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Abstract: This paper explores the use of different deep learning models for predicting precipitation in 56 

meteorological stations in Jilin Province, China. The models used include Stacked-LSTM, Transformer, and 

SVR, and Gaussian noise is added to the data to improve their robustness. Results show that the Stacked-LSTM 

model performs the best, achieving high prediction accuracy and stability. The study also conducts variable 

attribution analysis using LightGBM and finds that temperature, dew point, precipitation in previous days, 

and air pressure are the most important factors affecting precipitation prediction, which is consistent with 

traditional meteorological theory. The paper provides detailed information on the data processing, model 

training, and parameter settings, which can serve as a reference for future precipitation prediction tasks. The 

findings suggest that adding Gaussian noise to the dataset can improve the model's generalization ability, 

especially for predicting days with zero precipitation. Overall, this study provides useful insights into the 

application of deep learning models in precipitation prediction and can contribute to the development of 

meteorological forecasting and applications. 

Keywords: deep learning; feature attribution; gaussian noise; LSTM; precipitation prediction; RMSE 

 

1. introduction 

Precipitation has a significant impact on various aspects such as ecology, environment, and 

climate, and accurate prediction of precipitation is therefore of great importance for social and 

economic development. However, due to the high randomness and uncertainty of precipitation, 

precipitation forecasting has always been a highly challenging issue. In order to improve the accuracy 

of precipitation prediction, researchers have been exploring various different forecasting methods 

and techniques. 

In earlier years, basic linear models such as autoregressive integrated moving average (ARIMA) 

and seasonal autoregressive integrated moving average (SARIMA) were used to predict precipitation 

in the field of meteorology [7,8]. Due to the multivariate and complex nature of precipitation 

prediction, traditional models of this kind have difficulty in exploring the deep-level relationships 

between precipitation and variables compared to emerging deep models. Therefore, the use of 

traditional linear models has limited effectiveness in predicting long-term precipitation. Machine 

learning models and deep learning models have shown great potential in solving the prediction 

problem in this field. 

In the past few decades, machine learning methods have been applied to the field of meteorology 

for precipitation prediction, with the most widely used being the support vector regression (SVR) 

model [2–4]. For example, Shen Chiang et al. [11] used the SVR model to predict Taiwan's Rainfall-

Runoff, and compared the results with the traditional Hydrologic Modeling System (HEC-HMS). 

They concluded that even with low training sets, the SVR model's predictions were still better than 
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those of the traditional HEC-HMS model for different time steps, and that the HEC-HMS model 

would require additional effort to collect field data to determine geographically related parameters 

such as land use and soil type. Additionally, in the study conducted by Ping-Feng Pai et al. [10], the 

idea of recurrent neural networks was introduced, and the recurrent support vector regression (RSVR) 

model was used for precipitation prediction. The study showed that RSVR is an effective means of 

predicting precipitation. 

In recent years, deep learning methods have made significant progress in the field of 

precipitation prediction. Poornima Unnikrishnan et al. [13] used a hybrid SSA-ARIMA-ANN model 

to forecast daily rainfall on the West Coast of Maharashtra, India, and achieved good prediction 

results, demonstrating the promising application of ANN models in precipitation forecasting. 

Radhikesh Kumar et al. [5,6] used a deep neural network (DNN) to predict monthly precipitation in 

India, injecting new vitality and research methods into the traditional field of precipitation prediction. 

Suting Chen et al. [15]. used a long short-term memory (LSTM) model based on recurrent neural 

networks (RNNs) to perform precipitation nowcasting, and their study showed that the two-stream 

convolutional LSTM achieved state-of-the-art prediction performance on a real-world large-scale 

dataset, and it is a more flexible framework that can be conveniently applied to other similar time 

series. 

Many researchers use time series models, neural network models, and linear models to predict 

precipitation. However, these methods usually only consider the characteristics of the time series 

itself and ignore the processing of precipitation data. Techniques such as wavelet analysis, fast 

Fourier transform, and differencing can add noise to precipitation data, optimize the many zero-

value problems in precipitation data, and enhance the robustness of models, thus better capturing 

periodic and trend changes in time series. Methods such as support vector machines and deep 

learning can model and predict nonlinear and non-stationary time series with high prediction 

accuracy. Therefore, in recent years, some new prediction methods and technologies have emerged. 

For example, Vahid Nourani and others combined wavelet analysis with the ANN model [1,12], 

transformed the time series model with wavelet transform, and used the ANN model for prediction 

[36,37], resulting in a significant improvement in precipitation prediction performance compared to 

experiments without wavelet transform. In addition, Weiwei Xiao et al. [14] used the Wavelet Neural 

Networks (WNN) model based on wavelet transform to predict precipitation in Taiwan, China. The 

experimental results show the potential of neural networks based on wavelet transform technology 

in precipitation prediction. 

Therefore, researchers can explore the use of different methods and techniques to improve the 

accuracy of precipitation forecasts and contribute to the development of the ecological environment 

and social economy. 

2. Exploratory Data Analysis (EDA) 

2.1. General Description of the Study Region 

The research area of this paper is located in Jilin Province in northeastern China, and 

precipitation information from 56 different meteorological bureaus in cities and counties across Jilin 

Province was obtained.Jilin Province, located in the central part of Northeast China, is an important 

commodity grain base in China. 80% of annual rainfall is concentrated in summer, and the regional 

difference of precipitation is very obvious, which leads to natural disasters such as drought, floods 

and so on. The losses caused by meteorological disasters are obviously increased, threatening the 

lives and property of the broad masses of the people, and causing great damage to economic, social 

development and ecological environment. In recent years, scholars have done a lot of research on the 

characteristics of rainfall in Jilin Province [16–21]. The geographical locations of the meteorological 

stations obtained in this paper are shown in Figure 1 below. 
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Figure 1. Distribution map of meteorological bureaus in Jilin province. 

The geographical location of Jilin City is between 125°40' to 127°56' east longitude and 42°31' to 

44°40' north latitude. It borders Yanbian Korean Autonomous Prefecture to the east, and is adjacent 

to Changchun and Siping to the west, Harbin in Heilongjiang Province to the north, and Baishan, 

Tonghua, and Liaoyuan to the south. The total area of the city is 27,120 km2. Jilin City is located in 

the transition zone from the Changbai Mountains to the Songnen Plain in the central and eastern part 

of Jilin Province. The terrain gradually decreases from southeast to northwest. Jilin City has a 

temperate continental monsoon climate with distinct seasons. The study of its precipitation not only 

has an important impact on the activities of residents in Jilin region, but also provides important 

reference for global precipitation prediction work. This paper used daily precipitation data and 16 

daily variables affecting precipitation, including daily average precipitation, daily wind speed, daily 

maximum wind speed, daily maximum wind direction, daily maximum wind direction degree, daily 

average dew point temperature, daily average temperature, air pressure, and relative humidity, from 

56 different meteorological stations in Jilin Province provided by Jilin Meteorological Bureau for 

prediction. The maximum time span of the variables is the data from 1960 to 2022. Table 1 shows the 

average values of each variable at each station in 2022.
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Table 1. The average values of each variable at each station in 2022. 

Station Pre DAWS D10WS DMWS DMWSD DMWSDD DEWS DEWSD DEWSDD TDMWS TDEWS DADPT DAAT DAAP DARH 

1 1.1 2.69 2.68 5.55 8.44 234.75 9.64 8.47 232.2 1336.55 1357.33 -2.07 6.37 995.41 60.61 

2 1.35 3.04 3.02 6 8.38 201.39 9.92 8.19 203.56 1344.01 1349.68 -2.01 6.35 996.14 60.71 

3 1.2 3.24 3.22 6.45 8.55 208.26 10.21 8.57 214.2 1304.41 1338.58 -1.99 5.86 997.09 62.35 

4 2.19 3.1 3.1 6.1 9.27 227.92 9.48 9 227.62 1254.33 1269.05 0.41 5.54 997.46 73.94 

5 1.75 2.28 2.29 4.65 9.74 205.28 8.8 9.85 214.76 1321.98 1329.42 -0.27 6.43 997.43 66.22 

6 1.83 2.75 2.73 5.31 9.35 216.67 9.19 9.27 221.42 1300.28 1300.85 -1.03 6.44 996.47 63.37 

7 1.63 2.56 2.57 5.21 6.58 149.27 9.07 6.49 155.05 1326.13 1313.74 -0.8 5.93 997.64 66.3 

8 0.77 3.2 3.16 6.14 8.87 214.68 10 8.7 215.13 1322.12 1341.15 -1.31 6.42 996.51 63.23 

9 1.91 2.85 2.88 5.62 4.84 159.95 9.64 5.23 169.03 1308.81 1356.47 -0.44 6.69 992.07 64.67 

10 1.61 3.42 3.42 6.83 10.2 217.56 10.21 10.08 223.21 1298.57 1298.48 -0.82 4.87 990.53 71.04 

11 1.82 3.03 3.02 6.33 10.67 217.21 9.8 10.19 214.53 1292.86 1296.03 -0.11 5.53 994.24 71.45 

12 1.8 2.98 2.98 6.09 10.26 221.09 9.6 9.98 216.56 1337.54 1329.78 -0.62 6.08 994.24 66.47 

13 2.42 2.83 2.82 6.12 9.9 218.51 9.88 10 218.94 1355.51 1330.57 0.06 6.13 994.08 69.29 

14 1.74 3.02 3.03 5.82 10.25 214.58 9.49 10.25 214.24 1290.64 1310.26 -0.83 5.39 990.84 68.51 

15 2.55 2.83 2.81 5.71 10.62 218.05 9.56 10.73 221.56 1254.15 1252.03 -0.58 5.41 982.67 69.76 

16 2.09 3.24 3.23 6.56 9.8 236.21 10.45 9.45 233.62 1359.67 1350.7 0.3 7.24 1001.12 65.92 

17 2.4 2.81 2.81 5.82 10.9 227.77 9.96 10.68 222.11 1295.7 1329.68 0.77 7.52 996.2 67.21 

18 2.13 2.79 2.78 5.5 10.29 225.35 9.68 10.2 221.5 1285.27 1346.75 0.35 7.11 997.74 66.76 

19 2.2 3.29 3.29 6.3 10.67 235.25 10.29 10.27 233.44 1268.46 1266.52 -0.29 7.09 991.37 64.39 

20 2.8 3.04 3.03 6.6 11.19 225.41 10.46 10.96 222.84 1296.7 1308.71 0.53 6.67 994.01 69.92 

21 2.01 2.88 2.86 5.8 12 226.58 9.98 11.64 230.65 1323.49 1328.11 -0.24 6.96 986.54 64.36 

22 2.73 2.41 2.42 5.24 11.02 219.86 9.16 10.99 221.29 1307.31 1304.11 0.4 6.39 985.55 70.68 

23 2.19 2.99 3.01 6.36 11.43 220.93 9.86 11.06 219.83 1299.59 1318.08 0.12 6.66 988.95 67.57 

24 2.94 2.68 2.69 6.38 9.65 242.3 9.77 9.79 241.38 1353.35 1363.22 -0.22 5.84 982.95 69.57 

25 2.78 1.94 1.94 4.62 10.59 232.97 8.71 10.62 237.38 1345.81 1324.11 -0.28 6.1 987.75 68.49 

26 2.16 3.2 3.21 6.4 6.98 168.45 10.48 6.67 166.09 1424.58 1429.96 0.11 6.76 980.2 67.22 

27 3.51 2.35 2.36 5.16 9.33 229.1 10.01 9.09 229.82 1244.2 1331.55 -1.45 4.93 951.7 68.31 

28 2.25 2.58 2.58 6.08 9.85 220 9.22 9.68 220.77 1386.59 1343.64 -0.25 4.86 979.83 74.06 

29 1.99 2.4 2.37 5.33 8.78 230.97 9.42 8.76 224.94 1332.33 1363.42 -1.54 4.69 952.59 68.11 

30 1.81 2.36 2.35 5.8 10.64 233.27 10.33 10.48 233.35 1362.89 1393.69 -1.14 4.99 971.4 69.65 

31 1.68 1.68 1.68 4.75 9.04 241.8 8.35 9.31 244.52 1395.24 1375.6 -2.06 3.81 968.63 70.36 
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32 1.78 1.92 1.93 4.9 7.45 216.15 8.46 7.36 214.41 1401.61 1407.38 -0.95 5.04 985.25 69.91 

33 2.83 2.19 2.19 5.25 10.16 243.55 9.27 10.41 239.23 1318.23 1316.88 0.25 6.37 985.35 70.99 

34 2.82 2.69 2.69 6.7 10.84 221.17 9.98 10.44 221.06 1360.42 1365.24 -0.08 4.99 974.54 74.89 

35 2.6 2.37 2.38 6 10.01 232.46 9.62 10.11 232.87 1399.21 1377.09 -0.32 5.17 975.44 72.27 

36 3.19 2.17 2.15 4.84 9.66 230.74 8.41 9.76 224.36 1343.46 1351.79 -0.17 6.32 974.88 67.84 

37 3.17 2.34 2.33 5.39 6.54 257.53 8.96 6.93 238.71 1312.6 1360.21 0.1 6.15 972.33 70.16 

38 2.55 1.85 1.85 4.96 11.2 215.7 8.81 11.36 219.6 1330.82 1350.26 0.21 5.39 984.26 74.37 

39 2.8 2.46 2.45 6.15 10.28 215.6 9.47 10.3 221.06 1351.18 1363.72 0.12 5.33 979.06 73.33 

40 3.18 1.7 1.7 4.53 10.55 240.4 8.55 11.15 242.74 1355.57 1364.39 -1.36 3.99 948.44 72.93 

41 3.46 1.85 1.86 5.61 9.9 216.92 8.92 9.74 214.93 1359.03 1349.73 -1.09 4.02 947.65 74 

42 3.23 2.45 2.44 5.38 10.48 206.3 9.36 10.88 214.81 1315.28 1330.69 -1.98 4.36 924.81 67.85 

43 2.64 2.56 2.57 5.64 10.78 254.66 9.85 10.87 245.29 1267.1 1297.85 -2.3 3.68 929.31 70.71 

44 1.77 2.06 2.08 5.08 9.38 224.68 9.05 9.7 247.56 1366.9 1345.5 -1.56 5.99 958.23 63.75 

45 10 7.67 7.64 14.03 11.74 228.95 20.52 11.24 222.34 1372.44 1399.55 3.06 6.77 738.99 82.3 

46 3.02 1.88 1.89 5.12 10.83 234.18 8.99 10.92 239.51 1359.45 1387.96 -1.88 3.75 929.81 71.08 

47 1.78 2.24 2.24 5.43 8.91 220.24 9.23 9.2 223.2 1394.16 1370.45 -0.29 6.57 986.05 66.51 

48 2.1 3.65 3.64 8.09 7.73 214.05 11.57 7.73 214.19 1406.64 1394.05 1.24 6.75 1010.12 71.95 

49 1.64 3.09 3.05 7.41 9.3 204.13 11.18 9.33 207.43 1457.41 1444.04 -0.79 6.52 984.2 64.72 

50 1.95 2.74 2.74 6.53 8.32 214.5 10.61 7.96 213.9 1400.31 1405.3 -0.18 6.76 998.1 65.58 

51 2.66 1.71 1.7 3.99 9.33 181.06 7.49 9.02 187.51 1374.46 1355.33 0.31 5.4 971.18 75.23 

52 2.47 1.8 1.81 4.69 9.06 197.42 8.16 8.99 204.79 1354.55 1359.28 0.04 6.32 968.35 69.18 

53 3.11 1.68 1.67 4.96 11.69 220.01 8.55 11.24 227.46 1390.85 1414.32 -0.72 4.8 954.38 72.64 

54 2.9 1.72 1.73 4.31 8.86 181.37 7.27 8.69 174.79 1410.86 1387.27 0.41 5.42 971.32 75.27 

55 3.19 1.87 1.87 4.66 6.71 164.65 7.83 7.41 191.28 1443.22 1459.31 1.69 7.53 989.55 71 

56 2.59 2.05 2.05 5.28 5.51 242.9 9.23 5.73 219.55 1371.58 1394.56 -2.12 3.4 924.45 71.88 
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The daily maximum wind direction and the daily average wind direction are non-numeric 

values. In the table above, the label-encoding algorithm is used to label and map each different wind 

direction value to a unique positive integer value, and all N positive integer values are continuous. 

Table 2. Statistics of rainfall datasets. 

index count Mean(mm) 
Standard  

deviation(mm) 

Precipitation(mm) 

25th percentile 50th percentile 75th percentile MAX 

NWJ 1960-2022 412.82  112.60  334.12  409.43  483.48  797.82 

NCJ 1960-2022 566.16  149.33  452.99  563.54  673.47  1057.14 

SWJ 1960-2022 510.89  201.78  434.53  536.64  632.89  1023.72 

CJ 1960-2022 571.41  304.27  483.98  621.21  756.13  1485.33 

EJ 1960-2022 578.53  168.36  486.75  587.86  680.25  1065.65 

SCJ 1960-2022 675.46  155.43  568.55  644.55  769.25  1086.71 

SEJ 1960-2022 686.27  349.66  585.69  729.22  878.96  1895.42 

2.2. Data Cleaning 

The dataset used in this paper contains 15 variables related to precipitation in Jilin Province from 

1960 to 2022, including (i) precipitation (Pre), (ii) daily average wind speed (DAWS), (iii) daily 

average 10-meter wind speed (DA10WS), (iv) daily maximum wind speed (DMWS), (v) daily 

maximum wind speed direction (DMWSD), (vi) daily maximum wind speed direction in degrees 

(DMWSDD), (vii) daily extreme wind speed (DEWS), (viii) daily extreme wind speed direction 

(DEWSD), (ix) daily extreme wind speed direction in degrees (DEWSDD), (x) time of daily maximum 

wind speed (TDMWS), (xi) time of daily extreme wind speed (TDEWS), (xii) daily average dew point 

temperature (DADPT), (xiii) daily average air temperature (DAAT), (xiv) daily average air pressure 

(DAAP), and (xv) daily average relative humidity (DARH). The daily maximum wind speed 

direction and daily extreme wind speed direction are represented by characters indicating the 

direction, such as east, south, west, and north. In the data processing process, LabelEncoder is used 

to encode this data. The LabelEncoder method can encode multiple discrete data points and map n 

different discrete data points to a positive integer dataset in the range [0, n-1]. It is commonly used in 

deep learning for processing non-numeric variables [22,23]. 

After non-numeric encoding, missing values in the data are interpolated using cubic 

interpolation method [24]. However, this method cannot effectively predict continuously missing 

data, causing errors in the interpolation process that will be compounded by errors from subsequent 

deep learning. Therefore, for each variable in the training set, continuous missing data segments are 

discarded if their length is more than 10% larger than the length of continuous data before and after 

the missing segment. For example, for the 13th meteorological station in Jilin Province, data from 

January 2 to April 20, 1979 is missing, and to ensure the completeness of the seasonal characteristics 

of precipitation, the data from this station for that year is removed from the training data. After the 

above processing, a total of 960,081 rows and 17 columns of complete variable data are obtained in 

this paper. 

The obtained dataset is normalized for all dependent variables during the training process, while 

the independent variable of precipitation is not normalized. The normalization of dependent 

variables speeds up the computation of the model during operation, while not normalizing the 

precipitation variable allows the model to better learn the changing patterns of precipitation. 

According to the Markov hypothesis, the current state only depends on the previous few states 

of the time series. This can be formalized as: 

( ) ( ) ( )∏
=

−=
N

n

nnN xxxpxpxxp
2

111,1 ,...,...,  (1) 

The joint probability distribution of an N-observation sequence in a first-order Markov chain is 

given by: 
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( ) ( ) ( )
=

−=
N

n

nnN xxxpxpxxp
2

111,1 ,...,...,  (2)

In this study, a joint dependent variable is generated by combining the previous 30 days of 

observations for the upcoming predicted days, which is used as the unit for precipitation prediction 

and training. 

 

Figure 2. 30-day consolidated data forecasting process. 

3. Research Method 

In this paper, LSTM, Transformer, and SVR models were used for precipitation prediction, and 

methods such as wavelet transform, Gaussian noise, and Fourier transform were introduced to 

preprocess precipitation data and optimize the prediction of zero precipitation. 

3.1. SVR Method 

SVR is a regression model based on Support Vector Machines (SVM) that can be used to solve 

prediction problems with continuous target variables. Unlike traditional regression models, SVR 

maps input data to a high-dimensional space using a kernel function, and finds the optimal 

hyperplane in that space to fit the data. 

The core idea of SVR is to transform the dataset into a high-dimensional space, making the data 

linearly separable or approximately linearly separable in the new space. By using a kernel function, 

SVR effectively avoids computation problems in high-dimensional space, enabling efficient 

regression analysis. 

Specifically, the SVR model determines the optimal regression function by minimizing the error 

between the training data and the model. During training, the SVR model first maps the training data 

to a high-dimensional space, and then uses support vectors to determine the optimal hyperplane. 

This hyperplane is the optimal solution that minimizes the prediction error of the model while 

maintaining low complexity. 

( ) ε+= xfy  (3) 

where y is the target variable, x is the independent variable, f(x) is the regression function, and ϵ is 

the error term. 

SVR typically uses the least squares method to solve the regression equation in order to simplify 

the problem. Assuming there are N training samples(xi ,yi), the goal of the least squares method is to 

minimize the sum of squared residuals. 
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( )( )ii

N

iHHf xfylCf −+  =∈ 1

2

2
1min ε

 
(4) 

where H is the Hilbert space with the kernel function, and C is a regularization parameter. 

( )( )
( )

( )





−−

≤−
=−

otherwisexfy

xfyif
xfyl

ii

ii

ii ,

,0

ε

ε
ε

 
(5) 

To transform nonlinear problems into linear ones, SVR employs kernel functions to map input 

data to a high-dimensional space. The kernel function typically takes the form of: 

( ) ( ) ( )
jiji xxxxK φφ ⋅=,  (6) 

3.2. Transformer Method 

The Transformer is a sequence-to-sequence (seq2seq) model based on attention mechanism, 

proposed by Google in 2017 [30], aimed at addressing the shortcomings of traditional recurrent 

neural network (RNN) and LSTM models. The Transformer model is widely used in natural language 

processing tasks such as machine translation, text generation, and speech recognition. 

The Transformer model adopts an Encoder-Decoder architecture, where the input sequence is 

processed by multiple layers of encoders, and the output sequence is generated through the decoder. 

Each encoder and decoder contains two modules: multi-head attention mechanism and feed-forward 

neural network. The attention mechanism is used to extract key information from the input sequence, 

while the feed-forward neural network is used to process and transform the extracted information. 

The attention mechanism in the Transformer model is based on self-attention, which can 

automatically adjust the weights of different positions according to the context relationships in the 

input sequence, so as to extract key information. The formula for computing self-attention is as 

follows: 

( ) V
d

QK
VKQAttention

k

T











= softmax,,  (7) 

The Q, K, and V in this formula are the query, key, and value vectors of the input sequence, 

respectively, with dk representing the dimensionality of the vectors. This formula can be seen as 

calculating the similarity between the query vector Q and all key vectors K, normalizing the results, 

and then multiplying the normalized result with the value vector V to obtain the output. 

In the Transformer model, there are not only single attention mechanisms but also multi-head 

attention mechanisms. Multi-head attention mechanisms can simultaneously extract different aspects 

of the input sequence, thereby improving the expressive power and generalization ability of the 

model. 

In summary, the Transformer model effectively solves the problems of traditional recurrent 

neural network models by introducing innovations such as self-attention and multi-head attention 

mechanisms, and has become one of the popular models in the field of time-series. 
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Figure 3. LSTM architecture. 

3.3. LSTM Method 

The LSTM model [25] is a type of deep learning model used to process data with a time-series 

structure, such as weather forecasting, speech recognition, and natural language processing. LSTM 

is a type of Recurrent Neural Network (RNN) designed to solve the problems of vanishing and 

exploding gradients in traditional RNN models. 

Unlike traditional RNNs, each neuron in the LSTM model has three gates (a type of neural 

network structure used to control the flow of information in and out), namely the input gate, forget 

gate, and output gate. These gates allow the network to selectively remember and forget information, 

enabling the network to better handle long sequential data. 

Specifically, the LSTM model consists of an input layer, an output layer, and one or more LSTM 

layers. In the input layer, the LSTM model receives time-series data as input and feeds it into the 

LSTM layer. In the LSTM layer, LSTM units generate the current hidden state based on the current 

input and the previous hidden state, and pass it to the next time step. This way, the LSTM model can 

capture long-term dependencies in the data and pass this information to subsequent time steps. 
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Figure 4. LSTM architecture. 

In the above figure, sig represents the Sigmoid function: 

( )
xe

x
−+

=
1

1
σ  (8)

The implementation of the forget gate can be represented as: 

[ ]( )
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1,
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(9)

The forget gate uses Sigmoid activation to decide what information should be forgotten or 

retained. It calculates the value of C based on Ht-1 and Xt, where C ranges from 0 to 1. A value of 0 

indicates complete forgetfulness, while a value of 1 means complete retention of information. 

The implementation of the input gate can be represented as: 

[ ]( )

[ ]( )
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CttC

ittit
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t

ˆ
,tanhˆ

,

1

1

∗=

+⋅=

+⋅=

−

−σ

 

(10) 

At this step, again, a Sigmoid is used to determine whether the data should be updated. A tanh 

layer is then used to create a vector that will be combined with the Sigmoid output to update the cell 

state. 

The updating process of the cell state is as follows: 

ttttift CiCfCCC
tt

ˆ
1 ∗+∗=+= −  

(11)

The implementation of the output gate can be represented as: 

[ ]( )
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=

+⋅= −
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,1σ

 

(12)
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The content output by the final output layer is based on the Cell State. First, the content of the 

Cell State is compressed to the range of [-1, 1] by the tanh function, and then multiplied with the 

output of the Sigmoid function to obtain the final output. During the training process, the LSTM 

model uses backpropagation algorithm to update parameters to minimize the loss function. Through 

continuous training, the LSTM model can gradually learn the patterns in the data and predict future 

results given input data. 

In the Jilin region precipitation prediction task, the LSTM model can receive historical 

precipitation data as input and predict the precipitation in the future. With appropriate tuning and 

training, the LSTM model can achieve good prediction performance. 

In this paper employs two commonly used types of LSTM structures, namely Vanilla LSTM 

[26,27] and Stacked LSTM [34,35]. Vanilla LSTM is the traditional LSTM model structure, while 

Stacked LSTM has additional hidden layers, making the model deeper and more accurately described 

as a deep learning technique. The depth of neural networks enables their success in challenging 

prediction problems. Additional hidden layers can be added to a multilayer perceptron neural 

network, making it deeper. The additional hidden layers are understood as recombining learned 

representations from previous layers, and creating new representations at higher levels of abstraction 

[28]. For example, from linear to shape to object. A large enough single hidden layer multilayer 

perceptron can be used to approximate most functions. Increasing the depth of the network provides 

an alternative solution that requires fewer neurons and faster training. Finally, increasing depth is a 

representative optimization technique. 

  

Figure 5. Vanilla LSTM and Stacked LSTM. 

3. Experiments and Results 

In this paper, the dataset of each station was divided, with precipitation data from 1960 to 2020 

used as the training set and precipitation data from 2021 used as the test set. To avoid specific 

optimizations for the test set during model optimization, which may reduce the robustness of the 

model, the final result was evaluated using the latest precipitation data from 2022 as the measure. 

Additionally, based on the precipitation data from 56 meteorological stations in 2020, there were a 

total of 20,252 days with valid daily precipitation, among which 12,072 days had zero precipitation, 

accounting for approximately 59.61%. A large amount of identical zero precipitation data leads to 

poor performance of the deep learning model in predicting zero precipitation. Therefore, this article 

used the method of adding Gaussian noise to the data to add noise to the data.Rainfall with and 

withour added noi seis shown in the figure below: 
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Figure 6. Rainfall with and without added Gaussian niose. 

Gaussian noise, also known as normal distribution noise, is a commonly used random noise 

model. According to the central limit theorem, when a random variable is the sum of many 

independent random variables with the same distribution, the random variable will approximate a 

normal distribution. Therefore, adding random noise that follows a Gaussian distribution to data can 

simulate many noise sources in the real world. Adding Gaussian noise to data is a commonly used 

data augmentation technique in deep learning. It can effectively help the model learn more data 

features, increase the model's generalization ability, and thus improve the model's accuracy. 

Specifically, the formula for adding Gaussian noise to data x is as follows: 

ε+= xx̂  (13)

The epsilon (ϵ) is a random number that follows a Gaussian distribution with a mean of 0 and a 

standard deviation of ϵ. Typically, its value is chosen based on the specific situation, ranging from 

0.01 to 0.1. In this article, it is set to 0.1. Its probability distribution function can be represented as: 

( ) 2

2

2

2
1

σ

ε

πσ
ε

−

= ep

 

(14)

After comparing the three models mentioned above, this article found that using the Stacked-

LSTM model for predicting precipitation had the best results. Its parameters included a loss function 

of MSE (Mean Square Error), an optimizer of Adam (adaptive moment estimation), a batch size of 1, 

and 250 epochs. The specific predicted values and actual values are shown in the following figure: 

 

Figure 7. The precipitation prediction of 56 meteorological stations for 2022. 
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The root mean square error (RMSE) is a commonly used metric for measuring the difference 

between the predicted values and the true values in regression models. It helps evaluate the accuracy 

of the model. The RMSE is calculated by taking the average of the squared differences between the 

predicted and true values, and then taking the square root. The mathematical formula for RMSE is: 

( ) =
−=

n

i ii yy
n

RMSE
1

2ˆ1

 

(15)

The RMSE (Root Mean Square Error) is a common metric to measure the difference between the 

predicted and true values in regression models, and it can help us evaluate the accuracy of the model. 

A smaller RMSE indicates a smaller gap between the predicted and true values, and a better 

predictive capability of the model. In this article, the RMSE for the best model's prediction on 56 

meteorological stations is shown in the figure below: 

 

Figure 8. The RMSE of 56 meteorological stations. 

4. Conclusions 

This paper sused three different models (Stacked-LSTM, Transformer, SVR) to predict 

precipitation in 56 meteorological stations in Jilin Province, and improved the robustness of the 

models by adding Gaussian noise to the data. The experimental results showed that the Stacked-

LSTM model performed the best in this task, achieving high prediction accuracy and stability. For 

the 16 different variables used in this article, the article conducted attribution analysis on the variables 

using the LightGBM [31–33] algorithm, and the conclusions are as follows: 
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Figure 9. Variable attribution analysis. 

This paper explores the use of deep learning models, specifically Stacked-LSTM, Transformer, 

and SVR, for predicting precipitation in 56 weather stations in Jilin province. Gaussian noise is added 

to the data to improve the robustness of the models. The results show that Stacked-LSTM performs 

the best, achieving high prediction accuracy and stability. 

The importance of different variables in the prediction process was analyzed using the 

LightGBM algorithm for variable attribution analysis. The findings show that the importance of 

different variables is consistent with traditional meteorological experience and theory. The most 

influential factors include daily dew point temperature, daily air temperature, previous precipitation, 

and air pressure. Dew point temperature and air temperature ensure the generation of rainwater in 

the atmosphere and are crucial factors for predicting the likelihood of precipitation. Previous 

precipitation provides important trends and directions for predicting precipitation, while air 

pressure affects whether water vapor in the air will rise to a sufficient height to generate precipitation. 

Furthermore, the article provides detailed information on the training process, including data 

preprocessing and model parameter settings, which can be useful for future precipitation prediction 

tasks. Additionally, the article finds that adding Gaussian noise can improve the model's 

generalization ability for datasets with many zero precipitation days, leading to better prediction 

results. 

In conclusion, this article verifies the performance of different models in precipitation prediction 

tasks and provides a reference for related research fields. The use of more advanced data 

preprocessing techniques and model optimization methods can further improve model performance 

and applicability, promoting the development of meteorological prediction and applications in the 

future. 
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