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Abstract: Examining the clustering characteristics and fluctuations within urban areas during peak 

hours through the lens of bike-sharing is of utmost importance in the optimization of bike-sharing 

systems and urban transportation planning. This investigation adopts the principles of urban spatial 

interaction network construction and employs streets as the fundamental units of analysis to model 

bike-sharing activities during morning and evening peak hours within Beijing's six central districts. 

Subsequent to this, a comprehensive analysis of the network's structural attributes was carried out. 

A walktrap method rooted in modularity analysis was introduced to discern and scrutinize the 

clustering patterns and characteristics of communities within the network across different temporal 

intervals. Empirical findings reveal a predominant usage pattern of shared bicycles for short-

distance travel during both morning and evening peak hours. Notably, distinctive community 

structures manifest during these periods, characterized by two large communities and multiple 

smaller ones during the morning peak, while the evening peak showcases a single large community 

alongside several medium-sized and smaller ones. Moreover, the extended interaction radius points 

to an expanded geographic range of interactions among streets. These findings bear significant 

implications for the management of urban transportation, bike-sharing enterprises, and urban 

residents, proffering valuable insights for the optimization of bike-sharing schemes and 

transportation strategies.  

Keywords: spatial interaction network; community partitioning; bike-sharing; urban mobility; 

Walktrap method 

 

1. Introduction 

In recent years, urban bike-sharing has undergone significant development and has emerged as 

a prominent sustainable and convenient mode of transportation in cities globally [1]. The rapid 

expansion of urban bike-sharing programs has resulted in a substantial increase in the proliferation 

of bike-sharing stations and users [2]. This expansion has yielded positive effects, encompassing the 

reduction of traffic congestion, curbing carbon emissions, fostering healthier lifestyles, and affording 

urban residents access to affordable and adaptable transportation alternatives [3]. Nonetheless, 

concomitant with the widespread adoption of bike-sharing systems, an array of challenges and 

concerns have surfaced, impinging on their operational efficiency and overall efficacy. These 

challenges encompass imbalanced bike distribution among stations, the overutilization of popular 

stations leading to bike shortages, incomplete coverage within specific communities, as well as 

considerations concerning bike maintenance and parking [4,5]. As a nascent manifestation of 
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internet-based transportation, bike-sharing systems are conventionally furnished with positioning 

devices capable of real-time location recording, thereby furnishing an abundance of invaluable data 

amenable to analysis [6]. To surmount these challenges and optimize bike-sharing systems, a 

multitude of investigations have concentrated on comprehending the behavior and patterns 

characterizing bike-sharing travel. Within this context, the present study aims to comprehensively 

investigate the clustering characteristics and patterns of bike-sharing travel within the urban core 

sub-regions, utilizing an established foundation of existing research. Employing spatial interaction 

network analysis techniques, this study delves into the travel patterns of bike-sharing during the 

morning and evening peak hours. The ultimate objective is to provide recommendations for urban 

transportation planning, bike-sharing operations, and residents' travel preferences. 

The utilization of bike-sharing among urban residents has resulted in diverse levels of spatial 

interactions spanning various areas within the city, constituting what is termed as spatial interactions 

[7]. The scrutiny of this phenomenon is approached by constructing a spatial interaction network 

encompassing urban zones, grounded in the principles of complex network theory [8–10]. The realm 

of network science has undergone rapid advancements since the 1970s [11]. As posited by the 

complex network theory, individuals' travel behaviors between regions can be harnessed to establish 

a prototypical two-dimensional weighted spatial network, recognized as the spatial interaction 

network. In this network framework, regions are represented as nodes, travel activities as edges, and 

edge weights denote the magnitude of travel between points, abstracting the overarching travel 

interactions among all regions. Once the network is meticulously constructed, structural network 

metrics and statistical models can be applied to qualitatively and quantitatively assess the interplay 

between travel behavior and regions, thereby evaluating the spatial interconnections between these 

regions. Numerous researchers have harnessed the tenets of complex network theory for relevant 

inquiries. To illustrate, Beck et al. devised a bicycle network to probe the interrelationship between 

environmental characteristics and cycling behavior [12]. Liu et al. evaluated the accessibility of 

dockless bike-sharing from a network vantage point, proffering decision-making support for urban 

planners, policymakers, and bike-sharing providers to fine-tune bike-sharing systems [13]. Hu et al. 

delved into the travel patterns of bike-sharing by constructing a spatial interaction network and 

juxtaposed the disparities between weekdays and weekends [14]. While prior investigations have 

predominantly centered around comprehensive analyses and examinations of bike-sharing travel 

patterns, scant research has ventured into the clustering characteristics and systematic attributes of 

bike-sharing travel regions. To bridge this research lacuna, this study leverages community detection 

methodologies rooted in complex network theory to scrutinize the clustering attributes of bike-

sharing travel regions, subsequently investigating clustering patterns grounded in modularity 

analysis. 

Community structure is an essential and distinctive feature within the realm of complex 

networks [15]. Investigating and discerning community structures from a network-oriented 

perspective facilitates an in-depth comprehension of the clustering patterns inherent in the network. 

This process, in turn, unveils the intricate interconnections interwoven among distinct sub-regions 

within urban environments, thereby unraveling the intricate tapestry of travel patterns. Such an 

investigation holds profound ramifications for the judicious deployment of bike-sharing initiatives, 

the efficacy of urban transportation management, and the formulation of strategic travel plans for 

urban inhabitants. Within the intricate fabric of complex network theory, the subject of community 

detection has enjoyed a longstanding position of prominence [16]. In the context of urban settings, a 

multitude of scholars have embarked on probing the spatiotemporal clustering phenomena through 

the prism of community identification methodologies. For instance, the work of Chen W and Wei C 

leverages the Infomap algorithm to delineate urban agglomerations and economic regions within city 

networks [17,18]. Fangyu and colleagues advance the field by harnessing an improved BBO 

algorithm, specifically tailored to unearth community structures inherent in intelligent city network 

systems [19]. Similarly, Gao P et al. harness the efficacy of the fast greedy algorithm to partition 

functional domains within the urban agglomeration of the middle reaches of the Yangtze River [20]. 

Parallel to these methodologies, a cadre of classic community detection algorithms, such as the GN 
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algorithm [21], the Label Propagation Algorithm (LPA) [22], the Louvain algorithm [23,24], and the 

Walktrap algorithm [25,26], stand as cornerstone tools for such research endeavors. Nonetheless, 

despite these scholarly advancements, the existing landscape of community detection research 

predominantly gravitates towards urban agglomerations, leaving a perceptible gap in our 

understanding of community clustering dynamics within the nucleus of cities' core functional regions. 

This underlines the pressing need for studies that uncover and elucidate community structures 

within these essential urban zones. 

Furthermore, the classification of urban traffic based on its temporal distribution yields distinct 

categories: daily traffic (weekday traffic), weekend traffic, and other types of traffic [27]. Among these 

categories, weekdays stand out as a prominent temporal segment characterized by an extensive 

duration, a significant volume of travel, and pronounced travel attributes, thus warranting the 

highest degree of attention and research scrutiny [28]. Investigating weekday traffic bears the 

potential to yield a profound comprehension of urban residents' habitual travel behaviors and travel 

patterns. Within this particular traffic category, individuals often confront a myriad of tasks including 

work, education, and shopping, resulting in a complex and dynamic interplay of demands and usage 

patterns within the transportation system [29]. A substantial body of research has already unveiled 

the peak travel times [30], primary travel attributes [31], and popular travel destinations [32] 

associated with weekday traffic. These research findings form pivotal cornerstones for urban 

transportation planning and management, offering crucial underpinnings to alleviate congestion, 

enhance transportation efficiency, and ameliorate the overall travel experience of urban inhabitants 

[33]. 

Currently, urban vitality research extensively employs multi-source urban data, yet the analysis 

units often revolve around blocks or parcels. However, residents' economic, social, and cultural 

activities primarily congregate around streets and their proximate areas [34]. By evaluating the urban 

vitality of streets, the quality of urban streets can be enhanced, thereby infusing urban areas with 

vibrancy and livability, fostering organic urban renewal, and driving sustainable development [35]. 

In this study, streets are adopted as the fundamental analytical units, and the travel OD flow of 

shared bicycles between streets during morning and evening peaks is extracted and distributed. The 

Walktrap community detection algorithm is employed to explore street clustering characteristics, and 

an analysis and summary of clustering patterns are conducted based on modularity changes. 

Furthermore, a comparative analysis of differences between the morning and evening peak periods 

is undertaken. By employing streets as the analytical units, the study aims to reveal the intricate 

spatial patterns of shared bicycle travel aggregation within streets, while identifying correlations 

between streets and shared bicycle travel. This approach provides recommendations and references 

for urban transportation planning, shared bicycle operations, and residents' travel choices [36,37]. 

The remainder of this paper is organized as follows. Section 2 describes our study area and data. 

Section 3 introduces the Walktrap community detection algorithm and the steps for modularity 

analysis. Section 4 explores the regional clustering characteristics and patterns from the perspective 

of urban bike-sharing travel during the morning and evening peak hours. Section 5 discusses the 

paper’s findings. Section 6 provides a concise summary of the paper. 

2. Study Area and Data 

2.1. Research Data Study Area 

This study centers on exploring the central area of Beijing, encompassing Dongcheng District, 

Xicheng District, Haidian District, Fengtai District, Shijingshan District, and Chaoyang District. 

Known as the heart of the city, this region boasts a dense population, accounting for approximately 

60% of Beijing's total inhabitants, and hosts nearly 70% of its industrial establishments. Its strategic 

location and economic significance make it a hub of activity, resulting in high volumes of pedestrian 

traffic, especially during peak hours. In addition to the bustling foot traffic, shared bicycles play a 

crucial role in the transportation landscape within this area. 
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The focus of our investigation lies in the intersection of the operational area of shared bicycles 

with Beijing's central region. By narrowing our scope to this specific area, we aim to uncover valuable 

insights into the spatiotemporal dynamics of shared bike usage in an environment characterized by 

heavy pedestrian movement and economic activity. Analyzing the patterns and trends of shared bike 

utilization within this context will offer significant implications for urban transportation planning 

and management. For clarity and reference, Figure 1 provides a visual representation of the study 

area's geographical extent within Beijing. This visualization aids in understanding the spatial context 

and serves as a vital reference point for subsequent analyses. 

 

Figure 1. The study area in Beijing. 

2.2. Data Sources and Preprocessing 

This study utilizes shared bicycle data from the central area of Beijing, collected during a 

continuous and complete period of five consecutive working days, specifically from July 26th to July 

30th, 2021. The data collection intervals correspond to the morning and evening peak hours on 

weekdays, which are defined as 6:00 to 9:00 and 17:00 to 20:00, respectively. Therefore, data is 

collected within four specific time intervals each day: 6:00 to 9:00 and 17:00 to 20:00. The data includes 

information on bicycle usage, locations, and other relevant parameters, as shown in Table 1. 

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited. 

Data name Data size Data field content Data field name 

Bicycle Sharing Data 370,000 

Data Collection Time TIME 

Bicycle ID number BICYCLE_ID 

Latitude/° LATITUDE 

Longitude/° LONGITUDE 

In this investigation, the time frame from 6:00 to 9:00 was established as the commencement and 

conclusion of the morning peak period, whereas the interval spanning 17:00 to 20:00 was designated 

as the initiation and culmination of the evening peak period. The spatial alignment of bicycle location 

data with street zoning data was performed for every timestamp, facilitating the identification of the 

specific streets harboring bicycles during both morning and evening periods. Subsequently, a linkage 

between data points for each timestamp was established through the unique bicycle ID number, 

culminating in the generation of an origin-destination (OD) matrix delineating bicycle trips amidst 

streets. 

The OD matrix represents the flow of bicycle trips between streets, where the rows and columns 

correspond to the origin and destination street indices, respectively. The values in the matrix 

represent the number of bicycle trips between each origin and destination pair. The analysis of the 

OD matrix allows us to understand the spatial distribution of bicycle usage during the specified time 
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periods and identify key routes and patterns of travel within the city. By associating the bicycle 

location data with the street zoning information, we can gain valuable insights into the utilization 

patterns of the bicycle-sharing system and its impact on urban transportation dynamics. 

3. Methodology 

3.1. Community Detection in Complex Networks 

Complex networks provide a powerful abstraction for understanding real-world systems, 

encompassing a diverse range of actors or entities and their intricate relationships [14]. In these 

networks, individual entities are represented as nodes, while the connections or interactions between 

them are captured by edges. Owing to the varying degrees of interconnectivity among nodes, 

complex networks often exhibit a phenomenon known as community structure or clustering. 

Communities refer to cohesive subgraphs of nodes within the network, wherein nodes within the 

same subgraph are tightly interconnected, while nodes in different subgraphs have weaker 

connections [38]. Figure 2 presents an illustrative example of a simple network with a visible 

community structure. 

 

Figure 2. Community structure of a simple network. 

Complex networks serve as a robust conceptual framework for comprehending intricate real-

world systems, encompassing an array of actors or entities and their intricate relationships [14]. 

Within these networks, individual entities are symbolized as nodes, while the connections or 

interactions between them are encapsulated by edges. Due to the varying degrees of interconnectivity 

among nodes, complex networks frequently manifest a phenomenon termed as community structure 

or clustering. Communities denote cohesive subsets of nodes within the network, wherein nodes in 

the same subset are closely interconnected, while nodes in distinct subsets possess weaker 

connections [38]. Figure 2 provides an illustrative instance of a basic network displaying a discernible 

community structure. 

This concept of community structure holds significant relevance across various fields, including 

social networks, biological systems, and technological infrastructures. It aids in uncovering latent 

patterns, functional modules, and inherent organizations within complex systems. Researchers 

utilize various algorithms and methods to identify and analyze community structures, contributing 

to a deeper understanding of system dynamics and behaviors. This concept's applications extend to 

enhancing information dissemination strategies, identifying key nodes for targeted interventions, 

and optimizing network design for improved efficiency and resilience. Consequently, the 
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investigation of community structures within complex networks remains a crucial pursuit with broad 

interdisciplinary implications. 

3.2. Walktrap Community Detection Algorithm 

With the development of complex network theory, researchers have proposed various methods 

for community detection, including the Walktrap algorithm introduced by Pons and Latapy [25]. This 

algorithm is based on the concept of random walks and utilizes the analysis of transition probabilities 

of node-to-node jumps within the network to achieve community partitioning. Random walks tend 

to get trapped within subgraphs formed by densely connected nodes, which correspond to 

communities, and this entire process forms a Markov chain. The algorithm quantifies the structural 

similarity between nodes (communities) by defining a distance metric. The distance from node i to 

node j is computed using Equation (1): 

𝑟௜௝ = ඨ෎ ቀ௉೔ೖ೟ ି௉ೕೖ೟ ቁమௗሺ௞ሻ
௡
௞ୀଵ   (1)

In the equation, 𝑟௜௝  represents the distance from node 𝑖  to node 𝑗, 𝑡  is a given time, 𝑑ሺ𝑘ሻ 
denotes the degree of node 𝑘, and 𝑃௜௞௧  represents the probability of reaching node 𝑘 from node 𝑖 
within 𝑡 steps. The calculation formula for 𝑃௜௞௧  is as follows: 𝑃௜௝ = ஺೔ೕௗሺ௞ሻ  (2)

In this context, 𝐴௜௝ represents the value in the adjacency matrix 𝐴. Equation (3) calculates the 

distance from community 𝐶 to node 𝑗. The calculation in Equation (3) is as follows: 𝑃஼௝௧ = 1|𝐶|෍𝑃௜௝௧௜∈஼  (3) 

Equation (4) calculates the distance from community 𝐶ଵ to community 𝐶ଶ. The calculation in 

Equation (4) is as follows: 

𝑟஼భ஼మ = ඨ෎ ቀ௉಴భೖ೟ ି௉಴మೖ೟ ቁమௗሺ௞ሻ
௡
௞ୀଵ   (4)

After the initiation of the random walk, each node is initially considered as a separate 

community. The distances between adjacent nodes (communities) are computed, and two 

communities 𝐶ଵ and 𝐶ଶ are selected for merging into a single community based on minimizing the 

value of 𝛥𝜎ሺ𝐶ଵ, 𝐶ଶሻ. The calculation formula for 𝛥𝜎ሺ𝐶ଵ, 𝐶ଶሻ is given by Equation (5). 𝛥𝜎ሺ𝐶ଵ, 𝐶ଶሻ = ଵ௡ |஼భ||஼మ||஼భ|ା|஼మ| 𝑟௖భ௖మଶ   (5)

This process iterates continuously until all nodes are merged into a single community. 

3.3. Evaluation Methods for Community Detection 

Modularity (𝑄) is an evaluation metric proposed by Girvan and Newman [39] for measuring the 

quality of community structures. It serves as a measure to assess the effectiveness of community 

partitioning in a network. A higher value of modularity indicates a better community structure, 

where nodes within communities are more densely connected. Conversely, a lower value of 

modularity suggests a weaker community structure with fewer internal edges. The calculation 

formula for modularity 𝑄 is given as follows: 

 𝑄 = ଵଶ௠෍ ቀ𝐴௜௝ − ௗ೔ௗೕଶ௠ ቁ 𝛿൫𝐶௜ , 𝐶௝൯௜௝   (6)

In the context of directed networks, the modularity calculation takes into account both the out-

degree and in-degree of nodes. Let 𝐴 be the adjacency matrix, 𝑑௜ and 𝑑௝ represent the out-degree 
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of nodes 𝑖  and 𝑗 , respectively, and 𝑚  be the total number of edges in the network. To assess 

whether nodes 𝑖 and 𝑗 belong to the same community, the Kronecker delta function 𝛿൫𝐶௜ , 𝐶௝൯ is 

utilized. When nodes i and j belong to the same community, 𝛿൫𝐶௜ , 𝐶௝൯ equals 1; otherwise, 𝛿൫𝐶௜ , 𝐶௝൯ 
is 0. The calculation formula for modularity in directed networks is as follows: 𝑄 = ଵ௠෎ ൬𝐴௜௝ − ௗ೔಺೙ௗೕೀೠ೟௠ ൰ 𝛿൫𝐶௜ , 𝐶௝൯௜௝   (7)

In this context, 𝑑௝ூ௡ and 𝑑௜ை௨௧ represent the in-degree of node j and the out-degree of node i, 

respectively. The maximum value of modularity is typically in the range of 0.3 to 0.7, where a value 

closer to 1 indicates a better community partitioning result. 

It is important to note that the modularity value can be influenced by the overall scale of the 

network and the number of communities detected. For smaller networks or networks with only a few 

communities, the modularity value may be lower due to the limited structural complexity. 

Conversely, in larger networks with a higher number of communities, the modularity value might 

be higher due to the increased likelihood of finding more distinct communities. In summary, 

modularity is a valuable tool for assessing the effectiveness of community detection algorithms and 

provides insights into the underlying organizational principles of complex networks. Researchers 

aim to achieve high modularity values by optimizing the community partitioning process, as this 

corresponds to a more accurate and informative representation of the network's community 

structure. 

The algorithm starts by constructing the network structure using nodes and edges. Initially, each 

node is considered as a separate community based on the Walktrap algorithm. Then, the algorithm 

proceeds by iteratively merging the closest communities into larger ones while calculating the 

modularity score at each step. This process continues until all nodes are merged into a single 

community, marking the end of the algorithm. The flowchart of the algorithm is depicted in Figure 

3. 

 

Figure 3. The flowchart of the Walktrap community detection algorithm based on modularity 

analysis. 

4. Results 

4.1. Construction and Analysis of Shared Bicycle Spatial Interaction Networks 

The shared bicycle network is represented as a directed weighted network, consisting of three 

fundamental elements: "nodes," "directed edges," and "weights of directed edges" [40]. In this study, 

the "nodes" are represented by streets within the core area of the capital city. The "directed edges" of 
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the network are defined by travel behavior between streets, indicating the direction of bicycle 

movement. The "weights of directed edges" are determined by the volume of bicycle usage, providing 

information on the intensity of travel between streets. 

According to the principle of network construction, the shared bicycle travel network is built 

based on data from two different periods: the morning peak and the evening peak. To construct the 

spatial interaction network for the core area of the capital, we employed ArcGIS software for network 

visualization (Figure 4). The network consists of 135 nodes, with each node representing a street block. 

Figure 4 illustrates the differences in network structures between the morning peak and the evening 

peak, where flow strength is represented by the thickness of the edges: the wider the blue lines, the 

higher the flow strength, while narrower blue lines indicate weaker flow strength. Table 2 provides 

information on the origin and destination of the top travel activities with high flow volume during 

the morning and evening peaks. 

Table 2. Traffic details and levels. 

Periods Origin Direction Destination Flows Level 

Morning period 

Xincun Street  
Huaxiang 

District Office 
Ⅰ 

Nanyuan District 

Office 
 

Changxindian 

Town 
Ⅰ 

Lugouqiao Street  
Lugouqiao 

District Office 
Ⅰ 

Wangjing 

Development 

Street 

 
Zuojiazhuang 

Street 
Ⅰ 

Taipingqiao Street  
Lugouqiao 

District Office 
Ⅱ 

Dougezhuang 

District Office 
 

Pingfang District 

Office 
Ⅱ 

Evening period 

Xincun Street  
Huaxiang 

District Office 
Ⅰ 

Lugouqiao Street  
Lugouqiao 

District Office 
Ⅰ 

Nanyuan District 

Office 
 

Changxindian 

Town 
Ⅱ 

Wangjing 

Development 

Street 

 
Zuojiazhuang 

Street 
Ⅱ 

Taipingqiao Street  
Lugouqiao 

District Office 
Ⅱ 

Dougezhuang 

District Office 
 

Pingfang District 

Office 
Ⅱ 
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(a) 

 

(b) 

Figure 4. Spatial interaction network visualization: (a) Morning period; (b) Evening period. 

Based on the information obtained from Figure 4 and Table 2, several characteristics of the travel 

network can be summarized. Firstly, during both morning and evening peak hours, a significant 

portion of the shared bicycle trips takes place between adjacent street blocks, suggesting that shared 

bicycles are predominantly utilized for short-distance travel within the study area. Secondly, the flow 
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of trips shows a concentration in specific areas, with notable travel activities observed between 

certain street blocks. For instance, considerable flow occurs between Huaxiang District Office and 

Xincun Sub-district Office, as well as between Lugouqiao Sub-district and Lugouqiao District Office, 

during both morning and evening peak periods. These regions appear to be popular destinations or 

origins for shared bicycle users, leading to intensified bicycle movements between these locations. 

There are noticeable differences in the network structure between the morning and evening peak 

hours. The morning peak exhibits a higher level of flow concentration, with large-flow trips being 

more tightly clustered. In contrast, the evening peak shows a relatively lower level of flow 

concentration, and there are only two locations with significant flow. This analysis indicates that the 

morning peak trips are characterized by a higher level of purposefulness and concentration. The areas 

with high-flow edges in the network structure during weekdays are often associated with 

workplaces, indicating that the majority of trips during weekdays are related to commuting. 

Therefore, the street blocks with high-flow edges tend to be locations with more businesses or 

employment units, making them prominent destinations for commuters. 

On the other hand, during the evening peak, people's trip destinations exhibit a higher degree 

of diversity, leading to a more scattered flow pattern. This suggests that people engage in more 

leisure activities after work, and their travel destinations are more influenced by personal preferences 

and varied interests. Furthermore, the distribution of workplaces within the study area appears to be 

more concentrated, while the distribution of residential areas is relatively more dispersed. This 

spatial pattern may be a reflection of the urban development and land-use characteristics, where 

workplaces tend to cluster in specific areas, whereas residential areas are more widely distributed. 

4.2. Analysis of Modularity Calculation Results 

This study investigates the community partitioning of the spatial interaction network using the 

Walktrap method based on the concept of random walks. This method effectively groups closely 

connected nodes into communities, enabling the analysis of inherent relationships between streets. 

The evolution of modularity values during the random walk process is computed in this research, as 

illustrated in Figure 5. According to the principles of the Walktrap community detection algorithm, 

the number of communities decreases gradually during the random walk process, eventually 

resulting in a single community that includes all nodes. The modularity values gradually increase as 

the number of communities decreases, with the morning period showing a faster increase in 

modularity compared to the evening period. Specifically, when there are 14 communities, the 

modularity value for the morning period reaches 0.3, and when there are 7 communities, the 

modularity value for the evening period reaches 0.3. 

The analysis reveals that the spatial interaction network during the morning period exhibits 

stronger community structures, indicating a higher level of aggregation between streets. In other 

words, during the morning period, people tend to travel with more specific purposes between streets 

within the same community, resulting in a higher volume of intra-community travel and a lower 

volume of inter-community travel. This finding highlights the significant community structure in the 

morning period's spatial interaction network. The Walktrap community detection approach used in 

this study proves effective in uncovering underlying community structures within the spatial 

interaction network, shedding light on the characteristics of travel patterns and street connections 

during different time periods. The results contribute to a better understanding of urban mobility 

dynamics and can inform targeted urban planning and transportation management strategies. 
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Figure 5. Modularity calculation results. 

4.3. Analysis of Community Detection Results 

The visualization of the community partitioning results for 7 and 14 communities is presented 

in this study. Table 3 provides information about the number of communities and the corresponding 

number of streets in each community. The community partitioning outcomes are depicted in Figure 

6, and the spatial visualizations are displayed in Figure 7. Notably, there are significant differences 

in the community structures between the morning and evening periods. During the morning peak, 

the spatial interaction network exhibits the formation of two large communities along with multiple 

small communities (Figure 6(a), (b); Figure 7(a), (b)). In contrast, the evening peak reveals the 

identification of one large community, two medium-sized communities, and several small 

communities, with the majority of streets belonging to the large community (Figure 6(c), Figure 7(c)). 

The results indicate distinct patterns in the spatial distribution of community formations during 

different time periods. The morning peak shows a more fragmented community structure, with 

several smaller communities interacting with each other, while the evening peak presents a more 

integrated community structure, with fewer but larger communities encompassing multiple streets. 

This finding suggests that travel behaviors and patterns during the morning and evening periods 

differ significantly, reflecting the varying travel purposes and destinations at different times of the 

day. 

Table 3. Community detection results. 

Type of 

community/unit: 

number 

Morning period Evening period 

14 COMM 
7 COMM 7 COMM 

① 68 1 68  91  

② 49 1 52 23 

③ 3 1 4 14 

④ 2 1 3 2 

⑤ 2 1 3 1 

⑥ 1 1 2 1 

⑦ 1 1 1 1 
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The findings from the community partitioning analysis reveal characteristics of the spatial 

interaction network during different time periods. Specifically, during the morning period, the 

presence of two large communities and several small communities indicates that certain streets have 

stronger connections and are closely associated with each other. However, the lack of distinct 

geographical boundaries within these communities suggests that the interactions between streets are 

not solely determined by their physical proximity. Instead, it is likely influenced by the travel 

behavior of residents who commute to work areas. The high flow volume between certain street 

blocks can be attributed to the concentrated movement of commuters between residential and work 

areas, leading to the formation of cohesive communities. 

In contrast, the evening period exhibits a different pattern, with a single large community and a 

few medium-sized and small communities. Although the communities lack geographical boundaries, 

there is a higher degree of interconnectivity among the streets compared to the morning period. This 

suggests that during the evening, more streets are engaged in reciprocal interactions with each other, 

leading to a broader range of travel purposes. The increased diversity in destinations during the 

evening period indicates that people are engaged in various activities, such as leisure and social 

engagements, which may result in a more scattered flow of shared bicycle trips. 

The longer interaction radius observed in both the morning and evening periods suggests that 

the influence of certain streets extends over a wider geographical scope. This implies that the spatial 

interactions between streets are not confined to a limited area but rather encompass larger regions 

within the study area. The broader scope of interactions has implications for urban planning and 

transportation management, as it indicates the importance of considering the connectivity between 

different areas when designing bike-sharing systems and transportation infrastructure. 

The Walktrap community detection method proves to be effective in revealing the underlying 

structure of the spatial interaction network and provides valuable insights into the travel patterns 

and street connections during different time periods. The observed differences in community 

partitioning shed light on the dynamics of urban mobility and the factors influencing travel behavior. 

The research contributes to a better understanding of urban transportation systems and offers 

valuable information for optimizing bike-sharing schemes and urban planning strategies. 

 

(a) 
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(b) 

 

(c) 

Figure 6. Community detection results: (a) 14 communities during the morning period; (b) 7 

communities during the morning period; (c) 7 communities during the evening period. 
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(c) 

Figure 7. Spatial visualization of community detection: (a) 14 communities during the morning period; 

(b) 7 communities during the morning period; (c) 7 communities during the evening period. 

5. Discussion 

Urban streets, when viewed through the lens of bike-sharing, exhibit distinct clustering 

tendencies and adhere to clustering patterns. By constructing a street-level spatial interaction 

network from the perspective of bike-sharing, it has been observed that shared bicycles are primarily 

utilized for short-distance trips within the study area. The flow of trips is concentrated among specific 

streets, with a higher degree of concentration during the morning peak period compared to the 

evening peak. This phenomenon may be attributed to the fact that the primary purpose during the 

morning peak is work commuting, and the streets with concentrated flow are often located near areas 

with a higher concentration of businesses or employment centers. In contrast, the evening peak 

exhibits a more diversified set of destinations, as workplaces are more centrally distributed within 

the urban region while residential areas tend to be more dispersed. Through community detection 

analysis within the network, it has been revealed that the spatial interaction network exhibits stronger 

community structure during the morning period, with more dispersed community configurations. 

Several community clusters interact with each other. Conversely, the evening period demonstrates 

more cohesive community structures, characterized by fewer but larger communities. Based on the 

above conclusions, recommendations are provided for urban transportation authorities, bike-sharing 

companies, and city residents: 

For urban transportation authorities: Strengthen traffic flow monitoring and management 

during morning and evening peak hours: Given the observed differences in community structures 

during these periods, transportation authorities should focus on monitoring and managing traffic 

flow, especially in areas with concentrated commuting trips, to allocate traffic resources more 

efficiently and alleviate congestion. Optimize transportation planning and bike-sharing deployment 

strategies: Utilizing the results of community partitioning, transportation authorities can make 

targeted adjustments in bike-sharing deployment and planning to better meet the diverse travel 

needs of residents within different communities, providing more convenient bike-sharing services. 
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For bike-sharing companies: Increase the availability of bikes during morning and evening peak 

hours: In response to the unique travel patterns observed during these periods, bike-sharing 

companies can increase bike availability to cater to the commuting demand, thereby improving bike 

utilization rates. Enhance services in social and leisure areas during evening hours: As the research 

indicates a diversified travel pattern during evenings, bike-sharing companies can augment bike 

services, particularly in social and leisure areas, to fulfill the varied travel demands of residents 

during nighttime. 

For city residents: Make informed choices for travel modes: Considering the suitability of bike-

sharing for short-distance travel during morning and evening peak hours, city residents can prioritize 

bike-sharing for short trips to avoid traffic congestion. Explore diverse travel destinations: With a 

diverse range of travel destinations observed during evening hours, residents can choose travel 

destinations based on their preferences and needs, enjoying the rich nightlife and recreational 

activities in the city. 

Overall recommendations: By formulating reasonable transportation planning and bike-sharing 

deployment strategies based on research results, urban transportation authorities can optimize traffic 

flow and resource utilization. Meanwhile, bike-sharing companies can offer more flexible and 

customized services according to different time periods and community characteristics, catering to 

the diverse travel needs of residents. City residents should make informed choices for travel modes 

and actively participate in and enjoy the diverse transportation and leisure activities in the city. 

6. Conclusions 

This study adopts streets as the research unit and builds a spatial interaction network for shared 

bicycles in the core area of the capital city. The research employs a random walk community detection 

method based on weighted modularity to explore and analyze the community structures within the 

urban area. Modularity values are utilized to assess the quality of community partitioning, thereby 

evaluating the regional community characteristics. The community partitioning results are further 

employed for street clustering analysis, facilitating the exploration of travel patterns. The 

experimental results indicate that the morning period's spatial interaction network exhibits stronger 

community structures, consisting of two large communities with higher street aggregation. 

Residents' travel during this period is predominantly for commuting purposes, showing a higher 

level of purposefulness. In contrast, the evening period comprises a single large community, with 

most streets interacting with each other in pairs, suggesting a broader range of travel purposes for 

residents compared to the morning period. Both time periods demonstrate characteristics of long 

interaction radii and wide interaction scopes. 

The findings of this study provide decision-making assistance to relevant authorities. During 

the morning period, shared bicycle operators can strategically deploy bicycles to streets near locations 

where interactions between streets within the same community are likely to occur. In the evening 

period, due to the extensive usage of shared bicycles, transportation management departments 

should focus on regulating their usage to avoid traffic issues caused by overcrowding. 

For future work, several research directions are suggested: expanding the representation of 

urban network nodes by including more representative urban areas, such as urban transportation 

hubs; exploring various community partitioning methods and investigating their impacts on 

community partitioning results; enriching the types of travel data to enhance the universality of 

research on urban population travel patterns. 
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