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Abstract: Craters are the most prominent geomorphological features on the surface of celestial bodies, which 

is playing a crucial role in studying the formation and evolution of celestial bodies, as well as in landing and 

planning for surface exploration. Currently, the main automatic crater detection models and datasets focus on 

the detection of large and medium craters. In this paper, we created 23 small lunar crater datasets for model 

training based on the Chang’E-2 (CE-2) DOM, DEM, Slope, and integrated data with 7 kinds of visualization 

stretching methods. And then, we proposed the YOLO-Crater model for Lunar and Martian small crater 

detection by replacing EioU and VariFocal loss to solve the crater samples imbalance problem and introducing 

a CBAM attention mechanism to mitigate interference from the complex extraterrestrial environment. The 

results show that the accuracy (P = 87.86%, R = 66.04%, and F1 = 75.41%) of the Lunar YOLO-Crater model 

based on the DOM-MMS (Maximum-Minimum Stretching) dataset is the highest and better than that of 

YOLOX model. And the Martian YOLO-Crater, trained by the Martian dataset from the 2022 GeoAI Martian 

Challenge, achieves good performance with P = 88.37%, R = 69.25%, and F1 = 77.65%. It indicates that the YOLO-

Crater model has a strong transferability and generalization capability, which can be applied to detect small 

craters on the Moon and other celestial bodies. 

Keywords: small crater detection; YOLO-Crater; Efficient-IoU (EIoU); VariFocal; Convolutional 

Block Attention Module (CBAM); DOM; DEM; Slope; stretching method 

 

1. Introduction 

As circular geomorphological features, craters are formed by the collision of small celestial 

bodies at high speed. They have great significance for geological age estimating [1], terrain and 

evolutionary history research [2], mineral resource assessment [3], landing site selection and obstacle 

avoidance for rovers [4]. Hence, crater detection has always been a hot topic. In the early days, crater 

detection mainly relied on visual interpretation with astronomical telescopes and remote sensing 

images. Whereas these methods based on subjective experience are instable and time-consuming [5]. 

With the development of information and space technology, more and more automatic CDAs have 

been brought forward with high accuracy [6]. Now, the feature extracted by deep networks has 

stronger discrimination and generalization abilities than hand-crafted feature [7], and numerous 

detection methods based on deep learning have been emerging. 

As one of the most popular object detection models, You Only Look Once (YOLO) makes 

predictions by global information of image and makes good use of the context [7]. Moreover, it 

performs well in the detection of multi-scale small objects. Therefore, more and more researchers use 

YOLO to detect craters. Benedix et al. [8] developed a model based on YOLOv3 to detect kilometer-

size craters on Mars using daytime infrared data (100 m/pixel) acquired by Thermal Emission 

Imaging System (THEMIS) with accuracy F1 = 87%. Also, YOLOv3 got a good performance in 
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detecting sub-kilometer craters using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera 

(LROC-NAC) data with high accuracy (F1 = 84%), but low accuracy for large-scale craters (F1 = 

62%)[10]. Cui et al. [9] trained YOLOv5 with SLDEM to detect craters of diameters ranging from 2 to 

15 km in the South Pole-Aitken Basin, with accuracy F1 = 95%. Tang et al. [11] utilized YOLOv5 to 

detect kilometer-size craters using Lunar Reconnaissance Orbiter Camera Wide Angle Camera 

(LROC-WAC) data, with accuracy F1 = 69%. In terms of model construction, most methods directly 

used the baseline YOLO model to detect craters. But the loss function of the YOLO is difficult to solve 

the sample imbalance problem of small targets in the training process [12], which may lead to poor 

performance under complex conditions. Therefore, to improve the detection accuracy of small 

craters, it is necessary to improve the YOLO model.  

Currently, a lot of lunar data have been used to build crater sample datasets. For example, the 

main image datasets are based on Chang’E CCD, LROC-NAC and SELENE TC (Terrain Camera). 

Most topographical datasets came from the Chang’E-DEM (Digital Elevation Model), LOLA-DEM, 

SLDEM and SELENE-DEM. In model training, the dataset requires completeness, self-consistency, 

timeliness, confidentiality, accuracy, standardization, unbiasedness, and ease of use [13]. That is to 

say, the quality and distribution of the dataset will affect the detecting accuracy. However, there is 

no standard sample dataset for crater detection. In fact, the sample data is selected regardless of 

regional differences, geomorphological features, data types, resolution, object size and so on. 

According to the data processing, there is no systemic analysis on the impact of the data visualization. 

Some models directly use the original data, some use the processed data with different visualization 

stretching methods [14,15]. But different methods will lead to different visual effects and potential 

information loss, which may pay a great impact on the detecting accuracy. While Chang’E-2 (CE-2) 

data has a good consistency in imaging mode, coverage, data processing, and resolution [16], which 

makes it possible to build a dataset for global small lunar crater detection. 

In this paper, we proposed a novel crater detection model (called YOLO-Crater) by replacing 

the loss function and introducing the CBAM attention mechanism based on the YOLOX network 

structure. And then, the CE-2 DOM, DEM, Slope, and integrated data were used to build 23 sample 

datasets with different visualization stretching methods and train the YOLO-Crater models 

respectively. To determine the final dataset and the corresponding Lunar YOLO-Crater model, a 

series of comparative experiments were made to analyze the visualization stretching methods and 

the detection model accuracy. At last, the Martian sample dataset provided by the 2022 GeoAI 

Martian Challenge was used to train the Lunar YOLO-Crater model to build the Martian crater 

detection model (called Martian YOLO-Crater) and evaluate the YOLO-Crater’s transferability and 

generalization capability. 

2. Dataset 

Small crater detection requires high resolution data and the small crater sample dataset. 

Currently, the SELENE-TC, LROC-NAC and CE-2-CCD can provide lunar image data with high 

resolution [16,18,19]. The resolution of SELENE-TC data is 7.4 m/pixel, and the coverage rate is 92.4%. 

But the mosaic image has a dislocation, leakage in the middle and low latitudes, and inconsistent 

brightness in the polar regions. The LROC-NAC data resolution covers from 0.5 to 2 m/pixel. 

However, due to inconsistent imaging condition, there are great differences in positioning, resolution, 

brightness and shadow. Now, the CE-2 provides the global DOM data (7 m/pixel) and DEM data (20 

m/pixel) with consistent imaging conditions and positioning control network, which made it possible 

to build a standard sample dataset for all of the lunar crater detection. As for the sample dataset, 

there is no publicly available and unified small crater dataset. Now, many lunar crater databases have 

been created by Head et al. [20], Salamunićcar et al. [21], Povilaitis et al. [22], Robbins [23] and so on. 

But the crater size is more than kilometer, which can’t be used to create the small crater sample dataset. 

Many CDAs have used the DOM, DEM and some derived data to detect the crater, but there is no 

adaption evaluation about the above data. So, we selected DOM, DEM, Slope extracted from DEM, 

and integrated data (DOM, DEM and Slope: DDS) to create the small crater sample dataset in the 
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typical sample areas and make a comparative experiment to evaluate the applicability of datasets. 

The dataset creation includes data preparation and data creation (see Figure 1). 

 

Figure 1. Workflow of the lunar sample dataset creation. 

2.1. Data Preparation 

Though the CE-2 image has consistent imaging conditions, the difference in terrain and 

placement makes the texture different. To make the detection model have better generalization 

capability, the crater samples should cover different features, such as reflectance, geomorphology, 

shadow direction and so on. In this paper, we selected 6 sample areas in Maria and Highland. Among 

them, R1- R4 and R6 were selected by Zang et al. [17]. While R5 is reselected to expand the Maria 

area. R5 coves 57.59°W and 39.41°N - 40.61°N, with the same extent as the R6 (in Highland). 

We labelled the crater with DOM data manually using ArcMap software and recorded the center 

coordinates and radius of the crater. The labeling principle is that the shadow direction of any given 

crater in the same area is consistent. And to improve the detecting accuracy of the model and the 

completeness of the crater label set, we verified and corrected the labels marked by Zang et al. [17]. 

In the end, a total of 83,620 labels were obtained. The number of labels is significantly more than 

those labelled by Fairweather et al. [11] with 43,402, Hashimoto and Mori [24] with 4,967, Yang et al. 

[25] with 14,406, and Lagain et al. [26] with 2,142. The number of labels in R1 to R6 are 8,632, 8,857, 

23,970, 34,884, 3,519, and 3,758 respectively. And 42,006 new craters were labelled. The size-frequency 

distribution of labels (see Figure 2) shows that 99% are less than 1 km in diameter. 

 

Figure 2. Size-frequency distribution of the labelled craters. 
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2.2. Dataset Creation 

DEM data is the value of the elevation, which can’t be used to detect the craters directly in the 

CDAs. So DEM should be transformed and visualized into the image [27]. But there is no reference 

to analyze and evaluate the effect of the visualization transform, which may affect the detecting 

accuracy deeply. In the compiling Chang’E-1 Topographic Atlas of the Moon [28]. Mu had made a 

comparative experiment about the DEM visualization. If the global DEM data acquired by Chang’E-

1 was divided into 188 sheets, and then each sheet was enhanced and visualized, the topographic 

details were very clear. In verse, if the global DEM was visualized and then divided, the topographic 

details in each sheet were unclear. Mu got the same result in compiling The Chang'E-2 High Resolution 

Image Atlas of Lunar Sinus Iridum [29]. So, we used the former data processing to visualize the dataset 

with several image stretching methods. The following are the steps for dataset creation: 

Firstly, we cropped the data into 640 pixel×640 pixel blocks with a certain overlap to make the 

crater on the segmentation boundary be detected properly [30]. As shown in Figure 2, approximately 

90% craters’ radius is less than 250 m, and we weighed the completeness of the crater and the 

efficiency of model training, and chose an overlap rate of 5% (250 meters ÷ 7 meters/pixel ÷ 640 

pixels ≈ 5%). 

Secondly, we used 7 kinds of stretching methods commended by Gao [31] and ArcMap [32] to 

visualize and enhance the cropped data. The stretching methods include Maximum-Minimum 

Stretching (MMS), 1%/2% Linear Truncation Stretching (1%/2% LTS), Standard Deviation Stretching 

(SDS), Histogram Equalization (HE), Laplacian Sharpening (LS), and Gaussian Smoothing (GS). As a 

result, we got 22 datasets [3 kinds of data ( DOM, DEM and Slope) * 7 ( methods ) + 1( DOM without 

any enhancement) = 22] in VOC format for model training and stretching method adaption 

evaluation. 

Finally, we divided the dataset into training, validation and testing data. In each dataset, the 

training data and validation data with a ratio of 9:1 was randomly selected in R1-R4, and the testing 

data contained all of the samples in R5 and R6. 

2.3. Martian Dataset 

The Martian dataset, downloaded from the 2022 GeoAI Martian Challenge in CodaLab 

(http://cici.lab.asu.edu/martian/#data-download), was created by Hsu et al [33]. The image data was 

THEMIS daytime infrared with 100 m resolution and global coverage [34]. In addition, Martian 

sample craters were labelled with bounding boxes (BBOXs) recording the center and length diameter 

provided by Robbin’s crater database [35]. The total number of labels was 301,912, with 27.3% 

between 0.2 km to 1 km in diameter, 38.94% between 1 to 1.5 km and nearly 90% no more than 3 km. 

The dataset contained 102,675 images of 256 pixel×256 pixel. The training data contained 50,838 

images with 149,560 craters, the testing data contained 50,837 images with 149,389 craters, and the 

validation data contained 2,963 craters. 

3. Methods 

3.1. YOLO-Crater 

In this paper, we took the YOLOX [36] as the baseline crater detection framework. In the 

framework, the loss function was replaced, and an attention mechanism was introduced to solve the 

sample imbalance problem and enhance the feature extraction ability. As shown in Figure 2, there is 

an imbalanced distribution in crater samples, 59.66% less than 100 m in radius, 21.73% from 100 m to 

150 m, 12.51% from 150 m to 250 m, and only 6.11% more than 250m. As for the sample type, there 

are simple craters, complex craters and degraded craters. However, YOLOX uses the traditional 

binary cross entropy loss to calculate the confidence loss, which is difficult to solve the crater samples 

imbalance problem [37]. VariFocal loss borrows the weighting idea from the focal loss and deals with 

large, small, simple and complex craters asymmetrically to solve the imbalance problem [38]. So, we 

replaced the traditional binary cross entropy loss with VariFocal loss. Furthermore, YOLOX uses the 
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Intersection over Union (IoU) loss to calculate the localization loss. When the crater prediction box 

and crater ground truth box have no intersection with IoU = 0, which can result in a gradient 

vanishing problem for non-overlapping. Zheng et al. [39] suggested that a good positioning loss 

should consider three important geometric indicators, namely overlapping area, center point distance, 

and aspect ratio. Efficient-IoU (EIoU) loss combines these geometric indicators, which can relieve the 

gradient vanishing problem [40]. So, we replaced IoU loss with EIoU loss. EIoU is measured by the 

following expressions: 

A B
IoU

A B

∩
=

∪
 (1)

( )
( ) ( )

( )
( )

( )
( )

2 2 2

2 2 2 2

, , ,
1

gt gt gt

EIoU IoU dic asp

w h w h

b b w w h h
L L L L IoU

c c c c

ρ ρ ρ
= + + = − + + +

+
 (2)

where b, h ,w  are the central point, height and width of the prediction box. gtb , g tw , g th  are the 

central point, height, and width of the ground truth box. wc and hc  are the width and height of the 

smallest enclosing box covering the prediction box and ground truth box. ( )
2

= gtb bρ ⋅ − is the 

Euclidean distance. 

In addition, YOLOX uses the Darknet53 backbone and Path Aggregation Network (PANet) neck 

to extract features, which enhance the entire feature hierarchy with accurate localization signals in 

lower layers by bottom-up path augmentation [41]. However, due to the complex lunar topographic 

surface, some circular highlight-shadow landforms are easy to be misidentified as craters, such as 

volcanic cones, domes, etc. What's more, if there is a low contrast between the crater and the 

background in the image, it is difficult to detect the crater. To enhance the circular highlight-shadow 

feature and make the model focus on the crater area, the Convolutional Block Attention Module 

(CBAM) was introduced to the YOLOX. CBAM consists of a channel attention module and a spatial 

attention module [42], as shown in Figure 3. Channel attention focuses on ‘what’ is meaningful given 

an input image, while spatial attention focuses on ‘where’ is an informative part, which is 

complementary to channel attention [42]. 

 

Figure 3. The schematic representation of the Convolutional Block Attention Module (CBAM). 

By replacing the loss function and introducing the CBAM attention mechanism, we proposed a 

YOLO-Crater model shown in Figure 4. In the first stage, CE-2 images of 640 pixel ×640 pixel were 

input into the backbone. In the second stage, Darknet53 was used to extract crater features. In the 

third stage, CBAM was added to the connection channel between the backbone and neck to enhance 

the crater features extracted by the backbone. In the fourth stage, PANet used up-sampling and 
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down-sampling to merge the different hierarchy features from CBAM. In the last stage, the YoloHead 

was used to predict crater localization and size. Additionally, the VariFocal loss and EIoU loss were 

used to tune the model through backward propagation. 

 

Figure 4. The detection framework of YOLO-Crater. 

3.2. Model Training and Testing 

The model training aims to get the best Lunar and Martian crater detection model. The model 

training was under the PyTorch framework (torch 1.8 + cu11) using Python language (Python 3.7) 

and torchvision library (version:0.9.0 + cu11). Accuracy metrics, including Precision (P), Recall (R) 

and F1 score [43], were adopted to evaluate the detecting accuracy using Equations (3)-(5). 

TP
P

TP FP
=

+
 (3)

TP
R

TP FN
=

+
 (4)

21 P R
F

P R

× ×
=

+
 (5)

where TP, FP, and FN are the number of true positives, false positives, and false negatives, 

respectively. 

The model training and testing include the following steps (see Figure 5): 

The first step is to train the YOLO-Crater model using the DOM dataset and other 21 datasets 

(DOM, DEM and Slope with 7 kinds of visualization stretching method), and select the optimal 

stretching method for each data type and 3 corresponding datasets. And then, the above 3 datasets 

were integrated into the DDS dataset (see Section 4.1.1) to train the YOLO-Crater again. 

The second step is to use the testing data from the above 3 datasets and the DDS dataset to 

evaluate the trained models using the accuracy metrics and determine the optimal model as the Lunar 

YOLO-Crater (see Section 4.1.2). 

The last step is to take the Lunar YOLO-Crater model as a pre-trained model, and use the 

Martian dataset to train and test the Martian YOLO-Crater. 
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Figure 5. Workflow of the model training and testing. 

The following is the model hyper-parameters. Due to the crater texture information in Maria 

being poorer than that in Highland, we set the confidence threshold to 0.4 in Maria and 0.3 in 

Highland. 

Table 1. The model hyper-parameters. 

Hyper-parameter Value 

epoch 100 

batch size 16 

nmsthre 0.5 

test size (640, 640) 

test_conf 0.4(Maria) / 0.3(Highland) 

3.3. Detection Post-processing 

In Lunar YOLO-Crater model training and testing, the detected craters were located in image 

coordinates, which should be transformed into geo-coordinates to put the detected craters together. 

Furthermore, we cropped the data with a 5% overlap rate, which may produce duplicate craters and 

affect the detecting accuracy. So, the detection post-processing includes the projection coordinate 

transforming, the duplication craters removing and the accuracy calculating. We used the 

GetGeoTransform method described in [17] to transform the image coordinates (x, y) into the geo-

coordinates (θ, ϕ). To remove the duplicate craters, we used Non-Maximum Suppression (NMS) 

method, which selected the bounding box with the highest probability and suppressed all other 

bounding boxes that had an IoU greater than a threshold (θ ) [15]. The threshold is determined 

below. 

The correct detection (TP), missed detection (FN) and false detection (FP), used in (3)-(5), are 

calculated by (6)-(7). If the coordinates of the detected crater satisfy Equations (6)-(7), which means a 

correct detection (TP) [43]. Conversely, it is a missed detection (FN) or false detection (FP). 

( ) ( )

( )

2 2

2
min ,

t p t p

xy

t p

x x y y
D

r r

− + −
<

  
 (6) 

( )min ,
t p

r

t p

r r
D

r r

−
<  (7) 

where ( ), ,t t tx y r  is the center pixel coordinates and radius of the labels; ( ), ,p p px y r  is the center 

pixel coordinates and radius of the detected crater; 
xyD  and 

rD  are tunable hyper-parameters. 
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To determine the tunable hyper-parameters, we selected the parameter combination with the 

highest F1. The range of θ  is [0, 1]. A low threshold is not conducive to detecting overlapped craters. 

While a high threshold is not conducive to removing duplicate craters. So, we selected θ  ∈ [0.3-

0.7] with a step size of 0.1. 
xyD and 

rD have the same range [0.5, 3] [43]. A small step size can cause 

slow changes and consume more computing time, so we set the step size to 0.5 for 
xyD and 

rD . In 

the end, a total of 180 sets of parameter combinations were obtained, with the F1∈[0.7120-0.7541]. 

And we selected the best parameter combination ( =0.3θ , =1.5xyD , =1.5rD ) with the 

corresponding F1=0.7541 (see Figure 6). 

 

Figure 6. F1 with different parameter combinations (θ ,
xyD ,

rD ). 

4. Results and Discussion 

Based on the following comparative experiments, we used the detecting accuracy metrics to 

evaluate the data visualization, determine the optimal dataset for the Lunar YOLO-Crater and 

analyze the detecting accuracy distribution. In addition, we used the Martian dataset download from 

the 2022 GeoAI Martian Challenge to test the transferability and generalization capability of the 

YOLO-Crater model. 

4.1. Comparative Analysis of Lunar Crater Detection 

4.1.1. Data Visualization Evaluating 

In this experiment, the accuracy metrics such as Precision (P), Recall (R), and F1 score are used 

to evaluate visualization enhancement methods using the testing data, which can determine the 

optimal stretching method for each data type. 

DEM: The testing data was used to evaluate the detecting accuracy shown in Table 2. The highest 

detecting accuracy is based on the DEM-1% LTS method, with F1 = 23.35%. But the lowest accuracy 

is based on the DEM-HE method, with F1 = 13.51%. Furthermore, the MMS and LTS methods have 

similar accuracy, which also means that the values of the summit and lowest point pay more impact 

on the DEM visualization. Additionally, the detecting accuracy of the DEM datasets is low. So, the 

geomorphological features for detecting in DEM data are limited. 

Table 2. Detecting accuracy based on DEM visualization datasets with 7 kinds of stretching 

methods. 

Method P R F1 

DEM-MMS 0.9093 0.1088 0.1944 

DEM-1% LTS 0.8712 0.1348 0.2335 

DEM-2% LTS 0.8962 0.1186 0.2095 

DEM-SDS 0.9147 0.1120 0.1996 
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DEM-HE 0.9092 0.0730 0.1351 

DEM-LS+ MMS 0.9135 0.1088 0.1945 

DEM- LS+ MMS+GS 0.9174 0.1114 0.1988 

Slope: In the sample areas, the max value of the slope is not more than 69°. Table 3 shows the 

detecting accuracy for different stretching methods. The Slope-SDS gets the highest accuracy with F1 

= 22.97%, more 1.5% than the Slope-1% LTS. But the Slope-HE gets the lowest accuracy, with F1 = 

19.23%. Compared with the DEM datasets, the detecting accuracy of the Slope datasets has no 

apparent increase. 

Table 3. Detecting accuracy based on Slope visualization datasets with 7 kinds of stretching 

methods. 

Method P R F1 

Slope-MMS 0.9243 0.1108 0.1978 

Slope-1% LTS 0.8777 0.1223 0.2147 

Slope-2% LTS 0.8989 0.1124 0.1998 

Slope-SDS 0.8410 0.1330 0.2297 

Slope-HE 0.8950 0.1077 0.1923 

Slope-LS+ MMS 0.9049 0.1112 0.1980 

Slope- LS+ MMS+GS 0.8922 0.1218 0.2143 

DOM: Table 4 is the accuracy of the detection based on Change’E-2 DOM with different image 

stretching methods. The DOM-MMS obtains the highest detecting accuracy, with F1 = 75.41%. The 

lowest is 67.29% corresponding to the DOM- LS+ MMS+GS. But the DOM gets a better result (F1 = 

72.33%). Compared with the MMS, the others didn’t improve the detecting accuracy, but reduced it, 

which means the above image stretching methods have no great impact on detecting accuracy. The 

main reason is that the DOM, as the processed image data, has been enhanced [19]. Compared with 

the DEM and Slope datasets, DOM datasets have an apparent detecting accuracy increase. If image 

data were used to detect the crater, the MMS may be the best recommended stretching method. 

Table 4. Detecting accuracy based on DOM and visualization datasets with 7 kinds of stretching 

methods. 

Method P R F1 

DOM 0.8562 0.6261 0.7233 

DOM-MMS 0.8786 0.6604 0.7541 

DOM-1% LTS 0.7956 0.6390 0.7087 

DOM-2% LTS 0.7815 0.6280 0.6964 

DOM-SDS 0.7764 0.6505 0.7079 

DOM-HE 0.7312 0.6390 0.6820 

DOM-LS+ MMS 0.8672 0.5886 0.7012 

DOM- LS+ MMS+GS 0.8765 0.5461 0.6729 

DDS: After the above comparison and analysis, we got the optimal stretching method for each 

datatype, and then we used the corresponding dataset (DOM-MMS, DEM-1% LTS and Slope-SDS) to 

form the DDS dataset by layerstacking in ENVI software. 
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4.1.2. Best Dataset Selecting 

The above step determined the optimal stretching method for each data type and the 

corresponding dataset. To select the best dataset, we used the best testing accuracy for each data type. 

As shown in Table 5, the DOM-MMS dataset got the highest detecting accuracy, with P = 87.86%, R = 

66.04%, and F1 = 75.41%. DDS dataset got better accuracy with P=84.33%, R=63.01%, and F1=72.13%, 

but missing some detections (see Figure 7). 

Table 5. The best testing accuracy for each data type. 

Dataset P R F1 
DOM-MMS 0.8786 0.6604 0.7541 

DDS 0.8433 0.6301 0.7213 
Slope-SDS 0.8410 0.1330 0.2297 

DEM-1% LTS 0.8712 0.1348 0.2335 
 

 

Figure 7. Crater detection results with DOM-MMS (a) and DDS (b): Red for correct detection, black 

for missed detection. 

The DEM-1% LTS dataset and Slope-SDS dataset derived from the DEM got the lowest accuracy. 

In Figure 8, we can see more texture information in the DOM-MMS dataset than that in the DEM-1% 

LTS and Slope-SDS dataset. Though the illumination can’t affect the DEM and slope, the texture in 

the image was affected by the landscape and the illumination, in Figure 8. That is to say, the DOM 

image contains more crater’s features. For example, we can see that the craters have shadow and 

shine spot, and the texture is directional, which become an apparent feature for the craters. In the 

DEM-1% LTS image, we can’t get the apparent features. But in the Slope-SDS data, we can see the 

slope changes in and out of the crater. So, the detecting accuracy based on Slope-SDS is better than 

that based on the DEM-1% LTS. 
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(a) (b) (c) 

Figure 8. Craters showed in different datasets: (a) DOM-MMS; (b) DEM-1% LTS; (c) Slope-SDS. 

4.1.3. Accuracy Distribution Analysis 

To evaluate the detection model improvements, an ablation experiment was carried out to 

analyze the effect of the new loss function, CBAM, and both of them. Table 6 shows the results. 

Without any improvement, the YOLOX was used to detect the crater with F1 = 66.75%. When the 

CBAM was added into the model, the P (92.51%), R (52.8%), and F1 (67.23%) all increase a little, which 

indicates that the CBAM promotes extracting fine features of craters slightly. When changing the new 

loss function described in Section 3.1, the P decreases (by 5%), but the R (by 10%) and F1 (by 6%) 

increase obviously, which indicates that the new loss function enables the model to relieve the crater 

sample imbalanced problem and identify more small-scale craters efficiently. When both of them 

were embedded into the model at the same time, the model became (Lunar) YOLO-Crater with higher 

detecting accuracy (F1 = 75.41%). 

Table 6. Result of ablation experiment. 

CBAM Loss P R F1 

  0.9115 0.5266 0.6675 

  0.9251 0.5280 0.6723 

  0.8656 0.6257 0.7263 

  0.8786 0.6604 0.7541 

Figure 9 is the distribution of craters detected by the Lunar YOLO-Crater in Maria and Highland. 

As shown in Figure 9, the Lunar YOLO-Crater has some missed and false detections. Some craters 

have severe degradation and unclear highlight-shadow features, which make it difficult to detect 

them. In addition, due to the limitation of the cropped image size and image resolution, the model 

cannot detect a crater radius of more than 2.24 km (Figure 9b, blue dashed circle). Besides, the 

interference derived from other lunar circular features which have significant highlight-shadow 

features, leading to misidentifying them as craters. However, when we verified the false detections, 

found that some “false” craters are true craters. This reflects the limitations of manually labelled 

crater dataset and the importance of automatic crater detection research. 
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(a) R5 

 

(b) R6 

Figure 9. Distribution of craters detected by the Lunar YOLO-Crater in Maria (a) and Highland (b): 

Green for correct detection, red for false detection, and blue for missed detection. 

As shown in Table 7, the Lunar YOLO-Crater got a higher detecting accuracy both in the Maria 

and Highland than YOLOX, and had a better performance in the Highland (P = 89.56%, R = 66.18%, 

F1 = 76.11%) than that in Maria (P = 86.11%, R = 65.9%, F1 = 74.66%). The main reason is the features 

in Highland, including image contrast, image hierarchy, clarity, and texture information, are better 

than those in Maria [18]. 

Table 7. Detecting accuracy in Maria and Highland. 

Type Model TP FP FN P R F1 

Maria(R5) 
YOLOX 1948 274 1571 0.8767 0.5536 0.6786 

YOLO-Crater 2319 374 1200 0.8611 0.6590 0.7466 

Highland(R6) 
YOLOX 1884 98 1874 0.9506 0.5013 0.6564 

YOLO-Crater 2487 290 1271 0.8956 0.6618 0.7611 

In order to evaluate the ability of YOLO-Crater to detect craters at different scales, we made a 

detecting accuracy statistic as shown in Figure 10 and Table 8. We found that the F1 is 73.97% with 

the radius < 100 m, while greater than 80% within 100 m to 350 m, and 77.14% within 350 m to 400 m. 

But a lower performance for detecting craters is shown with the radii between 400 m to 500 m. As 

can be seen in Figure 10, the Recall (green) and F1 (blue) curves showed a downtrend. 

Table 8. Detecting accuracy at different scales. 

R(m) TP FP FN P R F1 

R≤100 3533 624 1862 0.8499 0.6549 0.7397 

R∈(100~150] 646 16 291 0.9758 0.6894 0.8080 

R∈(150~200] 295 12 129 0.9609 0.6958 0.8071 

R∈(200~250] 129 2 54 0.9847 0.7049 0.8217 
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R∈(250~300] 63 2 26 0.9692 0.7079 0.8182 

R∈(300~350] 43 2 15 0.9556 0.7414 0.8350 

R∈(350~400] 27 2 14 0.9310 0.6585 0.7714 

R∈(400~450] 13 0 17 1.0000 0.4333 0.6047 

R∈(450~500] 9 0 17 1.0000 0.3462 0.5143 

 

  
(a) (b) 

Figure 10. Detecting accuracy at different scales in Maria (a) and Highland (b). 

4.2. Martian Crater Detection 

There are significant geomorphological differences between Mars and the Moon, which can be 

used to examine the generalization ability of YOLO-Crater. As described in Section 3.2, we took the 

Lunar YOLO-Crater model as a pre-trained model, and used the Martian dataset downloaded from 

the 2022 GeoAI Martian Challenge to train the pre-trained model and got the Martian YOLO-Crater 

model. Figure 11 shows the detecting results (in brown) and the ground-truth labels (in green) using 

validation data. Figure 11a-11c demonstrates the Martian YOLO-Crater model can detect craters of 

different sizes (Figure 11c). In addition, the model can detect unlabeled craters (see Figure 11d, e, f). 

However, there are some crater-like features undetected by the model (Figure 11e). In Table 9, the 

results indicate a good performance in detecting Martian craters with P = 88.37%, R = 69.25%, and F1 

= 77.65%. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. Craters detected by Martian YOLO-Crater using the validation data. The ground-truth 

Bounding Boxes (BBOX) are in green and the detected results are in brown. 
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Table 9. Detecting accuracy using the validation data. 

Model AP50 AP50:95 P R F1 

Martian YOLO-Crater 0.8490 0.4550 0.8837 0.6925 0.7765 

The organizer only provided the testing image data without corresponding labels, and required 

the contestant put the detected result back. Based on the feedback, the organizer evaluated the 

detecting accuracy using the Average Precision (AP) metric. The detecting accuracy of the Martian 

YOLO-Crater ranked second place (http://cici.lab.asu.edu/martian/#eval-award) with AP50:95 = 46.7% 

and AP50 = 86.1% in the Challenge, while the first place with AP50:95 = 48.4% and AP50 = 86.0% 

(https://codalab.lisn.upsaclay.fr/competitions/1934#results). The above results indicate that the 

YOLO-Crater has strong transferability and generalization ability, and can be applied to detect small 

craters on other celestial bodies. 

5. Conclusions 

In this paper, we proposed a novel small crater detection model (called YOLO-Crater) by 

replacing the IoU loss and traditional binary cross entropy loss with EIoU loss and VariFocal loss and 

introducing the CBAM attention mechanism. To get more small crater samples with high accuracy, 

about 42,006 labels had been remodified manually, based on the existing labels made by Zang et al. 

[17]. And a series of comparative experiments were made to analyze the impact of data type, 

stretching method, terrain type, and crater size on the crater detection model systematically. 

The results showed that the data type and visualization stretching methods pay an important 

impact on the detecting accuracy. The DOM is the best data type for small crater detection. And CE-

2 DOM-MMS (Maximum and Minimum Stretching) is the best stretching method with total P = 

87.86%, R = 66.04%, and F1 = 75.41%. Compared with the YOLOX, the Lunar YOLO-Crater gets a 

better performance both in Mare and Highland with accuracy F1= 74.66% and 76.11% respectively. 

Moreover, the Lunar YOLO-Crater obtains a higher accuracy in detecting small-scale craters within 

400 m in radius. In addition, the Martian crater detection model (Called Martian YOLO-Crater) was 

trained by image sample data from the 2022 GeoAI Martian Challenge and achieved second place 

with P = 88.37%, R = 69.25%, and F1 = 77.65%, which means the Martian YOLO-Crater has strong 

transferability and generalization capability. 

In the future, more and more high resolution data will be acquired for the Moon and other 

celestial bodies. The remodified lunar small crater dataset could serve as a valuable supplement for 

GeoAI datasets, which would enable more researchers to utilize, improve and expand it to other 

celestial bodies. Meanwhile, the strong transferability and generalization capability of the YOLO-

Crater will make it possible to detect the craters with high accuracy on other celestial bodies using 

image data. 
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