Pre prints.org

Article Not peer-reviewed version

mproving Precipitation
~orecasting in Jilin Province Using
Deep Learning and Gaussian
Noise

Zhang_Yibo , Wang Chengcheng , Wang Pengcheng, Zhang Lu : , Yu Qingbo . , Xu Hui , Wang_Maofa

Posted Date: 5 September 2023
doi: 10.20944/preprints202309.0156.v1

Keywords: deep learning; feature attribution; gaussian noise; LSTM; precipitation prediction; RMSE

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3119743
https://sciprofiles.com/profile/3122700
https://sciprofiles.com/profile/3122701
https://sciprofiles.com/profile/139617

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2023 do0i:10.20944/preprints202309.0156.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Improving Precipitation Forecasting in Jilin Province
Using Deep Learning and Gaussian Noise

Yibo Zhang 14/, Chengcheng Wang '+, Pengcheng Wang 2, Lu Zhang 3*, Qingbo Yu **, Hui Xu !
and Maofa Wang 3

1 Jilin Provincial Meteorological Information and Network Center, Changchun 130000, China

Software Engineering Institute, East China Normal University,Shanghai 200063,China

Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
College of Geo-Exploration Secience and Technology, Jilin University, Changchun 130026,China
Correspondence: zhangl@guet.edu.cn (L.Z.); yuqingbo2004@126.com (Q.Y.)

These authors contributed equally to this work. (Yibo Zhang, Pengcheng Wang, Chengcheng Wang are
co-first authors).

¥ A W N

—+

Abstract: This paper explores the use of different deep learning models for predicting precipitation in 56
meteorological stations in Jilin Province, China. The models used include Stacked-LSTM, Transformer, and
SVR, and Gaussian noise is added to the data to improve their robustness. Results show that the Stacked-LSTM
model performs the best, achieving high prediction accuracy and stability. The study also conducts variable
attribution analysis using LightGBM and finds that temperature, dew point, precipitation in previous days,
and air pressure are the most important factors affecting precipitation prediction, which is consistent with
traditional meteorological theory. The paper provides detailed information on the data processing, model
training, and parameter settings, which can serve as a reference for future precipitation prediction tasks. The
findings suggest that adding Gaussian noise to the dataset can improve the model's generalization ability,
especially for predicting days with zero precipitation. Overall, this study provides useful insights into the
application of deep learning models in precipitation prediction and can contribute to the development of
meteorological forecasting and applications.

Keywords: deep learning; feature attribution; gaussian noise; LSTM; precipitation prediction; RMSE

1. introduction

Precipitation has a significant impact on various aspects such as ecology, environment, and
climate, and accurate prediction of precipitation is therefore of great importance for social and
economic development. However, due to the high randomness and uncertainty of precipitation,
precipitation forecasting has always been a highly challenging issue. In order to improve the accuracy
of precipitation prediction, researchers have been exploring various different forecasting methods
and techniques.

In earlier years, basic linear models such as autoregressive integrated moving average (ARIMA)
and seasonal autoregressive integrated moving average (SARIMA) were used to predict precipitation
in the field of meteorology [7,8]. Due to the multivariate and complex nature of precipitation
prediction, traditional models of this kind have difficulty in exploring the deep-level relationships
between precipitation and variables compared to emerging deep models. Therefore, the use of
traditional linear models has limited effectiveness in predicting long-term precipitation. Machine
learning models and deep learning models have shown great potential in solving the prediction
problem in this field.

In the past few decades, machine learning methods have been applied to the field of meteorology
for precipitation prediction, with the most widely used being the support vector regression (SVR)
model [2—4]. For example, Shen Chiang et al. [11] used the SVR model to predict Taiwan's Rainfall-
Runoff, and compared the results with the traditional Hydrologic Modeling System (HEC-HMS).
They concluded that even with low training sets, the SVR model's predictions were still better than
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those of the traditional HEC-HMS model for different time steps, and that the HEC-HMS model
would require additional effort to collect field data to determine geographically related parameters
such as land use and soil type. Additionally, in the study conducted by Ping-Feng Pai et al. [10], the
idea of recurrent neural networks was introduced, and the recurrent support vector regression (RSVR)
model was used for precipitation prediction. The study showed that RSVR is an effective means of
predicting precipitation.

In recent years, deep learning methods have made significant progress in the field of
precipitation prediction. Poornima Unnikrishnan et al. [13] used a hybrid SSA-ARIMA-ANN model
to forecast daily rainfall on the West Coast of Maharashtra, India, and achieved good prediction
results, demonstrating the promising application of ANN models in precipitation forecasting.
Radhikesh Kumar et al. [5,6] used a deep neural network (DNN) to predict monthly precipitation in
India, injecting new vitality and research methods into the traditional field of precipitation prediction.
Suting Chen et al. [15]. used a long short-term memory (LSTM) model based on recurrent neural
networks (RNNs) to perform precipitation nowcasting, and their study showed that the two-stream
convolutional LSTM achieved state-of-the-art prediction performance on a real-world large-scale
dataset, and it is a more flexible framework that can be conveniently applied to other similar time
series.

Many researchers use time series models, neural network models, and linear models to predict
precipitation. However, these methods usually only consider the characteristics of the time series
itself and ignore the processing of precipitation data. Techniques such as wavelet analysis, fast
Fourier transform, and differencing can add noise to precipitation data, optimize the many zero-
value problems in precipitation data, and enhance the robustness of models, thus better capturing
periodic and trend changes in time series. Methods such as support vector machines and deep
learning can model and predict nonlinear and non-stationary time series with high prediction
accuracy. Therefore, in recent years, some new prediction methods and technologies have emerged.
For example, Vahid Nourani and others combined wavelet analysis with the ANN model [1,12],
transformed the time series model with wavelet transform, and used the ANN model for prediction
[36,37], resulting in a significant improvement in precipitation prediction performance compared to
experiments without wavelet transform. In addition, Weiwei Xiao et al. [14] used the Wavelet Neural
Networks (WNN) model based on wavelet transform to predict precipitation in Taiwan, China. The
experimental results show the potential of neural networks based on wavelet transform technology
in precipitation prediction.

Therefore, researchers can explore the use of different methods and techniques to improve the
accuracy of precipitation forecasts and contribute to the development of the ecological environment
and social economy.

2. Exploratory Data Analysis (EDA)

2.1. General Description of the Study Region

The research area of this paper is located in Jilin Province in northeastern China, and
precipitation information from 56 different meteorological bureaus in cities and counties across Jilin
Province was obtained.Jilin Province, located in the central part of Northeast China, is an important
commodity grain base in China. 80% of annual rainfall is concentrated in summer, and the regional
difference of precipitation is very obvious, which leads to natural disasters such as drought, floods
and so on. The losses caused by meteorological disasters are obviously increased, threatening the
lives and property of the broad masses of the people, and causing great damage to economic, social
development and ecological environment. In recent years, scholars have done a lot of research on the
characteristics of rainfall in Jilin Province [16-21]. The geographical locations of the meteorological
stations obtained in this paper are shown in Figure 1 below.
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Figure 1. Distribution map of meteorological bureaus in Jilin province.

The geographical location of Jilin City is between 125°40' to 127°56' east longitude and 42°31" to
44°40" north latitude. It borders Yanbian Korean Autonomous Prefecture to the east, and is adjacent
to Changchun and Siping to the west, Harbin in Heilongjiang Province to the north, and Baishan,
Tonghua, and Liaoyuan to the south. The total area of the city is 27,120 km?. Jilin City is located in
the transition zone from the Changbai Mountains to the Songnen Plain in the central and eastern part
of Jilin Province. The terrain gradually decreases from southeast to northwest. Jilin City has a
temperate continental monsoon climate with distinct seasons. The study of its precipitation not only
has an important impact on the activities of residents in Jilin region, but also provides important
reference for global precipitation prediction work. This paper used daily precipitation data and 16
daily variables affecting precipitation, including daily average precipitation, daily wind speed, daily
maximum wind speed, daily maximum wind direction, daily maximum wind direction degree, daily
average dew point temperature, daily average temperature, air pressure, and relative humidity, from
56 different meteorological stations in Jilin Province provided by Jilin Meteorological Bureau for
prediction. The maximum time span of the variables is the data from 1960 to 2022. Table 1 shows the
average values of each variable at each station in 2022.
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Table 1. The average values of each variable at each station in 2022. 'g
Station Pre DAWS D10OWS DMWS DMWSD DMWSDD DEWS DEWSD DEWSDD TDMWS TDEWS DADPT DAAT DAAP DARH é'
1 1.1 2.69 2.68 5.55 8.44 234.75 9.64 8.47 232.2 1336.55 1357.33 -2.07 6.37 995.41 60.61 @
2 1.35 3.04 3.02 6 8.38 201.39 9.92 8.19 203.56 1344.01 1349.68 -2.01 6.35 996.14 60.71 —
3 1.2 3.24 3.22 6.45 8.55 208.26 10.21 8.57 214.2 1304.41 1338.58 -1.99 5.86 997.09 62.35 %
4 2.19 3.1 3.1 6.1 9.27 227.92 9.48 9 227.62 1254.33 1269.05 0.41 5.54 997.46 73.94 ;
5 1.75 2.28 2.29 4.65 9.74 205.28 8.8 9.85 214.76 1321.98 1329.42 -0.27 6.43 997.43 66.22 Fﬂ
6 1.83 2.75 2.73 5.31 9.35 216.67 9.19 9.27 221.42 1300.28 1300.85 -1.03 6.44 996.47 63.37 z
7 1.63 2.56 2.57 5.21 6.58 149.27 9.07 6.49 155.05 1326.13 1313.74 -0.8 5.93 997.64 66.3 g
8 0.77 3.2 3.16 6.14 8.87 214.68 10 8.7 215.13 1322.12 1341.15 -1.31 6.42 996.51 63.23 g
9 191 2.85 2.88 5.62 4.84 159.95 9.64 5.23 169.03 1308.81 1356.47 -0.44 6.69 992.07 64.67 g
10 1.61 3.42 3.42 6.83 10.2 217.56 10.21 10.08 223.21 1298.57 1298.48 -0.82 4.87 990.53 71.04 —
11 1.82 3.03 3.02 6.33 10.67 217.21 9.8 10.19 214.53 1292.86 1296.03 -0.11 5.53 994.24 71.45 e
12 1.8 2.98 2.98 6.09 10.26 221.09 9.6 9.98 216.56 1337.54 1329.78 -0.62 6.08 994.24 66.47 %
13 2.42 2.83 2.82 6.12 9.9 218.51 9.88 10 218.94 1355.51 1330.57 0.06 6.13 994.08 69.29 :
14 1.74 3.02 3.03 5.82 10.25 214.58 9.49 10.25 214.24 1290.64 1310.26 -0.83 5.39 990.84 68.51 ®
15 2.55 2.83 2.81 5.71 10.62 218.05 9.56 10.73 221.56 1254.15 1252.03 -0.58 541 982.67 69.76 %
16 2.09 3.24 3.23 6.56 9.8 236.21 10.45 9.45 233.62 1359.67 1350.7 0.3 7.24 1001.12 65.92 g_
17 2.4 2.81 2.81 5.82 10.9 227.77 9.96 10.68 22211 1295.7 1329.68 0.77 7.52 996.2 67.21 w
18 2.13 2.79 2.78 5.5 10.29 225.35 9.68 10.2 221.5 1285.27 1346.75 0.35 711 997.74 66.76 §
19 2.2 3.29 3.29 6.3 10.67 235.25 10.29 10.27 233.44 1268.46 1266.52 -0.29 7.09 991.37 64.39 @
20 2.8 3.04 3.03 6.6 11.19 225.41 10.46 10.96 222.84 1296.7 1308.71 0.53 6.67 994.01 69.92
21 2.01 2.88 2.86 5.8 12 226.58 9.98 11.64 230.65 1323.49 1328.11 -0.24 6.96 986.54 64.36
22 2.73 2.41 2.42 5.24 11.02 219.86 9.16 10.99 221.29 1307.31 1304.11 0.4 6.39 985.55 70.68
23 2.19 2.99 3.01 6.36 11.43 220.93 9.86 11.06 219.83 1299.59 1318.08 0.12 6.66 988.95 67.57 S‘_
24 2.94 2.68 2.69 6.38 9.65 242.3 9.77 9.79 241.38 1353.35 1363.22 -0.22 5.84 982.95 69.57 3
25 2.78 1.94 1.94 4.62 10.59 232.97 8.71 10.62 237.38 1345.81 1324.11 -0.28 6.1 987.75 68.49 8
26 2.16 3.2 3.21 6.4 6.98 168.45 10.48 6.67 166.09 1424.58 1429.96 0.11 6.76 980.2 67.22 ‘§
27 3.51 2.35 2.36 5.16 9.33 229.1 10.01 9.09 229.82 1244.2 1331.55 -1.45 4.93 951.7 68.31 g
28 2.25 2.58 2.58 6.08 9.85 220 9.22 9.68 220.77 1386.59 1343.64 -0.25 4.86 979.83 74.06 =
29 1.99 2.4 2.37 5.33 8.78 230.97 9.42 8.76 22494 1332.33 1363.42 -1.54 4.69 952.59 68.11 g-
30 1.81 2.36 2.35 5.8 10.64 233.27 10.33 10.48 233.35 1362.89 1393.69 -1.14 4.99 9714 69.65 §
31 1.68 1.68 1.68 4.75 9.04 241.8 8.35 9.31 24452 1395.24 1375.6 -2.06 3.81 968.63 70.36 o
2
>
=
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The daily maximum wind direction and the daily average wind direction are non-numeric
values. In the table above, the label-encoding algorithm is used to label and map each different wind
direction value to a unique positive integer value, and all N positive integer values are continuous.

Table 2. Statistics of rainfall datasets.

index count Mean(mm) Standard Precipitation(mm)
deviation(mm) 25th percentile 50th percentile 75th percentile MAX
NWJ 1960-2022  412.82 112.60 334.12 409.43 483.48 797.82
NCJ 1960-2022  566.16 149.33 452.99 563.54 673.47 1057.14
SWJ 1960-2022  510.89 201.78 434.53 536.64 632.89 1023.72
CJ] 1960-2022 571.41 304.27 483.98 621.21 756.13 1485.33
EJ 1960-2022 578.53 168.36 486.75 587.86 680.25 1065.65
SCJ 1960-2022  675.46 155.43 568.55 644.55 769.25 1086.71
SE] 1960-2022 686.27 349.66 585.69 729.22 878.96 1895.42

2.2. Data Cleaning

The dataset used in this paper contains 15 variables related to precipitation in Jilin Province from
1960 to 2022, including (i) precipitation (Pre), (ii) daily average wind speed (DAWS), (iii) daily
average 10-meter wind speed (DA10WS), (iv) daily maximum wind speed (DMWS), (v) daily
maximum wind speed direction (DMWSD), (vi) daily maximum wind speed direction in degrees
(DMWSDD), (vii) daily extreme wind speed (DEWS), (viii) daily extreme wind speed direction
(DEWSD), (ix) daily extreme wind speed direction in degrees (DEWSDD), (x) time of daily maximum
wind speed (TDMWS), (xi) time of daily extreme wind speed (TDEWS), (xii) daily average dew point
temperature (DADPT), (xiii) daily average air temperature (DAAT), (xiv) daily average air pressure
(DAAP), and (xv) daily average relative humidity (DARH). The daily maximum wind speed
direction and daily extreme wind speed direction are represented by characters indicating the
direction, such as east, south, west, and north. In the data processing process, LabelEncoder is used
to encode this data. The LabelEncoder method can encode multiple discrete data points and map n
different discrete data points to a positive integer dataset in the range [0, n-1]. It is commonly used in
deep learning for processing non-numeric variables [22,23].

After non-numeric encoding, missing values in the data are interpolated using cubic
interpolation method [24]. However, this method cannot effectively predict continuously missing
data, causing errors in the interpolation process that will be compounded by errors from subsequent
deep learning. Therefore, for each variable in the training set, continuous missing data segments are
discarded if their length is more than 10% larger than the length of continuous data before and after
the missing segment. For example, for the 13th meteorological station in Jilin Province, data from
January 2 to April 20, 1979 is missing, and to ensure the completeness of the seasonal characteristics
of precipitation, the data from this station for that year is removed from the training data. After the
above processing, a total of 960,081 rows and 17 columns of complete variable data are obtained in
this paper.

The obtained dataset is normalized for all dependent variables during the training process, while
the independent variable of precipitation is not normalized. The normalization of dependent
variables speeds up the computation of the model during operation, while not normalizing the
precipitation variable allows the model to better learn the changing patterns of precipitation.

According to the Markov hypothesis, the current state only depends on the previous few states
of the time series. This can be formalized as:

p(xl,""'xN): p(xl )lip(xn

The joint probability distribution of an N-observation sequence in a first-order Markov chain is

xn---aan) 1)

given by:

do0i:10.20944/preprints202309.0156.v1
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In this study, a joint dependent variable is generated by combining the previous 30 days of
observations for the upcoming predicted days, which is used as the unit for precipitation prediction
and training.
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Figure 2. 30-day consolidated data forecasting process.

3. Research Method

In this paper, LSTM, Transformer, and SVR models were used for precipitation prediction, and
methods such as wavelet transform, Gaussian noise, and Fourier transform were introduced to
preprocess precipitation data and optimize the prediction of zero precipitation.

3.1. SVR Method

SVR is a regression model based on Support Vector Machines (SVM) that can be used to solve
prediction problems with continuous target variables. Unlike traditional regression models, SVR
maps input data to a high-dimensional space using a kernel function, and finds the optimal
hyperplane in that space to fit the data.

The core idea of SVR is to transform the dataset into a high-dimensional space, making the data
linearly separable or approximately linearly separable in the new space. By using a kernel function,
SVR effectively avoids computation problems in high-dimensional space, enabling efficient
regression analysis.

Specifically, the SVR model determines the optimal regression function by minimizing the error
between the training data and the model. During training, the SVR model first maps the training data
to a high-dimensional space, and then uses support vectors to determine the optimal hyperplane.
This hyperplane is the optimal solution that minimizes the prediction error of the model while
maintaining low complexity.

y=f(x)+e 3)

where y is the target variable, x is the independent variable, f(x) is the regression function, and € is
the error term.

SVR typically uses the least squares method to solve the regression equation in order to simplify
the problem. Assuming there are N training samples(xi ,yi), the goal of the least squares method is to
minimize the sum of squared residuals.
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where H is the Hilbert space with the kernel function, and C is a regularization parameter.

y[_f(xi)

— &, otherwise

<€

0, if
yi_f(xi)

©)

To transform nonlinear problems into linear ones, SVR employs kernel functions to map input
data to a high-dimensional space. The kernel function typically takes the form of:

K(xiaxj):¢(xi)'¢(xj) (6)

3.2. Transformer Method

The Transformer is a sequence-to-sequence (seq2seq) model based on attention mechanism,
proposed by Google in 2017 [30], aimed at addressing the shortcomings of traditional recurrent
neural network (RNN) and LSTM models. The Transformer model is widely used in natural language
processing tasks such as machine translation, text generation, and speech recognition.

The Transformer model adopts an Encoder-Decoder architecture, where the input sequence is
processed by multiple layers of encoders, and the output sequence is generated through the decoder.
Each encoder and decoder contains two modules: multi-head attention mechanism and feed-forward
neural network. The attention mechanism is used to extract key information from the input sequence,
while the feed-forward neural network is used to process and transform the extracted information.

The attention mechanism in the Transformer model is based on self-attention, which can
automatically adjust the weights of different positions according to the context relationships in the
input sequence, so as to extract key information. The formula for computing self-attention is as
follows:

N

The Q, K, and V in this formula are the query, key, and value vectors of the input sequence,
respectively, with dk representing the dimensionality of the vectors. This formula can be seen as
calculating the similarity between the query vector Q and all key vectors K, normalizing the results,
and then multiplying the normalized result with the value vector V to obtain the output.

In the Transformer model, there are not only single attention mechanisms but also multi-head
attention mechanisms. Multi-head attention mechanisms can simultaneously extract different aspects
of the input sequence, thereby improving the expressive power and generalization ability of the
model.

In summary, the Transformer model effectively solves the problems of traditional recurrent
neural network models by introducing innovations such as self-attention and multi-head attention
mechanisms, and has become one of the popular models in the field of time-series.

T
Attention(Q,K V)= softmax( oK JV (7)
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Figure 3. LSTM architecture.

3.3. LSTM Method

The LSTM model [25] is a type of deep learning model used to process data with a time-series
structure, such as weather forecasting, speech recognition, and natural language processing. LSTM
is a type of Recurrent Neural Network (RNN) designed to solve the problems of vanishing and
exploding gradients in traditional RNN models.

Unlike traditional RNNs, each neuron in the LSTM model has three gates (a type of neural
network structure used to control the flow of information in and out), namely the input gate, forget
gate, and output gate. These gates allow the network to selectively remember and forget information,
enabling the network to better handle long sequential data.

Specifically, the LSTM model consists of an input layer, an output layer, and one or more LSTM
layers. In the input layer, the LSTM model receives time-series data as input and feeds it into the
LSTM layer. In the LSTM layer, LSTM units generate the current hidden state based on the current
input and the previous hidden state, and pass it to the next time step. This way, the LSTM model can
capture long-term dependencies in the data and pass this information to subsequent time steps.
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In the above figure, sig represents the Sigmoid function:
1
o(x)=— ®)
) 1+e™
The implementation of the forget gate can be represented as:
f=olw, [H,_,x]+b,) o

Cf, =f,*C.,

The forget gate uses Sigmoid activation to decide what information should be forgotten or
retained. It calculates the value of C based on Ht-1 and Xt, where C ranges from 0 to 1. A value of 0
indicates complete forgetfulness, while a value of 1 means complete retention of information.

The implementation of the input gate can be represented as:

.t = O-(VV; '[Ht—lth]+bi)
C=tanh(W,.-[H,_, X, |+b,) (10)

At this step, again, a Sigmoid is used to determine whether the data should be updated. A tanh
layer is then used to create a vector that will be combined with the Sigmoid output to update the cell
state.

The updating process of the cell state is as follows:

C = Cﬁ + C,; =f,*C_ +i,*C, (11)
The implementation of the output gate can be represented as:
0, = O-(VVa ’ [Ht—l’Xt]+b0)
C, = tanh(C, ) (12)
H, =o,* Co,
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The content output by the final output layer is based on the Cell State. First, the content of the
Cell State is compressed to the range of [-1, 1] by the tanh function, and then multiplied with the
output of the Sigmoid function to obtain the final output. During the training process, the LSTM
model uses backpropagation algorithm to update parameters to minimize the loss function. Through
continuous training, the LSTM model can gradually learn the patterns in the data and predict future
results given input data.

In the Jilin region precipitation prediction task, the LSTM model can receive historical
precipitation data as input and predict the precipitation in the future. With appropriate tuning and
training, the LSTM model can achieve good prediction performance.

In this paper employs two commonly used types of LSTM structures, namely Vanilla LSTM
[26,27] and Stacked LSTM [34,35]. Vanilla LSTM is the traditional LSTM model structure, while
Stacked LSTM has additional hidden layers, making the model deeper and more accurately described
as a deep learning technique. The depth of neural networks enables their success in challenging
prediction problems. Additional hidden layers can be added to a multilayer perceptron neural
network, making it deeper. The additional hidden layers are understood as recombining learned
representations from previous layers, and creating new representations at higher levels of abstraction
[28]. For example, from linear to shape to object. A large enough single hidden layer multilayer
perceptron can be used to approximate most functions. Increasing the depth of the network provides
an alternative solution that requires fewer neurons and faster training. Finally, increasing depth is a
representative optimization technique.

c c c c

il

Figure 5. Vanilla LSTM and Stacked LSTM.

11

3. Experiments and Results

In this paper, the dataset of each station was divided, with precipitation data from 1960 to 2020
used as the training set and precipitation data from 2021 used as the test set. To avoid specific
optimizations for the test set during model optimization, which may reduce the robustness of the
model, the final result was evaluated using the latest precipitation data from 2022 as the measure.
Additionally, based on the precipitation data from 56 meteorological stations in 2020, there were a
total of 20,252 days with valid daily precipitation, among which 12,072 days had zero precipitation,
accounting for approximately 59.61%. A large amount of identical zero precipitation data leads to
poor performance of the deep learning model in predicting zero precipitation. Therefore, this article
used the method of adding Gaussian noise to the data to add noise to the data.Rainfall with and
withour added noi seis shown in the figure below:
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Figure 6. Rainfall with and without added Gaussian niose.

Gaussian noise, also known as normal distribution noise, is a commonly used random noise
model. According to the central limit theorem, when a random variable is the sum of many
independent random variables with the same distribution, the random variable will approximate a
normal distribution. Therefore, adding random noise that follows a Gaussian distribution to data can
simulate many noise sources in the real world. Adding Gaussian noise to data is a commonly used
data augmentation technique in deep learning. It can effectively help the model learn more data
features, increase the model's generalization ability, and thus improve the model's accuracy.
Specifically, the formula for adding Gaussian noise to data x is as follows:

f=x+¢€ (13)

The epsilon (€) is a random number that follows a Gaussian distribution with a mean of 0 and a
standard deviation of e. Typically, its value is chosen based on the specific situation, ranging from
0.01 to 0.1. In this article, it is set to 0.1. Its probability distribution function can be represented as:

(14)

After comparing the three models mentioned above, this article found that using the Stacked-
LSTM model for predicting precipitation had the best results. Its parameters included a loss function
of MSE (Mean Square Error), an optimizer of Adam (adaptive moment estimation), a batch size of 1,
and 250 epochs. The specific predicted values and actual values are shown in the following figure:

Figure 7. The precipitation prediction of 56 meteorological stations for 2022.
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The root mean square error (RMSE) is a commonly used metric for measuring the difference
between the predicted values and the true values in regression models. It helps evaluate the accuracy
of the model. The RMSE is calculated by taking the average of the squared differences between the
predicted and true values, and then taking the square root. The mathematical formula for RMSE is:

[ .
RMSE = \/; Zizl (yv.—3.) (15)

The RMSE (Root Mean Square Error) is a common metric to measure the difference between the
predicted and true values in regression models, and it can help us evaluate the accuracy of the model.
A smaller RMSE indicates a smaller gap between the predicted and true values, and a better
predictive capability of the model. In this article, the RMSE for the best model's prediction on 56
meteorological stations is shown in the figure below:

- T
12 4 - 12
- 10
10 A
. -8
£
z 8
g -6
6 - & 4
2
4 4
o
T T T T T T 0

Figure 8. The RMSE of 56 meteorological stations.

4. Conclusions

This paper sused three different models (Stacked-LSTM, Transformer, SVR) to predict
precipitation in 56 meteorological stations in Jilin Province, and improved the robustness of the
models by adding Gaussian noise to the data. The experimental results showed that the Stacked-
LSTM model performed the best in this task, achieving high prediction accuracy and stability. For
the 16 different variables used in this article, the article conducted attribution analysis on the variables
using the LightGBM [31-33] algorithm, and the conclusions are as follows:
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Figure 9. Variable attribution analysis.

This paper explores the use of deep learning models, specifically Stacked-LSTM, Transformer,
and SVR, for predicting precipitation in 56 weather stations in Jilin province. Gaussian noise is added
to the data to improve the robustness of the models. The results show that Stacked-LSTM performs
the best, achieving high prediction accuracy and stability.

The importance of different variables in the prediction process was analyzed using the
LightGBM algorithm for variable attribution analysis. The findings show that the importance of
different variables is consistent with traditional meteorological experience and theory. The most
influential factors include daily dew point temperature, daily air temperature, previous precipitation,
and air pressure. Dew point temperature and air temperature ensure the generation of rainwater in
the atmosphere and are crucial factors for predicting the likelihood of precipitation. Previous
precipitation provides important trends and directions for predicting precipitation, while air
pressure affects whether water vapor in the air will rise to a sufficient height to generate precipitation.

Furthermore, the article provides detailed information on the training process, including data
preprocessing and model parameter settings, which can be useful for future precipitation prediction
tasks. Additionally, the article finds that adding Gaussian noise can improve the model's
generalization ability for datasets with many zero precipitation days, leading to better prediction
results.

In conclusion, this article verifies the performance of different models in precipitation prediction
tasks and provides a reference for related research fields. The use of more advanced data
preprocessing techniques and model optimization methods can further improve model performance
and applicability, promoting the development of meteorological prediction and applications in the
future.
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