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Abstract: Craters are the most prominent geomorphological features on the surface of celestial bodies, which
is playing a crucial role in studying the formation and evolution of celestial bodies, as well as in landing and
planning for surface exploration. Currently, the main automatic crater detection models and datasets focus on
the detection of large and medium craters. In this paper, we created 23 small lunar crater datasets for model
training based on the Chang’E-2 (CE-2) DOM, DEM, Slope, and integrated data with 7 kinds of visualization
stretching methods. And then, we proposed the YOLO-Crater model for Lunar and Martian small crater
detection by replacing EioU and VariFocal loss to solve the crater samples imbalance problem and introducing
a CBAM attention mechanism to mitigate interference from the complex extraterrestrial environment. The
results show that the accuracy (P = 87.86%, R = 66.04%, and F1 = 75.41%) of the Lunar YOLO-Crater model
based on the DOM-MMS (Maximum-Minimum Stretching) dataset is the highest and better than that of
YOLOX model. And the Martian YOLO-Crater, trained by the Martian dataset from the 2022 GeoAl Martian
Challenge, achieves good performance with P =88.37%, R =69.25%, and F1=77.65%. It indicates that the YOLO-
Crater model has a strong transferability and generalization capability, which can be applied to detect small
craters on the Moon and other celestial bodies.

Keywords: small crater detection; YOLO-Crater; Efficient-IoU (EloU); VariFocal; Convolutional
Block Attention Module (CBAM); DOM; DEM,; Slope; stretching method

1. Introduction

As circular geomorphological features, craters are formed by the collision of small celestial
bodies at high speed. They have great significance for geological age estimating [1], terrain and
evolutionary history research [2], mineral resource assessment [3], landing site selection and obstacle
avoidance for rovers [4]. Hence, crater detection has always been a hot topic. In the early days, crater
detection mainly relied on visual interpretation with astronomical telescopes and remote sensing
images. Whereas these methods based on subjective experience are instable and time-consuming [5].
With the development of information and space technology, more and more automatic CDAs have
been brought forward with high accuracy [6]. Now, the feature extracted by deep networks has
stronger discrimination and generalization abilities than hand-crafted feature [7], and numerous
detection methods based on deep learning have been emerging.

As one of the most popular object detection models, You Only Look Once (YOLO) makes
predictions by global information of image and makes good use of the context [7]. Moreover, it
performs well in the detection of multi-scale small objects. Therefore, more and more researchers use
YOLO to detect craters. Benedix et al. [8] developed a model based on YOLOv3 to detect kilometer-
size craters on Mars using daytime infrared data (100 m/pixel) acquired by Thermal Emission
Imaging System (THEMIS) with accuracy F1 = 87%. Also, YOLOv3 got a good performance in
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detecting sub-kilometer craters using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera
(LROC-NAC) data with high accuracy (F1 = 84%), but low accuracy for large-scale craters (F1 =
62%)[10]. Cui et al. [9] trained YOLOv5 with SLDEM to detect craters of diameters ranging from 2 to
15 km in the South Pole-Aitken Basin, with accuracy F1 = 95%. Tang et al. [11] utilized YOLOV5 to
detect kilometer-size craters using Lunar Reconnaissance Orbiter Camera Wide Angle Camera
(LROC-WAC) data, with accuracy F1 = 69%. In terms of model construction, most methods directly
used the baseline YOLO model to detect craters. But the loss function of the YOLO is difficult to solve
the sample imbalance problem of small targets in the training process [12], which may lead to poor
performance under complex conditions. Therefore, to improve the detection accuracy of small
craters, it is necessary to improve the YOLO model.

Currently, a lot of lunar data have been used to build crater sample datasets. For example, the
main image datasets are based on Chang’E CCD, LROC-NAC and SELENE TC (Terrain Camera).
Most topographical datasets came from the Chang’E-DEM (Digital Elevation Model), LOLA-DEM,
SLDEM and SELENE-DEM. In model training, the dataset requires completeness, self-consistency,
timeliness, confidentiality, accuracy, standardization, unbiasedness, and ease of use [13]. That is to
say, the quality and distribution of the dataset will affect the detecting accuracy. However, there is
no standard sample dataset for crater detection. In fact, the sample data is selected regardless of
regional differences, geomorphological features, data types, resolution, object size and so on.
According to the data processing, there is no systemic analysis on the impact of the data visualization.
Some models directly use the original data, some use the processed data with different visualization
stretching methods [14,15]. But different methods will lead to different visual effects and potential
information loss, which may pay a great impact on the detecting accuracy. While Chang’E-2 (CE-2)
data has a good consistency in imaging mode, coverage, data processing, and resolution [16], which
makes it possible to build a dataset for global small lunar crater detection.

In this paper, we proposed a novel crater detection model (called YOLO-Crater) by replacing
the loss function and introducing the CBAM attention mechanism based on the YOLOX network
structure. And then, the CE-2 DOM, DEM, Slope, and integrated data were used to build 23 sample
datasets with different visualization stretching methods and train the YOLO-Crater models
respectively. To determine the final dataset and the corresponding Lunar YOLO-Crater model, a
series of comparative experiments were made to analyze the visualization stretching methods and
the detection model accuracy. At last, the Martian sample dataset provided by the 2022 GeoAl
Martian Challenge was used to train the Lunar YOLO-Crater model to build the Martian crater
detection model (called Martian YOLO-Crater) and evaluate the YOLO-Crater’s transferability and
generalization capability.

2. Dataset

Small crater detection requires high resolution data and the small crater sample dataset.
Currently, the SELENE-TC, LROC-NAC and CE-2-CCD can provide lunar image data with high
resolution [16,18,19]. The resolution of SELENE-TC data is 7.4 m/pixel, and the coverage rate is 92.4%.
But the mosaic image has a dislocation, leakage in the middle and low latitudes, and inconsistent
brightness in the polar regions. The LROC-NAC data resolution covers from 0.5 to 2 m/pixel.
However, due to inconsistent imaging condition, there are great differences in positioning, resolution,
brightness and shadow. Now, the CE-2 provides the global DOM data (7 m/pixel) and DEM data (20
m/pixel) with consistent imaging conditions and positioning control network, which made it possible
to build a standard sample dataset for all of the lunar crater detection. As for the sample dataset,
there is no publicly available and unified small crater dataset. Now, many lunar crater databases have
been created by Head et al. [20], Salamuniccar et al. [21], Povilaitis et al. [22], Robbins [23] and so on.
But the crater size is more than kilometer, which can’t be used to create the small crater sample dataset.
Many CDAs have used the DOM, DEM and some derived data to detect the crater, but there is no
adaption evaluation about the above data. So, we selected DOM, DEM, Slope extracted from DEM,
and integrated data (DOM, DEM and Slope: DDS) to create the small crater sample dataset in the
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typical sample areas and make a comparative experiment to evaluate the applicability of datasets.
The dataset creation includes data preparation and data creation (see Figure 1).
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Figure 1. Workflow of the lunar sample dataset creation.

2.1. Data Preparation

Though the CE-2 image has consistent imaging conditions, the difference in terrain and
placement makes the texture different. To make the detection model have better generalization
capability, the crater samples should cover different features, such as reflectance, geomorphology,
shadow direction and so on. In this paper, we selected 6 sample areas in Maria and Highland. Among
them, R1- R4 and R6 were selected by Zang et al. [17]. While R5 is reselected to expand the Maria
area. R5 coves 57.59°W and 39.41°N - 40.61°N, with the same extent as the R6 (in Highland).

We labelled the crater with DOM data manually using ArcMap software and recorded the center
coordinates and radius of the crater. The labeling principle is that the shadow direction of any given
crater in the same area is consistent. And to improve the detecting accuracy of the model and the
completeness of the crater label set, we verified and corrected the labels marked by Zang et al. [17].
In the end, a total of 83,620 labels were obtained. The number of labels is significantly more than
those labelled by Fairweather et al. [11] with 43,402, Hashimoto and Mori [24] with 4,967, Yang et al.
[25] with 14,406, and Lagain et al. [26] with 2,142. The number of labels in R1 to R6 are 8,632, 8,857,
23,970, 34,884, 3,519, and 3,758 respectively. And 42,006 new craters were labelled. The size-frequency
distribution of labels (see Figure 2) shows that 99% are less than 1 km in diameter.
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Figure 2. Size-frequency distribution of the labelled craters.
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2.2. Dataset Creation

DEM data is the value of the elevation, which can’t be used to detect the craters directly in the
CDAs. So DEM should be transformed and visualized into the image [27]. But there is no reference
to analyze and evaluate the effect of the visualization transform, which may affect the detecting
accuracy deeply. In the compiling Chang’E-1 Topographic Atlas of the Moon [28]. Mu had made a
comparative experiment about the DEM visualization. If the global DEM data acquired by Chang’E-
1 was divided into 188 sheets, and then each sheet was enhanced and visualized, the topographic
details were very clear. In verse, if the global DEM was visualized and then divided, the topographic
details in each sheet were unclear. Mu got the same result in compiling The Chang’E-2 High Resolution
Image Atlas of Lunar Sinus Iridum [29]. So, we used the former data processing to visualize the dataset
with several image stretching methods. The following are the steps for dataset creation:

Firstly, we cropped the data into 640 pixelx640 pixel blocks with a certain overlap to make the
crater on the segmentation boundary be detected properly [30]. As shown in Figure 2, approximately
90% craters’ radius is less than 250 m, and we weighed the completeness of the crater and the
efficiency of model training, and chose an overlap rate of 5% (250 meters + 7 meters/pixel + 640
pixels = 5%).

Secondly, we used 7 kinds of stretching methods commended by Gao [31] and ArcMap [32] to
visualize and enhance the cropped data. The stretching methods include Maximum-Minimum
Stretching (MMS), 1%/2% Linear Truncation Stretching (1%/2% LTS), Standard Deviation Stretching
(SDS), Histogram Equalization (HE), Laplacian Sharpening (LS), and Gaussian Smoothing (GS). As a
result, we got 22 datasets [3 kinds of data ( DOM, DEM and Slope) * 7 ( methods ) + 1{ DOM without
any enhancement) = 22] in VOC format for model training and stretching method adaption
evaluation.

Finally, we divided the dataset into training, validation and testing data. In each dataset, the
training data and validation data with a ratio of 9:1 was randomly selected in R1-R4, and the testing
data contained all of the samples in R5 and R6.

2.3. Martian Dataset

The Martian dataset, downloaded from the 2022 GeoAl Martian Challenge in Codalab
(http://cici.]lab.asu.edu/martian/#data-download), was created by Hsu et al [33]. The image data was
THEMIS daytime infrared with 100 m resolution and global coverage [34]. In addition, Martian
sample craters were labelled with bounding boxes (BBOXSs) recording the center and length diameter
provided by Robbin’s crater database [35]. The total number of labels was 301,912, with 27.3%
between 0.2 km to 1 km in diameter, 38.94% between 1 to 1.5 km and nearly 90% no more than 3 km.
The dataset contained 102,675 images of 256 pixelx256 pixel. The training data contained 50,838
images with 149,560 craters, the testing data contained 50,837 images with 149,389 craters, and the
validation data contained 2,963 craters.

3. Methods

3.1. YOLO-Crater

In this paper, we took the YOLOX [36] as the baseline crater detection framework. In the
framework, the loss function was replaced, and an attention mechanism was introduced to solve the
sample imbalance problem and enhance the feature extraction ability. As shown in Figure 2, there is
an imbalanced distribution in crater samples, 59.66% less than 100 m in radius, 21.73% from 100 m to
150 m, 12.51% from 150 m to 250 m, and only 6.11% more than 250m. As for the sample type, there
are simple craters, complex craters and degraded craters. However, YOLOX uses the traditional
binary cross entropy loss to calculate the confidence loss, which is difficult to solve the crater samples
imbalance problem [37]. VariFocal loss borrows the weighting idea from the focal loss and deals with
large, small, simple and complex craters asymmetrically to solve the imbalance problem [38]. So, we
replaced the traditional binary cross entropy loss with VariFocal loss. Furthermore, YOLOX uses the
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Intersection over Union (IoU) loss to calculate the localization loss. When the crater prediction box
and crater ground truth box have no intersection with IoU = 0, which can result in a gradient
vanishing problem for non-overlapping. Zheng et al. [39] suggested that a good positioning loss
should consider three important geometric indicators, namely overlapping area, center point distance,
and aspect ratio. Efficient-IoU (EIoU) loss combines these geometric indicators, which can relieve the
gradient vanishing problem [40]. So, we replaced IoU loss with EloU loss. EloU is measured by the
following expressions:

U =403 0
t 2 t
Lo =L + L+ Ly =1= 10U +— (bbg) (W’Wg)+/3(h»hg) "

el (@) (c)]

where b, h ,w are the central point, height and width of the prediction box. b, w ', h ¢’ are the
central point, height, and width of the ground truth box. C,,and C;, are the width and height of the

smallest enclosing box covering the prediction box and ground truth box. p(-)=”b—bgt

is the
2

Euclidean distance.

In addition, YOLOX uses the Darknet53 backbone and Path Aggregation Network (PANet) neck
to extract features, which enhance the entire feature hierarchy with accurate localization signals in
lower layers by bottom-up path augmentation [41]. However, due to the complex lunar topographic
surface, some circular highlight-shadow landforms are easy to be misidentified as craters, such as
volcanic cones, domes, etc. What's more, if there is a low contrast between the crater and the
background in the image, it is difficult to detect the crater. To enhance the circular highlight-shadow
feature and make the model focus on the crater area, the Convolutional Block Attention Module
(CBAM) was introduced to the YOLOX. CBAM consists of a channel attention module and a spatial
attention module [42], as shown in Figure 3. Channel attention focuses on ‘what’ is meaningful given
an input image, while spatial attention focuses on ‘where” is an informative part, which is
complementary to channel attention [42].

| Feature map

1
Channel Attention Module Spatial Attention Module

v
Shared Mlp

nﬁ % il ﬂ [MaxPool, AvgPool’ ?
®
—I® —| Choana

Attention

Figure 3. The schematic representation of the Convolutional Block Attention Module (CBAM).

By replacing the loss function and introducing the CBAM attention mechanism, we proposed a
YOLO-Crater model shown in Figure 4. In the first stage, CE-2 images of 640 pixel x640 pixel were
input into the backbone. In the second stage, Darknet53 was used to extract crater features. In the
third stage, CBAM was added to the connection channel between the backbone and neck to enhance
the crater features extracted by the backbone. In the fourth stage, PANet used up-sampling and


https://doi.org/10.20944/preprints202309.0061.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2023 doi:10.20944/preprints202309.0061.v1

down-sampling to merge the different hierarchy features from CBAM. In the last stage, the YoloHead
was used to predict crater localization and size. Additionally, the VariFocal loss and EloU loss were
used to tune the model through backward propagation.
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Figure 4. The detection framework of YOLO-Crater.

3.2. Model Training and Testing

The model training aims to get the best Lunar and Martian crater detection model. The model
training was under the PyTorch framework (torch 1.8 + cull) using Python language (Python 3.7)
and torchvision library (version:0.9.0 + cull). Accuracy metrics, including Precision (P), Recall (R)
and F1 score [43], were adopted to evaluate the detecting accuracy using Equations (3)-(5).

TP
P=—— 3)
TP+ FP
TP
R=—— 4)
TP+ FN
2X PXR
Fl=—m (5)
P+R

where TP, FP, and FN are the number of true positives, false positives, and false negatives,
respectively.

The model training and testing include the following steps (see Figure 5):

The first step is to train the YOLO-Crater model using the DOM dataset and other 21 datasets
(DOM, DEM and Slope with 7 kinds of visualization stretching method), and select the optimal
stretching method for each data type and 3 corresponding datasets. And then, the above 3 datasets
were integrated into the DDS dataset (see Section 4.1.1) to train the YOLO-Crater again.

The second step is to use the testing data from the above 3 datasets and the DDS dataset to
evaluate the trained models using the accuracy metrics and determine the optimal model as the Lunar
YOLO-Crater (see Section 4.1.2).

The last step is to take the Lunar YOLO-Crater model as a pre-trained model, and use the
Martian dataset to train and test the Martian YOLO-Crater.
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Figure 5. Workflow of the model training and testing.

The following is the model hyper-parameters. Due to the crater texture information in Maria
being poorer than that in Highland, we set the confidence threshold to 0.4 in Maria and 0.3 in
Highland.

Table 1. The model hyper-parameters.

Hyper-parameter Value
epoch 100
batch size 16
nmsthre 0.5
test size (640, 640)
test_conf 0.4(Maria) / 0.3(Highland)

3.3. Detection Post-processing

In Lunar YOLO-Crater model training and testing, the detected craters were located in image
coordinates, which should be transformed into geo-coordinates to put the detected craters together.
Furthermore, we cropped the data with a 5% overlap rate, which may produce duplicate craters and
affect the detecting accuracy. So, the detection post-processing includes the projection coordinate
transforming, the duplication craters removing and the accuracy calculating. We used the
GetGeoTransform method described in [17] to transform the image coordinates (X, y) into the geo-
coordinates (0, ¢). To remove the duplicate craters, we used Non-Maximum Suppression (NMS)
method, which selected the bounding box with the highest probability and suppressed all other
bounding boxes that had an IoU greater than a threshold (@ ) [15]. The threshold is determined
below.

The correct detection (TP), missed detection (FN) and false detection (FP), used in (3)-(5), are
calculated by (6)-(7). If the coordinates of the detected crater satisfy Equations (6)-(7), which means a
correct detection (TP) [43]. Conversely, it is a missed detection (FN) or false detection (FP).

(3, =x,) +(n =)

D
[min (7.1, | o v
L]"p‘ <D (7)

. r
mln(rt,rp)

where (xt s Vol ) is the center pixel coordinates and radius of the labels; (x b Vol ) is the center

pixel coordinates and radius of the detected crater; D, and D are tunable hyper-parameters.
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To determine the tunable hyper-parameters, we selected the parameter combination with the
highest F1. The range of € is [0, 1]. A low threshold is not conducive to detecting overlapped craters.
While a high threshold is not conducive to removing duplicate craters. So, we selected 8 € [0.3-
0.7] with a step size of 0.1. D, and p_ have the same range [0.5, 3] [43]. A small step size can cause
slow changes and consume more computing time, so we set the step size to 0.5 for p _and p . In

the end, a total of 180 sets of parameter combinations were obtained, with the F1 € [0.7120-0.7541].
And we selected the best parameter combination ( 6=0.3, D, =15, D,=1.5) with the

corresponding F1=0.7541 (see Figure 6).
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Figure 6. F1 with different parameter combinations (9 , ny D).

4. Results and Discussion

Based on the following comparative experiments, we used the detecting accuracy metrics to
evaluate the data visualization, determine the optimal dataset for the Lunar YOLO-Crater and
analyze the detecting accuracy distribution. In addition, we used the Martian dataset download from
the 2022 GeoAl Martian Challenge to test the transferability and generalization capability of the
YOLO-Crater model.

4.1. Comparative Analysis of Lunar Crater Detection

4.1.1. Data Visualization Evaluating

In this experiment, the accuracy metrics such as Precision (P), Recall (R), and F1 score are used
to evaluate visualization enhancement methods using the testing data, which can determine the
optimal stretching method for each data type.

DEM: The testing data was used to evaluate the detecting accuracy shown in Table 2. The highest
detecting accuracy is based on the DEM-1% LTS method, with F1 = 23.35%. But the lowest accuracy
is based on the DEM-HE method, with F1 = 13.51%. Furthermore, the MMS and LTS methods have
similar accuracy, which also means that the values of the summit and lowest point pay more impact
on the DEM visualization. Additionally, the detecting accuracy of the DEM datasets is low. So, the
geomorphological features for detecting in DEM data are limited.

Table 2. Detecting accuracy based on DEM visualization datasets with 7 kinds of stretching

methods.
Method P R F1
DEM-MMS 0.9093 0.1088 0.1944
DEM-1% LTS 0.8712 0.1348 0.2335
DEM-2% LTS 0.8962 0.1186 0.2095

DEM-SDS 0.9147 0.1120 0.1996
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DEM-HE 0.9092 0.0730 0.1351
DEM-LS+ MMS 0.9135 0.1088 0.1945
DEM- LS+ MMS+GS 0.9174 0.1114 0.1988

Slope: In the sample areas, the max value of the slope is not more than 69°. Table 3 shows the
detecting accuracy for different stretching methods. The Slope-SDS gets the highest accuracy with F1
= 22.97%, more 1.5% than the Slope-1% LTS. But the Slope-HE gets the lowest accuracy, with F1 =
19.23%. Compared with the DEM datasets, the detecting accuracy of the Slope datasets has no
apparent increase.

Table 3. Detecting accuracy based on Slope visualization datasets with 7 kinds of stretching

methods.

Method P R F1
Slope-MMS 0.9243 0.1108 0.1978
Slope-1% LTS 0.8777 0.1223 0.2147
Slope-2% LTS 0.8989 0.1124 0.1998
Slope-SDS 0.8410 0.1330 0.2297
Slope-HE 0.8950 0.1077 0.1923
Slope-LS+ MMS 0.9049 0.1112 0.1980
Slope- LS+ MMS+GS 0.8922 0.1218 0.2143

DOM: Table 4 is the accuracy of the detection based on Change’E-2 DOM with different image
stretching methods. The DOM-MMS obtains the highest detecting accuracy, with F1 = 75.41%. The
lowest is 67.29% corresponding to the DOM- LS+ MMS+GS. But the DOM gets a better result (F1 =
72.33%). Compared with the MMS, the others didn’t improve the detecting accuracy, but reduced it,
which means the above image stretching methods have no great impact on detecting accuracy. The
main reason is that the DOM, as the processed image data, has been enhanced [19]. Compared with
the DEM and Slope datasets, DOM datasets have an apparent detecting accuracy increase. If image
data were used to detect the crater, the MMS may be the best recommended stretching method.

Table 4. Detecting accuracy based on DOM and visualization datasets with 7 kinds of stretching

methods.

Method P R F1
DOM 0.8562 0.6261 0.7233
DOM-MMS 0.8786 0.6604 0.7541
DOM-1% LTS 0.7956 0.6390 0.7087
DOM-2% LTS 0.7815 0.6280 0.6964
DOM-SDS 0.7764 0.6505 0.7079
DOM-HE 0.7312 0.6390 0.6820
DOM-LS+ MMS 0.8672 0.5886 0.7012
DOM- LS+ MMS+GS 0.8765 0.5461 0.6729

DDS: After the above comparison and analysis, we got the optimal stretching method for each
datatype, and then we used the corresponding dataset (DOM-MMS, DEM-1% LTS and Slope-SDS) to
form the DDS dataset by layerstacking in ENVI software.

doi:10.20944/preprints202309.0061.v1
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4.1.2. Best Dataset Selecting

The above step determined the optimal stretching method for each data type and the
corresponding dataset. To select the best dataset, we used the best testing accuracy for each data type.
As shown in Table 5, the DOM-MMS dataset got the highest detecting accuracy, with P =87.86%, R =
66.04%, and F1 = 75.41%. DDS dataset got better accuracy with P=84.33%, R=63.01%, and F1=72.13%,
but missing some detections (see Figure 7).

Table 5. The best testing accuracy for each data type.

Dataset P R F1
DOM-MMS 0.8786 0.6604 0.7541
DDS 0.8433 0.6301 0.7213
Slope-SDS 0.8410 0.1330 0.2297
DEM-1% LTS 0.8712 0.1348 0.2335

Figure 7. Crater detection results with DOM-MMS (a) and DDS (b): Red for correct detection, black
for missed detection.

The DEM-1% LTS dataset and Slope-SDS dataset derived from the DEM got the lowest accuracy.
In Figure 8, we can see more texture information in the DOM-MMS dataset than that in the DEM-1%
LTS and Slope-SDS dataset. Though the illumination can’t affect the DEM and slope, the texture in
the image was affected by the landscape and the illumination, in Figure 8. That is to say, the DOM
image contains more crater’s features. For example, we can see that the craters have shadow and
shine spot, and the texture is directional, which become an apparent feature for the craters. In the
DEM-1% LTS image, we can’t get the apparent features. But in the Slope-SDS data, we can see the
slope changes in and out of the crater. So, the detecting accuracy based on Slope-SDS is better than
that based on the DEM-1% LTS.
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(a) (b) (©
Figure 8. Craters showed in different datasets: (a) DOM-MMS; (b) DEM-1% LTS; (c) Slope-SDS.

4.1.3. Accuracy Distribution Analysis

To evaluate the detection model improvements, an ablation experiment was carried out to
analyze the effect of the new loss function, CBAM, and both of them. Table 6 shows the results.
Without any improvement, the YOLOX was used to detect the crater with F1 = 66.75%. When the
CBAM was added into the model, the P (92.51%), R (52.8%), and F1 (67.23%) all increase a little, which
indicates that the CBAM promotes extracting fine features of craters slightly. When changing the new
loss function described in Section 3.1, the P decreases (by 5%), but the R (by 10%) and F1 (by 6%)
increase obviously, which indicates that the new loss function enables the model to relieve the crater
sample imbalanced problem and identify more small-scale craters efficiently. When both of them
were embedded into the model at the same time, the model became (Lunar) YOLO-Crater with higher
detecting accuracy (F1=75.41%).

Table 6. Result of ablation experiment.

CBAM Loss P R F1
x x 0.9115 0.5266 0.6675
v x 0.9251 0.5280 0.6723
x v 0.8656 0.6257 0.7263
v v 0.8786 0.6604 0.7541

Figure 9 is the distribution of craters detected by the Lunar YOLO-Crater in Maria and Highland.
As shown in Figure 9, the Lunar YOLO-Crater has some missed and false detections. Some craters
have severe degradation and unclear highlight-shadow features, which make it difficult to detect
them. In addition, due to the limitation of the cropped image size and image resolution, the model
cannot detect a crater radius of more than 2.24 km (Figure 9b, blue dashed circle). Besides, the
interference derived from other lunar circular features which have significant highlight-shadow
features, leading to misidentifying them as craters. However, when we verified the false detections,
found that some “false” craters are true craters. This reflects the limitations of manually labelled
crater dataset and the importance of automatic crater detection research.
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Figure 9. Distribution of craters detected by the Lunar YOLO-Crater in Maria (a) and Highland (b):
Green for correct detection, red for false detection, and blue for missed detection.

As shown in Table 7, the Lunar YOLO-Crater got a higher detecting accuracy both in the Maria
and Highland than YOLOX, and had a better performance in the Highland (P = 89.56%, R = 66.18%,
F1=76.11%) than that in Maria (P = 86.11%, R = 65.9%, F1 = 74.66%). The main reason is the features
in Highland, including image contrast, image hierarchy, clarity, and texture information, are better
than those in Maria [18].

Table 7. Detecting accuracy in Maria and Highland.

Type Model TP FP FN P R F1
YOLOX 1948 274 1571 0.8767 0.5536 0.6786
Maria(R5)
YOLO-Crater 2319 374 1200 0.8611 0.6590 0.7466
YOLOX 1884 98 1874  0.9506 0.5013 0.6564
Highland(R6)

YOLO-Crater 2487 290 1271 0.8956 0.6618 0.7611

In order to evaluate the ability of YOLO-Crater to detect craters at different scales, we made a
detecting accuracy statistic as shown in Figure 10 and Table 8. We found that the F1 is 73.97% with
the radius < 100 m, while greater than 80% within 100 m to 350 m, and 77.14% within 350 m to 400 m.
But a lower performance for detecting craters is shown with the radii between 400 m to 500 m. As
can be seen in Figure 10, the Recall (green) and F1 (blue) curves showed a downtrend.

Table 8. Detecting accuracy at different scales.

R(m) P FP FN p R F1
R<100 3533 624 1862 0.8499 0.6549 0.7397
Re (100~150] 646 16 291 0.9758 0.6894 0.8080
Re (150~200] 295 12 129 0.9609 0.6958 0.8071

Re (200~250] 129 2 54 0.9847 0.7049 0.8217
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Re (250~300] 63 2 26 0.9692 0.7079 0.8182
Re (300~350] 43 2 15 0.9556 0.7414 0.8350
Re (350~400] 27 2 14 0.9310 0.6585 0.7714
Re (400~450] 13 0 17 1.0000 0.4333 0.6047
Re (450~500] 9 0 17 1.0000 0.3462 0.5143

02t ~——— Precision 02t ~— Precision
= = -Recall = = =Recall
——-F1 ——-F1
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Radius(m) Radius(m)
(a) (b)

Figure 10. Detecting accuracy at different scales in Maria (a) and Highland (b).

4.2. Martian Crater Detection

There are significant geomorphological differences between Mars and the Moon, which can be
used to examine the generalization ability of YOLO-Crater. As described in Section 3.2, we took the
Lunar YOLO-Crater model as a pre-trained model, and used the Martian dataset downloaded from
the 2022 GeoAl Martian Challenge to train the pre-trained model and got the Martian YOLO-Crater
model. Figure 11 shows the detecting results (in brown) and the ground-truth labels (in green) using
validation data. Figure 11a-11c demonstrates the Martian YOLO-Crater model can detect craters of
different sizes (Figure 11c). In addition, the model can detect unlabeled craters (see Figure 11d, e, f).
However, there are some crater-like features undetected by the model (Figure 11e). In Table 9, the
results indicate a good performance in detecting Martian craters with P = 88.37%, R = 69.25%, and F1
=77.65%.

Figure 11. Craters detected by Martian YOLO-Crater using the validation data. The ground-truth
Bounding Boxes (BBOX) are in green and the detected results are in brown.
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Table 9. Detecting accuracy using the validation data.

Model APso APs0.95 P R F1

Martian YOLO-Crater  0.8490  0.4550  0.8837  0.6925 0.7765

The organizer only provided the testing image data without corresponding labels, and required
the contestant put the detected result back. Based on the feedback, the organizer evaluated the
detecting accuracy using the Average Precision (AP) metric. The detecting accuracy of the Martian
YOLO-Crater ranked second place (http://cici.lab.asu.edu/martian/#eval-award) with APso9s = 46.7%
and APso = 86.1% in the Challenge, while the first place with APsoos = 48.4% and APs = 86.0%
(https://codalab.lisn.upsaclay.fr/competitions/1934#results). The above results indicate that the
YOLO-Crater has strong transferability and generalization ability, and can be applied to detect small
craters on other celestial bodies.

5. Conclusions

In this paper, we proposed a novel small crater detection model (called YOLO-Crater) by
replacing the IoU loss and traditional binary cross entropy loss with EloU loss and VariFocal loss and
introducing the CBAM attention mechanism. To get more small crater samples with high accuracy,
about 42,006 labels had been remodified manually, based on the existing labels made by Zang et al.
[17]. And a series of comparative experiments were made to analyze the impact of data type,
stretching method, terrain type, and crater size on the crater detection model systematically.

The results showed that the data type and visualization stretching methods pay an important
impact on the detecting accuracy. The DOM is the best data type for small crater detection. And CE-
2 DOM-MMS (Maximum and Minimum Stretching) is the best stretching method with total P =
87.86%, R = 66.04%, and F1 = 75.41%. Compared with the YOLOX, the Lunar YOLO-Crater gets a
better performance both in Mare and Highland with accuracy Fl1= 74.66% and 76.11% respectively.
Moreover, the Lunar YOLO-Crater obtains a higher accuracy in detecting small-scale craters within
400 m in radius. In addition, the Martian crater detection model (Called Martian YOLO-Crater) was
trained by image sample data from the 2022 GeoAl Martian Challenge and achieved second place
with P = 88.37%, R = 69.25%, and F1 = 77.65%, which means the Martian YOLO-Crater has strong
transferability and generalization capability.

In the future, more and more high resolution data will be acquired for the Moon and other
celestial bodies. The remodified lunar small crater dataset could serve as a valuable supplement for
GeoAl datasets, which would enable more researchers to utilize, improve and expand it to other
celestial bodies. Meanwhile, the strong transferability and generalization capability of the YOLO-
Crater will make it possible to detect the craters with high accuracy on other celestial bodies using
image data.
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