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Article 
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Abstract: Lung cancer is a prevalent malignancy that impacts individuals of all genders and is often 
diagnosed late due to delayed symptoms. To catch it early, researchers are developing algorithms 
to study lung cancer images. One such method uses computer aided detection to classify as benign 
or malignant from the histopathological images. Standard histopathological images were used from 
a Lung and Colon Cancer Histopathological Image Dataset (LC25000) which contains two classes of 
benign and malignant of 5000 each. Images were preprocessed and features extracted using Particle 
Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). Feature selection methods used 
are KL Divergence and Invasive Weed Optimization (IWO). Seven different classifiers like SVM, 
KNN, Random Forest, Decision Tree, Softmax Discriminant, Multilayer Perceptron, and BLDC were 
used to analyze and classify the images as benign or malignant. Results were compared using  
standard metrics, and kappa analysis assessed classifier agreement. The Decision Tree Classifier 
with GWO feature extraction achieved good accuracy of 85.01% without Feature selection and   
Hyperparameter Tuning approaches. Furthermore, we present a methodology to enhance the    
accuracy of the classifiers by employing hyperparameter tuning algorithms based on Adam and 
RAdam. By combining features from GWO and IWO, and using the RAdam algorithm, the Decision 
Tree classifier achieves the commendable accuracy of 91.57% 

Keywords: histopathology; benign; adenocarcinoma; PSO; GWO; KL divergence; IWO; Multilayer 
Perceptron; Bayesian Linear Discriminant Analysis Classifier  

 

1. Introduction 

Cancer is increasingly common, and doctors use blood tests, biopsies, and image analysis for 
diagnosis. It originates from damaged cells and varies among individuals. Understanding its source 
helps us comprehend the condition [1]. Lung cancer, often tied to smoking or harmful exposures, is 
a prevalent cancer type causing rising death tolls globally[2]. It affects both genders and has a low 
survival rate. Early detection is crucial for better outcomes. The 5-year survival rate is approximately 
34% for surgically        removable early-stage cancer, compared to less than 10% for inoperable 
cases. Lung    cancer treatment depends on histological characteristics, categorized as small cell 
(SCLC) and non-small cell (NSCLC) types, of which 80% to 85% are NSCLC and the rest are SCLC[3]. 
NSCLC has subtypes like benign, adenocarcinoma (ACA), and squamous cell carcinoma (SCC). Once 
the tissue type is identified, suitable treatments can be selected: surgery, chemotherapy, radiation, 
targeted therapy, or immunotherapy. 

Different imaging techniques, such as ultrasounds, MRIs, CT scans, X-rays and   needle 
biopsies, are used to diagnose lung cancer. X-ray imaging, considered a        fundamental 
technique for lung examination, possesses restricted resolution and the   potential to overlook 
specific areas of interest [4]. CT scans are commonly used to detect early stages of lung cancer and 
locate tumors before surgery, but they expose patients to harmful radiation with repeated scans. MRI 
demonstrates notable sensitivity and    specificity, valuable for identifying bone metastases, 
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although it's not advisable for     diagnosing lung cancer. Ultrasound, a non-invasive method, 
proves adept at identifying postoperative lung issues and surpasses X-rays in effectiveness[5]. While 
imaging exams aid in diagnosis, staging, treatment evaluation, and prognosis assessment,             
histopathological examination remains the most reliable method to determine tumor characteristics 
and clinical stage. 

Accurate identification and classification of individual cell nuclei are crucial in     examining 
tissue samples for cancer assessment. Pathologists analyze nucleus shape,   distribution, and count 
to generate reliable results[6]. However, histopathological images often have numerous nuclei from 
different categories clustered together, leading to   time-consuming manual evaluation and 
disagreements among pathologists[7]. Therefore, an automated and efficient model is urgently 
needed to identify and categorize nuclei in histologic images. Automated analysis of microscopic 
images is vital for evaluating    digitized specimens, reducing inter-observer variations, and 
improving objectivity and reproducibility, as emphasized by Foran et al. [8]. This advancement can 
enable      comparative studies of diseases and potentially aid in diagnostic decision-making. 

This paper is structured as follows: Section 2 focuses on the methodology employed for detecting 
lung cancer. Sections 3 explores the feature extraction techniques including Particle Swarm 
Optimization and Grey Wolf Optimization whereas Section 4 explores the feature selection 
techniques, such as KL Divergence, and Invasive Weed Optimization. Section 5 explains the different 
classifiers used and Hyper Parameter updating method and its implementation. Section 6 presents 
the cumulative results, and Section 7 concludes the paper. 

The following subsection analyzes various methods for cancer detection and classification using 
image processing and classification techniques. 

1.1. Review of Previous Work 

In recent times, the research community has shown significant interest in diagnosing Lung 
Cancer through histopathological images. Numerous methodologies have been  explored, utilizing 
a range of machine learning and deep learning techniques, across diverse datasets to detect instances 
of lung cancer. 

Various strategies have been proposed to identify irregularities in lung-related images, 
encompassing chest radiographs, CT scans, Ultrasound images, Histopathological images, and 
Microarray data. Ozekes and Camurcu [9] utilized template matching, while Schilham et al. devised 
a computer-aided detection (CAD) system that encompasses preprocessing, the identification of 
candidate nodules, feature extraction, and cancer classification[10]. Wang et al. [11] executed the 
classification of pathology images concerning lung cancer using a Convolutional Neural Network 
(CNN) methodology, incorporating cell segmentation. The final layer of the CNN model integrated 
the Softmax activation function to enhance the classification process. Through the application of the 
Region of Interest (ROI) technique as a preliminary step, they focused on cell areas containing 
relevant tumors. The achieved classification accuracy for the three-class image dataset reached 90.1%. 
Dehmeshki et al. [12] employed a genetic algorithm based on shapes for template matching, while 
Suarez-Cuenca et al. used an iris filter for CT image discrimination[13]. Murphy et al. used a K-
nearest neighbors classifier for nodule detection[14], and Giger et al. used geometric features in their 
CAD system for CT images. 

Wei et al. [15] undertook the categorization of histopathological images depicting six classes of 
lung cancer utilizing CNNs. They specifically employed ResNet models for their investigation. The 
ResNet models were integrated with pre-trained approaches from ImageNet and COCO image 
databases. Prior to the model training phase, the input data underwent preprocessing, which 
included the application of augmentation techniques. The study's achievement in terms of 
classification F-score reached a notable 90.4%. Mohammed Al-Jabber et al. [16] employed 
histopathological images from the LC25000 dataset, employing both ANN and the GoogLeNet and 
VGG-19 models. This combination yielded an impressive accuracy of 99.64%. Teramoto et al. [17] 
effectively distinguished histopathological images spanning three types of lung cancer through the 
application of a deep learning model. They implemented an augmentation approach that involved 
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rotating, flipping, and applying filters to each image. Following this, they employed their developed 
deep CNN model to carry out the classification process. The outcomes of their classification efforts 
yielded an accuracy of around 70%. Shapcott et al.[18] conducted their model training by initially 
subjecting the input data to a preprocessing stage, integrating the augmentation technique. They 
employed a deep learning methodology for classifying histopathological images related to colon 
cancer. The dataset encompassed four distinct classes. To facilitate cell identification, a cell patches 
algorithm was employed on each image. The images were segmented into specific dimensions 
through segmentation procedures. The classification process was then conducted using the CNN 
model based on the defined cell patches. The obtained correlation accuracy rates ranged between 90% 
and 96.9%. 

Barker et al. an automated system to classify brain tumors using digital pathology images [19]. 
Ojansivu et al. explored an automated method for categorizing breast cancer from tissue samples 
[20]. Ficsor et al. proposed an automated classification method for colon inflammation using digital 
microscopy images of histological sections[21]. The authors of a study, Mouelhi et al.[22] , used 
various techniques like Haralick's textures, histogram of oriented gradients (HOG), and color-based 
statistical moments (CCSM) to extract features from biopsy images and classify cancerous cells. The 
features included energy, correlation, homogeneity, contrast, GLCM texture features, as well as RGB, 
gray level, and HSV color components. Huang and Lai [23]focused on histology image analysis, 
employing texture features and KNN, SVM for image classification and segmentation. Their 
approach achieved a classification accuracy of 90.07% and 92.8%. Gessert et al. [24]executed the 
classification procedure employing CNN models based on transfer learning, leveraging microscopic 
images of colon cancer. Their study employed a dataset that comprised both benign and malignant 
images. They trained the dataset using various models including Inception, VGG, and DenseNet. 
Among these, the DenseNet model yielded the most promising classification outcome, achieving a 
classification accuracy of 91.2%. 

Sinha and Ramkrishan[25] studied small biopsy images, analyzing cell characteristics like shape, 
size, color, and other properties. Four classification methods were compared: Bayesian, KNN, neural 
networks, and SVM. The last two methods achieved the highest accuracy rates of 94.1%, while the 
first two had lower rates of 82.3% and 70.6%. Kasmin et al.[26] examined microscopic biopsy images, 
considering characteristics such as cell/nuclei size, cell boundary length, minimum polygon area 
enclosing a cell, major axis length of an ellipse fitted to a cell, filled cell area, and average cytoplasmic 
intensity. They used neural networks and achieved classification accuracies of 86% and 92%. Chia-
Hung Chen et al. [27] used a convolutional neural network to diagnose endobronchial ultrasound 
images, achieving an improved accuracy of 85.4% compared to traditional methods. Azka 
Khoirunnia et al. [28] developed a lung cancer detection system using a combination of CNN and 
RNN with Microarray data. In their research, CNN achieved 83% accuracy, RNN reached 71%, and 
the fusion of CNN and RNN (CRNN) attained the highest accuracy at 91%. Shahid Mehmood et al. 
[29] focused on classifying histopathological images of lung and colon cancers. By using AlexNet 
along with a technique called Class-Selective Contrast Enhancement, they achieved an impressive 
accuracy of 98.4%. The following section deals with the methodology employed for identifying lung 
cancer through histopathological images. 

2. Methodology for Lung Cancer Detection 

This study employed Lung Histopathological Images sourced from the LC25000 Dataset, which 
is available online. Andrew Borkowski and colleagues from James Hospital Tampa, University of 
South Florida, and the Moffitt Cancer Center in Florida, USA, worked together to collectively 
assemble this dataset. The dataset encompasses histopathological images representing lung and 
colon cancer cases. The collection includes a total of 500 lung tissue images, divided equally between 
Benign Lung tissue and Lung Adenocarcinomas. These images were originally captured from 
pathology glass slides and were later resized to square dimensions of 768 x 768 pixels, down from 
their original size of 1024 x 768 pixels. The dataset underwent augmentation, resulting in an 
expansion to a comprehensive set of 10,000 lung histopathological color images which are categorized 
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into two classes: Benign (N) and Adenocarcinoma (ACA), each consisting of 5000 images. These 
images are resized to a standard size of 256 x 256 followed by converting into a grey scale image. 
Notably, the images portray lung benign tissue characterized by abnormality but not indicative of 
cancer, while lung adenocarcinoma, the most prevalent form of lung cancer in the United States and 
notably linked to smoking, forms the second category. 

Figure 1 shows the general schematic diagram for identifying and categorizing lung cancer in 
histopathological images. The procedure involves image pre-processing and ROI segmentation.  
Optimization algorithms such as PSO and GWO are used to obtain 512 features from the segmented 
images. These extracted features undergo feature selection techniques such as KL divergence and 
IWO. The selected features are then inputted into classifiers to evaluate their performance of the 
classifiers. While applying the classification method, the input image will undergo conversion into a 
linear vector comprising 65,536 elements (due to the image's size of 256 * 256). These values will be 
directly employed to initialize the positions of birds in the Particle Swarm Optimization (PSO) and 
grey wolves in the Grey Wolf Optimization (GWO) algorithms. Furthermore, an enhancement in the 
accuracy of lung cancer classification across various classifiers including SVM, KNN, Random Forest, 
Decision Tree, Softmax Discriminant, Multilayer Perceptron, and BLDC classifiers is achieved 
through the implementation of a Hyper Parameter Updation algorithm based on the RAdam 
technique. 

 

Figure 1. Schematic representation for detecting lung abnormalities from Histopathological Images. 
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2.1. Preprocessing and Segmentation 

Histopathological analysis serves as the definitive standard for evaluating the quality and 
clinical staging of tumors [30]. In the realm of diagnosing and treating medical conditions, healthcare 
professionals heavily rely on histopathological images. These images establish a crucial cornerstone 
for predicting patient survival rates [31]. As per available reports, histopathological images present 
several challenges: 1) The images exhibit intricate geometric structures and complex textures that 
arise from the vast diversity in structural morphology [32]. 2) Notably, histopathological images are 
susceptible to color inconsistencies and noise due to external factors such as variations in illumination 
conditions [33]. 3) Variations in microscope magnification, equipment settings, and other variables 
contribute to inconsistencies in image sizes and resolutions within histopathological images [34]. 4) 
Elements of significance, like local micro-vessels with distinctive textural characteristics, significantly 
influence disease diagnosis within histopathological images. Extracting these features is of 
paramount importance in supporting the classification and diagnosis of lung cancer [35]. 

Due to these factors, the histopathological images we encounter are frequently not perfect and 
these images show that image quality is affected by noise during acquisition and artifacts during 
sample preparation and slide digitization. Preprocessing methods are employed in histopathological 
images to enhance image quality, rectify anomalies, amplify pertinent characteristics, and establish 
uniformity, ultimately resulting in heightened precision and dependability of diagnostic outcomes. 
The study demonstrates that using an efficient adaptive median filter enhances image quality, 
reduces artifacts, and facilitates accurate diagnosis and analysis. However, when subjected to an 
adaptive median filter, these images tend to become smoother and exhibit reduced noise, rendering 
them suitable for our forthcoming investigations. After artifact removal, the Region of Interest (ROI) 
is extracted using Double thresholding segmentation. Since the histopathological images contains 
variation in intensities, gradients and complex backgrounds, and to differentiate between the ROI 
and the background in the image, the application of double threshold segmentation becomes 
necessary. Figure 2 exhibits the original image, filtered image, and segmented image using double 
threshold segmentation, highlighting the ROI for the Malignant (ACA) class. 

 
(a) (b) (c) (d) 

Figure 2. (a) Original ACA image; (b) Filtered ACA image; (c) Double Threshold Segmented Image; 
(d) ROI of the ACA image. 

The following section focuses on the methods utilized for extracting image features, aimed at 
enhancing the classification and recognition of lung cancer within histopathological images. 

3. Feature Extraction 

Feature extraction techniques condense essential information from images into compact feature 
vectors, enabling the effective classification of complex image datasets using linear algorithms[36]. 
As the abundant features within histopathological images serve as a fundamental resource for 
clinicians to conduct diagnoses, the proficient extraction of these image features stands as a pivotal 
factor in enhancing the precision of computer-aided diagnosis[37]. This study delves into the impact 
of two distinct feature extraction techniques such as PSO and GWO on the classification of 
histopathological images related to lung cancer. 
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3.1. Particle Swarm Optimization (PSO) 

Kennedy and Eberhart introduced the PSO algorithm in 1995, which draws inspiration from the 
hunting behavior of birds. This optimization method relies on a population and leverages the social 
dynamics of bird flocks. It starts by creating particles and setting key parameters for the optimization 
process. [38]. 

Every particle has a unique position that is traced by the following equation: 𝑥௜௞ = ൫𝑥௜ଵ௞ , 𝑥௜ଶ௞ , . . . . , 𝑥௜௤௞ ൯ (1)

The velocity is traced by the following equation: 𝑦௜௞ = ൫𝑦௜ଵ௞ , 𝑦௜ଶ௞ , . . . . , 𝑦௜௤௞ ൯ (2)

Each particle’s velocity is updated as: 𝑦௜௞ାଵ = 𝑤௜𝑦௜௞ + 𝑐ଵ𝑟ଵ൫𝑝𝑏𝑒𝑠𝑡௜ − 𝑥௜௞൯ + 𝑐ଶ𝑟ଶ൫𝑔𝑏𝑒𝑠𝑡௜ − 𝑥௜௞൯ (3)

Here, r1 and r2 represent randomly selected values within the range of 0 to 1. The acceleration 
coefficients, denoted as c1 and c2, play a role in analysing the motion of particles. The weight function 
is expressed as: 

𝑤𝑖 =  𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛𝑘𝑚𝑎𝑥 × 𝑘 (4)

The position of each particle is given by: 𝑥௜௞ାଵ = 𝑥௜௞ + 𝑦௜௞ାଵ (5)

The particle that possesses the optimal position progresses to the next level. The best position 
for an individual particle is represented by the letters “p-best”, while the letters "g-best" represent the 
best position among all particles. The weight parameter “𝑤௜” is chosen between 0.45 - 0.9, maximum 
iteration values are 100 – 1000, both 𝑟ଵand 𝑟ଶ are set to 0.85, cognitive component (𝑐ଵ) and Social 
Component (𝑐ଶ) are chosen between 1.0 - 2.0. The above values are determined based on trial-and-
error method. 

3.2. Grey Wolf Optimization (GWO) 

Grey wolves are known for living and hunting in groups called packs[39]. The process of 
searching and hunting involves plotting to track and approach a target efficiently. This optimization 
technique, inspired by the search and hunting patterns of gray wolves, employs symbols like Alpha 

( α ), Beta ( β ), and Gamma ( γ ) to represent the best, next best, and third best solutions in 

mathematical modeling. Lambdas are presumed to be the remaining possible solutions and they 
guide the alpha, beta, and gamma wolves in searching and surrounding the prey. Three coefficients, 
A, B, and C are suggested to describe the encircling behavior. The equation of hunting strategy is 
formulated as follows: 𝐷ఈ = |𝐵ଵ. 𝑋ఈ − 𝑋(𝑡)| (6)𝐷ఉ = ห𝐵ଶ. 𝑋ఉ − 𝑋(𝑡)ห (7)𝐷ఊ = ห𝐵ଷ. 𝑋ఊ − 𝑋(𝑡)ห (8)

where 𝐷ఈ , 𝐷ఉ and 𝐷ఊ denotes the adjusted distance variables from the alpha, beta, and delta 
positions to the other wolves, 𝐵ଵ , 𝐵ଶ and 𝐵ଷ are coefficients that assist in adapting these distance 
variables, t signifies the ongoing iteration, 𝑋 indicates the position of the grey wolf and it follows as, 𝑋ଵ = |𝑋ఈ − 𝐴ଵ𝐷ఈ| (9)
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𝑋ଶ = ห𝑋ఉ − 𝐴ଶ𝐷ఉห (10)𝑋ଷ = ห𝑋ఊ − 𝐴ଷ𝐷ఊห (11)

𝑋(𝑡) = 𝑋ଵ + 𝑋ଶ + 𝑋ଷ3  (12)

The parameters 𝐴 and  𝐵 can be mathematically expressed as follows: 𝐴 = 2𝑖. 𝑟ଵ − 𝑖 (13)𝐵 = 2. 𝑟ଶ (14)

The control parameter 𝑖 chases 𝐴, which eventually drives the lambda wolves to flee from the 

dominant wolves such as α , β  and  γ . When there are multiple dominant wolves (|A| > 1), the 

grey wolves run away from them, allowing lambda wolves to search extensively and explore more 
during optimization.  However, when there are fewer dominant wolves (|A| < 1), the grey wolves 
approach them and follow their guidance in hunting, which is called local search in optimization. 
During the iterations, the control parameter i is linearly decreased from 2 to zero, and is represented 
as, 𝑖 = 2 − (𝑖𝑡𝑒𝑟). 2𝑚𝑎𝑥_ 𝑖 𝑡𝑒𝑟 (15)

where max_iter indicates the maximum iteration, and it is started from the beginning. 
In the context of the classification problem, the introduction of randomness through variables  𝑟ଵ and 𝑟ଶ leads to heightened fluctuations in the wolves' positions. Consequently, their ability to 

effectively converge towards the target (prey) becomes hindered. To address this issue, a decision 
has been made to treat the values of 𝑟ଵand 𝑟ଶ in Equations 9 and 10 as control parameters within a 
confined range of [0, 1], rather than allowing them to remain purely random. Through empirical 
experimentation, it has been determined that the optimal performance of the Grey Wolf Optimizer 
(GWO) is achieved when both 𝑟ଵand 𝑟ଶ are set to 0.8. This adjustment enhances the accuracy of the 
GWO algorithm in tackling the classification problem. 

3.3. Statistical Analysis 

To achieve precise and sophisticated cancer prediction through the utilization of extracted 
features, it is recommended to compute statistical parameters from the region of interest. In the 
context of feature extraction methods like PSO and GWO, the statistical attributes encompass Mean, 
Variance, Skewness, Kurtosis, and Pearson Correlation Coefficient (PCC). These attributes were 
derived for both normal and malignant classes. 

The statistical parameters of cancer data, extracted using the PSO and GWO methods, are shown 
in Table 1. Variance quantifies data spread. Notably, Table 1 reveals lower mean values for normal 
cases using both PSO and GWO, while higher mean values are evident for malignant cases using 
both methods. Furthermore, the Malignant group demonstrates greater data spread compared to the 
Normal group as indicated by Table 1. GWO shows a Pearson correlation coefficient of 1 for both 
cases, implying strong intra-class correlation. Skewness and kurtosis are highly skewed for both 
normal and malignant instances. When CCA values exceed 0.5, strong inter-class correlation is 
present. However, Table 1 indicates that PSO and GWO methods exhibit the lowest inter-class 
correlation. Consequently, the analysis of these extracted features emphasizes the need for improved 
classifiers. 

In cases where the features exhibit linear separability, a straightforward binary thresholding 
approach can be employed for the classification of Histopathological Lung images into two distinct 
classes: N and ACA. The characteristics of malignancy exhibit non-linear and non-Gaussian features 
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that overlap with each other. To analyze these features, we extract and study PSO and GWO features 
using histogram and scatterplot plots as illustrated in Figure 3 and Figure 4. 

Table 1. Statistical Parameters in PSO and GWO for Feature Extraction in Malignant and Normal 
Data. 

Statistical Parameters PSO GWO 
Malignant Normal Malignant Normal 

Mean 0.8598080214 0.1109701363 0.01878313748 0.01751341349 
Variance 0.05867975074 0.07425036326 0.07492946326 0.07494543857 

Skewness 19.87029488 19.83047771 22.52231557 22.56212107 
Kurtosis 441.8828416 444.9961882 509.1565306 510.3537192 

Pearson CC 0.9019022281 0.9269991469 0.9985202125 0.997858273 
CCA 0.12309 0.11291 

 

Figure 3. Histogram of PSO Features for Normal and Malignant data. 

 

Figure 4. Histogram of GWO Features for Normal and Malignant data. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2023                   doi:10.20944/preprints202309.0160.v1

https://doi.org/10.20944/preprints202309.0160.v1


 9 

 

The histogram plot in Figure 3 illustrates the distribution of PSO feature data for normal and 
malignant cancer cases. The histogram illustrates PSO features characterized by outliers, substantial 
gaps, downward trends, and a non-Gaussian distribution. From Table 1, In the PSO-based extraction 
technique, the Canonical Correlation Coefficient (CCA) value is significantly low at 0.12309, 
suggesting a non-linear relationship between normal and malignant cases. Figure 4 showcases the 
histogram plot for GWO feature distribution, indicating skewed Poisson distributed data, and a non-
linear nature. 

Figures 5 and 6 display scatterplots demonstrating the feature output of normal and malignant 
cancer data utilizing the PSO and GWO methods. Scatter plots are useful for identifying data 
clustering, detecting nonlinearity, and overlapping. Both figures indicate the presence of nonlinearity 
and overlapping in the data. Therefore, from the histogram and scatterplot it is evident to employ 
accurate classifiers capable of distinguishing between normal and cancer cases in lung data using 
PSO and GWO features. The next section centers on the techniques applied to choose optimal image 
features, with the goal of improving the classification and identification of lung cancer in 
histopathological images. 

 

Figure 5. Scatterplot of PSO Features for Normal and Malignant Case. 

 

Figure 6. Scatterplot of GWO Features for Normal and Malignant Case. 
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4. Feature Selection 

Feature selection aims to reduce input variables, excluding irrelevant characteristics for a more 
accurate, less complex, and unbiased model. Optimal feature selection is crucial for creating an 
effective, accurate machine learning model with high generalization ability [40]. In this paper, two 
methods, KL Divergence, and Invasive Weed Optimization (IWO), are used. These methods select 
one hundred important features for classification across different feature extraction techniques. 

4.1. KL Divergence  

KL Divergence, also known as relative entropy, measures disparities between probability 
distributions, but in an asymmetric manner. The KL divergence between a probability distribution  𝑞 = (𝑞ଵ, 𝑞ଶ, . . . , 𝑞௡) and another distribution 𝑝 = (𝑝ଵ, 𝑝ଶ, . . . , 𝑝௡) is defined as, 

𝐷௄௅(𝑞||𝑝) = ෍ 𝑞௝ 𝑙𝑜𝑔 𝑞௝𝑝௝
௠

௝ୀଵ  (16)

The integral form of the KL divergence for continuous distributions is expressed as follows: 𝐷௄௅(𝑞||𝑝) = න 𝑞௝ 𝑙𝑜𝑔 𝑞௝𝑝௝ 𝑑𝑥ஶ
ିஶ  (17)

The KL divergence exhibits mutual convexity for both discrete and continuous distributions. 
The following are the properties of the KL divergence measure: 

𝐷௄௅(𝑞||𝑝) = ቐ0, 𝑖𝑓 𝑞 = 𝑝𝑐, 𝑐 > 0, 𝑖𝑓 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔+∞, 𝑖𝑓 𝑛𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔  (18)

From the above equation, it can be observed that when the KL divergence is smaller, the two 
compared distributions are more similar. 

4.2. Invasive Weed Optimization  

The invasive weed optimization algorithm is a popular population-based metaheuristic 
approach [41]. The dynamic and versatile characteristics of weed colonies have sparked the creation 
of an optimization algorithm that imitates their behaviour. By leveraging the qualities of weeds, a 
straightforward and efficient optimization technique can be developed. This method, called the IWO 
algorithm, which incorporates phases like seeding, growth, and competition. The following are the 
strategy for simulating weed habitat behavior: 

1. Primary Population Initialization: A few seeds are dispersed to start the search. 
2. Reproduction process: Seeds have the potential to grow into flowering plants, which then choose 

and spread the fittest seeds for survival and reproduction. The quantity of grass grain grains 
decreases in a linear fashion from 𝑌௠௔௫ to 𝑌௠௜௡ as follows: 

fitfit

fitweedfitYweedfitfitY
weedn

jj

j min_max_
)min_)(())((max_

)( minmax

−

−+−
=  (19)

3. Spectral Spread Method: The group's seeds are distributed normally with a mean planting 
position and standard deviation (SD) determined by the equation below. 

𝜎௧ = ൬𝑁 − 𝑡𝑁 ൰௠ ൫𝜎௜௡௧ ௜௧௔௟ − 𝜎௙௜௡௔௟൯ + 𝜎௙௜௡௔௟ (20)

4. Competitive Deprivation: If the colony has more grasses than the maximum limit (Smax), the 
grass with the lowest fitness is eliminated to maintain a consistent number of herbs.  

5. The process continues until the maximum iteration is reached, keeping the lowest cost value of 
the grasses. 
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The upcoming next section revolves around the utilization of classification methods to 
categorize lung cancer images within histopathological images. 

5. Classifiers for the detection of Lung Cancer 

Classifiers have a crucial role in categorizing data effectively. An optimal classifier is 
characterized by its ability to achieve high accuracy and low error rates while maintaining 
manageable computational complexity. Addressing the classification challenge involves constructing 
a model for the purpose of classifying images and assigning them appropriate class labels. The 
following sections of this paper delve into the classifiers that were used for this purpose. 

5.1. Support Vector Machine  

SVM is known for its scalability and classification performance [42]. It aims to create a 
hyperplane that maximizes class separation by minimizing the cost function. It is given by the 
following expression: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒, 12 ‖𝑤‖ଶ + 𝐶 ෍ 𝜇௞௠
௞ୀଵ  (21)

Subject to 𝑧௞ (𝑤் 𝑥௞ + 𝑓)ଷ  ≥ 1 − 𝜇௞,  𝜇௞  ≥ 0 
Where 𝑤் , 𝑥௞  ∈ 𝑅ଶ and 𝑓 ∈ 𝑅, ‖𝑤‖ଶ = 𝑤்𝑤 

C represents the trade-off between the margin and the error. The training data’s size is 
represented by 𝜉k, and the class label for each sample is represented as zk. SVM is a flexible classifier 
suitable for linear and nonlinear cases. To handle nonlinear data, we employ Polynomial, RBF, and 
Sigmoid kernel functions. In this study, we exclusively enhance the classification accuracy by 
utilizing the SVM-RBF kernel. 

5.2. K-Nearest Neighbor 

KNN stands as a widely utilized and efficient non-parametric classification technique. In KNN, 
the symbol 'k' denotes the count of nearest neighbors involved in the voting process. To enhance 
prediction accuracy, employing an odd value for k is recommended. KNN determines the 
classification of a test sample by conducting a majority vote among neighboring training samples. 
Measuring distances between individuals is crucial, and the Euclidean distance is commonly used 
for this purpose [43]. For example, in the Euclidean space if 𝑢 and 𝑣 are the two points and it is 

assumed that  𝑢 = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ, . . . . , 𝑢௡)  and 𝑣 = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . . , 𝑣௡) , then the Euclidean 
distance of line segment   can be expressed as follows: 

𝐷𝑖𝑠𝑡(𝑢, 𝑦) = ඥ(𝑢ଵ − 𝑣ଵ)ଶ + (𝑢ଶ − 𝑣ଶ)ଶ+. . . . +(𝑢௡ − 𝑣௡)ଶ = ඩ෍(𝑢௜ − 𝑣௜)ଶ௡
௜ୀଵ  (22)

5.3. Random Forest  

This tree-based ensemble learning algorithm is highly accurate and resilient in image 
classification[44]. It utilizes multiple decision trees that work independently. Two important 
parameters for the algorithm are the number of decision trees and the number of predictive variables 
used in each tree's decision-making process. By combining the votes of multiple decision trees, a 
random forest can accurately predict binary tasks. 

For a training set X consisting of M samples, each containing N features and a classification label 
Y. The following steps are involved in the construction of Random Forest. 

1. Randomly select M samples from X using the Bootstrap method. 
2. Choose n random features (where n<N) to split a decision tree node. Determine the split criterion 

by selecting the feature with the lowest Gini value. Gini is computed using the formula: 
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𝐺𝑖𝑛𝑖 = 1 − ෍(𝑝௜)ଶ௖
௜ୀଵ  (23)

Where  ip  represents the relative frequency of dataset features and c  represents the number of 

classes. 
3. Generate M decision trees by repeating steps 1 and 2, M times. 
4. Create a random forest by combining the decision trees and utilize voting to determine the 

classification outcome. 

5.4. Decision Tree 

It is a well-known machine learning algorithm partitions input data recursively [42]. A decision 
tree starts with a root node and branches. This work utilizes CART, which splits the data based on its 
ability to distinguish between groups. The process continues until all data groups have the same label 
or match the training set. CART uses the Gini impurity measure at each node to determine the best 
split. The data at node 'd' is divided into two subsets, Xleft and Xright, based on the splitting features 
and a threshold determined by CART and the amount of data X. 

At node ‘d’ the input is computed through impurity measure Gini as  ∑ 𝑝ௗ௞(1 − 𝑝ௗ௞)௞  with the 
proportion of class k observation in the node ‘d’. Construction time of a decision tree depends on the 
dataset's size (samples and features). Overfitting can occur if the tree is built using CART and results 
in few samples per leaf. To prevent overfitting and improve accuracy, a pruning algorithm can be 
used to simplify the tree, reducing construction time while maintaining performance. 

5.5. Softmax Discriminant Classifier 

SDC's main objective is to classify a given test specimen[45] by comparing its distance to the 
training sample within its category. The process entails gauging the distance between training and 
test samples belonging to the same class to derive the outcome. Supposing, the training set 𝑀 = ሾ𝑀1, 𝑀2, … , 𝑀𝑞ሿ  ∈  ℜ௖ × ௗ  comes from q distinct classes. 𝑀௤ =  ሾ𝑀1௤ , 𝑀2௤ , … 𝑀𝑑𝑞௤ሿ  ∈  ℜ௖ × ௗ೜ 
Indicates 𝑑𝑞 samples from the qth class where ∑ 𝑑௝ = 𝑑௤௝ୀଵ . Assuming 𝑤 𝜖 ℜ௖ × ଵ represents the test 

sample, within the classifier, we employ samples from class q to recognize the test sample, aiming to 
minimize the reconstruction error. To uphold the principle of SDC, we can enhance the non-linear 
transformation linking the q class samples and the test sample. Therefore, the SDC can be defined as 
follows: ℎ (𝑤) = arg max௝ 𝑧௪௝   (24)

ℎ (𝑤) = arg max௝ log ቌ෍ exp ቀ−𝜆 ฮ𝑤 − 𝑤௞௝ฮଶቁௗೕ
௝ୀଵ ቍ (25)

Where ℎ (𝑤) defines the distance between the jth class and the test sample. The value of 𝜆 should be 
greater than zero, to provide a penalty cost. If w relates to the jth class, then w and 𝑤௞௝ would have 
likely same characteristics and so ฮ𝑤 − 𝑤௞௝ฮଶ  is progressing close towards zero and hence 

maximizing 𝑧௪௝  can achieve the maximum possible value in an asymptotic manner. 

5.6. Multilayer Perceptron 

MLP is often used to approximate functions like regression [46]. It consists of an input layer with 
n nodes, a hidden layer, and an output layer. The given input and output pairs be denoted as (𝑚௣, 𝑛௣), 𝑝 =  1, 2, … . , 𝑚,  where 𝑚௣ = (𝑚௣ଵ, 𝑚௣ଶ, . . . . , 𝑚௣௡)  and 𝑦௣ are the input vector and the 
corresponding desired output value, respectively. Sigmoid function is commonly used for hidden 
and output nodes, producing values from 0 to 1. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2023                   doi:10.20944/preprints202309.0160.v1

https://doi.org/10.20944/preprints202309.0160.v1


 13 

 

The kth hidden node in the MLP calculates its output when the input is given. The output value 
is computed as 

𝑐௣௞ ୀ 𝑓௦  ቌ ෍ 𝑤௝௞𝑚௣௝ + 𝜃௞௡
௝ ୀ ଵ ቍ (26)

The output value of the output node is determined by the sigmoid function (fs), along with bias 
(𝜃k), and connection weight (wjk) associated with the corresponding hidden node. Then the final 
output value is computed as, 

𝑐௣ ୀ 𝑓௦  ൭ ෍ 𝑤௞𝑐௣௞ +  𝜃௟
௞ ୀ ଵ ൱ (27)

The number of hidden nodes is denoted by 𝑙, the bias to the output node is represented by 𝜃, 
and 𝑤௞ signifies the connection weight from the kth hidden node to the output node. This results in 
a total of (𝑛 + 2)𝑙 + 1 synaptic connections. To train the Multilayer Perceptron (MLP), the following 
cost function can be utilized. 

𝐸 =  12 ෍൫𝑛௣ − 𝑐௣൯ଶ௧
௝ୀଵ  (28)

Where t denotes the number of training patterns. In our study, we used a three-layer model, 
which is known to effectively approximate any continuous function with high accuracy [47]. 

5.7. Bayesian Linear Discriminant Classifier 

The BLDC, or Bayesian Linear Discriminant Classifier, can distinguish between multiple classes. 
It uses the Fisher linear discriminant and applies the Bayes decision rule to estimate the error 
probability [48]. Bayesian regression assumes that the target variable y is a linear combination of 
vector k, and Gaussian noise m. This relationship is expressed as 𝑦 =  𝑞்𝑘 + 𝑚, where q represents 
the weight coefficients. 

The given expression represents the likelihood function, 

𝑝 ൬ 𝐶𝛽, 𝑞൰ =  ൬ 𝛽2𝜋൰௠ ଶൗ exp ൬− 𝛽2  ‖𝑀்𝑞 − 𝑦‖ଶ൰ (29)

In the above equation, y is the target values for regression, M is a matrix made by combining the 
training feature vectors horizontally, and C is the combination of ሼ𝑀, 𝑦ሽ. β represents the noise's 
inverse variance, and T is the total number of samples in the training set. 

5.8. Methods for Updating Hyperparameters in Various Classifiers 

The performance of a classifier greatly depends on the values assigned to its 
hyperparameters[49]. To find the best hyperparameter values, different methods like Stochastic 
Gradient Descent (SGD), Grid Search (GS), and Adaptive Moment Estimation Method (ADAM) can 
be used. This study introduces a new approach called R-Adam, which aims to enhance lung cancer 
classification accuracy for the Decision Tree classifier and other classifiers. While Adam is a prevalent 
choice for hyperparameter selection in deep learning networks, this study introduces R-Adam, an 
adapted version proposed for hyperparameter selection across diverse classifiers. Utilizing 
controlled randomness, the envisioned R-Adam algorithm aims to discover hyperparameter values 
in proximity to the optimal values recommended by the Adam method. The investigation assesses 
the classification performance using both Adam and the newly introduced R-Adam technique. 
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5.8.1. Adam Approach 

The Adam approach involves employing squared gradients and exponential moving averages. 
The validation of hyperparameters is achieved based on the expressions provided below [50]: 𝑥௧ାଵ = 𝑥௧ − 𝐿௥𝜀 + ට𝑃̂௧ ∗ 𝑀௧^  

(30)

Where 𝑥௧ represents the previous hyperparameters, 1+tx denotes the updated hyperparameters, 

rL signifies the learning rate, and ε is a small constant used to avoid division by zero. The constants 

in the Adam method are 𝑍ଵand 𝑍ଶ. 

t

t
t
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1−
=  (31)
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=  (32)

𝑚௧ = 𝑍ଵ ∗ 𝑚௧ିଵ + (1 − 𝑍ଵ) ∗ 𝜕𝐿𝜕𝑥௧ (33)

𝑝௧ = 𝑍ଶ ∗ 𝑝௧ିଵ + (1 − 𝑍ଶ) ∗ ൬ 𝜕𝐿𝜕𝑥௧൰ଶ (34)

Where డ௅డ௫೟  signifies the derivative of the loss function with respect to x. Thus, the mathematical 

representation of the loss function is as follows: 𝜕𝐿𝜕𝑥௧௥ = 𝐸𝑅௧௥𝑥௜௡ , 𝑖𝑓 𝑡𝑟 = 1 (35)

𝜕𝐿𝜕𝑥௧௥ = 𝐸𝑅௧௥ − 𝐸𝑅௧௥ିଵ𝑥௧௥ − 𝑥௧௥ିଵ , 𝑖𝑓 𝑡𝑟 > 1 (36)

Where ER stands for the error rate, tr indicates the current iteration and tr – 1 denotes the 
previous iteration of in the Adam approach. Algorithm 1 outlines the process of utilizing the Adam 
optimizer to update hyperparameters in a Decision Tree model, aiming to minimize the error rate, 
which serves as the loss function. In Decision Tree, the key hyperparameters include maximum depth 
and criterion. In Decision tree, the hyperparameters are set as maximum depth = 20 and criterion = 
MSE. The Adam’s approach employs specific constants in this work: 𝐿௥ = 0.001, 𝑍ଵ= 0.89, 𝑍ଶ= 0.9 
and 𝜀 =  10ିଽ. Through experimentation, the optimal number of iterations for the Adam approach 
was determined to be 40. This iterative process aims to uncover the lowest error rate, helping identify 
the best hyperparameters. Notably, similar approaches involving SVM, KNN, Random Forest, SDC, 
MLP, and BLDC models could also leverage the Adam optimizer to update hyperparameters in a 
comparable manner. 

Algorithm 1. 

1. Initialization: Set initial values for hyperparameters: 
Target value, maximum iterations, maximum depth and criterion for Decision Tree, maximum 
iterations for Adam, 𝐿௥, 𝑍ଵ, 𝑍ଶ, 𝜀. 

2. Hyperparameter Tuning Loop: 
a) For 𝑡௥= 1 to maximum iterations for Adam 

• Calculate maximum depth 
• Determine the criterion 

b) For 𝑡 =1 to maximum iterations for Decision Tree 
• Update values for maximum depth 
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• Criterion is set to MSE. 
• Determine the optimal values for maximum depth 
  end for. 

3. Formulate a confusion matrix and compute the error rate (ER). 
4. Compute the loss gradient using Equation 36. 
5. Establish new optimal hyperparameter values using Equation 30 through 34. 

end for. 

5.8.2. RAdam’s Approach 

The Randomized Adam (RAdam) technique is tailored to enhance the precision of the Decision 
Tree classifier. Algorithm 2 presents a methodology for implementing the Decision Tree using the 
RAdam approach. RAdam amalgamates two core components: the Adam method and controlled 
randomization. The controlled randomization process is pivotal in elevating classification 
performance. Within each iteration of the Adam method, hyperparameters are updated. The Adam 
process, which meticulously refines hyperparameter ranges, is nested within the iterative controlled 
randomization. This controlled randomization strategy integrates two control parameters—solution 
considering rate and solution adjusting rate—to fulfill its objective. Constants for R-Adam are defined 
as follows: bandwidth is set at 0.0098, the maximum number of iterations for randomization is 15, 
solution considering rate is 0.6, and solution adjusting rate is 0.92. In Algorithm 2, randomization 1, 
randomization 2, randomization 5, and randomization 6 indicate random values from the range [0, 
1], while randomization 3 and randomization 4 correspond to random values within [0, 0.1]. 
Following this iterative process, the lowest error rate is found, leading to the identification of optimal 
hyperparameters. Significantly, analogous methodologies that pertain to SVM, KNN, Random 
Forest, SDC, MLP, and BLDC models could also make use of the Adam optimizer for adjusting 
hyperparameters in a similar fashion. 

Algorithm 2. 
1. Initialization: Set initial values for hyperparameters: 

Target value, maximum iterations, maximum depth and criterion for Decision Tree, maximum 
iterations for Adam, 𝐿௥ , 𝑍ଵ , 𝑍ଶ , 𝜀 , solution considering rate, solution adjusting rate and 
bandwidth. 

2. Hyperparameter Tuning Loop: 
a) For 𝑡௥= 1 to maximum iterations for Adam 

• Calculate maximum depth 
• Determine the criterion 

b) For 𝑡 =1 to maximum iterations for Decision Tree 
• Update values for maximum depth 
• Criterion is set to MSE. 
• Determine the optimal values for maximum depth 
  end for. 

3. Formulate a confusion matrix and compute the error rate (ER). 
4. Compute the loss gradient using Equation 36. 
5. Establish new optimal hyperparameter values using Equation 30 through 34. 

end for. 
6. For each iteration: current iterations for randomization = 1 to maximum iterations for 

randomization 
If randomization 1 < solution considering rate. 
Set 𝑟ଵ for this iteration as  𝑟ଵ′ 
Set 𝑟ଶ for this iteration as  𝑟ଶ′ 
If randomization 2 < solution adjusting rate. 
Set 𝑟ଵ for this iteration as 𝑟ଵ′ + bandwidth * randomization 3. 
Set 𝑟ଶ for this iteration as = 𝑟ଶ′ + bandwidth * randomization 4. 
end if. 
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If 𝑟ଵ for this iteration is less than the lower bound, set it to the lower bound. 
end if. 
If 𝑟ଶ for this iteration is less than the lower bound, set it to the lower bound 
end if. 
If 𝑟ଵ for this iteration is less than the upper bound, set it to the upper bound. 
end if. 
If 𝑟ଶ for this iteration is less than the upper bound, set it to the upper bound 
end if. 
Set 𝑟ଵ for this iteration as lower bound + (bandwidth * randomization 5). 
Set 𝑟ଶ for this iteration as lower bound + (bandwidth * randomization 6). 
end if. 

7. Repeat. 
• Calculate maximum depth 
• Determine the criterion 

8. For each iteration 𝑡  from 1 to maximum iterations for Decision Tree 
• Update the values of maximum depth 
• Set the criterion to MSE. 
• Determine the optimal values for maximum depth 
end for. 

9. Formulate a confusion matrix and compute the error rate (ER). 
10. Compute the ER using 𝑟ଵ & 𝑟ଶ as hyperparameters. 

end for. 

The following section pertains to the outcomes derived from employing diverse classification 
techniques for the categorization of lung cancer images within histopathological images. 

6. Results and Discussion 

This section explores the efficacy of different classifiers based on their benchmark parameters. 
A higher classification accuracy combined with a decreased error rate signifies robust performance 
of the classifier. As a result, the classifiers underwent training and testing using the extracted and 
chosen feature values within the Lung Histopathological Image Dataset. 

6.1. Training and Testing of the classifiers 

The training and testing of the classifiers constitute crucial phases within classification 
procedures. Training facilitates the acquisition of patterns linked to the provided extracted features 
by the classifier. In this study, 90% of the dataset was designated for training, leaving the remaining 
10% for testing. The conclusion of training and testing for the classifiers was established based on the 
mean square error (MSE) acting as the termination criterion. The mathematical expression for MSE 
is given below: 

𝑀𝑆𝐸 = 1𝑀 ෍(𝑂௜ − 𝑇௞)ଶெ
௜ୀଵ  (37)

Where 𝑂௜ signifies the value observed at a definite time; 𝑇௞ indicates the target value for model 
k, with “k” ranging from 1 to 15; and the value of M is assumed to be 5000 and indicates the total 
number of images. 

6.2. Selection of the Optimal Parameters for the Classifiers  

In this study, seven classifiers were used to categorize images into benign or adenocarcinoma 
based on the target selection. The target selection for the benign case (𝑇௕௘௡௜௚௡)  is represented as 
follows: 
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1𝑀 ෍ 𝜇௞ ≤ெ
௞ୀଵ 𝑇௕௘௡௜௚௡ (38)

The characteristics of the entire set of benign lung data (M) were subjected to normalization, and 
their average is denoted as 𝜇௞ as outlined in Equation (38), applicable for classification purposes. 

The average of the normalized features is denoted as 𝜇௞. For benign images, a target value of 
0.1 was selected, which falls within the lower end of the 0-1 scale. 

The condition for choosing a target in a case of adenocarcinoma (aca) is: 1𝑁 ෍ 𝜇௜ ≤ே
௜ୀଵ 𝑇௔௖௔ (39)

The characteristics of the entire set of lung adenocarcinoma data (N) were subjected to 
normalization, and their average is denoted as 𝜇௜  as outlined in Equation (39), applicable for 
classification purposes. 

To enhance adenocarcinoma classification, the target selection should exceed the mean value 𝜇௞, which represents the average of normalized features across N images. Improving classification 
requires a target value of 0.5 or higher, as specified by the condition: ൫ฮ𝑇௔௖௔ − 𝑇௕௘௡௜௚௡ฮ  ≥ 0.5൯ (40)

Depending on the criteria described in Equation (40), the selected targets for this study were set 
at 0.1 for benign cases and 0.85 for adenocarcinoma cases. The classifiers underwent training using a 
10-fold training and testing approach, with the stopping criterion being an MSE value of (10ିହ) or 
a maximum operation of 1000, whichever was achieved first. The selection of optimal parameters for 
the classifiers during the training process is outlined in Table 2. These classifier parameters were 
chosen through trial-and-error for the condition of minimal MSE. The training process demonstrated 
that the MSE value was attained either as low as 1.0 × 10ିଵ଴ or after 1000 iterations. 

Table 2. Selection of the Optimal Parameters for the Classifiers. 

Classifiers Optimal Parameters of the Classifiers 
Support Vector Machine Kernel - RBF; α – 1; Kernel width parameter (σ) – 100;  

w – 0.85; b - 0.01; Convergence Criterion – MSE. 
K-Nearest Neighbor K - 5; Distance Metric – Euclidian; w - 0.5; Criterion – MSE. 

Random Forest Number of Trees – 200; Maximum Depth – 10;  
Bootstrap Sample – 20; Class Weight – 0.45. 

Decision Tree Maximum Depth – 20; Impurity Criterion – MSE;  
Class Weight – 0.4. 

Softmax Discriminant Classifier λ = 0.5 along with mean of each class target values as 0.1 and 0.85. 
Multilayer Perceptron Learning rate – 0.3; Learning Algorithm – LM; Criterion – MSE. 

Bayesian Linear Discriminant 

Classifier 

Prior Probability P(x) – 0.5; Class mean µ௫= 0.8 and  µ௬= 0.1, 
Criterion = MSE. 

6.3. Performance metrics of the Classifiers  

The main goal of the classifier was to accurately classify the dataset into cancer cells and normal 
datasets. To evaluate the classifiers' performance, a confusion matrix was used. The confusion matrix 
consists of four elements: True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN). TP indicates the presence of lung cancer, while TN indicates its absence, both 
representing correct classification. FP and FN represent misclassification, where lung cancer is 
incorrectly predicted as present (FP), or lung cancer is present but wrongly classified as not present 
(FN). 

Table 3 displays TP, TN, FP, FN values, and average MSE for PSO and GWO features along with 
seven classifiers without employing Feature Selection Methods. Achieving the lowest MSE serves as 
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an indicator for improved classifier performance, while a higher MSE value results in inferior 
classifier performance, regardless of the employed feature selection methods. PSO features show 
Decision Tree Classifier with the lowest MSE (3.60E-07) and Random Forest Classifier with the 
highest MSE (1.60E-05). GWO features show Bayesian LDC Classifier with the minimum MSE (2.50E-
07) and KNN Classifier with the maximum MSE (1.44E-05). 

Table 3. Confusion Matrix for Classifiers without Feature Selection. 

Feature 
Extraction 

Classifiers Confusion Matrix MSE 
TP TN FP FN 

PSO 

 

SVM 3944 4009 991 1056 7.29E-06 
KNN 4267 3725 1275 733 4.49E-05 

Random Forest 2692 2933 2067 2308 1.60E-05 
Decision Tree 3184 3217 1783 1816 3.60E-07 

Softmax Discriminant 4033 3750 1250 967 4.00E-08 
Multilayer Perceptron 3425 3675 1325 1575 2.25E-06 

Bayesian LDC 4367 3975 1025 633 5.63E-05 
GWO SVM 3617 4175 825 1383 5.76E-06 

KNN 3500 3725 1275 1500 1.44E-05 
Random Forest 3967 3817 1183 1033 3.36E-05 
Decision Tree 4517 3984 1016 483 8.41E-06 

Softmax Discriminant 4083 4275 725 917 1.96E-04 
Multilayer Perceptron 4050 4384 616 950 4.84E-04 

Bayesian LDC 3967 3692 1308 1033 2.50E-07 

The features extracted were given to seven classifiers for performance analysis, following feature 
selection methods. Table 4 shows the average MSE and confusion matrix for PSO Feature Extraction 
with KL Divergence and IWO feature selection. The Decision Tree had the lowest MSE (9.00E-06) 
using PSO with KL Divergence, while the Bayesian LDC had the highest MSE (1.02E-05). With PSO 
and IWO, the Decision Tree had the lowest MSE (7.84E-06), while the Softmax Discriminant had the 
highest MSE (1.22E-05). 

Table 4. Confusion Matrix for Classifiers for PSO with KL Divergence and IWO. 

Feature  

Selection 
Classifiers Confusion Matrix MSE 

TP TN FP FN 

KL 
Divergence 

 

SVM 3297 2747 2253 1703 3.24E-06 
KNN 3978 2605 2395 1022 8.41E-06 

Random Forest 4115 3294 1706 885 2.30E-05 
Decision Tree 3919 4089 911 1081 9.00E-06 

Softmax Discriminant 4089 4258 742 911 4.84E-06 
Multilayer Perceptron 4271 3633 1367 729 2.56E-06 

Bayesian LDC 3298 3311 1690 1702 1.02E-05 
IWO SVM 3854 3503 1497 1146 2.21E-05 

KNN 3490 3985 1016 1510 3.36E-05 
Random Forest 3574 2757 2243 1426 1.94E-05 
Decision Tree 2982 2871 2129 2018 7.84E-06 

Softmax Discriminant 2734 3047 1953 2266 1.22E-05 
Multilayer Perceptron 3047 2592 2408 1953 1.00E-06 

Bayesian LDC 2681 2698 2302 2319 1.85E-05 

Table 5 displays the average MSE and confusion matrix for GWO Feature Extraction with KL 
Divergence and IWO feature selection methods. The results include SVM, KNN, Random Forest, 
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Decision Tree, Softmax Discriminant, Multilayer Perceptron, and Bayesian LDC classifiers. In the 
GWO with KL Divergence approach, Bayesian LDC achieves the lowest MSE (1.00E-08), while the 
Multilayer Perceptron Classifier has the highest MSE (2.03E-05). Similarly, in the PSO with IWO 
approach, SVM achieves the minimum MSE (4.90E-07), while the Random Forest Classifier has the 
maximum MSE (1.52E-05). 

Table 5. Confusion Matrix for Classifiers for GWO with KL Divergence and IWO. 

Feature  

Selection 
Classifiers Confusion Matrix MSE 

TP TN FP FN 

KL 
Divergence 

 

SVM 4029 2742 2258 971 1.00E-06 
KNN 3789 4147 853 1211 4.90E-05 

Random Forest 3490 4089 911 1510 6.40E-07 
Decision Tree 3594 4147 853 1406 2.50E-07 

Softmax Discriminant 4896 2668 2333 104 1.00E-06 
Multilayer Perceptron 3737 2982 2018 1263 2.03E-05 

Bayesian LDC 3460 2767 2233 1540 1.00E-08 
IWO SVM 4401 3262 1738 599 4.90E-07 

KNN 3203 3880 1120 1797 1.60E-05 
Random Forest 4440 2735 2265 560 1.52E-05 
Decision Tree 4167 2620 2380 833 5.29E-06 

Softmax Discriminant 4219 2687 2313 781 2.30E-05 
Multilayer Perceptron 4375 2747 2253 625 9.61E-06 

Bayesian LDC 3216 2760 2240 1784 6.89E-05 

Table 6 presents the mean Mean Squared Error (MSE) and confusion matrix outcomes for PSO 
Feature Extraction using KL Divergence and IWO feature selection techniques in Adam 
Hyperparameter Tuning. Among these, Bayesian LDC achieved the smallest MSE (8.41E-06) through 
PSO with KL Divergence, whereas Random Forest showed the highest MSE (2.72E-04). When 
considering PSO and IWO, Random Forest demonstrated the lowest MSE (9.00E-08), whereas 
Softmax Discriminant had the highest MSE (4.00E-04). 

Table 6. Confusion Matrix for Classifiers: PSO with KL Divergence and IWO for Adam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Confusion Matrix MSE 

TP TN FP FN 

KL 
Divergence 

 

SVM 4089 3568 1433 911 6.61E-04 
KNN 4184 4487 514 817 1.44E-05 

Random Forest 4555 3520 1480 445 2.72E-04 
Decision Tree 3815 3809 1191 1185 6.72E-05 

Softmax Discriminant 4392 3948 1052 608 2.40E-05 
Multilayer Perceptron 3881 4048 952 1119 1.96E-06 

Bayesian LDC 4156 3947 1053 844 8.41E-06 
IWO SVM 3599 4085 915 1401 8.10E-05 

KNN 4058 4375 625 942 7.23E-05 
Random Forest 4129 4038 962 871 9.00E-08 
Decision Tree 3713 4308 692 1288 6.40E-05 

Softmax Discriminant 4129 4161 839 871 4.00E-04 
Multilayer Perceptron 4539 4024 976 461 2.50E-05 

Bayesian LDC 3817 3797 1203 1183 1.44E-05 
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Table 7 displays the average Mean Squared Error (MSE) and the results of the confusion matrices 
obtained from GWO Feature Extraction using KL Divergence and IWO feature selection techniques 
in Adam Hyperparameter Tuning. Among these approaches, Multilayer Perceptron achieved the 
smallest MSE of 6.40E-07 using GWO with KL Divergence, while SVM exhibited the highest MSE of 
1.23E-05. Considering both GWO and IWO, Decision Tree showcased the lowest MSE of 6.40E-07, 
whereas Softmax Discriminant had the highest MSE of 1.04E-04. 

Table 7. Confusion Matrix for Classifiers: GWO with KL Divergence and IWO for Adam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Confusion Matrix MSE 

TP TN FP FN 

KL 
Divergence 

 

SVM 3653 4466 534 1347 1.23E-05 
KNN 4139 4948 52 862 7.23E-05 

Random Forest 4044 3913 1088 956 1.30E-05 
Decision Tree 3635 3985 1016 1365 6.89E-05 

Softmax Discriminant 3565 4297 703 1435 1.37E-05 
Multilayer Perceptron 3740 4034 966 1260 6.40E-07 

Bayesian LDC 3775 3987 1013 1225 4.90E-07 
IWO SVM 4339 4617 383 661 1.94E-05 

KNN 4129 4321 680 871 5.76E-06 
Random Forest 4509 4466 534 491 7.57E-05 
Decision Tree 4617 4390 610 383 6.40E-07 

Softmax Discriminant 4409 4005 995 592 1.04E-04 
Multilayer Perceptron 4409 3913 1088 592 4.49E-05 

Bayesian LDC 4754 3973 1027 246 4.90E-07 

Table 8 presents the average Mean Squared Error (MSE) and the results of confusion matrices 
obtained by using PSO Feature Extraction with KL Divergence and IWO feature selection techniques 
during R-Adam Hyperparameter Tuning. Among these methods, SVM achieved the smallest MSE of 
6.56E-05 when using GWO with KL Divergence, while Random Forest had the highest MSE of 1.09E-
05. Considering both PSO and IWO, Random Forest had the lowest MSE of 4.49E-05, while Softmax 
Discriminant had the highest MSE of 1.10E-04. 

Table 8. Confusion Matrix for Classifiers: PSO with KL Divergence and IWO for RAdam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Confusion Matrix MSE 

TP TN FP FN 

KL 
Divergence 

 

SVM 4144 3668 1333 856 6.56E-05 
KNN 4209 4537 464 792 2.92E-05 

Random Forest 4575 3620 1380 425 1.09E-05 
Decision Tree 3950 3859 1141 1050 5.93E-05 

Softmax Discriminant 4417 4098 902 583 1.60E-05 
Multilayer Perceptron 4011 4198 802 989 3.03E-05 

Bayesian LDC 4245 4047 953 755 3.97E-05 
IWO SVM 3710 4235 765 1290 1.37E-05 

KNN 4208 4375 625 792 4.22E-05 
Random Forest 4229 4188 812 771 4.49E-05 
Decision Tree 3813 4408 592 1188 4.36E-05 

Softmax Discriminant 4229 4211 789 771 1.10E-04 
Multilayer Perceptron 4558 4074 926 443 2.30E-05 

Bayesian LDC 3917 3897 1103 1083 3.02E-05 
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Table 9 displays the average Mean Squared Error (MSE) and the outcomes of confusion matrices. 
These were derived using GWO Feature Extraction with KL Divergence and IWO feature selection 
methods within R-Adam Hyperparameter Tuning. Among the techniques, Bayesian LDC achieved 
the lowest MSE of 9.61E-06 with GWO and KL Divergence. Conversely, Random Forest had the 
highest MSE of 1.02E-05. When considering both GWO and IWO, KNN displayed the smallest MSE 
of 5.48E-05, while Random Forest exhibited the highest MSE of 1.90E-04. 

Table 9. Confusion Matrix for Classifiers: GWO with KL Divergence and IWO for RAdam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Confusion Matrix MSE 

TP TN FP FN 

KL 
Divergence 

 

SVM 3758 4466 534 1242 1.37E-05 
KNN 4159 4948 52 842 2.40E-05 

Random Forest 4094 4063 938 906 1.02E-05 
Decision Tree 3750 3985 1016 1250 1.23E-05 

Softmax Discriminant 3670 4297 703 1330 4.76E-05 
Multilayer Perceptron 3860 4084 916 1140 2.12E-05 

Bayesian LDC 3905 4137 863 1095 9.61E-06 
IWO SVM 4439 4667 333 561 4.36E-05 

KNN 4229 4321 680 771 5.48E-05 
Random Forest 4559 4466 534 441 1.90E-04 
Decision Tree 4667 4490 510 333 2.40E-05 

Softmax Discriminant 4459 4055 945 542 5.33E-05 
Multilayer Perceptron 4459 4063 938 542 5.04E-05 

Bayesian LDC 4789 4073 927 211 1.09E-05 

Table 10 presents the metrics used to evaluate the performance of classifiers, including Accuracy, 
Error Rate, F1 Score, MCC, Jaccard Index, g-Mean, and Kappa. The mathematical expressions for 
these metrics are also provided. 

Table 10. Standard Benchmark Parameters. 

Performance 

Metrics 
Equation Significance 

Accuracy (%) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
Average positive-to-negative  

sample ratio. 

Error Rate 𝐸𝑟𝑟 = 𝐹𝑃 + 𝐹𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

The number of incorrect  
predictions, based on recorded  

observations. 

F1 Score (%) 𝐹1 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

Average of precision and recall to 
obtain the classification accuracy 

of a specific class. 

MCC 

𝑀𝐶𝐶
= 𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 

Pearson correlation between the  
actual output and the achieved  

output. 
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Jaccard Index (%) 
𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

 

The number of predicted true  
positives exceeded the number of 

actual positives, regardless of 
whether they were real or  

predicted. 

g-mean (%) 𝑔 − 𝑚𝑒𝑎𝑛 =  ඨ 𝑇𝑃𝑇𝑃 + 𝐹𝑁 ∗ 𝑇𝑁𝑇𝑁 + 𝐹𝑃 

Combination of sensitivity and 
specificity into a single value that 

balances both objectives. 

Kappa 
𝐾𝑎𝑝𝑝𝑎 = Pr(𝑎) − Pr (𝑒)1 − Pr (𝑒)  

 

Inter-rater agreement measure for 
assessing agreement between two 

methods in categorizing cancer 
cases. 

The lung cancer data is processed using PSO and GWO techniques to extract features from 
normal and malignant data. These features are then used as inputs for seven classification models. 
Table 11 shows the performance of the classifiers without Feature Selection. The Decision Tree 
Classifier stands out with the highest accuracy of 85.01% for GWO features. It also achieves the 
highest F1 score (85.77%), MCC value (0.70), Jaccard Index (75.08%), g-mean (85.33%), kappa score 
(0.70), and the lowest error rate (14.99%). In contrast, the Random Forest classifier performs poorly 
for PSO features, with an accuracy of 56.25%, F1 score of 55.17%, MCC value of 0.13, Jaccard Index of 
38.09%, g-mean of 56.26%, kappa value of 0.13, and the highest error rate of 43.75%. Without feature 
selection, the Decision Tree Classifier with GWO feature extraction method achieves the best accuracy 
and outperforms other classifiers. 

Table 11. Performance Analysis of the Classifiers without Feature Selection. 

Feature 
Extraction 

Classifiers Accuracy 
(%) 

Error Rate 
(%) 

F1 Score 
(%) 

MCC Jaccard  
Index 

(%) 

g-mean 
(%) 

Kappa 

PSO SVM 79.53 20.47 79.40 0.59 65.83 79.53 0.59 
KNN 79.92 20.08 80.95 0.60 68.00 80.21 0.60 

Random Forest 56.25 43.75 55.17 0.13 38.09 56.26 0.13 
Decision Tree 64.01 35.99 63.89 0.28 46.94 64.01 0.28 

Softmax Discriminant 77.83 22.17 78.44 0.56 64.53 77.90 0.56 
Multilayer Perceptron 71 29 70.26 0.42 54.15 71.04 0.42 

Bayesian LDC 83.42 16.58 84.05 0.67 72.48 83.59 0.67 
GWO SVM 77.92 22.08 76.62 0.56 62.09 78.21 0.56 

KNN 72.25 27.75 71.61 0.45 55.78 72.29 0.45 
Random Forest 77.84 22.16 78.17 0.56 64.16 77.86 0.56 
Decision Tree 85.01 14.99 85.77 0.70 75.08 85.33 0.70 

Softmax Discriminant 83.58 16.42 83.26 0.67 71.32 83.62 0.67 
Multilayer Perceptron 84.34 15.66 83.80 0.69 72.12 84.46 0.69 

Bayesian LDC 76.59 23.41 77.22 0.53 62.89 76.66 0.53 

Table 12 compares the performance of seven classifiers with PSO, KL Divergence, and IWO 
Feature Selection. The Softmax Discriminant Classifier stands out with superior results for KL 
Divergence features, achieving an accuracy of 83.47%, the highest F1 score of 83.18%, MCC of 0.67, 
Jaccard Index of 71.21%, g-mean of 83.50%, Kappa score of 0.67, and the lowest error rate of 16.53%. 
Conversely, the Bayesian LDC classifier performs poorly with IWO features, obtaining an accuracy 
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of 53.79%, F1 score of 53.71%, MCC of 0.08, Jaccard Index of 36.72%, g-mean of 53.79%, Kappa of 0.08, 
and the highest error rate of 46.21%. Overall, the Softmax Discriminant Classifier using PSO and KL 
Divergence Feature selection achieves the highest accuracy and outperforms other classifiers. 

Table 12. Performance Analysis of the Classifiers for PSO with KL Divergence and IWO. 

Feature  

Selection 
Classifiers Accuracy 

(%) 
Error Rate 

(%) 
F1 Score 

(%) 
MCC Jaccard  

Index 
(%) 

g-mean 
(%) 

Kappa 

KL 
Divergence 

SVM 60.44 39.56 62.51 0.21 45.46 60.56 0.21 
KNN 65.83 34.17 69.96 0.33 53.79 66.96 0.32 

Random Forest 74.09 25.91 76.05 0.49 61.36 74.65 0.48 
Decision Tree 80.08 19.92 79.74 0.60 66.30 80.11 0.60 

Softmax Discriminant 83.47 16.53 83.18 0.67 71.21 83.50 0.67 
Multilayer Perceptron 79.04 20.96 80.30 0.59 67.08 79.43 0.58 

Bayesian LDC 66.08 33.92 66.04 0.32 49.30 66.08 0.32 
IWO SVM 73.57 26.43 74.47 0.47 59.32 73.67 0.47 

KNN 74.74 25.26 73.43 0.50 58.01 74.95 0.49 
Random Forest 63.31 36.69 66.09 0.27 49.35 63.64 0.27 
Decision Tree 58.53 41.47 58.99 0.17 41.83 58.54 0.17 

Softmax Discriminant 57.81 42.19 56.45 0.16 39.32 57.84 0.16 
Multilayer Perceptron 56.39 43.61 58.29 0.13 41.13 56.44 0.13 

Bayesian LDC 53.79 46.21 53.71 0.08 36.72 53.79 0.08 

Table 13 presents the performance of seven classifiers using GWO features, KL Divergence, and 
IWO Feature Selection. The KNN Classifier achieves the highest accuracy of 79.36% with KL 
Divergence features. It also obtains the highest F1 score (78.60%), MCC value (0.59), Jaccard Index 
(64.74%), g-mean (79.49%), kappa score (0.59), and lowest error rate (20.64%) among all classifiers. 
However, the Bayesian LDC classifier performs poorly with IWO features, achieving an accuracy of 
59.76%, F1 score of 61.52%, MCC value of 0.20, Jaccard Index of 44.42%, g-mean of 59.84%, kappa 
value of 0.20, and the highest error rate (40.24%). The KNN Classifier with GWO and KL Divergence 
Feature selection method demonstrates the best accuracy and outperforms other classifiers. 

Table 13. Performance Analysis of the Classifiers for GWO with KL Divergence and IWO. 

Feature  

Selection 
Classifiers Accuracy 

(%) 
Error Rate 

(%) 
F1 Score 

(%) 
MCC Jaccard  

Index 
(%) 

g-mean 
(%) 

Kappa 

KL 
Divergence 

SVM 67.72 32.28 71.40 0.37 55.52 68.80 0.35 
KNN 79.36 20.64 78.60 0.59 64.74 79.49 0.59 

Random Forest 75.78 24.22 74.24 0.52 59.03 76.09 0.52 
Decision Tree 77.41 22.59 76.09 0.55 61.41 77.69 0.55 

Softmax Discriminant 75.64 24.37 80.08 0.57 66.77 80.74 0.51 
Multilayer Perceptron 67.19 32.81 69.49 0.35 53.25 67.54 0.34 

Bayesian LDC 62.27 37.73 64.72 0.25 47.84 62.49 0.25 
IWO SVM 76.63 23.37 79.02 0.55 65.31 77.82 0.53 

KNN 70.83 29.17 68.71 0.42 52.34 71.16 0.42 
Random Forest 71.75 28.25 75.87 0.46 61.12 74.14 0.43 
Decision Tree 67.87 32.13 72.18 0.38 56.47 69.50 0.36 

Softmax Discriminant 69.06 30.94 73.17 0.40 57.69 70.74 0.38 
Multilayer Perceptron 71.22 28.78 75.25 0.45 60.32 73.33 0.42 

Bayesian LDC 59.76 40.24 61.52 0.20 44.42 59.84 0.20 

Table 14 presents a comprehensive performance analysis of various classifiers, utilizing PSO 
with KL Divergence and IWO in combination with Adam Hyperparameter Tuning. The findings 
highlight that the K-Nearest Neighbors (KNN) Classifier attains the highest accuracy at 86.70% when 
incorporating KL Divergence features. This classifier also excels in other evaluation metrics, boasting 
the highest F1 score (86.30%), MCC value (0.74), Jaccard Index (75.96%), geometric mean (g-mean) 
(86.81%), kappa score (0.73), and displaying the lowest error rate (13.30%) compared to all other 
classifiers. Conversely, the performance of the Bayesian Linear Discriminant Classifier (LDC) is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2023                   doi:10.20944/preprints202309.0160.v1

https://doi.org/10.20944/preprints202309.0160.v1


 24 

 

notably subpar when employing IWO features, achieving an accuracy of 76.14%, an F1 score of 
76.19%, an MCC value of 0.52, a Jaccard Index of 61.54%, a g-mean of 76.14%, a kappa value of 0.52, 
and the highest error rate (23.86%) among the classifiers considered. Overall, the KNN Classifier in 
conjunction with PSO and the KL Divergence Feature selection method emerges as the standout 
performer, showcasing superior accuracy and outclassing the other classifiers in the evaluation. 

Table 14. Performance Analysis of the Classifiers: PSO with KL Divergence and IWO for Adam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Accuracy 

(%) 
Error Rate 

(%) 
F1 Score 

(%) 
MCC Jaccard  

Index 
(%) 

g-mean 
(%) 

Kappa 

KL 
Divergence 

SVM 76.56 23.44 77.72 0.53 63.56 76.80 0.53 
KNN 86.70 13.30 86.30 0.74 75.96 86.81 0.73 

Random Forest 80.75 19.25 82.56 0.63 70.30 81.86 0.62 
Decision Tree 76.24 23.76 76.26 0.52 61.63 76.24 0.53 

Softmax Discriminant 83.40 16.60 84.11 0.67 72.58 83.62 0.67 
Multilayer Perceptron 79.28 20.72 78.93 0.59 65.20 79.31 0.59 

Bayesian LDC 81.03 18.97 81.42 0.62 68.67 81.08 0.62 
IWO SVM 76.84 23.16 75.66 0.54 61.84 77.05 0.54 

KNN 84.33 15.67 83.82 0.69 72.14 84.44 0.69 
Random Forest 81.67 18.33 81.83 0.63 69.25 81.68 0.63 
Decision Tree 80.21 19.79 78.95 0.61 65.23 80.56 0.60 

Softmax Discriminant 82.90 17.10 82.84 0.66 70.71 82.90 0.66 
Multilayer Perceptron 85.64 14.36 86.28 0.72 75.88 85.94 0.71 

Bayesian LDC 76.14 23.86 76.19 0.52 61.54 76.14 0.52 

Table 15 provides a comprehensive analysis of classifier performance, utilizing a combination of 
PSO with KL Divergence and IWO along with R-Adam Hyperparameter Tuning. The results 
highlight that the K-Nearest Neighbors (KNN) Classifier achieves the highest accuracy of 87.45% 
when incorporating KL Divergence features. This classifier also excels across various evaluation 
metrics, including the highest F1 score (87.02%), MCC value (0.75), Jaccard Index (77.03%), geometric 
mean (g-mean) (87.58%), kappa score (0.75), and the lowest error rate (12.55%) compared to other 
classifiers. On the other hand, the Decision Tree's performance is notably weaker when using KL 
Divergence features, with an accuracy of 78.09%, F1 score of 78.19%, MCC value of 0.55, Jaccard Index 
of 64.19%, g-mean of 78.10%, kappa value of 0.54, and the highest error rate (21.91%) among 
considered classifiers. In summary, the KNN Classifier, in combination with PSO and the KL 
Divergence Feature selection method, stands out as the top performer, showcasing exceptional 
accuracy and surpassing other classifiers in the evaluation. 

Table 15. Performance Analysis of the Classifiers: PSO with KL Divergence and IWO for RAdam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Accuracy 

(%) 
Error Rate 

(%) 
F1 Score 

(%) 
MCC Jaccard  

Index 
(%) 

g-mean 
(%) 

Kappa 

KL 
Divergence 

SVM 78.11 21.89 79.11 0.56 65.44 78.32 0.56 
KNN 87.45 12.55 87.02 0.75 77.03 87.58 0.75 

Random Forest 81.95 18.05 83.53 0.65 71.71 82.92 0.64 
Decision Tree 78.09 21.91 78.19 0.55 64.19 78.10 0.54 

Softmax Discriminant 85.15 14.85 85.61 0.70 74.84 85.27 0.70 
Multilayer Perceptron 82.09 17.91 81.75 0.64 69.13 82.12 0.64 

Bayesian LDC 82.92 17.08 83.25 0.66 71.31 82.96 0.66 
IWO SVM 79.45 20.55 78.31 0.59 64.35 79.72 0.59 

KNN 85.83 14.17 85.59 0.72 74.81 85.86 0.72 
Random Forest 84.17 15.83 84.23 0.68 72.76 84.17 0.68 
Decision Tree 82.21 17.79 81.08 0.65 68.18 82.58 0.64 

Softmax Discriminant 84.40 15.60 84.43 0.69 73.05 84.40 0.69 
Multilayer Perceptron 86.32 13.68 86.95 0.73 76.91 86.59 0.73 

Bayesian LDC 78.14 21.86 78.29 0.56 64.21 78.14 0.56 
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Table 16 provides a comprehensive analysis of classifier performance, utilizing GWO with KL 
Divergence and IWO along with Adam Hyperparameter Tuning. The results emphasize that the K-
Nearest Neighbors (KNN) Classifier achieves the highest accuracy at 90.87% when incorporating KL 
Divergence features. This classifier also excels in various evaluation metrics, recording the highest F1 
score (90.06%), MCC value (0.83), Jaccard Index (81.92%), geometric mean (g-mean) (91.71%), kappa 
score (0.82), and demonstrating the lowest error rate (9.14%) compared to alternative classifiers. In 
contrast, the performance of the Decision Tree is notably below par when utilizing KL Divergence 
features, attaining an accuracy of 76.20%, an F1 score of 75.33%, an MCC value of 0.53, a Jaccard Index 
of 60.43%, a g-mean of 76.30%, a kappa score of 0.52, and the highest error rate (23.81%) among the 
considered classifiers. In summary, the KNN Classifier, combined with GWO and the KL Divergence 
Feature selection approach, stands out as the top performer, showcasing remarkable accuracy and 
surpassing the other classifiers in the evaluation. 

Table 16. Performance Analysis of the Classifiers: GWO with KL Divergence and IWO for Adam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Accuracy 

(%) 
Error Rate 

(%) 
F1 Score 

(%) 
MCC Jaccard  

Index 
(%) 

g-mean 
(%) 

Kappa 

KL 
Divergence 

SVM 81.19 18.81 79.53 0.63 66.02 81.88 0.62 
KNN 90.87 9.14 90.06 0.83 81.92 91.71 0.82 

Random Forest 79.56 20.44 79.83 0.59 66.43 79.58 0.59 
Decision Tree 76.20 23.81 75.33 0.53 60.43 76.30 0.52 

Softmax Discriminant 78.62 21.38 76.93 0.58 62.51 79.13 0.57 
Multilayer Perceptron 77.74 22.26 77.07 0.56 62.69 77.82 0.55 

Bayesian LDC 77.62 22.38 77.14 0.55 62.78 77.66 0.55 
IWO SVM 89.56 10.44 89.27 0.79 80.61 89.66 0.79 

KNN 84.50 15.51 84.19 0.69 72.70 84.54 0.69 
Random Forest 89.76 10.24 89.80 0.80 81.49 89.76 0.80 
Decision Tree 90.07 9.93 90.29 0.80 81.30 90.13 0.80 

Softmax Discriminant 84.13 15.87 84.75 0.68 73.54 84.31 0.68 
Multilayer Perceptron 83.21 16.79 84.00 0.67 72.42 83.47 0.66 

Bayesian LDC 87.27 12.73 88.19 0.75 78.88 88.00 0.75 

Table 16 presents a comprehensive analysis of classifier performance, utilizing GWO with KL 
Divergence, and IWO alongside R-Adam Hyperparameter Tuning. The outcomes underscore the 
Decision Tree Classifier's exceptional performance, achieving the highest accuracy at 91.57% when 
integrating KL Divergence features. This classifier also outperforms others across various evaluation 
metrics, achieving the highest F1 score (91.71%), MCC value (0.83), Jaccard Index (84.70%), geometric 
mean (g-mean) (91.87%), kappa score (0.83), and demonstrating the lowest error rate (8.43%) 
compared to alternative classifiers. In contrast, the performance of the Decision Tree notably drops 
when utilizing IWO, with an accuracy of 77.35%, an F1 score of 76.80%, an MCC value of 0.55, a 
Jaccard Index of 62.34%, a g-mean of 77.39%, a kappa score of 0.55, and the highest error rate (22.66%) 
among the considered classifiers. In recap, the Decision Tree classifier, combined with GWO and the 
KL Divergence Feature selection approach, emerges as the leading performer, showcasing 
remarkable accuracy and surpassing the other classifiers in the evaluation. 

Table 17. Performance Analysis of the Classifiers: GWO with KL Divergence and IWO for RAdam 
Hyperparameter Tuning. 

Feature  

Selection 
Classifiers Accuracy 

(%) 
Error Rate 

(%) 
F1 Score 

(%) 
MCC Jaccard  

Index 
(%) 

g-mean 
(%) 

Kappa 

KL 
Divergence 

SVM 82.24 17.76 80.89 0.65 67.91 82.77 0.64 
KNN 91.07 8.94 90.30 0.82 82.31 91.61 0.82 

Random Forest 81.56 18.44 81.62 0.63 68.95 81.56 0.63 
Decision Tree 77.35 22.66 76.80 0.55 62.34 77.39 0.55 

Softmax Discriminant 79.67 20.33 78.31 0.60 64.35 80.05 0.59 
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Multilayer Perceptron 79.44 20.56 78.97 0.59 65.25 79.49 0.59 
Bayesian LDC 80.42 19.58 79.96 0.61 66.61 80.47 0.61 

IWO SVM 91.06 8.94 90.86 0.82 83.24 91.13 0.82 
KNN 85.50 14.51 85.36 0.71 74.46 85.50 0.71 

Random Forest 90.26 9.74 90.35 0.81 82.39 90.27 0.81 
Decision Tree 91.57 8.43 91.71 0.83 84.70 91.87 0.83 

Softmax Discriminant 85.13 14.87 85.71 0.70 75.00 85.32 0.70 
Multilayer Perceptron 85.21 14.79 85.77 0.71 75.09 85.39 0.70 

Bayesian LDC 88.62 11.38 89.38 0.78 80.80 89.25 0.77 

Table 18 presents a summary of the performance outcomes for each combination of feature 
extraction and feature selection using Adam and R-Adam Hyperparameter tuning methods across 
all seven classifiers. The highest accuracy of 91.57% in the Decision Tree classifier was attained by 
combining GWO and IWO techniques, utilizing the RAdam Hyperparameter tuning approach. 

Table 18. Performance Analysis of the classifiers for Maximum Accuracy. 

S No Feature Extraction Feature Selection Classifiers Accuracy (%) 

1 PSO - Bayesian LDC 83.42 % 
2 GWO - Decision Tree 85.01 % 
3 PSO KL Divergence Softmax Discriminant 83.47 % 
4 PSO IWO KNN 74.74 % 
5 GWO KL Divergence KNN 79.36 % 
6 GWO IWO SVM 76.63 % 
7 PSO KL Divergence KNN with Adam 86.70 % 
8 PSO IWO MLP with Adam 85.64 % 
9 PSO KL Divergence KNN with RAdam 87.45 % 

10 PSO IWO MLP with RAdam 86.32 % 
11 GWO KL Divergence KNN with Adam 90.87 % 
12 GWO IWO Decision Tree with Adam 90.07 % 
13 GWO KL Divergence KNN with RAdam 91.07 % 
14 GWO  IWO Decision Tree with RAdam 91.57 % 

Figure 7 illustrates the comparative performance of classifiers in relation to Accuracy, both with 
and without the integration of feature selection. As depicted in the graph, among all the classifier 
types, the Decision Tree classifier employing the GWO (Grey Wolf Optimizer) feature extraction 
method outperformed the rest in terms of achieving the highest accuracy. When utilizing the KL 
Divergence feature selection technique, along with PSO feature extraction technique, the Softmax 
Discriminant Classifier demonstrated a commendable accuracy of 83.47%. Similarly, when 
employing the IWO (Invasive Weed Optimization) feature selection technique, along with GWO 
feature extraction technique, the SVM (Support Vector Machine) classifier exhibited a notable 
accuracy of 76.63%. In contrast, the Mathematical feature selection approaches yielded comparatively 
lower accuracy when compared to scenarios where feature selection was not applied. 

Figure 8 displays how classifiers perform when hyperparameter tuning methods like Adam and 
RAdam are used to enhance accuracy. Even after applying feature selection techniques, there's no 
significant improvement in classifier accuracy compared to using no feature selection. To address 
this, hyperparameter update algorithms are introduced. The accuracy achieved through the KL 
Divergence feature selection method is notably high across all classifiers. However, for the IWO 
feature selection technique, accuracy seems to be somewhat lower. This prompts the use of 
hyperparameter update algorithms specifically for the IWO feature selection. As a result of 
employing these algorithms, there's a substantial accuracy improvement for all classifiers using the 
IWO feature selection. Notably, the Decision Tree classifier combined with GWO feature extraction 
and IWO feature selection, along with the RAdam hyperparameter update algorithm, achieves the 
highest accuracy at 91.57%. 
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Figure 7. Performance of Classifiers with and without Feature Selection Methods in terms of 
Accuracy. 

 

Figure 8. Performance of Classifiers with Hyperparameter Tuning Methods for Adam and RAdam in 
terms of Accuracy. 

Figure 9 illustrates the classifiers' performance by analyzing the Deviation of MCC and Kappa 
parameters in relation to their mean values. These parameters, MCC and Kappa, serve as benchmarks 
for evaluating how classifiers respond to different inputs. The study involves two input categories: 
features extracted using PSO and GWO, followed by feature selection through KL Divergence and 
IWO. The selected features are then inputted into the classifiers, and their effectiveness is evaluated 
through the resulting MCC and Kappa values. The average MCC and Kappa values attained from 
the classifiers are 0.56661 and 0.56256, respectively. A methodology is devised to assess classifier 
performance by examining the variability of MCC and Kappa values from their respective means. 
Notably, Figure 9 depicts a trend where MCC and Kappa values in the graph's third quadrant 
correspond to non-linear outcomes with lower performance metrics. Conversely, values in the 
graph's first quadrant indicate improved classifier performance, with MCC and Kappa values 
surpassing the average. This pattern suggests an enhancement in classifier performance for GWO 
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inputs when coupled with IWO feature selection, particularly within the context of the RAdam 
hyperparameter tuning approach. Figure 9 is also characterized by a linear curve fitting described by 
the equation y = 1.0017*x + 4E-06, with an R2 value of 0.998. 

 

Figure 9. Performance of Classifiers in terms of Deviation of MCC and Kappa Parameters with mean 
values. 

6.4. Computational complexity analysis of the Classifiers  

Computational Complexity also acts as a performance metric for classifiers, encompassing time 
and space complexities. This study utilizes the Big O notation to characterize the computational 
complexity of feature extraction, feature selection, and classification methods. The assessment of 
Computational Complexity involves an input size labelled as 'n'. When the input size is O(1), the 
computational complexity remains minimal.    However, as the input size increases, so does the 
computational complexity. The relationship between input size and computational complexity is 
encapsulated by the Big O notation. Specifically, if the complexity grows logarithmically with the 
increase in 'n', it is represented as 𝑂 (log 𝑛). The classifiers examined in this research integrate either 
feature extraction methods, feature selection techniques, or a combination of both. Hence, the 
computational complexity becomes a blend of these hybrid methodologies. Table 19 offers an 
overview of the computational complexity associated with the classifiers across diverse Feature 
Extraction and Feature Selection Techniques. 

Table 19. Computational Complexity of the classifiers among Feature Extraction, Feature Selection 
and Hyperparameter Tuning approaches. 

S No Classifiers 

Without  

Feature  

Extraction 

With Feature Extraction With Feature Selection With Hyperparameter  

Tuning of IWO Feature  

Selection Method 

PSO GWO KL  

Divergence 

IWO Adam RAdam 

1 SVM 𝑂 (2𝑛ଶ) 𝑂 (2𝑛ହ) 𝑂 (2𝑛ହ) 𝑂 (2𝑛଺) 𝑂 (2𝑛଺ log 𝑛) 𝑂 (2𝑛ଶ log 𝑛) 𝑂 (4𝑛଻ log 5𝑛) 

2 KNN 𝑂 (𝑛ଶ) 𝑂 (𝑛ହ) 𝑂 (𝑛ହ) 𝑂 (𝑛଺) 𝑂 (𝑛଺ log 𝑛) 𝑂 (2𝑛଻ log 2𝑛) 𝑂 (2𝑛଻ log 5𝑛) 

3 RF 𝑂 (𝑛 log 𝑛) 𝑂 (𝑛ସ log 𝑛) 𝑂 (𝑛ସ log 𝑛) 𝑂 (𝑛ହ log 𝑛) 𝑂 (𝑛ହ log 2𝑛) 𝑂 (2𝑛଺ log 3𝑛) 𝑂 (2𝑛଺ log 6𝑛) 

4 DT 𝑂 (log 𝑛) 𝑂 (𝑛ଷ log 𝑛) 𝑂 (𝑛ଷ log 𝑛) 𝑂 (𝑛ସ log 𝑛) 𝑂 (𝑛ସ log 2𝑛) 𝑂 (2𝑛ହ log 3𝑛) 𝑂 (2𝑛ହ log 6𝑛) 

5 SDC 𝑂 (𝑛ଶ) 𝑂 (𝑛ହ) 𝑂 (𝑛ହ) 𝑂 (𝑛଺) 𝑂 (𝑛଺ log 𝑛) 𝑂 (2𝑛଻ log 2𝑛) 𝑂 (2𝑛଻ log 5𝑛) 

6 MLP 𝑂 (𝑛ହ) 𝑂 (𝑛଼) 𝑂 (𝑛଼) 𝑂 (𝑛ଽ) 𝑂 (𝑛ଽ log 𝑛) 𝑂 (2𝑛ଵ଴ log 2𝑛) 𝑂 (2𝑛ଵ଴ log 5𝑛) 

7 BLDC 𝑂 (𝑛ଶ) 𝑂 (𝑛ହ) 𝑂 (𝑛ହ) 𝑂 (𝑛଺) 𝑂 (𝑛଺ log 𝑛) 𝑂 (2𝑛଻ log 2𝑛) 𝑂 (2𝑛଻ log 5𝑛) 

y = 1.0017x + 4E-06
R² = 0.998
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As evident from Table 19, when feature extraction techniques are not employed, classifiers such 
as SVM, KNN, Random Forest (RF), Decision Tree (DT), Softmax Discriminant classifier (SDC), 
Multilayer Perceptron (MLP), and Bayesian LDC (BLDC) exhibit lower levels of computational 
complexity. When utilizing the GWO feature extraction technique, the Decision Tree classifier stands 
out with a computational complexity of 𝑂 (𝑛ଷ log 𝑛)  and achieves a high accuracy of 85.01%. 
However, the BLDC classifier, with a computational complexity of 𝑂 (𝑛଺ log 𝑛) for GWO feature 
extraction, performs poorly when IWO feature selection methods are applied across the classifiers. 
The observed underperformance is linked to outlier problems present in the GWO features. In order 
to improve classifier performance, this study integrates hyperparameter tuning into the IWO feature 
selection method. Particularly, the Decision Tree classifier demonstrates remarkable performance 
with accuracies of 90.07% and 91.57% when utilizing GWO feature extraction in conjunction with 
IWO. These improvements come with a moderate computational complexity represented by 𝑂(2𝑛ହ log 3𝑛) for the Adam Hyperparameter tuning approach and 𝑂(2𝑛ହ log 6𝑛) for the RAdam 
Hyperparameter tuning approach. 

7. Conclusion 

Early diagnosis of lung cancer enhances patient life expectancy. The paper proposes machine 
learning techniques to enhance classifier accuracy and enable early identification using 
histopathological images. The primary aim is to achieve Lung cancer classification with high 
accuracy, while minimizing false positives and false negatives. The study applies adaptive median 
filtering and double threshold segmentation methods to enhance the images. Feature extraction 
involves optimizing techniques like PSO and GWO, followed by statistical analysis. Feature selection 
reduces the number of features to 100 for lung cancer classification. Through the utilization of KL 
Divergence and Invasive Weed Optimization to evaluate the extracted features, the datasets undergo 
classification with various classifiers to achieve elevated accuracy while minimizing false positives 
and false negatives. The classification process entails seven classifiers, coupled with Hyperparameter 
selection using Adam and R-Adam methods, which are compared and analyzed. In specific 
outcomes, the Decision Tree Classifier for GWO features without feature selection achieves an 
accuracy of 85.01%. Mathematical feature selection methods had lower accuracy compared to 
scenarios without feature selection. The results obtained from the Hyperparameter selection methods 
reveal that the combination of GWO-IWO-Decision Tree classifier for R-Adam outperforms all other 
classifiers, achieving an overall accuracy of 91.57% in classifying Benign and Adenocarcinoma 
classes. Future research directions will explore diverse feature selection techniques, optimization 
methodologies, and the integration of deep learning approaches like CNN, DNN, and LSTM to 
further enhance lung cancer classification. 
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