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Abstract: Motivated by results on the location of zeros of a complex polynomial with monotonicity
conditions on the coefficients (such as the classical Enestrom-Kakeya Theorem, and its recent
generalizations), we impose similar conditions and give bounds on the number of zeros in certain
regions. We do so by introducing a reversal in monotonicity conditions on the real and imaginary
parts of the coefficients, and also on their moduli. The results presented naturally apply to certain
classes of lacunary polynomials.
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1. Introduction

The classical Enestrom-Kakeya Theorem concerns the location of the complex zeros of a real
polynomial with nonnegative monotone coefficients. It was independently proved by Gustav Enestréom
in 1893 [4] and Soichi Kakeya in 1912 [10].

Theorem 1. Enestrom-Kakeya Theorem. If P(z) = Y.7_,a,z" is a polynomial of degree n (where z is a
complex variable) with real coefficients satisfying 0 < ay < a3 < --- < ay, then all the zeros of P lie in |z| < 1.

A large body of literature on results related to the Enestrom-Kakeya Theorem now exists. For a
survey of results up through 2014, see [7]. Inspired by results of Aziz and Zargar [1] and Shah et al.
[15], the present authors gave an Enestrom-Kakeya type result [5] for polynomials P(z) = Y/_, a,z*
such that wy = Re(ay) and By = Im(ay) for 0 < ¢ < n where, for some positive numbers p, and p; each
at most 1, and k;, k; each at least 1, and p and g with 0 < g < p < n, the coefficients satisfy

praeg < Qg1 < Xg4+2 <. < Xp—1 < kr“p

and
Piﬁq < qu+1 < ﬁq+2 <---< :Bp—l < kiﬁp-

The present authors recently generalized this result [6] by adding parameter j with 4 < j < p (which
allows a reversal in the monotonicity condition) and using a total of six positive parameters p;,, pr,,
pi;,and p;, each at most 1, and k;, k; each at least 1, to consider polynomials with complex coefficients
satisfying

Pridg <agiq <agyo <cjog Skeaj > a2 > ap 1 2> Py 1)

and
PiBg < Bgr1 < Bgi2 <o Bj1 SkiBj < Bjv1 > > Bpo1 > 0, Bp- )

Notice that with p,, =k, =pr, =1,4=0,j = p =n,0 < a9 and each B, = 0, the above condition
implies the hypotheses of the Enestrom-Kakeya Theorem.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The first result concerning the number of zeros in a disk relevant to the current work, is due to
Mohammad in 1965. It considers polynomials with real coefficients which satisfy the monotonicity
condition of the Enestrom-Kakeya Theorem (with the added condition that the constant term is
nonzero) and is as follows [11].

Theorem 2. Let P(z) = Y.0_ a,z" be a polynomial of degree n with real coefficients such that 0 < ag < a; <
-+ - < ay. Then the number of zeros of P(z) in the disk |z| < 1/2 does not exceed 1+ (1/ log2)log(a,/ap).

Another relevant result is due to Dewan [3] and concerns a monotonicity condition on the moduli
of coefficients, as follows.

Theorem 3. Let P(z) = Y.}_, a,z" be a polynomial of degree n with complex coefficients such that for some
real B, |arga; — B| < a < /2 for ¢ =0,1,...,nand 0 < |ag| < |ay| < --- < |ay|. Then the number of
zeros of P(z) in |z| < 1/2 does not exceed

1 o |an|(1+cos«x+sinzx)+2sin1x2’lzé|ag|
log2 || .

Though both Theorems 2 and 3 concern zeros in |z| < 1/2, more general results exist. For
example, Pukhta [12] gave the following generalization of Theorem 3 which reduces to Theorem 3
whend = 1/2.

Theorem 4. Let P(z) = Y}_ a,z" be a polynomial of degree n with complex coefficients such that for some
real B, |arga; — B| < a < m/2for £ =0,1,...,nand 0 < |ag| < |ay| < --- < |ay|. Then, for0 <6 < 1,
the number of zeros of P(z) in |z| < & does not exceed

log |an|(1+4 cosa + sina) + 2sina Y/~ |a|
log1/6 |ag| '

Recently, the number of zeros in a disk of a polynomial with coefficients satisfying a monotonicity
condition, but with extra multiplicative terms on some of the coefficients, have been presented. Rather
et al. [14], for example, considered polynomials with real coefficients satisfying

ag<ay <---<ay_, 1 <kanr <k 1841 < <kyay_1 < koap

whereky > 1for¢ =0,1,...,rand 0 < r < n — 1. Rather et al. [13] (in a publication different from the
previously cited one) similarly considered a monotonicity condition, but with extra additive terms on
some of the coefficients. For example, they considered polynomials with real coefficients satisfying

ap<m < <ap 1 <ktanr<k_1+a,p41 < <ki+a,_1 <ko+ay

where k) > 0for{ =0,1,...,rand 0 < r < n — 1. These results of Rather et al. generalize and refine
the earlier results.

The purpose of this paper is to consider complex polynomials satisfying conditions (1) and (2)
(and a related condition on the moduli of the coefficients) and to give results concerning the number of
zeros in a disk.

2. Results

For a polynomial of degree n with complex coefficients ay, 0 < ¢ < n, where ay = Re(a,) and
B¢ = Im(a,), we impose the conditions of equations (1) and (2) to get the following.
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Theorem 5. Let P(z) = Y.I_,a,z" be a complex polynomial of degree n with complex coefficients where
ap = Re(ay) and By = Im(a,) which satisfies, for some real p;,, 0r,,0i,, iy, kr, and k; where 0 < p,; < 1,
0<pr, <1,0<p; <1,0<p;, <1,k > 1,and k; > 1, the condition

Prog <o << Sk > > > a1 > Prip

PiBg < Bg1 < < Bjo1 <kifj = Bjy1 = = Bp-1 = 0inBp-

Then the number of zeros of P(z) in the disk |z| < ¢ is less than (1/log(1/6))log(M/|ap|) for0 < § < 1,
where

M = |ao| + Mg — priag + ag|(1 — pr,) +2|aj|(kr — 1) + 2ksaj + |ap[(1 — py,)
—Prp — 0, Bg + 1Bgl(1 — 0i,) +2|Bjl (ki — 1) + 2k;B;
+Bpl(1 = pi,) — pi By + Mp + |an],

My =Y]_, lag—a;_4|, and M, = Yi—pi lae —aga|.

Now we consider a condition similar to that given in equations (1) and (2), but imposed on the
moduli of the complex coefficients instead of on the real and imaginary parts.

Theorem 6. Let P(z) = Y}_ a,z" be a polynomial of degree n with complex coefficients satisfying | arga, —
Bl <a<m/2,¢=4q,q+1,...,p,such that for real k, p1, 2, wherek > 1,0 < p1 < 1,0 < pp <1, we have

pilagl < lagial < -+ <laja| <klaj| = [aja]| = - = |ap_1] = palap|.

Then the number of zeros of P(z) in the disk |z| < & is less than (1/log(1/6))log(M/|ag|) for 0 < § < 1,

where
j—1
M = |agl+ My + |ag] + p1]ag|(sina —cosa —1)+2 ) |ag|sina —2|aj|
l=g+1
p—1
+2k|aj|(cosa +sina+1) +2 Y |ay]sina + |ap|
(=11

+p2lap|(sina — cosa — 1) + My + |an,

_yv1 _
Mq = Zezl ‘”Z —ay_1|,and Mp = Z?:p+1 lag —a;_q].

The class of lacunary polynomials of the form P(z) = ag + Yi_,, a,z" was introduced by Chan
and Malik in 1983 [2] in connection with Bernstein’s Inequality [2]. For a survey of such results,
see subsections 4.1.4, 6.4.2, and 6.4.3 of [8]. Theorems 5 and 6 naturally apply to such polynomials
which satisfy the monotonicity condition on the remaining coefficients. For example, with coefficients
ap =a; = --- = a, 1 = 0in polynomial P, we get the following corollary.

Corollary 1. Let P(z) = ag+ Yj_ g ayz" be a complex polynomial of degree n with complex coefficients where
ap = Re(ay) and By = Im(a,) which satisfies, for some real p;,, 0r,,0i,, iy, kr, and k; where 0 < p,; < 1,
0<pr, <1,0<p; <1,0<p;, <1,k > 1,and k; > 1, the condition

priog <o <<y Sk > > > a1 > Prip

Pi,Bg < Bgt1 < - < Bj1 Skifj = Bjv1 = = Bp-1 = 0iyBp-

Then the number of zeros of P(z) in the disk |z| < & is less than (1/log(1/9))log(M/|ag|) where M is as
given in Theorem 5, My = 0, and M, = ZZ:pH lag —ap_q].
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A similar corollary follows from Theorem 6. In addition, Theorems 5 and 6 naturally apply to
lacunary polynomials with two gaps in their coefficients. For example, with coefficients a1 = a; =
<+=ay1=0and ay;1 =ap42 =+ =a,-1 = 0in polynomial P, we get the following corollary.

Corollary 2. Let P(z) = ag + ZZ: . ayz" + a, be a complex polynomial of degree n with complex coefficients
where g = Re(ay) and B, = Im(ay) which satisfies, for some real 0y, 0r,, 0iy, Piy, kr, and k; where 0 < p,; <1,
0<pr, <1,0<p; <1,0<p;, <1,k > 1,and k; > 1, the condition

prog <o << Sk > > > a1 > Prlp

PiBg < Bg1 < < Bjo1 <kifj = Bjy1 = = Bp-1 = 01 Bp-

Then the number of zeros of P(z) in the disk |z| < & is less than (1/log(1/9))log(M/|ag|) where M is as
given in Theorem 5 and My = My, = 0.

A similar corollary follows from Theorem 6.

The introduction of the reversal of the inequality at index j allows us to shift the point at which
the reversal occurs. This flexibility allows us to apply Theorems 5 and 6 to a larger collection of
polynomials than some of the other current results in the literature on this topic.

3. Lemmas
The number of zeros results we consider are all based on the following theorem, which appears

in Titchmarsh’s The Theory of Functions [16, page 280].

Lemma 1. Let F(z) be analytic in |z| < R. Let |F(z)| < M in the disk |z| < R and suppose F(0) # 0. Then
for 0 < 6 < 1, the number of zeros of F in the disk |z| < 6R does not exceed (1/log(1/5))log(M/|F(0)]).

The following lemma is due to Govil and Rahman [9].

Lemma 2. Let z,z' € Cwith |z| > |Z/|. Suppose that | argz* — B| < a < 7/2 for z* € {z,2'} and for some
real & and B. Then
|z — 2| < (Jz] = |Z/|) cosa + (|z] + |Z']) sina.

4. Proofs of the Results

Proof of Theorem 5. Consider

F(z) = (1-2)P(z) = zo +Zi:(llg - ag,l)zz —a,z" L
=1

For |z| = 1 we have
n ¢ 1 n
F(2)| < laol+ ) lae —ap—allz]" + |an||z|"" = |ao| + ) lag — ap—1| + an]

(=1 /=1

q p
= laol+ Y lag—apa|+ Y, lag+iBe—apq — il
(=1 l=q+1

n
+ Y lag—ap_q|+ |ax]
l=p+1

p p
lao| + Mg+ Y lag—apq|+ Y 1Be— Beal + Mp + |aul,
l=q+1 l=q+1

IN
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where M; = Zzzl lag —ag_q]| and M), = ZZ:erl |ag —ay_4]. So for |z| = 1, we have
-1
[F(2)| < laol + Mg+ |ag1 — pr g + pryotg — ag| + ) ap — g
l=q+2
p—1
+|DC]' — k,oc]- -+ krlX]‘ — lX]'_1| + |OC]‘+1 — krlX]‘ + krﬁé]' — CK]| + Z |L¥g — Xy q
(=742
+|0‘P — Pry&p + Pry&p — “p71| + |ﬁq+1 - Pil,Bq +Pi1,3q - ,Bq|
j—1
+ Y 1Be—Beal +1Bj —kiBj +kiBj — Bj1| +|Bjr1 — kiBj + kiBj — Bl
l=q+2
p—1
+ Y |Be—Beal + 1By — 0iBp + 0iyBp — Bp—1] + Mp + |an]
(=j+2
i1
< laol + My + lag1 — pragl + lorag —agl + Y o — o]+ — kratj]
l=q+2
p—1
+lkraj — ajq |+ ajr — kgl + ko — o]+ Y lag — apq |+ [ap — pryap|
(=j+2
j—1
+lonap — ap 1|+ [Bgi1 — 0i Bql + 101 Bg — Bl + Y |Be— Be-il
l=q+2
p—1
+|Bj — kiBjl + |kifj — Bj—1l + |Bjv1 — kiBjl + |kiBj — Bil + Y |Be— Bl
(=j+2
+1Bp — 0i, Byl + |0i By — Bp—1] + Mp + |an| 3)
j—1
= |aol + My + (g1 — pryaq) + lagl (1 — o)+ Y (&g —apq) + |ojl (kr — 1)
l=q+2
p—1
+(kraj — ajq) + (ke — ajpr) + lag| (ke = 1)+ )5 (e — ay)
(=j+2

Flapl (1= 0r,) + (a1 = prytp) + (Bgi1 — pisBg) + [Bgl (1 = piy)

j—1
+ Y (Be—Be—1) +1Bjl (ki = 1) + (kifj — Bj—1) + (kiB; — Bj+1)

l=q+2

p—1
+1Bjl(ki — 1) +€Z (Br—1 = Be) + |Bpl(1 = piy) + (Bp—1 — piBp) + Mp + |an]
=j+2

= laol + My — pryag + lag| (1 = pry) + 2[aj[ (kr — 1) + 2kyej + |ap [ (1 — o)
—Prp = Pir By + [Bgl (1 — piy) + 2Bl (ki — 1) + 2k
+1Bpl(1 = piy) = pirfp + Mp + [an].
Since F(z) is analytic in |z| < 1, by Lemma 1 and the Maximum Modulus Theorem, the number of

zeros of F(z) (and hence of P(z)) in |z| < ¢ is less than or equal to (1/1og(1/6))log(M/|ag|) where
0 <6 <1,asclaimed. [

Proof of Theorem 6. Consider F(z) = (1 —z)P(z). For |z| = 1 we have,
j-1

[F(z)] < laol + Mg+ lagr1 — prag| + lorag — agl + Y lag— a4
l=q+2
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p—1
‘H%—k%F+M%—ﬂpﬂ+V%4—k%F+M%—ﬂA+ZZ¥Wz—W71
:]+

+|ap — p2ap| + |p2ap — ap_1| + Mp + |ay| as in (3)

< lag| + Mg + |agy1| cosa — p1|ag| cosa + |a 1| sina + pq]ag|sina
j—1 j—1 j—1
+lagl1—p1)+ Y laglcosa— Y |ag_q|cosa+ Y |ag|sina
(=q+2 (=q+2 t=q+2
j—1
+ Y lag_q|sina+ |aj|(k — 1) +kl|aj| cos & — |aj_1| cos & + k|a;| sin
l=q+2
+]aj_1| sina + k|a;| cosa — |aj;1| cosa + k|aj| sina + a1 | sina
p—1 p—1 p—1
+laj|(k—=1)4+ Y lag_q|cosa— Y l|aglcosa+ Y |aj_q|sina
(=j+2 {=j+2 (=j+2
p—1
+ Y aglsina+ |ay|(1— p2) + |ap_1| cosa — pa|ay| cosa + |a,_q|sina
=j+2
+p2lap|sina + My + |a,| by Lemma 2.
Hence
|F(z)| < lao|+ Mg+ |ag41|cosa — p1lag| cosa + [ag 1] sina + p1|ag|sina
j—2
+lag| (1 — p1) + [aj—1[cosa + Y |ay|cosa — |azy1|cosa
l=q+2
j=2 j=2
— Y laglcosa+ |aj_q|sina+ Y [ag]sina+|agq|sina
l=q+2 l=q+2
j—2
+ ) laglsina+ |aj|(k — 1) + k|aj| cosa — |a;_1| cos & + k|aj| sina
l=q+2
+|aj_1| sina + k|a;| cosa — |aj;1| cosa + k|aj| sina + a1 | sina
p—2
+laj|(k —1) +|ajzq|cosa+ Y |ag|cosa — |a,_q|cosa
=12
p—2 p—2
— Y laglcosa+ |ajq|sina+ ) |ay|sina+ |a,_1|sina
(=j+2 (=j+2
p—2
+ Y aglsina+ |ay|(1— p2) + |ap_1| cosa — pa|ay| cosa + |a,_q|sina
(=42

+P2|ap| Sinlx + Mp + |an|

= lao| + My + p1lag|(sina — cosa — 1) +2|ag 1| sina + |ag]
j—2
+2 ) |ag|sina —2|aj| + 2k|a;|(cos & + sinw + 1) + 2[a;_4| sina
l=q+2
p—2
+2|aj1|sina+2 Y |ag|sina +2]a,_q|sina + [a,|
(=j+2
+p2lap|(sina —cosa — 1) + M + |ay|
j—1
= lao| + My + |ag] + p1]ag| (sina —cosa —1) +2 Y |ag|sina — 2[a}]
l=q+1
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p—1

+2k|aj|(cosa +sina+1) +2 Y |ag]sina + |ap|
155+

+p2]ap|(sina — cosa — 1) + M, + |ay|.

Since F(z) is analytic in |z| < 1, by Lemma 1 and the Maximum Modulus Theorem, the number of
zeros of F(z) (and hence of P(z)) in |z| < ¢ is less than or equal to (1/1og(1/6))log(M/|ag|) where
0 <6 <1,asclaimed. [

5. Discussion

As explained in the Introduction, the hypotheses applied in this paper build on similar
hypotheses in the setting of results on the the location of zeros of a complex polynomial; namely,
the Enestrom—Kakeya Theorem and its generalizations. Future research could involve loosening or
revising the monotonicity conditions of Theorems 5 and 6. For example, the mototonicity conditions
of Rather et al. in [13,14], mentioned in the Introduction, could be imposed on the real and complex
parts of the coefficients and on the moduli of the coefficients to produce related results. Theorems 5
and 6 concern a single reversal in the monotonicity condition, so this could be generalized to multiple
reversals. In addition, combinations of the montonicity conditions presented here could be combined
with others in the literature (such as those in [13,14]).
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