a rigid transformation to a vector v, 

which could be a position of a point in Euclidian space. b is a translation vector, and A is an 

orthogonal transformation (see the appendix for definition) such as orientation. 

A rigid transformation is a subcategory of a bigger group of transformations called Affine 

transformations. Affine transformations preserve parallelism and lines, but no constraints on the 

preservation of distances.  Thus, it can be expressed as in Equation 6 above used earlier for rigid 

transformation except that A is a linear transformation/matrix with no orthogonality constraint. In 

an affine registration, the transformation Tij imposes the constraint 𝑇௜௝  ൫𝑥𝑘∅௜௣ − 𝑥𝑙∅௜௣ ൯ = 𝑇௜௝  ൫𝑥𝑘∅௜௣ ൯ −𝑇௜௝  ൫𝑥𝑙∅௜௣ ൯ =  𝑥𝑘௜௝௣ − 𝑥𝑙௜௝௣   for every point k, l ∈ the set Mp. Scaling and shear mapping are examples of 

an affine, but not rigid, transformation. 

 

Figure 9. Examples of deformation types. 

The formula of a 2D proper rigid transformation (rotation and translation) is shown in Equation 

7. The variables are the rotation angle θ, the translation on the x-axis 𝑏𝑥, and the translation on the 

y-axis 𝑏𝑦. 𝑣~ =  ൤cos(θ) −sin(θ)sin(θ) cos(θ) ൨  𝑣 + ൤𝑏𝑥𝑏𝑦൨       (7) 

The formula of a proper rigid transformation in a 3D space consists of 6 unknown variables: 3 

rotation angles ( θx, θy, θz ), and 3 translations (bx, by, bz) as shown in Equation 8, where the 

subscriptions x, y, z are 3 perpendicular coordinates. 𝑣~ = ൥1 0 00 cos(θx) −sin(θx)0 sin(θx) cos(θx) ൩ ൥ cos(θy) 0 sin(θy)0 1 0−sin(θy) 0 cos(θy)൩ ൥cos(θz) −sin(θz) 0sin(θz) cos(θz) 00 0 1൩ 𝑣 + ൥𝑏𝑥𝑏𝑦𝑏𝑧൩  (8) 
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Transformations that do not preserve the rigidity or affinity constraints are called deformable 

transformations. 

6.2. Optimization phase 

Image registration entails an optimization step in which a model’s parameters are adjusted to 

minimize/maximize an objective function. Optimization can occur, as shown in Figure 10, 1) during 

the development phase as in DL approaches, or 2) during the running phase such as in iterative 

methods, or 3) in both e.g., active learning approaches, or a test-time training as called in (Zhu et al., 

2021). The objective function of MIR is expressed in Equation 9 as a weighted sum of two components: 

the first quantifies the registration error that represents the proximity between the predicted 

registration and the correct one, and the second is a regularization component. 

Loss = registration_error + regularization     (9) 

The optimization methods such as gradient descent, evolutionary algorithms, and search are 

iterative. Hence the optimization step adds a time overhead to the phase in which it takes place. Thus, 

DL approaches take a long training time, but shorter registration time.  

Approaches that run optimization in both phases aim at further improving the registration 

despite a slight increase in the computation time. To reduce the run-time overhead, the bulk 

optimization of the model parameters occurs in the training phase while just slight finetuning occurs 

during the run phase to customize the results (Zhu et al., 2021). 

 

Figure 10. Optimization phase. 

6.3. MIR algorithms 

This section discusses selected registration algorithms. Mainly the algorithms that were used as 

baselines against which the performance of a new algorithm is compared. A taxonomy of MIR 

algorithms is shown in Figure 11. 

 

Figure 11. MIR methods taxonomy. 
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Training phase typical DL 
approaches

Run phase non-DL 
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Hybrid Active learning
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6.3.1. Deep learning approaches 

Deep learning approaches use multiple layers of neural networks. Neural networks can estimate 

the transformation function in the registration problem entirely using unknown variables (called 

neurons). Hence, the transformation function in this case is considered an implicit function in 

distinction with explicit transformation functions which assumes a tractable formula of the 

transformation functions such as rigid transformations shown in Equations 6-8. DL approaches were 

also called earlier “non-parametric methods”.  

a. directly supervised deep learning approaches. 

The diagram of directly supervised image registration approaches is shown in Figure 12. 

Initially, input images are fed to neural networks which produce a registration field. The 

registration field is applied to the fixed image to relocate its pixels in a process called spatial 

transformation represented as a yellow circle in the figures below.  

The main question is how neural networks learn to estimate the registration field. In the 

directly supervised approach, A ground truth label is provided during the training phase. 

The ground truth label could be the registration field as shown in Figure 12 (left), or the 

wrapped image as shown in Figure 12 (right). A challenge of directly supervised MIR 

approaches is their need for ground truth labels, which entails medical experts annotating a 

large number of images. To overcome ground truth labels, unsupervised MIR has been 

proposed. 

  

Figure 12. Supervised MIR approaches: supervision using ground truth output image (right), and 

supervision using ground truth registration field (left). 

b. Unsupervised deep learning approach: Voxelmorph 

Unsupervised MIR approaches do not entail an external supervision signal. Instead, the fixed 

image (input) was assumed to replace the ground truth label of the registered image <𝑋௜௝௣ ᇱ, 𝑌௜௝௣ᇱ > ≈ < 𝑋∅௝௣ , 𝑌∅௝௣ >  as in Voxelmorph (Balakrishnan et el., 2019). This assumption is 

useful when the fixed image and the moving image have similar modalities/co-domains. 

However, the assumption may not work well if the fixed image and the registered image are 

of different modalities (e.g., one is 3D MRI, and the other is 2D X-ray) unless a way is 

developed to bridge the gap between the two modalities. This has been reported by the 

results shown in Synthmorph (Hoffmann et al., 2021).  Even for images of the same 

modality, co-domain dissimilarities can be a problem with this approach. For example, if the 

contrast of the fixed image is different than that of the moving image, then the mean square 

error MSE(𝑌∅௝௣ , 𝑌௜௝௣) may not represent the error adequately. However, another loss function 

like cross-correlation “CC” is more resilient against the contrast problem than MSE due to its 

scale invariance property. CC (Y1, Y2) = CC (Y1, α×Y2) where α is a scale number. 

MIR using Voxelmorph yielded results much faster than non-deep learning MIR methods 

without degradation of the registration quality. Voxelmorph cut the registration runtime to 

minutes/seconds compared to hours needed by non-deep learning methods used before 

Voxelmorph. Voxelmorph superseded non-deep learning methods when segmentation 

labels were added to the registration.  

c. Unsupervised approach with synthetic data: Synthrmorph 
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If it is difficult to get ground-truth labels, why not generate them? Synthmorph (Hoffmann 

et al., 2021) proposed training Voxelmorph on synthetic data (randomly generated fixed and 

moving images). Synthmorph generated images in two steps, first segmentation labels were 

generated randomly, then fixed, and moving images were generated given the segmentation 

label. The results yielded by Synthrmorph were superior to classical methods even when the 

images were of different modalities. 

6.3.2. non-deep learning methods: 

MIR methods that do not involve deep neural networks are called ‘non-deep learning methods’, 

‘classical methods’, or ‘iterative methods.’  

a. Iterative Closest Point (ICP) 

ICP (Arun, 1987; Estépar, 2004; Bouaziz, 2013) alternates between two goals: the 

establishment of a correspondence 𝐶௜௝௣௤, and finding a transformation 𝑇௜௝ that optimizes a 

loss function. A loss function quantifies the quality of a registration (see section 7). A 

demonstration of the ICP process is shown in Figure 13. Let the moving image be a blue line 

of 4 marked points, and the fixed image a similar black line. The loss function can be a point-

wise Euclidean distance. First, 1) a correspondence is established between the points on each 

line such that each point is matched with its closest neighboring point. Notice that the 

correspondence is not 1-to-1 as the two bottom black points are matched with the same point, 

and the top blue point is not matched, 2) the blue line was translated to minimize the distance 

between the two lines, 3) another correspondence was found (1-to-1 correspondence this 

time), and 4) the black line was transformed (rotation and translation) based on the new 

correspondence. 

 

Figure 13. Unsupervised MIR approach. 

ICP, like other iterative approaches, takes longer registration time than DL approaches. The 

establishment of a correspondence between nearest neighbors is straightforward but not always 

optimal and it sticks in local optima. 

 

Figure 14. A demonstration of ICP registration. 
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b. Demons 

A deformable IR approach was proposed by Thirion (1996). The name of the Demons approach 

was influenced by Maxwell’s Demons paradox in Thermodynamics. Maxwell assumed a 

membrane that allows particles of type A to pass in one direction, while particles of type B can 

pass in the opposite direction, which will end up having all particles of type A on one side of the 

membrane and particles of type B on the other side as shown in Figure 15. That state of organized 

particles corresponds to a decrease in entropy, which contradicts the second law of 

thermodynamics. The solution to that paradox was that the demons generate entropy to organize 

the particles resulting in a greater total entropy than that was before the separation of the 

particles. 

 

Figure 15. Maxwell’s membrane with demons. 

Influenced by Maxwell’s demons, Thirion suggested distributing particles (demons) on the 

boundaries of an object (see Figure 16) such that a demon will push locally either inside or outside 

the object based on a prediction of a binary classifier. It has been shown that what Thirion’s 

demons do is object matching using optical flow.  

 

Figure 16. How demons work as explained in Thirion, J. P. (1996, June). 

c. Symmetric Image normalization (SyN) 

The main idea of SyN is to assume a symmetric and invertible transformation. Instead of 

transforming space i to j, SyN symmetrically transforms both space i & space j to an intermediate 

space such that 𝑇௝௞ =  𝑇௜௞ିଵ. In this case  𝑇௜௞ can be seen as half a step forward towards space j, 

and 𝑇௝௞  is half a step backward towards i (see Figure 17). The symmetric invertibility constraint 

of SyN can be expressed as in Equation 10 

 ∃𝑘 ∈ 𝑠𝑝𝑎𝑐𝑒 ∶   𝑇௜௝(𝐼௜ ) = 𝑇௞௝((𝑇௜௞(𝐼௜)), 𝑤ℎ𝑒𝑟𝑒  𝑇௞௝ = 𝑇௜௞ିଵ   (10) 

 

SyN was shown to supersede Demons in providing correlated results with human experts 

(Avants et al., 2008). 
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Figure 17. A demonstration of symmetry in SyN. A Transformation Tij, which rotates an image 180 

degrees counterclockwise, can be decomposed into 2 symmetric rotations each of 90 degrees. 

d. Registration software tools. 

NiftyReg is a publicly available software for image registration. The software was developed 

initially by University College London and then King’s College London. The software uses two 

methods: 1) Reg Aladin, which is a block matching algorithm for global registration based on 

Ourselin et. al. (2001). 2) RegF3D (fast free form deformation) based on Modat et al (2010). 

Advance Normalization Tools (ANT) is another stable software for MIR and statistical analysis. 

ANT yields stable results such that the registration does not change every time the software is 

run (Avants et al., 2014). A Python version of NiftyReg and ANTs was wrapped in a package 

called Nipype (Neuroimaging in Python pipelines & interfaces). 

ANTs on Github: https://github.com/ANTsX/ANTs 

Chen, T. et al., (2002) compared three registration tools: SPM12, FSL, and AFNI. SPM12 was 

recommended for novice users in the area of medical image analysis. It provided stable outcome 

images of “maximum contrast information” needed for tumor diagnosis. AFNI was 

recommended for advanced users and researchers due to the advanced capabilities needed for 

tasks such as volume estimation. FSL was considered for mid-level users. 

6.4. Correspondence space 

MIR alignment occurs in a correspondence space k. The correspondence space can be the space 

in which an input image is located (internal), or it can be a new space (external). MIR in an internal 

correspondence space has been the most common among MIR methods. Examples of MIR in an 

internal space can be seen in the methods mentioned earlier, which included a transformation from 

the space of a moving image (i) to the space of the fixed image (j). An example of MIR in external 

space is Atlas-based registration.  

Atlas-based registration 

An Atlas is a standard or a reference image that represents a population of images. One way to 

form an Atlas of a brain is by finding the average image of a population of brain images, which is 

expected to be smooth and symmetrical. However, that is not the only way. (Dey et al., 2021) 

suggested an atlas generated by GANS. Another way to form an atlas is by IR in an external 

correspondence space. An example of atlas-based registration is the Aladdin framework (Ding, Z. et 

al., 2022) shown in Figure 18. Aladdin transformations are bidirectional and invertible.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2023                   doi:10.20944/preprints202309.0223.v1

https://doi.org/10.20944/preprints202309.0223.v1


 19 

 

 

Figure 18. Invertible bidirectional Atlas-based transformations. 

• Invertibility: for a transformation 𝑇௜௝, there is an inverse transformation  𝑇௜௝ି ଵ 

• Bidirectionality: A bidirectional registration maps spaces in both directions from i to k and 

vice versa ( 𝑇௜↔௞: 𝑇௜௞, and 𝑇௞௜). Accordingly, a bidirectional IR model (Ding, W. et al.,2022; Ye 

et al.,2021) can yield two wrapped images 𝐼௜௝ , 𝐼௝௜ . On the other side, a unidirectional 

registration maps a single space i into another j but not vice versa. An example of an invertible 

bidirectional MIR model in an internal correspondence space, namely Inversenet (Nazib et 

al., 2022), is shown in Figure 19. 

 

Figure 19. An example of a MIR model that estimates a transformation field and its inverse 

(InverseNet). 

The bidirectionality in an external correspondence space enables more transformation paths 

between spaces given three anchors as shown in Figure 18: fixed image Ii, moving image Ij, and an 

external correspondence space/Atlas Ik. Potential transformation paths were expressed in Equations 

11-17 below. The dissimilarities between the left and right sides of the equations below were used as 

losses of an MIR model (Ding, Z. et al. 2022). 

  𝑇௞௜(𝑇௜௞( 𝐼∅௜)) = 𝐼∅௜       (11) 

 𝑇௞௜(𝑇௝௞൫ 𝐼∅௝൯) ≈ 𝐼∅௜        (12) 𝑇௞௜(𝐼∅௝) =  𝐼௞௜ ≈ 𝐼∅௜        (13) 

  𝑇௞௝(𝑇௝௞൫𝐼∅௝൯) = 𝐼∅௝       (14) 

 𝑇௞௝(𝑇௜௞(𝐼∅௜)) ≈ 𝐼∅௝        (15) 𝑇௞௝(𝐼∅௞) =  𝐼௞௝ ≈ 𝐼∅௝        (16) 𝑇௞௜(𝐼∅௜) =  𝑇௝௞(𝐼∅௝)        (17) 
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Figure 20. illustrates diagrams of IR in an internal correspondence space (left) and an external 

correspondence space (right). 

6.5. Correspondence relation 

Correspondence relations can be categorized into isomorphic and non-isomorphic. 

Isomorphism entails a one-to-one correspondence relation between images. A special case of 

isomorphism is diffeomorphism which entails invertible and differentiable transformation. An 

example of non-isomorphism is a change of the topology such as that shown in Figure 22. A special 

case of non-isomorphism is a many-to-many correspondence as in metamorphism. 

 

  

 

Figure 21. Correspondence relation taxonomy  Figure 22. An example of metamorphism 

The spatial transformation unit imposes isomorphism, since the registration field just maps a 

single pixel from one location to another single point only, which is a 1:1 correspondence. However, 

the resampling step can affect the 1:1 correspondence relation, for example, if two nearby points are 

merged in the target image, which makes metamorphism possible but no guarantees. 

Diffeomorphism can be achieved by an integral ׬  before a spatial transformation.  

Metamorphosis (Maillard et al., 2022) is a deep learning model that addresses metamorphic 

registration. Metamorphosis estimated the wrapped image without an explicit spatial transformation 

unit. However, alternative constraints were added as 2 equations embedded in the network as layers. 

However, no information if a spatial transformation holds implicitly. Metamorphosis superseded 

diffeomorphic registration methods especially when the ground truth correspondence was 

metamorphic. However, its runtime was 10-20 times that of Voxelmorph. The runtime is defined in 

section 7 (evaluation measures). 

  

Correspondence  
relation

1:1 
isomorphic 

non-
isomorphic
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6.6. Multistage image registration 

Instead of solving the registration problem for high-resolution images entirely in a big 

dimensional space, the registration problem can be conquered into multiple registration problems of 

various scales. Figure 23 shows a taxonomy of multistage image registration. Multistage MIR 

approaches save computational resources and time in addition to the enhancement of registration 

results. 

 

Figure 23. Taxonomy of image registration stages. 

6.6.1. Coarse-fine registration: 

A coarse-fine registration (Himthani et al., 2022; Naik et al., 2022; Saadat et al., 2022; Van Houtte 

et al.,2022) consists of two stages: The first stage is called coarse registration, which aims at finding a 

fast registration solution but not optimal. That solution is fine-tuned later in the second stage. For 

example, the coarse registration could be an affine registration that aligns the position and orientation 

while the fine-tuned registration could be a deformable registration method that aligns deformed 

parts. 

The parameters of a rigid transformation of a high-resolution image can be found using a 

downscaled version of the image, which would save computation time and energy. The parameters 

of a rigid transformation are either independent of the scale (e.g., rotation) or linearly dependent 

(translations). Assume an image of 1000x1000 pixels and its lower resolution version of 100x100 

(downscaling by 10).  Scaling does not affect angles, hence if an object is rotated by 30 degrees in the 

downscaled image, it will be also rotated by the same angle in the high-resolution image. However, 

distances between objects do change according to a fixed scale. If the distance between 2 objects in 

the low-resolution image is 25 units, then the equivalent distance in the high-resolution image will 

be 10×25 = 250, where 10 is the scaling ratio between the two images. Hence a solution for a rigid 

registration problem can be solved in a downscaled version of the images and then transferred to the 

higher resolution image.  

6.6.2. Pyramid image registration. 

A pyramid consists of multi-scale images, where registration occurs at multiple stages. The idea 

of a pyramid representation has been well-studied in classical computer vision (Adelson et al., 1984) 

and utilized later in deep learning architectures such as Pyramid GANs (Denton et al., 2015; Lai et 

al., 2017). A pyramid registration (Wang et al., 2022; Chen, J. et al. 2022, Zhang, L. et al., 2021) starts 

with a downscaled version of the moving image followed by several operations of registration and 

upscaling as shown in Figure 24. After every registration step, the proximity between the wrapped 

image and the downscaled fixed image improves. Multi-stage registration can be seen as a sort of 

curriculum learning (Bengio et al., 2009) such that the first stages learn to solve easier problems and 

later stages learn the more difficult tasks. 

Registration 
stages

1 stage Default

Coarse - Fine
Feature based 
then internsity 

based

Rigid then 
deformable Pyramid
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Figure 24. Pyramid registration of three stages. 

6.7. Space Geometry 

A taxonomy of spaces has been proposed GDL is shown in Figure 25. A space can be Euclidean-

like RGB images (pixels distributed regularly in a rectangle). Non-Euclidean spaces are represented 

in sets, graphs, meshes, or manifolds. Examples of MIR for non-Euclidean data, specifically 3D point 

clouds, have been presented in (Terpstra et al., 2022; Su et al., 2021). 

 

Figure 25. Space geometry taxonomy. 

6.8. Other taxonomies 

6.8.1. Feature-based and pixel-based 

Feature-based and pixel-based taxonomy depends on the type of inputs to the registration 

algorithm.  A feature-based registration involves an explicit feature extraction or selection, thus the 

input to the registration algorithm is not the image itself but representative features of that image 

such as its histogram (Ban et al., 2022).  In pixel-based approaches, images are fed directly to the 

model without feature extraction. In general, DL registration approaches are pixel-based as neural 

networks can extract features implicitly. 

6.8.2. Medical imaging modalities 

Medical imaging modalities are imaging techniques (Kasban et al., 2015) used to visualize the 

body and its components. The main medical imaging modalities in MIR are:  

a. X-ray 

X-ray uses ionizing radiation (X-rays) to produce two-dimensional images of bones and dense 

tissues. X-rays are absorbed differently by different tissues, allowing visualization of structures like 

bones, lungs, and some organs. X-rays are quick and relatively inexpensive, thus suitable for some 

diagnostic purposes, such as detecting fractures, lung infections, and dental issues. However, they 

provide limited details about soft tissues. 
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b. Computed Tomography (CT) scan 

CT scan, also known as CAT (Computerized Axial Tomography), is a non-invasive imaging 

technique that uses X-rays to create detailed cross-sectional images of the body. A CT scan provides 

a more detailed view of bones, blood vessels, and solid organs compared to traditional X-rays. It is 

especially useful for imaging areas like the brain, chest, abdomen, and pelvis. However, they involve 

exposure to ionizing radiation, and repeated scans should be minimized to reduce radiation 

exposure. During a CT scan, the X-ray source rotates around the patient, and multiple X-ray images 

are captured from different angles. These images are then processed by a computer to create cross-

sectional slices, allowing doctors to visualize the body in detail. CT scans are commonly used in 

emergencies, trauma cases, and cancer staging, among other applications. 

c. Magnetic Resonance Imaging (MR) 

MRI uses strong magnetic fields and radio waves to create detailed images of tissues, organs, 

and the central nervous system. It provides high-resolution, multi-planar images, making it ideal for 

diagnosing conditions in the brain, spinal cord, muscles, and joints. MRI does not use ionizing 

radiation, which makes it safer, but it can be more time-consuming and expensive compared to X-

rays and CT scans. 

d. Ultrasound (US) 

Ultrasound, also known as sonography, uses high-frequency sound waves to create real-time 

images of internal organs and structures. It is commonly used for imaging the abdomen, pelvis, heart, 

and developing fetus during pregnancy. Ultrasound is non-invasive and does not involve ionizing 

radiation. It provides real-time imaging and is excellent for assessing blood flow and certain soft 

tissue abnormalities. However, it may not provide as detailed images as MRI and CT. 

e. Positron Emission Tomography (PET) 

PET is a functional imaging technique that provides information about metabolic activity and 

cellular function. It involves the injection of a radioactive tracer that emits positrons. The interaction 

between the tracer and tissues produces gamma rays, which are detected by the PET scanner. PET is 

valuable in oncology (cancer imaging) and neurology (e.g., detecting Alzheimer's disease). PET can 

be combined with CT imaging to provide both functional and anatomical information in a single 

scan. 

MIR is considered “unimodal” when there are no modality differences between the images 

involved in the registration process, otherwise, the registration is considered “multimodal”. See 

Figure 26.  An example of a unimodal registration is when both moving and fixed images are X-rays. 

An example of multimodal registration is when a fixed image is of the T1-weighted MRI modality 

and the moving image of the T2-weighted MRI. T2-weighted MRI enhances the signal of the water 

and suppresses the signal of the fatty tissue while MRI/T1 does the opposite.  

 

Figure 26. MIR taxonomy based on the modalities. 

7.0. Evaluation measures 

IR evaluation measures can be categorized as shown in Figure 27 into 1) time-based measures 

that focus on the time needed to finish a task, 2) size-based measures that focus on the memory 

resources that an MIR algorithm occupies, 3) smoothness measures that focus on the smoothness of 

the registration field (expressed by Jacobian), and 4) proximity-based measures that find the 
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deviation of a registration outcome from the ground-truth. proximity can be expressed using 

distances between objects in a space, overlap between sets, or correlations between variables.  

 

Figure 27. Evaluation Metrics. 

7.1. Time 

a) Average registration runtime RT: 

The runtime (RT) is the average registration time per image. The registration time is 

measured from the moment 𝑡௥,௦௧௔௥௧௣  at which an image p is loaded until obtaining the 

registered image at time 𝑡௥,௘௡ௗ௣  including the post-processing time. See Equation 18. Where 

N is the number of examples in a dataset. 𝑅𝑇 =  ∑ (௧ೝ,೐೙೏೛ ି ௧ೝ,ೞ೟ೌೝ೟೛ )೛ಿసభ ே        (18) 

In practice, getting the registration outcome in a short time is a desired property. The 

Voxelmorph algorithm, which uses deep learning for medical image registration, has shown 

an RT reduction from hours to seconds while keeping almost the same performance. The 

computation time of a registration process depends on the software as well as the hardware 

(Alcaín et al., 2021). Thus, a fair comparison of registration algorithms entails testing the 

computation time on the same hardware. The shorter RT of Voxelmorph compared to 

iterative approaches can be attributed partially to the hardware, where matrix multiplication 

processes used in DL are faster when run with a GPU. However, even on CPUs, Voxelmorph 

remains faster than iterative methods on a scale of minutes for voxelmorph to hours for 

iterative methods. The main reason for the longer RT in iterative approaches is the 

optimization done during the runtime, however, Voxelmorph-like approaches do not 

optimize the variables during the run phase, instead, all the variables are optimized in the 

training phase before the run time. 

b) Average training time DT is the training time divided by the number of examples in the 

training dataset. 

7.2. Distance-based measures 

The distance can be chosen to be between co-domain values or domain values. The distance can 

be measured between selected points (landmarks) or all points. 

a) Codomain distance: MSE, RMSE 
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The Euclidean point-wise distance between codomain values can be calculated using the 

mean square error (MSE), and root mean square error (RMSE) measure as in Equations 19, 

and 20 respectively. 𝑀𝑆𝐸 = ଵே  ∑ ଵ௅௣ ∑ 𝐷𝑖𝑠𝑡(𝑦𝑒′௜௝௣ , 𝑦𝑒௜௝௣ )ଶ௅௣௘ୀଵ  ே௣ୀଵ      (19) 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸        (20) 

b) Domain distance: TRE 

TRE (target registration error) is a distance-based metric that measures the deviation between 

points of two domains. See the deviation between estimated and ground truth points in 

Figure 28. The distance is used to represent the registration error since a perfect registration 

would locate correspondent points ideally at the same position.  In the case of ground truth 

labels  𝑋௜௝ᇱ  and predictions 𝑋௜௝, TRE is shown in Equation 21. 

TRE = RMSE (𝑋௜௝ᇱ  , 𝑋௜௝) = ටଵே  ∑ 𝑒𝑟𝑟𝑜𝑟(𝑀′௜௝௣ , 𝑀௜௝௣ )ଶ ே௣ୀଵ  =  ටଵே  ∑ ∑ 𝐷𝑖𝑠𝑡(𝑥𝑒′௜௝௣ , 𝑥𝑒௜௝௣  )ଶெ௣௘ୀଵ  ே௣ୀଵ   (21) 

where 𝑥𝑒௜௝௣ ∈  𝑀௜௝௣  , 𝑥𝑒′௜௝௣ ∈  𝑀′௜௝௣ , 𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑟𝑟𝑜𝑠𝑜𝑛𝑑𝑒𝑛𝑐𝑒 (𝑥𝑒′௜௝௣ ↔ 𝑥𝑒∅௝௣ ) 

 

Figure 28. TRE components. 

c) Domain distance: NTRE 

TRE is affected by the scale of an image as well as the number of landmarks, the more 

landmarks in an image the higher the accumulative error could be. The normalized target to 

registration error (NTRE) is scale independent as shown in Equation 22. 

𝑁𝑇𝑅𝐸 =  ඨଵே  ∑ ∑ ஽௜௦௧(௫௘ᇱ೔ೕ೛ ,௫௘೔ೕ೛  )మಾ೛೐సభ∑ (௫௘ᇱ೔ೕ೛  )మಾ೛೐సభ  ே௣ୀଵ      (22) 

d) Domain distance: Hausdorff distance HD  

HD measures how far two sets are from each other as in Equations 23 and 24 below. 𝐻𝐷(𝐴, 𝐵)  =  𝑚𝑎𝑥{ sup(௔∈஺ inf௕∈஻(𝐷𝑖𝑠𝑡(𝑎, 𝑏))), sup(௕∈஻  inf௔∈஺(𝐷𝑖𝑠𝑡(𝑎, 𝑏)) }    (23) 𝐻𝐷(𝑀′௜௝௣ , 𝑀௜௝௣ )  = ଵே ∑ 𝑚𝑎𝑥{ sup(௠ᇱ೔ೕ೛ ∈ெᇱ೔ೕ೛ inf௠೔ೕ೛ ∈ெ೔ೕ೛(𝐷𝑖𝑠𝑡൫𝑚′௜௝௣ , 𝑚௜௝௣ ൯)), sup(௠೔ೕ೛ ∈ெ೔ೕ೛  inf௠ᇱ೔ೕ೛ ∈ெᇱ೔ೕ೛ (𝐷𝑖𝑠𝑡൫𝑚′௜௝௣ , 𝑚௜௝௣ ൯) ே௣ୀଵ  (24) 

where  

- sup() is the supremum 

- inf() is the infimum 

- Dist (a,b) is the distance between point a in the first set and point b in the second set.  inf௕∈஻(𝑑(𝑎, 𝑏)) is the infimum distance between point a and all the points in set B  

𝐻𝐷95 metric replaces the supremum in the equation by the 95 percentile, which results in 

less sensitivity to outliers. 
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e) Domain distance: Center of mass COM measures the displacement between two the 

center of two sets A, B as shown in Equations 25 and 26 

COM(A, B) = dist( Center(A), Center(B) )     (25) Center(A) =  mean(x), ∀𝑥 ∈ 𝐴      (26) 

7.3. Segmentation measures 

a) The dice similarity coefficient (DSC) measures the overlap between two segmentation 

sets 𝐿∅௝௣ , 𝐿௜௝௣  as in Equation 27 below. 𝐷𝑆𝐶(𝐿∅௝௣ , 𝐿௜௝௣ ) = ଶ |௅∅ೕ೛ ∩ ௅೔ೕ೛ ||௅∅ೕ೛ |ା| ௅೔ೕ೛ |       (27) 

DSC is equivalent to the F1 score used in classification problems, where the segmentation 

problem is a classification problem on the pixel level, in which a pixel/point is assigned 

to a segmentation label that could be true or false. F1 = 2TP/(FP+FN +2TP). 

b) The daccard coefficient is similar to DSC with a slight modification shown in Equation 

28. 

𝐷𝑎𝑐𝑐𝑎𝑟𝑑(𝐿∅௝௣ , 𝐿௜௝௣ ) =  |௅∅ೕ೛ ∩ ௅೔ೕ೛ ||௅∅ೕ೛  ∪ ௅೔ೕ೛ |      (28) 

7.4. Correlation measures 

It has been reported that cross-correlation is a better objective function than MSE, and RMSE for 

image registration (Zitova et al., 2003; Haskins et al., 2020). cross-correlation “CC” is more resilient 

against the contrast problem than MSE due to its scale invariance property. CC (Y1, Y2) = CC (Y1, 

α×Y2) where α is a scale number. 

7.5. The smoothness of the registration field 

A non-smooth registration field can relocate a pixel far away from all its adjacent pixels after 

registration, however, a smooth registration field is more likely to keep nearby pixels relatively close 

to each other after relocation.  The smoothness can be expressed using the determinant of the 

Jacobian |  𝐽(  φ  ) | 
7.6. Model size 

A model size can be expressed by the number of bytes that a model occupies in a storage device 

or the total number of its parameters. 

7.7. Clinical-based evaluation  

Virtual evaluation using computer-based metrics (above) may not always align perfectly with 

the practical evaluation by medical experts. Thus, clinical-based evaluation and involvement of 

domain experts from the medical field have been recommended by Chen, X., Wang et al. (2022) to 

characterize the reliability of MIR tools (Huang et al., 2022). 

The challenges of MIR assessment included 1) the lack of ground truth labels in practical 

scenarios makes it difficult to evaluate an MIR outcome convincingly. 2) Medical experts’ assessment 

could be subjective and may vary among experts. 3) Instable outcomes of some MIR algorithms, 

which yield different outcomes of different registration qualities for the same input image. 4) the 

quality of data can have a substantial impact on registration results, making it challenging to compare 

algorithms across datasets with varying quality (Chen, T. et al.,2022). 
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8.0. Medical imaging datasets 

A list of public datasets used in the literature was summarized in Table 5. The datasets were 

categorized based on the region of interest (ROI) such as brain, chest, …etc., and the medical imaging 

type. 

Table 5. Medical images datasets. 

ROI Modality Dataset Link 

Brain MR OASIS: Open Access Series 

of Imaging Studies 

https://www.oasis-brains.org/ 

MR LPBA40: The LONI 

Probabilistic Brain Atlas 

https://www.loni.usc.edu/research/atlases 

MR ADNI:  Alzheimer’s 

Disease Neuroimaging 

Initiative 

https://adni.loni.usc.edu/ 

MR IXI https://brain-development.org/ixi-dataset/ 

MR IBIS  

MR IBSR: The Internet Brain 

Segmentation Repository 

https://www.nitrc.org/projects/ibsr 

MR ADHD-200: Attention 

Deficit Hyperactivity 

Disorder 

http://fcon_1000.projects.nitrc.org/indi/adhd200/ 

MR PPMI https://www.ppmi-info.org/access-data-

specimens/download-data/ 

MR CUMC12, MGH10 https://www.synapse.org/#!Synapse:syn3207203 

MR ABIDE: Autism Brain 

Imaging Data Exchange 

http://fcon_1000.projects.nitrc.org/indi/abide/ 

MR BraTS2017: Brain Tumor 

Segmentation 

https://www.med.upenn.edu/sbia/brats2017/data.html 

MR Mindboggle https://mindboggle.info/data.html 

MR 

simulated 

BrainWeb https://brainweb.bic.mni.mcgill.ca/brainweb/ 

MR / US BITE: Brain Images of 

Tumors for Evaluation 

database 

https://nist.mni.mcgill.ca/data/ 

MR / US CuRIOUS2018 https://curious2018.grand-challenge.org/Data/ 

MR / US RESECT: a clinical 

database of pre-operative 

MRI and intra-operative 

ultrasound in low-grade 

glioma surgeries 

https://archive.norstore.no/pages/public/datasetDetail.jsf?i

d=10.11582/2017.00004 

Prostate MR Prostate-3T https://wiki.cancerimagingarchive.net/display/Public/Prost

ate-3T 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2023                   doi:10.20944/preprints202309.0223.v1

https://doi.org/10.20944/preprints202309.0223.v1


 28 

 

MR PROMISE12: Prostate MR 

Image Segmentation 2012 

https://zenodo.org/record/8026660 

MR Prostate Fused-MRI-

Pathology 

https://wiki.cancerimagingarchive.net/pages/viewpage.acti

on?pageId=23691514 

Spine CT, MR 

depending 

on the 

dataset 

SpineWeb library http://spineweb.digitalimaginggroup.ca/Index.php?n=Mai

n.Datasets 

Knee MR OAI https://nda.nih.gov/oai/ 

Chest CT NLST https://cdas.cancer.gov/datasets/nlst/ 

CT SPARE https://image-x.sydney.edu.au/spare-challenge/ 

XRAY NIH ChestXray14 https://nihcc.app.box.com/v/ChestXray-NIHCC 

XRAY JSRT: Japanese Society of 

Radiological Technology 

http://db.jsrt.or.jp/eng.php 

http://imgcom.jsrt.or.jp/minijsrtdb/ 

XRAY Tuberculosis image 

datasets 

https://lhncbc.nlm.nih.gov/LHC-

downloads/downloads.html#tuberculosis-image-data-sets 

Lung CT POPI https://www.creatis.insa-lyon.fr/rio/popi-

model_original_page 

CT NLST https://cdas.cancer.gov/datasets/nlst/ 

CT SPARE https://image-x.sydney.edu.au/spare-challenge/ 

Heart MR/CT MM-WHS: Multi-Modality 

Whole Heart Segmentation 

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmw

hs/ 

MR SCD: The Sunnybrook 

Cardiac Data  

https://www.cardiacatlas.org/sunnybrook-cardiac-data/ 

Liver CT sliver07 https://sliver07.grand-challenge.org/Home/ 

Kidney CT KITS23  https://kits-challenge.org/kits23/ 

Pancreas CT Pancreas-CT https://opendatalab.com/Pancreas-CT_Dataset 

https://wiki.cancerimagingarchive.net/display/public/panc

reas-ct 

Abdomen 

(kidney, 

liver, Spleen, 

Pancreas) 

CT Anatomy3 https://visceral.eu/benchmarks/anatomy3-open/ 

10 ROIs MR or CT  Medical Segmentation 

Decathon challenge 

https://decathlon-10.grand-challenge.org/ 

9.0. Medical applications 

Changing the frame of reference might mislead humans (like the phenomenon of not 

recognizing an object if it has been flipped (e.g., old/young lady face in Figure 2). Hence, it is easier 

for medical practitioners to evaluate a medical image in a standard reference frame (e.g., orientation, 

scale). Thus, registration is an essential part of medical diagnoses that depend on imaging 

technologies. IR was applied in retina imaging (Ho et al., 2021), breast imaging (Ringel et al., 2022; 
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Ying et al., 2022), HIFU treatment of heart arrhythmias (Dahman et al., 2022), and cross-staining 

alignment (Wang et al., 2022). Selected applications of MIR are discussed below. 

9.1. Image-guided surgery 

Image-guided surgery (IGS) incorporates imaging modalities such as CT, and US to assist 

surgeons during surgical procedures. For example, surgeons can visualize internal anatomy, 

pinpoint the location of tumors or lesions, and determine optimal incision points. Image-guided 

surgery enables surgeons to precisely target specific areas, and avoid critical structures during a 

procedure. 

Before an IGS, a patient's preoperative images are loaded into a software or surgical navigation 

system. The collected images are then aligned with images taken during the surgery (inter-operative) 

using registration algorithms. Having images with key points/landmarks improves the registration 

process in terms of speed and precision. The landmarks can be selected manually by medical experts 

on computer software (Schmidt et al., 2022; Wang, Y. et al., 2022), or they could be fiducial markers, 

which are small devices placed in a patient’s body such as the injection of gold seeds to mark a tumor 

before radiation therapy. The number of landmarks needed for a precise registration can be reduced 

by the integration of semantic segmentation in addition to the use of a standard template (atlas) 

instead of preoperative images as shown by (Su et al., 2021). An alignment with no landmarks was 

tested by (Robertson et al., 2022) for catheter placement in non-immobilized patients. 

To mention some examples of the use of MIR for IGS, 2D inter-operative and 3D preoperative 

images were aligned in real-time surgical navigation systems (Ashfaq et al., 2022). A similar 

alignment of 2D-3D was needed for the deep brain stimulation procedure which involves the 

placement of neuro-electrodes into the brain to treat movement disorders such as Parkinson, and 

Dystonia (Uneri et al., 2021). A real-time biopsy navigation system was developed by (Dupuy et al., 

2021) to align 2D US inter-operative images with 3D TRUS preoperative images and to estimate in 

real-time the biopsy target of a prostate based on its previous trajectory. 

9.2. Tumor diagnosis and therapy 

A tumor is an abnormal mass or growth of cells in the body. Tumors can develop in various 

tissues or organs and can be either benign or malignant. Benign tumors are non-cancerous and 

typically do not invade nearby tissues or spread to other parts of the body.  Benign tumors are 

generally not life-threatening, but medical attention and/or treatment are still required. Malignant 

tumors, on the other side, are cancerous. They have the potential to invade surrounding tissues and 

can spread to other parts of the body through the bloodstream or lymphatic system. Malignant 

tumors grow rapidly and can be life-threatening. Medical experts often diagnose a tumor and plan 

therapy depending on the tumor’s growth over time as recorded in aligned medical images. 

Accordingly, MIR has been used for radiotherapy (Fu et al., 2022; Vargas-Bedoya et al., 2022) and 

proton therapy (Hirotaki et al., 2022). 

9.3. Motion processing 

The human body experience normal deformation over time, some deformations occur at a 

slower pace such as the growth of bones over a lifetime (e.g., a human height grows from afew feet 

in newborns to several feet in adults) while some deformations occur at a faster pace such as 

heartbeats. The heart experiences alternating contractions and relaxations while pumping blood at a 

frequency of 1-3 beats per second. MIR helps to analyze such temporospatial deformations and 

resulting movements. 

The cardiac motion was tracked by (Ye et al., 2021) using tagging magnetic resonance imaging 

(t-MRI), where an unsupervised bidirectional MIR model estimated the motion field between 

consecutive frames. (Upendra et al., 2021) focused on motion extraction from 4D cardiac CMRI (Cine 

Magnetic Resonance Imaging), mainly the development of patient-specific right ventricle (RV) 
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models based on kinematic analysis. A DL deformable MIR was used to estimate the motion of the 

RV and generate isosurface meshes of cardiac geometry. 

Respiratory movement can affect the quality of medical imaging by causing motion blur. To 

overcome this (Hou et al., 2022) proposed an unsupervised MIR framework for respiratory motion 

correction in PET (Positron Emission Tomography) images. (Chaudhary et al., 2022) focused on lung 

tissue expansion which is typically estimated by registering multiple scans. To reduce the number of 

needed scans, Chaudhary et al., (2022) proposed the use of generative adversarial learning to estimate 

local tissue expansion of lungs from a single CT scan. 

2D-3D motion registration of bones was addressed in (Djurabekova et al., 2022) by manipulating 

segmented bones from static scans and matching digitally reconstructed radiographs to X-ray 

projections. The bones were, particularly foot and ankle structure. 

10.0. Other research directions 

10.1. Transformers 

Transformers are a DL architecture that uses the attention mechanism solely dispensing with 

conventional and recurrent units (Vaswani et al., 2017). Transformers have contributed to noticeable 

improvements in computer vision, audio processing, and language processing tasks (Lin et al, 2022). 

The improvement can be seen in products like GPT-2, and ChatGPT which are examples of 

Generative Pre-trained Transformers (GPT). Transformers can be decomposed into basic/abstract 

mathematical components that distinguished them from recurrent and convolutional networks: 1) 

the position encoding, which explicitly feeds the position of a token as an input, 2) the product 

operation between features which is manifested explicitly in the product between the key and the 

query of the attention mechanism, and implicitly within the exponential function of the SoftMax 

(𝑒௔ା௕ =  𝑒௔ × 𝑒௕). 3) the exponential function which represents a transformation into another space. 

In MIR, (Mok et al., 2022) proposed the use of the attention mechanism for affine MIR such that 

multi-head attention was used in the encoder, and convolutional units in the decoder. Transformers 

were embedded partially for deformable MIR in Transmorph (Chen, J. et al., 2022). Transmorph is a 

coarse-fine IR such that affine alignment is conducted in the first stage followed by deformable 

alignment in the second stage. The latter stage is a Voxelmorph-like registration with U-Net 

architecture except that the encoder part consists of transformers instead of ConvNets. Transmorph 

introduced transformers (self-attention blocks) as a part of the encoder only but not the decoder. Ma 

et al. (2022) attributed the difficulty of developing transformers for MIR to the large number of 

trainable parameters of a transformer unit compared to convolutional units. To reduce the number 

of parameters, the authors proposed the use of both convolution units and transformer units in an 

MIR model - SymTrans (Ma et al., 2022). SymTrans embedded transformers in both the encoder and 

the decoder (2 blocks in the encoder and 2 in the decoder).  

The utilization of transformers in MIR was not as fast and revolutionary as it was in other 

domains. That could be attributed to the relatively small number of images in MIR datasets compared 

to other tasks. For example, millions of images were used for the ViLT model (Kim et al., 2021), and 

up to 0.8 billion images for the GiT model (Wang, J. et al., 2022).  

10.2. No Registration  

Another potential research direction is the elimination of the image registration step from the 

medical image analysis pipeline. In theory, an end-to-end deep learning model learns an automatic 

medical image analysis task (e.g., disease detection) without an explicit registration step. In (Chen, 

X., Zhang, et al, 2022), the authors proposed the elimination of the registration step entirely by the 

development of a breast cancer prediction model using vision transformers and multi-view images. 
11.3 Other research directions explored before include Fourier transform-based IR (Zitova et al., 

2003), Reinforcement learning based IR (Chen, X. et al., 2021; George et al., 2021; Sutton et al., 1994), 

and GANs-based MIR (Xiao et al., 2021; Chaudhary et al., 2022; Dey et al., 2021; Goodfellow et al., 

2020). There could be further research interest in the mentioned MIR research directions in the future. 
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Appendix A. Comparison table of surveyed papers 

Paper Modality Modals Directionality Correspondence Stages Approach ROI 

(Andreadis et al., 2022) Unimodal  Uni 1-to-1 1 Classical Bladder 

(Ashfaq et al., 2022) Multimodal MR Uni 1-to-1 1 Classical Brain 

(Ban et al., 2022) Multimodal CT-Xray Uni 1-to-1 1 Classical Head 

(Bashkanov et al., 2021) Multimodal MR - TRUS Uni 1-to-1 Coarse-f. Supervised     Prostate 

(Begum et al., 2022) Multimodal CT - MR Uni   Classical 

Brain & 

Abdome

n 

(Burduja et al., 2021) Unimodal CT Uni 1-to-1 1 Unsupervised Liver 

(Chaudhary et al., 2022) Unimodal CT Uni 1-to-1 1 Unsupervised Lung 

(Chen, J. et al., 2022)   Uni 1-to-1 Pyramid Unsupervised Brain 

(Dahman et al., 2022) Multimodal US - CT Uni 1-to-1 1 Supervised     Heart 

(Dey et al., 2021) Unimodal MR Uni 1-to-1  Unsupervised Brain 

(Dida et al., 2022) Unimodal CT Uni 1-to-1 1 Classical Lung 

(Ding, W. et al., 2022) Multimodal CT - MR Bi 1-to-1 1 Unsupervised  

(Ding, Z. et al., 2022) Unimodal MR Bi 1-to-1 1 Unsupervised Knee 

(Djurabekova et al., 

2022) 
Multimodal 2D - 3D Uni 1-to-1 1 Classical Bones 

(Dupuy et al., 2021) Multimodal US - TRUS Uni 1-to-1 1 Supervised     Prostate 

(Fu et al., 2022) Unimodal CT Uni   Software Liver 

(Gao et al., 2022) Unimodal CT Uni 1-to-1 Coarse-f. Unsupervised Spine 

(George et al., 2021) Unimodal  Uni 1-to-1 1 RL Eye 

(Himthani et al., 2022) Unimodal MR Uni 1-to-1 Coarse-f. Classical Brain 

(Hirotaki et al., 2022) Multimodal CT-Xray Uni 1-to-1 1 Software 

Lung, 

head, 

neck 

(Ho et al., 2021) Unimodal  Uni 1-to-1 Coarse-f. Unsupervised Eye 

(Hou et al., 2022) Unimodal PET Uni 1-to-1 1 Unsupervised Heart 

(Kujur et al., 2022) Multimodal MR Uni 1-to-1 1 Classical Brain 

(Lee et al., 2022) Unimodal CT Uni 1-to-1 1 Supervised     Kidney 

(Li et al., 2022) Unimodal MR Uni 1-to-1 1 Unsupervised Brain 

(Liu et al., 2021) Unimodal  Uni 1-to-1 1 Classical Tissues 

(Ma et al., 2022) Unimodal MR Uni 1-to-1 1 Unsupervised Brain 

(Maillard et al., 2022) Unimodal MR Uni Metamorphic m:n 1 Neuro-symbolic Brain 

(Meng et al., 2022) Unimodal MR Uni 1-to-1 1 Unsupervised Brain 

(Mok et al., 2022) Unimodal MR Uni 1-to-1 Coarse-f. Unsupervised Brain 

(Naik et al., 2022) Multimodal CT-Xray Uni 1-to-1 Coarse-f. Classical Spine 

(Nazib et al., 2021) Unimodal MR Bi 1-to-1 1 Unsupervised Brain 

(Park et al., 2022) Unimodal CT/MR Uni 1-to-1 1 Unsupervised  

(Ringel et al., 2022) Unimodal MR Uni 1-to-1 1 Classical Breast 

(Robertson et al., 2022) Multimodal 
CT/MR - 

video 
 1-to-1 Coarse-f. Software Head 

(Saadat et al., 2022) Multimodal 

CT-

Fluoroscop

y 

Uni 1-to-1 Coarse-f. Classical Bones 

(Saiti et al., 2022) Multimodal CT Uni 1-to-1 1 Supervised      

(Santarossa et al., 2022) Multimodal 
IR-

FAF/OCT 
Uni 1-to-1 1 Classical Eye 

(Schmidt et al., 2022)   Uni 1-to-1 Coarse-f. Unsupervised Veins 

(Su et al., 2021) Unimodal CT/MR Uni 1-to-1  Classical  

(Terpstra et al., 2022)  MR Uni 1-to-1 1 Supervised     
Abdome

n 

(Uneri et al., 2021) Unimodal  Uni 1-to-1  Classical Brain 

(Upendra, & Hasan et 

al., 2021) 
 MR Uni 1-to-1 1 Unsupervised Heart 

(Upendra, & Hasan et 

al., 2021) 
Unimodal MR Uni 1-to-1 1 Supervised     Blood 

(Van et al., 2022) Multimodal CT-Xray Uni 1-to-1 Coarse-f. Unsupervised Bones 
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(Vargas-Bedoya et al., 

2022) 
Unimodal CT Uni 1-to-1 1 Classical 

Brain & 

Abdome

n 

(Vijayan et al., 2021) Multimodal CT Uni 1-to-1 1  Bones 

(Wang, C. et al., 2022) Unimodal  Uni 1-to-1 
Coarse-f.+ 

pyramid 
Classical 

Breast & 

prostate 

(Wang, H. et al., 2022) Unimodal IR Uni 1-to-1 1 Classical Breast 

(Wang, D. et al., 2022) Unimodal CT Uni 1-to-1 Coarse-f. Classical Bones 

(Wang, Z. et al., 2022) Unimodal MR     Brain 

(Wu et al., 2022) Unimodal MR Uni 1-to-1 1 Classical Brain 

(Xu et al., 2021) Multimodal CT - MR Uni 1-to-1 Coarse-f. Unsupervised 
Abdome

n 

(Yang, Q. et al., 2021) Unimodal MR Uni 1-to-1 1 Unsupervised Prostate 

(Yang, Y. et al., 2021) Unimodal greyscale Uni 1-to-1 Coarse-f. Classical Brain 

(Yang et al., 2022) Multimodal MR Uni 1-to-1 1 Unsupervised Prostate 

(Ye et al., 2021) Unimodal MR Bi 1-to-1 1 Unsupervised Heart 

(Ying et al., 2022) Unimodal MR Uni 1-to-1 1 Classical Breast 

(Zhang, G. et al., 2021) Unimodal  Uni 1-to-1 Pyramid Unsupervised Brain 

(Zhang, L. et al., 2021) Unimodal MR Uni 1-to-1 Pyramid Unsupervised Brain 

(Zhu et al., 2021) Unimodal MR Uni 1-to-1 Pyramid Unsupervised Head 
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