

Interesting Images

Not peer-reviewed version

Osmotic Demyelination Syndrome: A Rare Clinical Image

Prishita Koul*, Pallavi Harjpal, Raghuveer Raghumahanti

Posted Date: 5 September 2023

doi: 10.20944/preprints202309.0173.v1

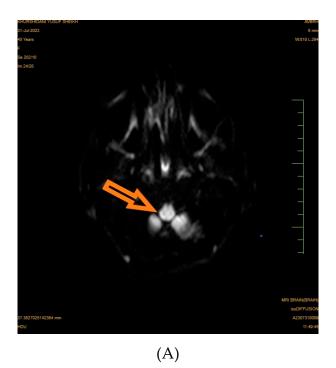
Keywords: Osmotic Demyelination Syndrome (OSD); Hyponatremia; Pons; Hyperglycaemia

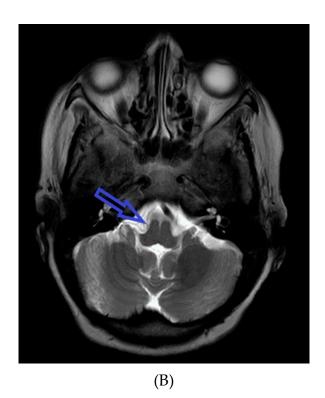
Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Interesting image


Osmotic Demyelination Syndrome: A Rare Clinical Image


Prishita Koul 1,*, Pallavi Harjpal 2 and Raghuveer Raghumahanti 3

- Resident, Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, India; E-mail: prishitakoul11@gmail.com
- Assistant Professor, Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, India; E-mail: pallavi.harjpal@dmiher.edu.in
- ³ Professor, Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, India; E-mail: raghuneuro@gmail.com
- * Correspondence: prishitakoul11@gmail.com; Ph: +919582344823

Abstract: The term "Osmotic Demyelination Syndrome" (ODS) is synonymous with central pontine myelinolysis (CPM), denoting a condition characterized by brain damage, particularly affecting the white matter tracts of the pontine region. This damage arises due to rapid correction of metabolic imbalances, primarily cases of hyponatremia. Noteworthy triggers encompass severe burns, liver transplantations, anorexia nervosa, hyperemesis gravidarum, and hyperglycaemia, all linked to the development of CPM. Clinical manifestations encompass a spectrum of signs and symptoms, including dysphagia, dysarthria, spastic quadriparesis, pseudobulbar paralysis, ataxia, lethargy, tremors, disorientation, catatonia, and, in severe instances, locked-in syndrome and coma. A recent case involving a 45-year-old woman illustrates these complexities. Upon admission to the Medicine Intensive Care Unit, she presented with symptoms indicative of diminished responsiveness and bilateral weakness in upper and lower limbs. Of significance, the patient had a pre-existing medical history of hyperthyroidism. Extensive diagnostic investigations were undertaken, revealing compelling evidence of profound hyponatremia through blood analyses. Furthermore, magnetic resonance imaging (MRI) was performed, unveiling conspicuous areas of abnormal hyperintensity located in the central pons, intriguingly accompanied by spared peripheral regions. These radiological findings align with the characteristic pattern associated with osmotic demyelination syndrome, illuminating the underlying pathology.

Keywords: osmotic demyelination syndrome (OSD); hyponatremia; pons; hyperglycaemia

Figures. Magnetic Resonance Imaging: - (A) Hyper-intensity of central pons in diffuse weighted image (orange arrow) [1]; (B) Trident-shaped appearance (omega sign) of central pons in T2 weighted image (blue arrow) [2]; (C), (D) Piglet sign appearance of upper pons in T2 and FLAIR images (green and red circles respectively) [3].

Author Contribution: P.K. was responsible for formulating, writing, and preparing the original draft of the manuscript. All authors conducted the review and editing process as well. The final version of the manuscript was read and approved by the author.

Funding: The current study got no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Written consent was obtained from the patient's caregivers.

4

Conflict of Interest: The authors declare no conflict of interest.

References

- 1. Ruzek, K.A.; Campeau, N.G.; Miller, G.M. Early Diagnosis of Central Pontine Myelinolysis with Diffusion-Weighted Imaging. *American Journal of Neuroradiology* **2004**, *25*, 210–213.
- 2. Miller, G.M.; Baker, H.L.; Okazaki, H.; Whisnant, J.P. Central Pontine Myelinolysis and Its Imitators: MR Findings. *Radiology* **1988**, *168*, 795–802, doi:10.1148/radiology.168.3.3406409.
- 3. Beh, S.C. Temporal Evolution of the Trident and Piglet Signs of Osmotic Demyelination Syndrome. *Journal of the Neurological Sciences* **2017**, *373*, 268–273, doi:10.1016/j.jns.2017.01.024.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.