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Abstract: Motivated by results on the location of zeros of a complex polynomial with monotonicity

conditions on the coefficients (such as the classical Eneström-Kakeya Theorem, and its recent

generalizations), we impose similar conditions and give bounds on the number of zeros in certain

regions. We do so by introducing a reversal in monotonicity conditions on the real and imaginary

parts of the coefficients, and also on their moduli. The results presented naturally apply to certain

classes of lacunary polynomials.

Keywords: complex polynomials; counting zeros; monotone coefficients

1. Introduction

The classical Eneström-Kakeya Theorem concerns the location of the complex zeros of a real

polynomial with nonnegative monotone coefficients. It was independently proved by Gustav Eneström

in 1893 [4] and Sōichi Kakeya in 1912 [10].

Theorem 1. Eneström-Kakeya Theorem. If P(z) = ∑
n
ℓ=0 aℓz

ℓ is a polynomial of degree n (where z is a
complex variable) with real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of P lie in |z| ≤ 1.

A large body of literature on results related to the Eneström-Kakeya Theorem now exists. For a

survey of results up through 2014, see [7]. Inspired by results of Aziz and Zargar [1] and Shah et al.

[15], the present authors gave an Eneström-Kakeya type result [5] for polynomials P(z) = ∑
n
ℓ=0 aℓz

ℓ

such that αℓ = Re(aℓ) and βℓ = Im(aℓ) for 0 ≤ ℓ ≤ n where, for some positive numbers ρr and ρi each

at most 1, and kr, ki each at least 1, and p and q with 0 ≤ q ≤ p ≤ n, the coefficients satisfy

ρrαq ≤ αq+1 ≤ αq+2 ≤ · · · ≤ αp−1 ≤ krαp

and

ρiβq ≤ βq+1 ≤ βq+2 ≤ · · · ≤ βp−1 ≤ kiβp.

The present authors recently generalized this result [6] by adding parameter j with q < j < p (which

allows a reversal in the monotonicity condition) and using a total of six positive parameters ρr1
, ρr2 ,

ρi1 , and ρi2 each at most 1, and kr, ki each at least 1, to consider polynomials with complex coefficients

satisfying

ρr1
αq ≤ αq+1 ≤ αq+2 ≤ · · · αj−1 ≤ krαj ≥ αj+1 ≥ · · · ≥ αp−1 ≥ ρr2 αp (1)

and

ρi1 βq ≤ βq+1 ≤ βq+2 ≤ · · · β j−1 ≤ kiβ j ≤ β j+1 ≥ · · · ≥ βp−1 ≥ ρi2 βp. (2)

Notice that with ρr1
= kr = ρr2 = 1, q = 0, j = p = n, 0 ≤ a0 and each βℓ = 0, the above condition

implies the hypotheses of the Eneström-Kakeya Theorem.
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The first result concerning the number of zeros in a disk relevant to the current work, is due to

Mohammad in 1965. It considers polynomials with real coefficients which satisfy the monotonicity

condition of the Eneström-Kakeya Theorem (with the added condition that the constant term is

nonzero) and is as follows [11].

Theorem 2. Let P(z) = ∑
n
ℓ=0 aℓz

ℓ be a polynomial of degree n with real coefficients such that 0 < a0 ≤ a1 ≤

· · · ≤ an. Then the number of zeros of P(z) in the disk |z| ≤ 1/2 does not exceed 1 + (1/ log 2) log(an/a0).

Another relevant result is due to Dewan [3] and concerns a monotonicity condition on the moduli

of coefficients, as follows.

Theorem 3. Let P(z) = ∑
n
ℓ=0 aℓz

ℓ be a polynomial of degree n with complex coefficients such that for some
real β, | arg aℓ − β| ≤ α ≤ π/2 for ℓ = 0, 1, . . . , n and 0 < |a0| ≤ |a1| ≤ · · · ≤ |an|. Then the number of
zeros of P(z) in |z| ≤ 1/2 does not exceed

1

log 2
log

(

|an|(1 + cos α + sin α) + 2 sin α ∑
n−1
ℓ=0 |aℓ|

|a0|

)

.

Though both Theorems 2 and 3 concern zeros in |z| ≤ 1/2, more general results exist. For

example, Pukhta [12] gave the following generalization of Theorem 3 which reduces to Theorem 3

when δ = 1/2.

Theorem 4. Let P(z) = ∑
n
ℓ=0 aℓz

ℓ be a polynomial of degree n with complex coefficients such that for some
real β, | arg aℓ − β| ≤ α ≤ π/2 for ℓ = 0, 1, . . . , n and 0 < |a0| ≤ |a1| ≤ · · · ≤ |an|. Then, for 0 < δ < 1,
the number of zeros of P(z) in |z| ≤ δ does not exceed

1

log 1/δ
log

(

|an|(1 + cos α + sin α) + 2 sin α ∑
n−1
ℓ=0 |aℓ|

|a0|

)

.

Recently, the number of zeros in a disk of a polynomial with coefficients satisfying a monotonicity

condition, but with extra multiplicative terms on some of the coefficients, have been presented. Rather

et al. [14], for example, considered polynomials with real coefficients satisfying

a0 ≤ a1 ≤ · · · ≤ an−r−1 ≤ kran−r ≤ kr−1an−r+1 ≤ · · · ≤ k1an−1 ≤ k0an

where kℓ ≥ 1 for ℓ = 0, 1, . . . , r and 0 ≤ r ≤ n − 1. Rather et al. [13] (in a publication different from the

previously cited one) similarly considered a monotonicity condition, but with extra additive terms on

some of the coefficients. For example, they considered polynomials with real coefficients satisfying

a0 ≤ a1 ≤ · · · ≤ an−r−1 ≤ kr + an−r ≤ kr−1 + an−r+1 ≤ · · · ≤ k1 + an−1 ≤ k0 + an

where kℓ ≥ 0 for ℓ = 0, 1, . . . , r and 0 ≤ r ≤ n − 1. These results of Rather et al. generalize and refine

the earlier results.

The purpose of this paper is to consider complex polynomials satisfying conditions (1) and (2)

(and a related condition on the moduli of the coefficients) and to give results concerning the number of

zeros in a disk.

2. Results

For a polynomial of degree n with complex coefficients aℓ, 0 ≤ ℓ ≤ n, where αℓ = Re(aℓ) and

βℓ = Im(aℓ), we impose the conditions of equations (1) and (2) to get the following.
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Theorem 5. Let P(z) = ∑
n
ℓ=0 aℓz

ℓ be a complex polynomial of degree n with complex coefficients where
αℓ = Re(aℓ) and βℓ = Im(aℓ) which satisfies, for some real ρr1

, ρr2 , ρi1 , ρi2 , kr, and ki where 0 < ρr1
≤ 1,

0 < ρr2 ≤ 1, 0 < ρi1 ≤ 1, 0 < ρi2 ≤ 1, kr ≥ 1, and ki ≥ 1, the condition

ρr1
αq ≤ αq+1 ≤ · · · ≤ αj−1 ≤ krαj ≥ αj+1 ≥ · · · ≥ αp−1 ≥ ρr2 αp

ρi1 βq ≤ βq+1 ≤ · · · ≤ β j−1 ≤ kiβ j ≥ β j+1 ≥ · · · ≥ βp−1 ≥ ρi2 βp.

Then the number of zeros of P(z) in the disk |z| ≤ δ is less than (1/ log(1/δ)) log(M/|a0|) for 0 < δ < 1,
where

M = |a0|+ Mq − ρr1
αq + |αq|(1 − ρr1

) + 2|αj|(kr − 1) + 2krαj + |αp|(1 − ρr2)

−ρr2 αp − ρi1 βq + |βq|(1 − ρi1) + 2|β j|(ki − 1) + 2kiβ j

+|βp|(1 − ρi2)− ρi2 βp + Mp + |an|,

Mq = ∑
q
ℓ=1 |aℓ − aℓ−1|, and Mp = ∑

n
ℓ=p+1 |aℓ − aℓ−1|.

Now we consider a condition similar to that given in equations (1) and (2), but imposed on the

moduli of the complex coefficients instead of on the real and imaginary parts.

Theorem 6. Let P(z) = ∑
n
ℓ=0 aℓz

ℓ be a polynomial of degree n with complex coefficients satisfying | arg aℓ −
β| ≤ α ≤ π/2, ℓ = q, q + 1, . . . , p, such that for real k, ρ1, ρ2, where k ≥ 1, 0 < ρ1 ≤ 1, 0 < ρ2 ≤ 1, we have

ρ1|aq| ≤ |aq+1| ≤ · · · ≤ |aj−1| ≤ k|aj| ≥ |aj+1| ≥ · · · ≥ |ap−1| ≥ ρ2|ap|.

Then the number of zeros of P(z) in the disk |z| ≤ δ is less than (1/ log(1/δ)) log(M/|a0|) for 0 < δ < 1,
where

M = |a0|+ Mq + |aq|+ ρ1|aq|(sin α − cos α − 1) + 2
j−1

∑
ℓ=q+1

|aℓ| sin α − 2|aj|

+2k|aj|(cos α + sin α + 1) + 2
p−1

∑
ℓ=j+1

|aℓ| sin α + |ap|

+ρ2|ap|(sin α − cos α − 1) + Mp + |an|,

Mq = ∑
q
ℓ=1 |aℓ − aℓ−1|, and Mp = ∑

n
ℓ=p+1 |aℓ − aℓ−1|.

The class of lacunary polynomials of the form P(z) = a0 + ∑
n
ℓ=m aℓz

ℓ was introduced by Chan

and Malik in 1983 [2] in connection with Bernstein’s Inequality [2]. For a survey of such results,

see subsections 4.1.4, 6.4.2, and 6.4.3 of [8]. Theorems 5 and 6 naturally apply to such polynomials

which satisfy the monotonicity condition on the remaining coefficients. For example, with coefficients

a1 = a2 = · · · = aq−1 = 0 in polynomial P, we get the following corollary.

Corollary 1. Let P(z) = a0 + ∑
n
ℓ=q aℓz

ℓ be a complex polynomial of degree n with complex coefficients where
αℓ = Re(aℓ) and βℓ = Im(aℓ) which satisfies, for some real ρr1

, ρr2 , ρi1 , ρi2 , kr, and ki where 0 < ρr1
≤ 1,

0 < ρr2 ≤ 1, 0 < ρi1 ≤ 1, 0 < ρi2 ≤ 1, kr ≥ 1, and ki ≥ 1, the condition

ρr1
αq ≤ αq+1 ≤ · · · ≤ αj−1 ≤ krαj ≥ αj+1 ≥ · · · ≥ αp−1 ≥ ρr2 αp

ρi1 βq ≤ βq+1 ≤ · · · ≤ β j−1 ≤ kiβ j ≥ β j+1 ≥ · · · ≥ βp−1 ≥ ρi2 βp.

Then the number of zeros of P(z) in the disk |z| ≤ δ is less than (1/ log(1/δ)) log(M/|a0|) where M is as
given in Theorem 5, Mq = 0, and Mp = ∑

n
ℓ=p+1 |aℓ − aℓ−1|.
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A similar corollary follows from Theorem 6. In addition, Theorems 5 and 6 naturally apply to

lacunary polynomials with two gaps in their coefficients. For example, with coefficients a1 = a2 =

· · · = aq−1 = 0 and ap+1 = ap+2 = · · · = an−1 = 0 in polynomial P, we get the following corollary.

Corollary 2. Let P(z) = a0 + ∑
p
ℓ=q aℓz

ℓ + an be a complex polynomial of degree n with complex coefficients

where αℓ = Re(aℓ) and βℓ = Im(aℓ) which satisfies, for some real ρr1
, ρr2 , ρi1 , ρi2 , kr, and ki where 0 < ρr1

≤ 1,
0 < ρr2 ≤ 1, 0 < ρi1 ≤ 1, 0 < ρi2 ≤ 1, kr ≥ 1, and ki ≥ 1, the condition

ρr1
αq ≤ αq+1 ≤ · · · ≤ αj−1 ≤ krαj ≥ αj+1 ≥ · · · ≥ αp−1 ≥ ρr2 αp

ρi1 βq ≤ βq+1 ≤ · · · ≤ β j−1 ≤ kiβ j ≥ β j+1 ≥ · · · ≥ βp−1 ≥ ρi2 βp.

Then the number of zeros of P(z) in the disk |z| ≤ δ is less than (1/ log(1/δ)) log(M/|a0|) where M is as
given in Theorem 5 and Mq = Mp = 0.

A similar corollary follows from Theorem 6.

The introduction of the reversal of the inequality at index j allows us to shift the point at which

the reversal occurs. This flexibility allows us to apply Theorems 5 and 6 to a larger collection of

polynomials than some of the other current results in the literature on this topic.

3. Lemmas

The number of zeros results we consider are all based on the following theorem, which appears

in Titchmarsh’s The Theory of Functions [16, page 280].

Lemma 1. Let F(z) be analytic in |z| ≤ R. Let |F(z)| ≤ M in the disk |z| ≤ R and suppose F(0) 6= 0. Then
for 0 < δ < 1, the number of zeros of F in the disk |z| ≤ δR does not exceed (1/ log(1/δ)) log(M/|F(0)|).

The following lemma is due to Govil and Rahman [9].

Lemma 2. Let z, z′ ∈ C with |z| ≥ |z′|. Suppose that | arg z∗ − β| ≤ α ≤ π/2 for z∗ ∈ {z, z′} and for some
real α and β. Then

|z − z′| ≤ (|z| − |z′|) cos α + (|z|+ |z′|) sin α.

4. Proofs of the Results

Proof of Theorem 5. Consider

F(z) = (1 − z)P(z) = z0 +
n

∑
ℓ=1

(aℓ − aℓ−1)z
ℓ − anzn+1.

For |z| = 1 we have

|F(z)| ≤ |a0|+
n

∑
ℓ=1

|aℓ − aℓ−1||z|
ℓ + |an||z|

n+1 = |a0|+
n

∑
ℓ=1

|aℓ − aℓ−1|+ |an|

= |a0|+
q

∑
ℓ=1

|aℓ − aℓ−1|+
p

∑
ℓ=q+1

|αℓ + iβℓ − αℓ−1 − iβℓ−1|

+
n

∑
ℓ=p+1

|aℓ − aℓ−1|+ |an|

≤ |a0|+ Mq +
p

∑
ℓ=q+1

|αℓ − αℓ−1|+
p

∑
ℓ=q+1

|βℓ − βℓ−1|+ Mp + |an|,
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where Mq = ∑
q
ℓ=1 |aℓ − aℓ−1| and Mp = ∑

n
ℓ=p+1 |aℓ − aℓ−1|. So for |z| = 1, we have

|F(z)| ≤ |a0|+ Mq + |αq+1 − ρr1
αq + ρr1

αq − αq|+
j−1

∑
ℓ=q+2

|αℓ − αℓ−1|

+|αj − krαj + krαj − αj−1|+ |αj+1 − krαj + krαj − αj|+
p−1

∑
ℓ=j+2

|αℓ − αℓ−1|

+|αp − ρr2 αp + ρr2 αp − αp−1|+ |βq+1 − ρi1 βq + ρi1 βq − βq|

+
j−1

∑
ℓ=q+2

|βℓ − βℓ−1|+ |β j − kiβ j + kiβ j − β j−1|+ |β j+1 − kiβ j + kiβ j − β j|

+
p−1

∑
ℓ=j+2

|βℓ − βℓ−1|+ |βp − ρi2 βp + ρi2 βp − βp−1|+ Mp + |an|

≤ |a0|+ Mq + |αq+1 − ρr1
αq|+ |ρr1

αq − αq|+
j−1

∑
ℓ=q+2

|αℓ − αℓ−1|+ |αj − krαj|

+|krαj − αj−1|+ |αj+1 − krαj|+ |krαj − αj|+
p−1

∑
ℓ=j+2

|αℓ − αℓ−1|+ |αp − ρr2 αp|

+|ρr2 αp − αp−1|+ |βq+1 − ρi1 βq|+ |ρi1 βq − βq|+
j−1

∑
ℓ=q+2

|βℓ − βℓ−1|

+|β j − kiβ j|+ |kiβ j − β j−1|+ |β j+1 − kiβ j|+ |kiβ j − β j|+
p−1

∑
ℓ=j+2

|βℓ − βℓ−1|

+|βp − ρi2 βp|+ |ρi2 βp − βp−1|+ Mp + |an| (3)

= |a0|+ Mq + (αq+1 − ρr1
αq) + |αq|(1 − ρr1

) +
j−1

∑
ℓ=q+2

(αℓ − αℓ−1) + |αj|(kr − 1)

+(krαj − αj−1) + (krαj − αj+1) + |αj|(kr − 1) +
p−1

∑
ℓ=j+2

(αℓ−1 − αℓ)

+|αp|(1 − ρr2) + (αp−1 − ρr2 αp) + (βq+1 − ρi1 βq) + |βq|(1 − ρi1)

+
j−1

∑
ℓ=q+2

(βℓ − βℓ−1) + |β j|(ki − 1) + (kiβ j − β j−1) + (kiβ j − β j+1)

+|β j|(ki − 1) +
p−1

∑
ℓ=j+2

(βℓ−1 − βℓ) + |βp|(1 − ρi2) + (βp−1 − ρi2 βp) + Mp + |an|

= |a0|+ Mq − ρr1
αq + |αq|(1 − ρr1

) + 2|αj|(kr − 1) + 2krαj + |αp|(1 − ρr2)

−ρr2 αp − ρi1 βq + |βq|(1 − ρi1) + 2|β j|(ki − 1) + 2kiβ j

+|βp|(1 − ρi2)− ρi2 βp + Mp + |an|.

Since F(z) is analytic in |z| ≤ 1, by Lemma 1 and the Maximum Modulus Theorem, the number of

zeros of F(z) (and hence of P(z)) in |z| ≤ δ is less than or equal to (1/ log(1/δ)) log(M/|a0|) where

0 < δ < 1, as claimed.

Proof of Theorem 6. Consider F(z) = (1 − z)P(z). For |z| = 1 we have,

|F(z)| ≤ |a0|+ Mq + |aq+1 − ρ1aq|+ |ρ1aq − aq|+
j−1

∑
ℓ=q+2

|aℓ − aℓ−1|
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+|aj − kaj|+ |kaj − aj−1|+ |aj+1 − kaj|+ |kaj − aj|+
p−1

∑
ℓ=j+2

|aℓ − aℓ−1|

+|ap − ρ2ap|+ |ρ2ap − ap−1|+ Mp + |an| as in (3)

≤ |a0|+ Mq + |aq+1| cos α − ρ1|aq| cos α + |aq+1| sin α + ρ1|aq| sin α

+|aq|(1 − ρ1) +
j−1

∑
ℓ=q+2

|aℓ| cos α −
j−1

∑
ℓ=q+2

|aℓ−1| cos α +
j−1

∑
ℓ=q+2

|aℓ| sin α

+
j−1

∑
ℓ=q+2

|aℓ−1| sin α + |aj|(k − 1) + k|aj| cos α − |aj−1| cos α + k|aj| sin α

+|aj−1| sin α + k|aj| cos α − |aj+1| cos α + k|aj| sin α + |aj+1| sin α

+|aj|(k − 1) +
p−1

∑
ℓ=j+2

|aℓ−1| cos α −
p−1

∑
ℓ=j+2

|aℓ| cos α +
p−1

∑
ℓ=j+2

|aℓ−1| sin α

+
p−1

∑
ℓ=j+2

|aℓ| sin α + |ap|(1 − ρ2) + |ap−1| cos α − ρ2|ap| cos α + |ap−1| sin α

+ρ2|ap| sin α + Mp + |an| by Lemma 2.

Hence

|F(z)| ≤ |a0|+ Mq + |aq+1| cos α − ρ1|aq| cos α + |aq+1| sin α + ρ1|aq| sin α

+|aq|(1 − ρ1) + |aj−1| cos α +
j−2

∑
ℓ=q+2

|aℓ| cos α − |aq+1| cos α

−
j−2

∑
ℓ=q+2

|aℓ| cos α + |aj−1| sin α +
j−2

∑
ℓ=q+2

|aℓ| sin α + |aq+1| sin α

+
j−2

∑
ℓ=q+2

|aℓ| sin α + |aj|(k − 1) + k|aj| cos α − |aj−1| cos α + k|aj| sin α

+|aj−1| sin α + k|aj| cos α − |aj+1| cos α + k|aj| sin α + |aj+1| sin α

+|aj|(k − 1) + |aj+1| cos α +
p−2

∑
ℓ=j+2

|aℓ| cos α − |ap−1| cos α

−
p−2

∑
ℓ=j+2

|aℓ| cos α + |aj+1| sin α +
p−2

∑
ℓ=j+2

|aℓ| sin α + |ap−1| sin α

+
p−2

∑
ℓ=j+2

|aℓ| sin α + |ap|(1 − ρ2) + |ap−1| cos α − ρ2|ap| cos α + |ap−1| sin α

+ρ2|ap| sin α + Mp + |an|

= |a0|+ Mq + ρ1|aq|(sin α − cos α − 1) + 2|aq+1| sin α + |aq|

+2
j−2

∑
ℓ=q+2

|aℓ| sin α − 2|aj|+ 2k|aj|(cos α + sin α + 1) + 2|aj−1| sin α

+2|aj+1| sin α + 2
p−2

∑
ℓ=j+2

|aℓ| sin α + 2|ap−1| sin α + |ap|

+ρ2|ap|(sin α − cos α − 1) + Mp + |an|

= |a0|+ Mq + |aq|+ ρ1|aq|(sin α − cos α − 1) + 2
j−1

∑
ℓ=q+1

|aℓ| sin α − 2|aj|
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+2k|aj|(cos α + sin α + 1) + 2
p−1

∑
ℓ=j+1

|aℓ| sin α + |ap|

+ρ2|ap|(sin α − cos α − 1) + Mp + |an|.

Since F(z) is analytic in |z| ≤ 1, by Lemma 1 and the Maximum Modulus Theorem, the number of

zeros of F(z) (and hence of P(z)) in |z| ≤ δ is less than or equal to (1/ log(1/δ)) log(M/|a0|) where

0 < δ < 1, as claimed.

5. Discussion

As explained in the Introduction, the hypotheses applied in this paper build on similar

hypotheses in the setting of results on the the location of zeros of a complex polynomial; namely,

the Eneström–Kakeya Theorem and its generalizations. Future research could involve loosening or

revising the monotonicity conditions of Theorems 5 and 6. For example, the mototonicity conditions

of Rather et al. in [13,14], mentioned in the Introduction, could be imposed on the real and complex

parts of the coefficients and on the moduli of the coefficients to produce related results. Theorems 5

and 6 concern a single reversal in the monotonicity condition, so this could be generalized to multiple

reversals. In addition, combinations of the montonicity conditions presented here could be combined

with others in the literature (such as those in [13,14]).
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