

Review

Not peer-reviewed version

IgY Antibodies from Birds: A Review on Affinity and Avidity

Bianca Lisley Barboza Pacheco , Camila Parada Nogueira , [Emerson José Venancio](#) *

Posted Date: 1 September 2023

doi: [10.20944/preprints202309.0025.v1](https://doi.org/10.20944/preprints202309.0025.v1)

Keywords: Chicken IgG; immunoglobulin Y; affinity maturation, immunochemistry.

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

IgY Antibodies from Birds: A Review on Affinity and Avidity

Bianca Lisley Barboza Pacheco ¹, Camila Parada Nogueira ² and Emerson José Venancio ^{3,*}

¹ Scientific Initiation Programme, Biomedicine Course, State University of Londrina; biancalisley90@uel.br

² Scientific Initiation Programme, Animal Science Course, State University of Londrina; camila.paradan97@uel.br

³ Department of Pathological Sciences, State University of Londrina; emersonj@uel.br

* Correspondence: emersonj@uel.br; Tel.: +55 43 33715766

Simple Summary: IgY antibodies are used in research and in the development of solutions for immunotherapy and immunodiagnosis of human and animal diseases. Affinity and avidity are forces that describe the interaction between an antigen and antibody and are important characteristics for the biological function of IgY antibodies. Therefore, these measures are fundamental variables for the development of immunodiagnostic methodologies and immunotherapy based on IgY antibodies. In this review we address factors that influence the affinity and avidity of IgY antibodies and the methodologies used for the determination of these strengths. We observed a low number of studies on the factors influencing the maturation of IgY affinity and avidity and a wide variation in the methodologies used to determine these variables. The development of studies characterising factors that influence the maturation of IgY antibody affinity and avidity, with standardised methodologies for the determination of these forces, is of utmost importance.

Abstract: IgY antibodies are found in the blood and yolk of eggs. Several studies show the feasibility of utilising IgY for immunotherapy and immunodiagnosis. These antibodies have been studied because they fulfil the current needs for reducing, replacing, and improving the use of animals. Affinity and avidity represent the strength of the antigen-antibody interaction and directly influence antibody action. The aim of this review was to examine the factors that influence the affinity and avidity of IgY antibodies and the methodologies used to determine these variables. In birds, there are few studies on the maturation of antibody affinity and avidity and these studies suggest that the use of an adjuvant, type of antigen, strain of the animal, number of immunisations, and time interfere with the affinity and avidity of IgY antibodies. Regarding the methodologies, most studies use chaotropic agents to determine the avidity index. Studies involving solution phase and equilibrium titration reactions are also described. These results demonstrate the need for standardisation of methodologies for determination of affinity and avidity so that further studies can be performed to optimise the production of high avidity IgY antibodies.

Keywords chicken IgG; immunoglobulin Y; affinity maturation; immunochemistry

1. Introduction

Avidity is a key measure of the strength of the interaction between antigen and antibodies and plays a key role in antibody function [1]. The higher the avidity, the longer the interaction time of the antigen with the antibody and the more likely the antibody is to trigger the biological reactions necessary for the elimination of the antigen [2]. The increase in avidity throughout the development of the humoral immune response is a characteristic of this response and an area of intense research [3]. Understanding the molecular process involved in increased avidity is of fundamental importance, especially in vaccine development. In poultry there are few studies on the avidity and affinity of IgY antibodies. These antibodies are equivalent to mammalian IgG antibodies and are the most abundant in serum and their levels increase as the humoral immune response develops [4]. In the current work, we review the studies that have investigated factors that affect the affinity and avidity of IgY antibodies and the methodologies used to determine these variables.

2. General characteristics of IgY antibodies

IgY antibodies are one of the classes of immunoglobulins found in birds [5]. They were initially called chicken IgG or 7S antibodies due to their similarities to mammalian IgG antibodies [6]. These avian Y antibodies are related to the IgY antibodies found in reptiles and amphibians [7,8]. They are found in blood and tissues, and are transferred from the circulatory stream to the developing yolk via specific receptors, where they are stored and have the function of protecting the embryo [9]. In blood and yolk, the concentration of IgY antibodies is variable and influenced by factors such as breed, age, and antigenic stimulation [10–12]. Values between 4 and 14 mg/ml have been described in blood, while values between 7 and 15 mg/ml have been observed in yolk [10–12]. Interestingly, there is a directly proportional correlation between IgY antibody levels in serum and yolk [13]. To date, no significant differences have been described between IgY antibodies found in serum or yolk, either in structure or in their characteristics, such as antigen-binding capacity or avidity [14,15]. These immunoglobulins have a similar role to mammalian IgG. They are produced in higher concentrations in the secondary immune response, acting as opsonins and being involved in the activation of the complement system by the classical pathway [16,17]. The molecular structure of IgY antibodies is similar to that of other immunoglobulins. The IgY molecule is composed of two larger amino acid chains, the so-called heavy chains (HCs), and two smaller chains, the so-called light chains (LCs), and has an estimated molecular mass of approximately 170 kDa [18]. The HCs are joined by disulfide bridges and each HC is also joined to a light chain by a disulfide bridge. The HCs are composed of 5 immunoglobulin domains named, in the direction from amino terminal end to carboxy terminal end, HC variable domain, 1st HC constant domain, 2nd HC constant domain, 3rd HC constant domain, and 4th HC constant domain. The molecular mass of the HC is estimated to be approximately 65 kDa [18]. LCs are composed of two domains, called the LC variable domain (amino-terminal region) and the LC constant domain (carboxy-terminal region) and are approximately 18 kDa [18]. As in other immunoglobulins, the antigen-binding site is formed by the juxtaposition of the LC variable domain and the HC variable domain, in which positions of great amino acid diversity are found, called complementarity determining regions (CDR1, CDR2, and CDR3). These positions are very important for antibody avidity [16]. The IgY molecule has two identical combinatorial sites and is considered a bivalent antibody. A detailed description of the molecular structure and genes of IgY antibodies can be found in another review [16].

3. Applications

IgY antibodies are molecules of great interest for immunotherapy, immunodiagnosis, and basic research [19–24]. The production of IgY antibodies fulfils the current need for reducing, replacing, and improving the use of animals, since IgY antibodies can be produced in laying hens instead of using mammals, leading to less exposure to suffering and a significant reduction in the number of animals used [25]. This is possible because IgY antibodies can be obtained directly from the egg yolk of laying hens and other birds by relatively simple and low-cost purification methods. This avoids the need for bleeding or slaughtering of the animals used for antibody production [23]. In addition, one egg yolk can yield an additional 100 mg of IgY antibodies, and considering that laying hens produce almost 30 eggs per month, a single hen can replace several rabbits in antibody production [23].

Immunotherapy, studies show the possible use of IgY antibodies for the prevention and treatment of diseases in humans and animals [17,28–32]. In particular, IgY antibodies have been studied for immunotherapy of bacterial [33], viral [34], fungal [35], parasitic [36], respiratory [37], enteric [38–40], and chronic diseases, such as periodontitis, cystic fibrosis, and coeliac disease [41–43]. Within the context of immunotherapy, different from antibodies produced in mammals, IgY antibodies can be utilised without the need for processing to remove the Fc portion. This is possible because IgY antibodies do not activate the complement system or interact with mammalian Fc receptors, which makes them safe for immunotherapy in mammals [17,23].

The development of IgY-based immunodiagnostic reactions is an area of intense research [17,31,44,45], and reviews on the application of IgY antibodies in the diagnosis of infectious and

chronic diseases have been published [34,36,46]. IgY antibodies have been used in the development of ELISA, Western blotting, immunohistochemistry, immunochromatography, immunofluorescence, radioimmunoassay, and biosensors for the diagnosis of infectious and chronic diseases in humans and animals [46–48]. The use of IgY antibodies presents some advantages over mammalian antibodies, the most important of which are the non-interaction with rheumatoid factor or mouse anti-IgG antibodies and consequent interference in test results [49,50]; and the non-activation of the complement system and the generation of its fragments, which may result in the covering of epitopes important for diagnosis [49]; and a higher molecular stability than mammalian antibodies [51].

In basic research, IgY antibodies are widely used. In particular, due to the phylogenetic distance between birds and mammals, birds allow the production of specific antibodies against antigens conserved in mammals [23,24,52,53]. In addition, the fact that they can be produced on a large scale enables the production of antibodies to meet the need for characterisation of proteins identified by genomic studies [54]. Finally, IgY antibodies have been used to develop products for the optimisation of proteomics analyses [55].

In addition to these broad areas of application, studies have shown the application of IgY antibodies in the areas of food preservation, bioterrorism, and genetically modified organisms detection [23,56–58].

The main difficulties for the more intensive utilisation of IgY antibodies are probably their sensitivity to the acidic pH of the stomach, low efficacy against gram positives, higher production cost compared to antibiotic production, low half-life in mammals, low bioavailability, and concerns regarding the development of allergic reactions because IgY antibodies are egg-derived molecules [29,59,60].

4. Affinity and Avidity

Regardless of the different uses of IgY antibodies, as with other antibodies, their main function is to interact with the antigen. This interaction depends primarily on the combinatorial site of the antibody (ab) - the region formed by the union of the variable regions of the HCs and LCs - and the epitope present on the antigen (ab). The Fc portion of the antibody may also contribute to the ab-ag interaction [61]. This interaction and its duration are related to a set of non-covalent forces that are inversely proportional to distance, such as ionic forces, hydrogen bridges, hydrophobic forces, and van der Walls forces [62,63]. These forces are stronger the smaller the distance between the elements. Therefore, the intensity of these forces is dependent on the complementarity between the antigen and the antibody. The greater the complementarity of the antigen-antibody interaction, the greater the binding force between them. The expression of the interaction force between one epitope and one combinatorial site is called affinity. A key feature of affinity is that it is variable during the development of a specific immune response, with an increase in antibody affinity observed throughout contact with the antigen or with repeated contact with the same antigen [64,65]. This process is known as affinity maturation [3,66]. Affinity can be expressed by the association constant at equilibrium (K) or by the dissociation constant (Kd or Kdiss) [1].

Several studies show that affinity increases 10- to 100-fold over the course of the specific immune response, and the mechanisms involved in affinity maturation are the subject of intense research [3,66,67]. In mammals, it is well established that the process of affinity maturation occurs in germinal centres. Cellular structures where B lymphocytes undergo the process of somatic hypermutation result in changes in antibody variable regions and the selection of antibody-producing B lymphocytes with higher affinity [3]. This process occurs during an intense migration of B lymphocytes between the dark zone and the light zone present in the germinal centres. The dark zone is a site of great cell proliferation along with somatic hypermutation, while in the light zone there are processes that lead to the survival of B lymphocytes, the expression of antibodies with greater avidity, and the death by apoptosis of unselected lymphocytes [68]. These processes involve follicular dendritic cells and follicular T lymphocytes [68]. Experimental evidence suggests that similar processes occur in the germinal centres of birds [69,70]. The germinal centre found in chickens is formed by an outer region with intense cell proliferation and where somatic hypermutation occurs [71,72]; and an inner area

where follicular dendritic cells are present [73]. In addition, the presence of CD3+ cells, class change from IgM to IgY, and the occurrence of apoptosis have been described in chicken GC [74,75]. An important observation is a slower affinity maturation in chickens than in rabbits [76]. The authors attribute this to the smaller number of variable regions in birds compared to mammals, however, this result is the opposite to that observed by another study [15]. In any case there are few studies on the process of affinity maturation in these animals.

An important feature is that affinity does not fully describe the interaction between antigen and antibody. Considering that an antigen can have more than one copy of the same epitope - i.e. have a valence greater than 1, and the antibody has at least two identical antigen-binding sites - and is therefore at least bivalent, the strength of the antigen-antibody interaction will depend on the valence of these molecules [2]. The role of antigen and antibody valence in the strength of the antigen-antibody interaction is measured by avidity. Avidity is influenced by affinity, the valences of the antibody and antigen, and the geometry of the interaction between the antigen and antibody [1,2]. Avidity can also be expressed in terms of the constants K and Kd [1]. It is important to emphasise that in the literature the terms avidity and antibody affinity are often used synonymously and this can cause confusion.

An extremely important aspect is that affinity and avidity directly influence the biological role of the antibody [2,77]. For example, the ability to facilitate antigen phagocytosis and the ability to activate the complement system contribute fundamentally to pathogen elimination and this ability is directly associated with antibody avidity [2,77]. On the other hand, the avidity of the antigen-antibody interaction is also associated with the severity of autoimmune diseases [77,78]. In addition, avidity is a parameter that directly influences immunodiagnostic reactions, including avidity measurements being used to assess the stage of a given pathology [79–83].

Several methodologies have been developed for the assessment of antibody affinity and avidity [1]. These methodologies can be grouped into solution-phase, solid-phase, and equilibrium titration ELISA methodologies. Affinity/avidity determinations by solution-phase assays cover reactions where antigen and antibody interactions occur in solution and the free antigen concentration is determined [84]. In solid phase methodologies, the antigen is bound to a support, and after formation of the antigen-antibody complex, the amount of antibody bound to the immune complex is determined [85]. Whereas in equilibrium titration ELISA determinations, the amount of free antibody present in a solution where immune complex formation occurs is determined [86]. The aforementioned methodologies involve the calculation of the association constant at equilibrium (K), a measure of the affinity of an antibody derived from the relationship between the concentration of the formed antigen-antibody complex and the concentrations of antigen and free antibodies [1]. In addition to calculating the association constant, the affinity can also be defined by the dissociation constant K_{diss} , determined by the reciprocal of K ($K_{diss} = 1/K$). Another way to evaluate the affinity/avidity of the antibody is the determination of the affinity index (AI), which is obtained by the ratio between the absorbances (Abs) arising from the antigen-antibody complex in the presence and absence of a chaotropic agent. Chaotropic agents are molecules that can disrupt the network of hydrogen bridges between water molecules and reduce the stability of the native state of the protein by reducing the hydrophobic effect [87]. The affinity index has a direct correlation with affinity [88].

In studies on IgY antibody avidity, methodologies that use chaotropic agents are the most commonly used [89–92]. These methodologies vary in the type of chaotropic agent used, either determining the avidity index from the ratio of the optical density obtained in the presence and absence of the chaotropic agent, or from the reduction in the optical density obtained from the use of increasing concentrations of the chaotropic agent. As in mammals, the establishment of standards for the determination of IgY antibody avidity by ELISA is extremely important [93].

5. Factors affecting IgY antibody avidity

Like mammalian antibody avidity, chicken antibody avidity is a trait of great interest and is directly related to the development of the humoral immune response. In birds, the dynamics of the humoral immune response to an antigen are similar to those observed in mammals [94]. Initially there

is an increase in antibody levels within 8-10 days, followed by a significant drop in antibody levels. With the administration of booster doses, an increase in antibody levels is observed [4,95].

Several factors can affect antibody production in birds and mammals. One factor is the use of substances that enhance the magnitude and durability of antibody production. These substances are called adjuvants [96]. For the production of IgY antibodies in birds, the most frequently used adjuvants are complete and incomplete Freund's adjuvants. The primary immune response is profoundly affected by the use of Freund's adjuvant. The use of Freund's complete adjuvant (FCA) causes a first increase in antibody production between days 7 and 21, and a further increase in antibody production between days 42 and 59 of initial inoculation [97]. It is interesting to note that this two-phase response stimulated by FCA also occurs in relation to the avidity of the antibodies produced, with antibodies produced in the second phase having higher avidity than those in the first phase [97]. This effect of FCA appears to be dependent on the route of inoculation, since intramuscular inoculation of the antigen associated with the adjuvant results in an increase in the avidity of the antibodies produced, whereas intravenous inoculation without the adjuvant does not lead to a significant increase [98,99]. It is important to note that in mammals, intravenous inoculation of the antigen without adjuvant leads to a significant increase in the avidity of the antibodies produced, suggesting significant differences in the affinity maturation process between birds and mammals [98].

It is interesting to note that FCA stimulates greater avidity than other adjuvants, including FIA. A study comparing the effect of the adjuvants FCA, ABM-N-/S, Gerbu, and Titer Max on IgY antibody production and avidity showed that the use of FCA results in higher avidity than the other adjuvants [76]. Another study comparing the effect of FCA and Emulsigen-D adjuvant also showed the production of antibodies with higher avidity with the use of FCA [100]. On the other hand, this effect of FCA on avidity may be related to time, since it has been observed that the use of FCA results in a faster increase in avidity compared to the use of Freund's incomplete adjuvant or Hunter's Titer Max adjuvant, however, at the end of the immunisation period the avidity obtained was similar when comparing the three adjuvants [101]. In addition, ISA VG71 adjuvant was found to have a similar effect to Freund's adjuvants with respect to avidity of the antibody against botropic venom [102].

Regarding the time of immunisation, high avidity rates (60 to 75%) are observed within 30 days after the first immunisation [101, 102, 103, 104, 105, 106] and in some studies 100% avidity rates are observed between day 7 and 21 of the first immunisation [107,108]. On the other hand, other studies did not obtain antibodies with a high avidity index (below 60%) in this same period of time [109–113]. In addition, some studies were not able to produce antibodies with high avidity [114,115]. It is interesting to note that, in general, avidity increases throughout the immunisation period and remains high [91,100–102,108,116], however, some studies have shown a reduction in avidity after the last immunisation [104,117].

In addition to the use of adjuvants and the timing of immunisation, other factors, such as antigen composition, genetics, and the presence of natural antibodies can influence the avidity of IgY antibodies.

Studies using carrier-bound peptides show that the carrier used has an effect on the avidity of the antibody produced. Comparisons of the use of beta-lactoglobulin and KLH carriers for the production of anti-insulin antibodies showed that inoculation of the insulin-KLH complex results in IgY antibodies with higher avidity than application of the insulin-beta-lactoglobulin complex [118]. The use of KLH or BSA as a carrier for cancer 15-3 antigen peptides seems to influence the avidity of the IgY antibodies obtained, with the use of BSA as a carrier being related to the obtention of antibodies of higher avidity than the use of KLH, this effect being specific to peptide 1066-1085 [116].

Genetic selection seems to be able to influence IgY antibody avidity. In an experiment selecting animals for high and low levels of natural anti-KLH antibodies it was observed that the serum of animals selected for high levels of anti-KLH AcNs have IgY anti-KLH AcNs with higher levels of avidity than the AcNs of animals selected for low levels of anti-KLH AcNs, this effect being specific for the KLH antigen [119]. Animals selected for high SRBC antibody production have higher levels of anti-ovalbumin and anti-KLH natural antibodies (NCAs) and these antibodies have a higher

avidity index than the same NCAs from animals selected for low anti-SRBC antibody production [120]. In both studies the observed effect on avidity was influenced by the antigen analysed [119,120].

Furthermore, inoculation by intramuscular, intradermal, and subcutaneous routes and the dose of the antigen do not seem to influence the avidity of the antibodies obtained [112].

Few studies have compared antibody avidity in birds and mammals. In one study the authors obtained K_d values of 1×10^{-12} mol/l in birds and $K_d 7 \times 10^{-13}$ mol/l in guinea pigs. [121] In another study, K values of 1.3×10^{10} l/mol and 3.1×10^{10} l/mol were observed in birds and sheep, respectively [15]. An interesting result was found when the avidity was followed by a long immunisation process. In this study it was observed that after the first immunisation the avidity of antibodies in birds was higher (4.7×10^9 l/mol) than in sheep (5.9×10^8 l/mol), but after the 4th immunisation the avidity levels increases only 2-fold in birds and 60-fold in sheep [15]. On the other hand, other studies have observed a higher avidity of IgY antibodies towards mammals. K values ranging from 0.3×10^5 M⁻¹ to 15.6×10^6 M⁻¹ for IgY antibodies and from 0.6×10^5 M⁻¹ to 9.2×10^5 M⁻¹ for rabbit IgG antibodies have been observed [122]. Similar results were obtained in the comparison of chicken IgY and cow IgG antibodies against *Escherichia coli* antigen K99 [123]; of chicken IgY and rabbit IgG anti-progesterone antibodies [124]; and anti-HER and anti-human telomerase IgY antibodies in relation to rabbit IgG and mouse IgG (monoclonal) anti-HER antibodies and mouse IgG (monoclonal) anti-telomerase antibodies [125]. In addition, other studies did not observe significant differences between birds and rabbits [76,101,126]. In relation to the comparison between IgY antibodies from laying hens and from rabbits, values of K_d 2.6×10^{-8} and K_a of 0.478×10^8 M⁻¹ for IgY antibodies and K_d of 2.5×10^{-8} and K_a of 0.39×10^8 M⁻¹ for rabbit IgG antibodies have been observed [126]. Considering the possibility that the differences observed in these studies are due to differences in species, strains, sex, and immunisation protocols, as well as types of animals, further studies are needed to demonstrate that IgY antibodies of close to mammalian avidity can be obtained. This is especially relevant in studies on immunoprophylaxis and immunotherapy with IgY antibodies.

6. Methodology for the determination of affinity and avidity of IgY antibodies

Most studies on antibody affinity and avidity utilise solid phase methodologies. These studies assess IgY antibody avidity by calculating the AI using urea, magnesium chloride, or ammonium thiocyanate as the chaotropic agent. A concentration of 6M urea is the most commonly used. However, there is a great diversity of methodologies, where the incubation time and the buffer solution of the chaotropic agent vary. Some studies use incubation for 5 or 10 min with 6M urea in PBS-Tween [100,106,107,116,117,127,128]; others use 6M urea [91,108] or 6M urea in PBS [111], or 6M urea in buffered saline [90,129]. Other studies use 6M urea in PBS-Tween only at the time of washing after the addition of the IgY samples [103,105]. In addition, other concentrations of urea can be used, such as 1M [114] and 8 M [110]. For the use of magnesium chloride, two conditions are observed, incubation for 30 minutes after incubations with the antibody samples [109,112,115] or the addition of magnesium chloride together with the antibody sample of magnesium chloride [101]. Ammonium thiocyanate was used in only one study, which determined the AI as the molarity of ammonium thiocyanate required for a 50% reduction in Optical density relative to Optical density without ammonium thiocyanate [76].

In addition to these methodologies, other solid phase methodologies have been used to assess IgY antibody avidity using ELISA reactions [119,123], protein assay [130,131], or detection by technologies such as surface plasmon resonance [132,133] or layered peptide array[125].

With regard to solution phase methodologies, most papers utilised radioimmunoassay reactions to assess IgY avidity [14,15,121,124,134,135]. However, indirect ELISA [120] or fluorescence reaction have also been used [122], with the characteristic that in the vast majority of them K or K_{diss} values of IgY antibodies have been obtained. Another way to obtain an estimate of affinity is the ABC test, where the labelled antigen is incubated [97]. Finally, the least commonly utilised type of methodology to assess IgY antibody avidity is equilibrium titration ELISA) [16,118,126]. In two of these studies K or K_{diss} values were obtained[16,126].

7. Conclusions

IgY antibodies undergo poorly understood affinity maturation processes that result in antibodies with avidity comparable to mammalian antibodies. This maturation is influenced by the adjuvant used and by several other factors, such as number of doses of antigen, interval between doses, characteristics of the antigen, and characteristics of the animal. However, the great diversity of methodologies used for determining avidity in birds makes it difficult to objectively analyze the results of affinity and avidity obtained by the studies. This, consequently, causes an additional difficulty in evaluating the factors that influence the avidity and affinity of antibodies in birds. Further studies should be performed to optimise the production of IgY antibodies with high avidity.

Author Contributions: Conceptualization, writing, and supervision E.J.V.; Writing—review and editing, B.L.B.P., C.P.N.

Funding: B.P. received a scientific initiation grant from CNPq, Brazil; C.P.N. received a scientific initiation scholarship from Fundação Araucária, Paraná, Brazil.

available in section "MDPI Research Data Policies" at <https://www.mdpi.com/ethics>.

Acknowledgments: To the Scientific Initiation Program (PROIC) of the PROPPG of the State University of Londrina, Paraná, Brazil.

Conflicts of Interest: "The authors declare no conflict of interest."

References

1. van Regenmortel, M., & Azimzadeh, A. (2000). Determination of antibody affinity. *Journal of Immunoassay*, 21(2-3), pp. 211-234. doi:10.1080/01971520009349534
2. Oostindie SC, Lazar GA, Schuurman J, Parren PWH. Avidity in antibody effector functions and biotherapeutic drug design. *Nat Rev Drug Discov*. 2022 Oct;21(10):715-735. doi: 10.1038/s41573-022-00501-8. Epub 2022 Jul 5. PMID: 35442232.
3. Victora GD, Nussenzweig MC. Germinal Centers. *Annu Rev Immunol*. 2022 Apr 26;40:413-442. doi: 10.1146/annurev-immunol-120419-022408.
4. Beal, R., Powers, C., Wigley, P., Barrow, P., & Smith, A. (2004). Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with *Salmonella enterica* serovar *Typhimurium*. *Avian Pathology*, 33(1), pp. 25-33. doi:10.1080/03079450310001636282
5. Núñes, L. (2022). gY Antibodies as Biotherapeutics in Biomedicine. *Antibodies (Basel)*, 11(4), p. 62. doi:10.3390/antib11040062.
6. Leslie, G., & Clem, L. (1969). Phylogen of immunoglobulin structure and function. 3. Immunoglobulins of the chicken. *Journal of Experimental Medicine*, 130(6), pp. 1337-1352. doi:10.1084/jem.130.6.1337
7. Zhang, X., Calvert, R., Sutton, B., & Doré, K. (2017). IgY: a key isotype in antibody evolution. *Biological reviews of the Cambridge Philosophical Society*, 92(4), pp. 2144-2156. doi:10.1111/brv.12325
8. Warr, G., Magor, K., & Higgins, D. (1995). IgY: clues to the origins of modern antibodies. *Immunology Today*, 16(8), pp. 392-398. doi:10.1016/0167-5699(95)80008-5
9. Tian, Z., & Zhang, X. (2012). Progress on research of chicken IgY antibody-FcRY receptor combination and transfer. *Journal of Receptors and Signal Transduction*, 32(5), pp. 231-237. doi:10.3109/10799893.2012.703207
10. Kitaguchi, K., Minoura, M., Noritake, M., Mizutani, M., Kinoshita, K., Horio, F., & Murai, A. (2008). Determination of Immunoglobulin Y concentration in Yolk Extract Prepared by Water Dilution Method: comparisons among three strains of chickens. *The Journal of Poultry Science*, 45, pp. 82-87.
11. Cardeal, P., Araújo, I., Vaz, D., Abreu, A., Melo, É., Saldanha, M., . . . Lara, L. (2022). Short communication: Effects of breeder age and pre-placement feed on IgY concentration in egg yolk and chick serum. *Journal of Animal Physiology and Animal Nutrition*, 106(3), pp. 561-565. doi:10.1111/jpn.13604
12. Karamzadeh-Dehaghani, A., T. A., Zhandi, M., & Mojgani, N. (2020). Specific Chicken Egg Yolk Antibodies against Enterotoxigenic *Escherichia coli* K99 in Serum and Egg Yolk of Immunized Laying Hens. *Iranian Journal of Applied Animal Science*, 10(1), pp. 155-161.
13. Sun, H., Chen, S., Cai, X., Xu, G., & Qu, L. (2013). Correlation analysis of the total IgY level in hen serum, egg yolk and offspring serum. *Journal of Animal Science and Biotechnology*, 4(1), p. 10. doi:10.1186/2049-1891-4-10
14. Vieira, J., Oliveria, M., Russo, E., Maciel, R., & Pereira, A. (1984). Egg yolk as a source of antibodies for human parathyroid hormone (hPTH) radioimmunoassay. *Journal of Immunoassay*, 5(1-2), pp. 121-129. doi:10.1080/01971528408063002

15. Woolley, J., & Landon, J. (s.d.). (1995). Comparison of antibody production to human interleukin-6 (IL-6) by sheep and chickens. *Journal of Immunological Methods*, 178(2), pp. 253–265. doi:10.1016/0022-1759(94)00263-v
16. Lee, W., Atif, A., Tan, S., & Leow, C. (2017). Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. *Journal of Immunological Methods*, 447, pp. 71-85. doi:10.1016/j.jim.2017.05.001
17. Dias da Silva, W., & Tambourgi, D. (2010). IgY: a promising antibody for use in immunodiagnostic and in immunotherapy. *Veterinary Immunology and Immunopathology*, 135(3-4), pp. 173-180. doi:10.1016/j.vetimm.2009.12.011
18. Carlander, D. (2002). Avian IgY Antibody In vitro and in vivo. Uppsala: ACTA UNIVERSITATIS UPSALIENSIS.
19. Yakhkeshi, S., Wu, R., Chelliappan, B., & Zhang, X. (2022). Trends in industrialization and commercialization of IgY technology. *Frontiers in Immunology*, 13(991931). doi:10.3389/fimmu.2022.991931
20. Seixas, A., Sousa, S., & Leitão, J. (s.d.). Antibody-Based Immunotherapies as a Tool for Tackling Multidrug-Resistant Bacterial Infections. *Vaccines (Basel)*, 10(11), p. 1789. doi:10.3390/vaccines10111789
21. Tini, M., Jewell, U., Camenisch, G., Chilov, D., & Gassmann, M. (2002). Generation and application of chicken egg-yolk antibodies. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 131(3), pp. 569-574. doi:10.1016/s1095-6433(01)00508-6
22. Cova, L. (2005). DNA-designed avian IgY antibodies: novel tools for research, diagnostics and therapy. *Journal of Clinical Virology*, 34 (Suppl 1), pp. S70-S74. doi:10.1016/s1386-6532(05)80013-7
23. Schade, R., Calzado, E., Sarmiento, R., Chacana, P., Porankiewicz-Asplund, J., & Terzolo, H. (2005). Chicken egg yolk antibodies (IgY-technology): a review of progress in production and use in research and human and veterinary medicine. *ATLA Alternatives to Laboratory Animals*, 33(2), pp. 129-154. doi:10.1177/026119290503300208
24. Spillner, E., Braren, I., Greunke, K., Seismann, H., Blank, S., & D. d. P. (2012). Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. *Biologicals*, 40(5), pp. 313-322. doi:10.1016/j.biologicals.2012.05.003
25. Schade, R., & Hlinak, A. (1996). gg Yolk Antibodies, State of the Art and Future Prospects. *ALTEX*, 13(5), pp. 5-9.
26. Tan SH, Mohamedali A, Kapur A, Lukjanenko L, Baker MS. A novel, cost-effective and efficient chicken egg IgY purification pro-cedure. *J Immunol Methods*. 2012 Jun 29;380(1-2):73-6. doi: 10.1016/j.jim.2012.03.003.
27. Chen, C., Hudson, A., Jia, A., Kunchur, C., Song, A., Tran, E., . . . Mochly-Rosen, D. (2022). Affordable IgY-based antiviral prophylaxis for resource-limited settings to address epidemic and pandemic risks. *Journal of Global Health*, 12(05009). doi:10.7189/jogh.12.05009.
28. Kovacs-Nolan, J., & Mine, Y. (2012). Egg yolk antibodies for passive immunity. *Annual Review of Food Science and Technology*, 3, pp. 163-82. doi:10.1146/annurev-food-022811-101137.
29. Xu, Y., Li, X., Jin, L., Zhen, Y., Lu, Y., Li, S., Wang, L. (2011). Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review. *Biotechnology Advances*, 29(6), pp. 860-868. doi:10.1016/j.biotechadv.2011.07.003
30. Rahman, S., Van Nguyen, S., Icatlo, F., Umeda, K., & Kodama, Y. (2013). Oral passive IgY-based immunotherapeutics: a novel solution for prevention and treatment of alimentary tract diseases. *Human Vaccines & Immunotherapeutics*, 9(5), pp. 1039-1048. doi:10.4161/hv.23383
31. Pereira, E., van Tilburg, M., Florean, E., & Guedes, M. (2019). gg yolk antibodies (IgY) and their applications in human and veterinary health: A review. *International Immunopharmacology*, 73, pp. 293-303. doi:10.1016/j.intimp.2019.05.015
32. El-Kafrawy, S., Abbas, A., Oelkrug, C., Tahoon, M., Ezzat, S., Zumla, A., & Azhar, E. (2023). IgY antibodies: The promising potential to overcome antibiotic resistance. *Front Immunol*, 14, p. 1065353. doi:10.3389/fimmu.2023.1065353
33. Sanches, R., Dos Santos Ferraro, A., Marroni, F., & Venancio, E. (2022). Synergistic activity between beta-lactams and igy antibodies against *Pseudomonas aeruginosa* in vitro. *Mol Immunol*, 148, pp. 1-5. doi:10.1016/j.molimm.2022.05.010
34. Lanzarini, N., Bentes, G., Volotão, E., & Pinto, M. (2018). Use of chicken immunoglobulin Y in general virology. *Journal of Immunoassay and Immunochemistry*, 39(3), pp. 235-248. doi:10.1080/15321819.2018.1500375. doi:10.1080/15321819.2018.1500375
35. de Souza, P., Corrêa, A., Gameiro, J., de Oliveira Júnior, A., Panagio, L., Venancio, E., & Almeida, R. (2023). Production of IgY against iron permease Ftr1 from *Candida albicans* and evaluation of its antifungal activity using *Galleria mellonella* as a model of systemic infection. *Microbial Pathogenesis*, 181(106166). doi:10.1016/j.micpath.2023.106166

36. Thirumalai, D., Visaga, A. S., Vieira-Pires, R., Xiaoying, Z., Sekaran, S., & Krishnan, U. (2019). Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections - A review. *International Journal of Biological Macromolecules*, 136, pp. 755-763. doi:10.1016/j.ijbiomac.2019.06.118.
37. Abbas, A., El-Kafrawy, S., Sohrab, S., & Azhar, E. (2019). IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. *Hum Vaccin Immunother*, 15(1), pp. 264-275. doi:10.1080/21645515.2018.1514224
38. Carlander, D., Kollberg, H., Wejåker, P., & Larsson, A. (2000). Peroral immunotherapy with yolk antibodies for the prevention and treatment of enteric infections. *Immunol Res*, 21(1), pp. 1-6. doi:10.1385/ir:21:1:1
39. Mine, Y., & Kovacs-Nolan, J. (2002). Chicken egg yolk antibodies as therapeutics in enteric infectious disease: a review. *J Med Food*, 5(3), pp. 159-169. doi:10.1089/10966200260398198
40. Diraviyam, T., Zhao, B., Wang, Y., Schade, R., Michael, A., & Zhang, X. (2014). Effect of chicken egg yolk antibodies (IgY) against diarrhea in domesticated animals: a systematic review and meta-analysis. *PLoS One*, 9(5), p. e97716. doi:10.1371/journal.pone.0097716
41. Sugano, N. (2012). Biological plaque control: novel therapeutic approach to periodontal disease. *Journal of Oral Science*, 54(1), pp. 1-5. doi:10.2334/josnusd.54.1
42. Waters, V., & Smyth, A. (2015). Cystic fibrosis microbiology: Advances in antimicrobial therapy. *Journal of Cystic Fibrosis*, 14(5), pp. 551-560. doi:10.1016/j.jcf.2015.02.005
43. Kurada, S., Yadav, A., & Loeffler, D. (2016). Current and novel therapeutic strategies in celiac disease. *Expert Review of Clinical Pharmacology*, 9(9), pp. 1211-1223. doi:10.1080/17512433.2016.1200463
44. Carlander, D., Stålberg, J., & Larsson, A. (1999). Chicken antibodies: a clinical chemistry perspective. *Upsala Journal of Medical Sciences*, 104(3), pp. 179-189. doi:10.3109/03009739909178961
45. Suresh, L., Indhuprakash, S., Gandhi, S., & Diraviyam, T. (2023). Amalgamation of nanotechnology with chicken IgY to enrich therapeutic and diagnostic applications: a systematic review. *Immunotherapy*, 15(11), pp. 867-884. doi:10.2217/imt-2022-0304
46. Xiao, Y., & Gao, X. (2010). Use of IgY antibodies and semiconductor nanocrystal detection in cancer biomarker quantitation. *Biomarkers in Medicine*, 4(2), pp. 227-239. doi:10.2217/bmm.10.7
47. Munhoz, L., Vargas, G., Fischer, G., Lima, M. d., Esteves, P., & Hübner, S. d. (2014). Avian IgY antibodies: characteristics and applications in immunodiagnostic. *Ciência Rural*, 44(1), pp. 153-160. doi:10.1590/S0103-84782014000100025
48. da Silva, M., Schaefer, R., Gava, D., Souza, C., da Silva, V. I., Bastos, A., & Venancio, E. (2018). Production and application of anti-nucleoprotein IgY antibodies for influenza A virus detection in swine. *Journal of Immunological Methods*, 461, pp. 100-105. doi:10.1016/j.jim.2018.06.023
49. Larsson, A., Karlsson-Parra, A., & Sjöquist, J. (1991). Use of chicken antibodies in enzyme immunoassays to avoid interference by rheumatoid factors. *Clinical Chemistry*, 37(3), pp. 411-414.
50. Larsson, A., Campbell, A., & Eriksson, M. (2022). Chicken antibodies are highly suitable for particle enhanced turbidimetric assays. *Frontiers in Immunology*, 13(1016781). doi:10.3389/fimmu.2022.1016781
51. Gandhi, S., & Alshehri, S. (2021). Molecular stability of the rabbit and chicken egg yolk immunoglobulins. *Frontiers in Bioscience*, Jan 1;13(1):, pp. 185-194. doi:10.2741/877
52. Rosol, T., Steinmeyer, C., McCauley, L., Merryman, J., Werkmeister, J., Gröne, A., . . . Capen, C. (1993). Studies on chicken polyclonal anti-peptide antibodies specific for parathyroid hormone-related protein (1-36). *Veterinary Immunology and Immunopathology*, 35(3-4), pp. 321-337. doi:10.1016/0165-2427(93)90042-3
53. Karachaliou, C., Vassilakopoulou, V., & Livaniou, E. (2021). IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. *World Journal of Methodology*, 11(5), pp. 243-262. doi:10.5662/wjm.v11.i5.243
54. Zhang, W. (2003). The use of gene-specific IgY antibodies for drug target discovery. *Drug Discovery Today*, 8(8), pp. 364-371. doi:10.1016/s1359-6446(03)02655-2
55. Fang, X., & Zhang, W. (2008). Affinity separation and enrichment methods in proteomic analysis. *Journal of Proteomics*, 71(3), pp. 284-303. doi:10.1016/j.jprot.2008.06.011
56. Sui, J., Cao, L., & H, L. (2011). Antibacterial activity of egg yolk antibody (IgY) against *Listeria monocytogenes* and preliminary evaluation of its potential for food preservation. *Journal of the Science of Food and Agriculture*, 91(11), pp. 1946-1950. doi:10.1002/jsfa.4381
57. Xu, F., Xu, Y., Jin, L., Liu, H., Wang, L., You, J., . . . Li, X. (2012). Effectiveness of egg yolk immunoglobulin (IgY) against periodontal disease-causing *Fusobacterium nucleatum*. *Journal of Applied Microbiology*, 113(4), pp. 983-991. doi:10.1111/j.1365-2672.2012.05396.x
58. Kanagasubbulakshmi, S., & Kadivelu, K. (2021). Paper-Based Simplified Visual Detection of Cry2Ab Insecticide from Transgenic Cottonseed Samples Using Integrated Quantum Dots-IgY Antibodies. *Journal of Agricultural and Food Chemistry*, 69(14), pp. 4074-4080. doi:10.1021/acs.jafc.0c07180
59. Zhou, X., & Ma, S. (2018). nti-lipopolysaccharide egg yolk antibodies enhance the phagocytosis of mammalian phagocytes. *Biology Open*, 7(6), p. bio032821. doi:10.1242/bio.032821

60. Xia, M., Ahn, D., Liu, C., & Cai, Z. (2022). A basis for IgY-themed functional foods: Digestion profile of oral yolk immunoglobulin (IgY) by INFOGEST static digestion model. *Food Research International*, 162(Pt B), p. 112167. doi:10.1016/j.foodres.2022.112167

61. Torres, M., & Casadevall, A. (2008). The immunoglobulin constant region contributes to affinity and specificity. *Trends in Immunology*, 29(2), pp. 91–97. doi:10.1016/j.it.2007.11.004

62. Budroni, S., Buricchi, F., Cavallone, A., Volpini, G., Mariani, A., Lo Surdo, P., . . . Finco, O. (2021). Computational modeling of microfluidic data provides high-throughput affinity estimates for monoclonal antibodies. *Computational and Structural Biotechnology Journal*, 19, pp. 3664-3672. doi:10.1016/j.csbj.2021.06.024

63. Reverberi, R., & Reverberi, L. (2007). Factors affecting the antigen-antibody reaction. *Blood Transfusion*, 5(4), pp. 227-240. doi:10.2450/2007.0047-07

64. Steward, M., & Lew, A. (1985). The importance of antibody affinity in the performance of immunoassays for antibody. *Journal of Immunological Methods*, 78(2), pp. 173–190. doi:10.1016/0022-1759(85)90074-2

65. Tesfaye, D., Gudjonsson, A., Bogen, B., & Fossum, E. (2019). Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses. *Frontiers in Immunology*, 10, p. 1529. doi:10.3389/fimmu.2019.01529

66. Tabasinezhad, M., Talebkhan, Y., Wenzel, W., Rahimi, H., Omidinia, E., & Mahboudi, F. (2019). Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches. *Immunology Letters*, 212, pp. 106-113. doi:10.1016/j.imlet.2019.06.009

67. Bannard, O., & Cyster, J. (2017). Germinal centers: programmed for affinity maturation and antibody diversification. *Current Opinion in Immunology*, 45, pp. 21-30. doi:10.1016/j.co.2016.12.004

68. Mesin, L., Ersching, J., & Victora, G. (2016). Germinal Center B Cell Dynamics. *Immunity*, 45(3), pp. 471-482. doi:10.1016/j.immuni.2016.09.001

69. Oláh, I., & B., G. (1979). Structure of the germinal centers in the chicken caecal tonsil: light and electron microscopic and autoradiographic studies. *Poultry Science*, 58(1), pp. 195-210. doi:10.3382/ps.0580195

70. Oláh, I., & N., N. (2013). Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present. *Developmental & Comparative Immunology*, 41(3), pp. 310-315. doi:10.1016/j.dci.2013.03.007

71. Arakawa, H., Furusawa, S., Ekino, S., & Yamagishi, H. (1996). Immunoglobulin gene hyperconversion ongoing in chicken splenic germinal centers. *EMBO Journal*, 15, pp. 2540–2546. doi:10.1002/j.1460-2075.1996.tb00611.x

72. Arakawa, H., Kuma, K., Yasuda, M., Furusawa, S., Ekino, S., & Yamagishi, H. (1998). Oligoclonal development of B cells bearing discrete Ig chains in chicken single germinal centers. *The Journal of Immunology*, 160, pp. 4232-4241. doi:10.4049/jimmunol.160.9.4232

73. Yasuda, M., Taura, Y., Yokomizo, Y., & Ekino, S. (1998). A comparative study of germinal center: fowls and mammals. *Comparative Immunology, Microbiology and Infectious Diseases*, 21(3), pp. 179-189. doi:10.1016/s0147-9571(98)00007-1

74. Yasuda, M., Kajiwara, E., Ekino, S., Taura, Y., Hirota, Y., Horiuchi, H., . . . Furusawa, S. (2003). Immunobiology of chicken germinal center: I. Changes in surface Ig class expression in the chicken splenic germinal center after antigenic stimulation. *Developmental & Comparative Immunology*, 27(2), pp. 159-166. doi:10.1016/s0145-305x(02)00066-6

75. Yasuda, M., Horiuchi, H., Matsuda, H., & Furusawa, S. (2003). Immunobiology of chicken germinal center: II. Accumulation of apoptotic cells within the germinal center. *Cell and Tissue Research*, 314(2), pp. 215-221. doi:10.1007/s00441-003-0790-5

76. Schwarzkopf, C., & Thiele, B. (1996). Effectivity of Alternative Adjuvants in Comparison to Freund's Complete Adjuvant. *ALTEX - Alternatives to animal experimentation*, 13(5), pp. 22-25.

77. Devey, M. (1986). The Biological and Pathological Significance of Antibody Affinity. Em M. French, *Immunoglobulins in Health and Disease* (pp. 55–73). doi:10.1007/978-94-009-4169-4_4

78. Suwannalai, P., Britsemmer, K., Knevel, R., Scherer, H., Levarht, E., van der Helm-van Mil, A., . . . Trouw, L. (2014). Low-avidity anticitrullinated protein antibodies (ACPA) are associated with a higher rate of joint de-struction in rheumatoid arthritis. *Annals of the Rheumatic Diseases*, 73(1), pp. 270-276. doi:10.1136/annrheumdis-2012-202615.

79. Nimmo, G., Lew, A., Stanley, C., & Steward, M. (1984). Influence of Antibody affinity on the performance of different antibody assays. *Journal of Immunological Methods*, 72(1), pp. 177–187. doi:10.1016/0022-1759(84)90446-0

80. Hedman, K., & Seppälä, I. (1988). Recent rubella virus infection indicated by a low avidity of specific IgG. *Journal of Clinical Immunology*, 8, pp. 214–221. doi:10.1007/BF00917569

81. Elkon, K., & Casali, P. (2008). Nature and functions of autoantibodies. *Nature Reviews Rheumatology*, 4, pp. 491–498. doi:10.1038/nrheum0895

82. Yuan, W., Cao, H., Wan, P., Shi, R., Zhou, S., & Zheng, J. (2019). Clinical evaluation of total and high-avidity anti-dsDNA antibody assays for the diagnosis of systemic lupus erythematosus. *Lupus*, 28(12), pp. 1387-1396. doi:10.1177/0961203319877243

83. Hajilooi, M., Keramat, F., Moazenian, A., Rastegari-Pouyani, M., & Solgi, G. (2023). The quantity and quality of anti-SARS-CoV-2 antibodies show contrariwise association with COVID-19 severity: lessons learned from IgG avidity. *Medical Microbiology and Immunology*, 212(3), pp. 203-220. doi:10.1007/s00430-023-00763-y

84. Eisen, H., & Siskind, G. (1964). Variations In Affinities Of Antibodies During The Immune Response. *Biochemistry*, 3, pp. 996-1008. doi:10.1021/bi00895a027. PMID: 14214095.

85. Frankel, M., & Gerhard, W. (1979). The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. *Molecular Immunology*, 16(2), pp. 101-106. doi:10.1016/0161-5890(79)90051-8

86. Friguet, B., Chaffotte, A., Djavadi-Ohaniance, L., & Goldberg, M. (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. *Journal of Immunological Methods*, 77(2), pp. 305-319. doi:10.1016/0022-1759(85)90044-4

87. Salvi, G., De Los Rios, P., & Vendruscolo, M. (2005). Effective interactions between chaotropic agents and proteins. *Proteins*, 61(3), pp. 492-499. doi: 10.1002/prot.20626

88. MacDonald, R., Hosking, C., & Jones, C. (1988). The measurement of relative antibody affinity by ELISA using thiocyanate elution. *Journal of Immunological Methods*, 106(2), pp. 191-194. doi:10.1016/0022-1759(88)90196-2

89. Alves, G., Gonçalves, L., Assis, R., Oliveira Júnior, C., Silva, R., Heneine, L., & Lobato, F. (2021). Production and purification of Clostridium perfringens type D epsilon toxin and IgY antitoxin. *Anaerobe*, 69, p. 102354. doi:10.1016/j.anaerobe.2021.102354

90. Silva, G., Faria, L., Lopes, C., Nunes, D., Ribeiro, V., de Sousa, J., . . . Costa-Cruz, J. (2020). Egg yolk immunoglobulin Y as a promising tool to detect immune complexes in neurocysticercosis serum samples. *Transactions of The Royal Society of Tropical Medicine*, 114(8), pp. 585-592. doi:10.1093/trstmh/traa028

91. Leiva, C., Cangelosi, A., Mariconda, V., Farace, M., Geoghegan, P., Brero, L., . . . Chacana, P. (2019). IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. *Toxicon*, 163, pp. 84-92. doi:10.1016/j.toxicon.2019.03.020

92. Lopes, C., de Faria, L., de Sousa, J., Borges, I., Ribeiro, R., Bueno, L., . . . Costa-Cruz, J. (2019). Anti-Ascaris suum immunoglobulin Y as a novel biotechnological tool for the diagnosis of human ascariasis. *J Helminthol*, 94, p. e71. doi:10.1017/S0022149X19000701

93. Correa, V., Rodrigues, T., Portilho, A., Trzewikowski de Lima, G., & De Gaspari, E. (2021). Modified ELISA for antibody avidity evaluation: The need for standardization. *Biomed J*, 44(4), pp. 433-438. doi:10.1016/j.bj.2020.10.009

94. Scott, T. (2004). Our current understanding of humoral immunity of poultry. *Poultry Science*, 83(4), pp. 574-579. doi:10.1093/ps/83.4.574

95. Eto, S., Andrade, F., Pinheiro, J., Balarin, M., Ramos, S., & Venancio, E. (2012). Effect of inoculation route on the production of antibodies and histological characteristics of the spleen in laying hens. *Brazilian Journal of Poultry Science*, 14(1), pp. 63-66. doi:10.1590/S1516-635X2012000100011

96. Turley, J., & Lavelle, E. (2022). Resolving adjuvant mode of action to enhance vaccine efficacy. *Curr Opin Immunol*, 77, p. 102229. doi:10.1016/j.coi.2022.102229

97. French, V., Stark, J., & White, R. (1970). The influence of adjuvants on the immunological response of the chicken. II. Effects of Freund's complete adjuvant on later antibody production after a single injection of immunogen. *Immunology*, 18(5), pp. 645-655.

98. Yamaga, K., & Benedict, A. (1975). Class, amounts and affinities of anti-dinitrophenyl antibodies in chickens. I. Production of 7S and 17S antibodies of equal affinity by intravenous injection of antigen. *The Journal of Immunology*, 115(3), pp. 750-758.

99. Yamaga, K., & Benedict, A. (1975). Class, amounts, and affinities of anti-dinitrophenyl antibodies in chickens. II. Production of a restricted population of high affinity 7S antibodies by injection of antigen emulsified in adjuvant. *The Journal of Immunology*, 115(3), pp. 759-764.

100. Grzywa, R., Walczak, M., Łupicka-Słowiak, A., Bobrek, K., Boivin, S., Brown, E., . . . Sieńczyk, M. (2015). Adjuvant-dependent immunogenicity of *Staphylococcus aureus* Efb and Map proteins in chickens. *Veterinary Immunology and Immunopathology*, 166(1-2), pp. 50-56. doi:10.1016/j.vetimm.2015.04.009

101. Svendsen Bollen, L., Crowley, A., Stodulski, G., & Hau, J. (1996). Antibody production in rabbits and chickens immunized with human IgG. A comparison of titre and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. *Journal of Immunological Methods*, 191(2), pp. 113-120. doi:10.1016/0022-1759(96)00010-5

102. Leiva, C., Cangelosi, A., Mariconda, V., Celi, A., Joaquim, P., Geoghegan, P., . . . Chacana, P. (2023). Use of adjuvant ISA VG 71 to produce neutralizing egg yolk antibodies against bothropic venom. *Applied Microbiology and Biotechnology*, 107(5-6), pp. 1947-1957. doi:10.1007/s00253-023-12409-3

103. da Silva Raposo, R., Santarém, V., Merigueti, Y., Rubinsky-Elefant, G., de Lima Cerazo, L., Pereira, L., . . . Laposy, C. (2016). Kinetic and avidity of IgY anti-Toxocara antibodies in experimentally infected chickens. *Experimental Parasitology*, 171, pp. 33-41. doi:10.1016/j.exppara.2016.09.009

104. Borges, I., Silva, M., Santiago, F., de Faria, L., Júnior, Á., da Silva, R., . . . de Melo Rodrigues, V. (2018). Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A₂ from Bothrops pauloensis venom. *International Journal of Biological Macromolecules*, 112, pp. 333-342. doi:10.1016/j.ijbiomac.2018.01.178.

105. de Faria, L., de Souza, D., Ribeiro, R., de Sousa, J., Borges, I., Ávila, V., . . . Costa-Cruz, J. (2019). Highly specific and sensitive anti-Strongyloides venezuelensis IgY antibodies applied to the human strongyloidiasis immunodiagnosis. *Parasitology International*, 72, p. 101933. doi:10.1016/j.parint.2019.101933

106. Carrara, G., Silva, G., Faria, L., Nunes, D., Ribeiro, V., Lopes, C., . . . Costa-Cruz, J. (2020). IgY antibody and human neurocysticercosis: a novel approach on immunodiagnosis using *< i>Taenia crassiceps* hydrophobic antigens. *Parasitology*, 147(2), pp. 240-247. doi:10.1017/S0031182019001446

107. Ferreira Júnior, Á., Santiago, F., Silva, M., Ferreira, F., Macêdo Júnior, A., Mota, C., . . . Mineo JR, M. T. (2012). Production, characterization and applications for *Toxoplasma gondii*-specific polyclonal chicken egg yolk immunoglobulins. *PLoS One*, 7(7), p. e40391. doi:10.1371/journal.pone.0040391

108. Barenco, P., Lourenço, E., Cunha-Júnior, J., Almeida, K., Roque-Barreira, M., Silva, D., . . . Silva, N. (2014). *Toxoplasma gondii* 70 kDa heat shock protein: systemic detection is associated with the death of the parasites by the immune response and its increased expression in the brain is associated with parasite replication. *PLoS One*, 9(5), p. e96527. doi:10.1371/journal.pone.0096527

109. de Andrade, F., Eto, S., Navarro dos Santos Ferraro, A., Gonzales Marioto, D., Vieira, N., Cheirubim, A., . . . Venâncio, E. (2013). The production and characterization of anti-bothropic and anti-crotalic IgY antibodies in laying hens: a long term experiment. *Toxicon*, 66, pp. 18-24. doi:10.1016/j.toxicon.2013.01.018

110. Sampaio, L., Baldissera, M., Grando, T., Gressler, L., Capeleto, D. d., de Sa, M., . . . Monteiro, S. (2014). Production, purification and therapeutic potential of egg yolk antibodies for treating *Trypanosoma evansi* infection. *Vet Parasitol*, 204(3-4), pp. 96-103. doi:10.1016/j.vetpar.2014.05.032

111. da Rocha DG, F. J. (2017). Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity. *European Journal of Pharmaceutical Sciences*, 106, pp. 404-412. doi:10.1016/j.ejps.2017.05.069

112. Montini, M., Fernandes, E., Ferraro, A., Almeida, M., da Silva, F., & Venancio, E. (2018). Effects of inoculation route and dose on production and avidity of IgY antibodies. *Food and Agricultural Immunology*, 29(1), pp. 306-315. doi:10.1080/09540105.2017.1376036

113. Eto, S., Fernandes, D., Yunis-aguinaga, J., Da Silva Claudio, G., Shimada, M., Salvador, R., . . . De Moraes, J. (2019). Characterization and production of IgY antibodies anti-*Photobacterium damsela* subsp. *piscicida*: Therapeutic and prophylactic use in *Rachycentron canadum*. *Aquaculture*, 513, pp. 734424-734424. doi:10.1016/j.aquaculture.2019.734424

114. Eto, S., Fernandes, D., Moraes, A., Prado, E., Baldassi, A., Manrique, W., . . . Pizauro, J. (2018). Validation of IgY for the diagnosis of *Streptococcus agalactiae*-caused endocarditis and bacterial meningitis in Nile tilapia (*Oreochromis niloticus*). *Fish & Shellfish Immunology*, 76, pp. 153-160. doi: 10.1016/j.fsi.2018.02.048

115. Fernandes, D., Eto, S., Funnicelli, M., Fernandes, C., Charlie-Silva, I., Belo, M., & Pizauro, J. (2019). Immunoglobulin Y in the diagnosis of *Aeromonas hydrophila* infection in Nile tilapia (*Oreochromis niloticus*). *Aquaculture*, 500, pp. 576-585. doi:10.1016/j.aquaculture.2018.10.045

116. Grzywa, R., Łupicka-Słowik, A., Walczak, M., Idzi, M., Bobrek, K., Boivin, S., . . . Sieńczyk, M. (2014). Highly sensitive detection of cancer antigen 15-3 using novel avian IgY antibodies. *ALTEX - Alternatives to animal experimentation*, 31(1), pp. 43-52. doi:10.14573/altex.1309181

117. Łupicka-Słowik, A., Walczak, M., Grzywa, R., Bobrek, K., Łęcka, M., Boivin, S., . . . Sieńczyk, M. (2014). Generation and application of polyclonal IgY antibodies specific for full-length and nicked prostate-specific antigen. *Bioanalysis*, 6(23), pp. 3197-213. doi:10.4155/bio.14.172

118. Lee, K., Ametani, A., Shimizu, M., Hatta, H., Yamamoto, T., & Kaminogawa, S. (1991). Production and characterization of anti-human insulin antibodies in the hen's egg. *Agric Biol Chem*, 55(8), pp. 2141-2143. doi:10.1271/bbb1961.55.2141

119. Berghof, T., Arts, J., Bovenhuis, H., Lammers, A., van der Poel, J., & Parmentier, H. (2018). Antigen-dependent effects of divergent selective breeding based on natural antibodies on specific humoral immune responses in chickens. *Vaccine*, 36(11), pp. 1444-1452. doi:10.1016/j.vaccine.2018.01.063

120. Parmentier, H., Lammers, A., Hoekman, J., De Vries Reilingh, G., Zaanen, I., & Savelkoul, H. (2004). Different levels of natural antibodies in chickens divergently selected for specific antibody responses. *Dev Comp Immunol*, 28(1), pp. 39-49. doi:10.1016/s0145-305x(03)00087-9

121. Gautvik, K., Teig, V., Halvorsen, J., Arnesen, E., Myhre, L., Heimann, P., & Tollman, R. (1979). Development of sequence specific radioimmunoassay of human parathyroid hormone and its use in the diagnosis of hyperparathyroidism. *Scandinavian Journal of Clinical and Laboratory*, 39(5), pp. 469-478. doi:10.3109/00365517909106133

122. Mitchell, J., Conrad, H., & Voss, E. (1976). Radiochromatographic carbohydrate analyses of high and low affinity IgG antibodies. *Immunochemistry*, 13 (8), pp. 659-666. doi:10.1016/0019-2791(76)90206-8

123. Ikemori, Y., Peralta, R., Kuroki, M., Yokoyama, H., & Kodama, Y. (1993). Research note: avidity of chicken yolk antibodies to enterotoxigenic *Escherichia coli* fimbriae. *Poultry Science*, 72(12), pp. 2361-2365. doi:10.3382/ps.0722361

124. Pérez, M., Rubén, C., Murcia Mejía, C., & Zarco Quintero, L. (1994). Producción de anticuerpos antiprogestérone apartir de la yema de huevo de gallinas y del suero sanguíneo de conejos, para ser utilizados en radioinmunoanálisis / Production of antibodies against progesterone from the egg yolk of hens and from rabbit blood. *Veterinaria México*, 25(2), pp. 117-25.

125. Xiao, Y., Gao, X., Gannot, G., Emmert-Buck, M., Srivastava, S., Wagner, P., . . . Barker, P. (2008). Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. *International Journal of Cancer*, 122(10), pp. 2178-2186. doi:10.1002/ijc.23320

126. Tu, Y.-Y., Ma, C.-Y., Ho, S., Chen, C., & Chang, H.-M. (2006). (2006) "Affinity measurement of lactoferrin (LF)-anti-LF immunoglobulin in Yolk (IgY) complexes by competitive indirect enzyme-linked immunosorbent assay (CI-ELISA). *Journal of Food and Drug Analysis*, 14(4), pp. 379-384. doi:10.38212/2224-6614.2452

127. Walczak, M., Grzywa, R., Łupicka-Słowik, A., Skoreński, M., Bobrek, K., Nowak, D., . . . Sieńczyk, M. (2015). Method for generation of peptide-specific IgY antibodies directed to *Staphylococcus aureus* extracellular fibrinogen binding protein epitope. *Biopolymers*, 104(5), pp. 552-559. doi:10.1002/bip.22695

128. Łupicka-Słowik, A., Psurski, M., Grzywa, R., Bobrek, K., Smok, P., Walczak, M., . . . M, S. (2018). Development of Adenosine Deaminase-Specific IgY Antibodies: Diagnostic and Inhibitory Application. *Applied Biochemistry and Biotechnology*, 184(4), pp. 1358-1374. doi:10.1007/s12010-017-2626-x

129. Singh, S., Alkie, T., Nagy, É., Kulkarni, R., Hodgins, D., & Sharif, S. (2016). Delivery of an inactivated avian influenza virus vaccine adjuvanted with poly(D,L-lactic-co-glycolic acid) encapsulated CpG ODN induces protective immune responses in chickens. *Vaccine*, 34(40), pp. 4807-4813. doi:10.1016/j.vaccine.2016.08.009

130. Tu, Y., Chen, C.-C., & Chang, H.-M. (2001). Isolation of immunoglobulin in yolk (IgY) and rabbit serum immunoglobulin G (IgG) specific against bovine lactoferrin by immunoaffinity chromatography. *Food Research International*, 34 (9), pp. 783-789. doi:10.1016/S0963-9969(00)00172-1

131. Chen, C., Tu, Y., Chen, T., & Chang, H. (2002). Isolation and characterization of immunoglobulin in yolk (IgY) specific against hen egg white lysozyme by immunoaffinity chromatography. *Journal of Agricultural and Food Chemistry*, 50(19), pp. 5424-5428. doi:10.1021/jf011567h.

132. Lemamy, G., P, R., Mani, J., Robert, M., Rochefort, H., & Brouillet, J. (1999). High-affinity antibodies from hen's-egg yolks against human mannose-6-phosphate/insulin-like growth-factor-II receptor (M6P/IGFII-R): characterization and potential use in clinical cancer studies. *International Journal of Cancer*, 80(6), pp. 896-902. doi:10.1002/(sici)1097-0215(19990315)80:6<896::aid-ijc16>3.0.co;2-j

133. Skottrup, P., López, R., Ksiazek, M., Højrup, P., Baelum, V., Potempa, J., & Kaczmarek, J. (s.d.). An IgY-based immunoassay to evaluate the biomarker potential of the *Tannerella forsythia* virulence factor kariyisin in human saliva. *Journal of Immunological Methods*, 469, pp. 26-32. doi:10.1016/j.jim.2019.03.003

134. Lehtonen, O.-P., & Viljanen, M. (1980). Antigen density in ELISA; Effect on avidity dependency. *Journal of Immunological Methods*, 36 (1), pp. 63-70. doi:10.1016/0022-1759(80)90094-0

135. Bauwens, R., Kint, J., Devos, M., Van Brussel, K., & De Leenheer, A. (1987). Production, purification and characterization of antibodies to 1,25-dihydroxyvitamin D raised in chicken egg yolk. *Clinica Chimica Acta*, 170(1), pp. 37-44. doi:10.1016/0009-8981(87)90381-0

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.