## Supplementary materials

## A desmethylphosphinothricin dipeptide derivative effectively inhibits \*Escherichia coli and Bacillus subtilis growth\*

Maxim A. Khomutov<sup>1†</sup>, Fabio Giovannercole<sup>2†§</sup>, Laura Onillon<sup>2#</sup>, Marija V. Demiankova<sup>3</sup>, Byazilya F. Vasilieva<sup>3</sup>, Arthur I. Salikhov<sup>1</sup>, Sergey N. Kochetkov<sup>1</sup>, Olga V. Efremenkova<sup>3\*</sup>, Alex R. Khomutov<sup>1\*</sup> Daniela De Biase<sup>2\*</sup>.

<sup>&</sup>lt;sup>1</sup> Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; makhomutov@mail.ru (M.A.K.); asalihov93@gmail.com (A.I.S.); kochet@eimb.ru (S.N.K.)

<sup>&</sup>lt;sup>2</sup> Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, I-04100 Latina, Italy; fabio.giovannercole@gmail.com (F.G.); laura.onillon@ifremer.fr (L.O.).

<sup>&</sup>lt;sup>3</sup> Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya 11, 119021 Moscow, Russia; mary\_bunny@mail.ru (M.V.D.), bfvas@yandex.ru (B.F.V.)

<sup>\*</sup> Correspondence: ovefr@yandex.ru (O.V.E.); alexkhom@eimb.ru (A.R.K.) daniela.debiase@uniroma1.it (D.D.B).

<sup>&</sup>lt;sup>†</sup> M.A.K. and F.G. contributed equally to this work.

<sup>§</sup> Present address: Département de Biologie, Université de Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.

<sup>&</sup>lt;sup>#</sup> Present address: IHPE UMR 5244, Université de Montpellier, Place Eugène Bataillon CC 80, F-34095 Montpellier Cedex 5, France.

General

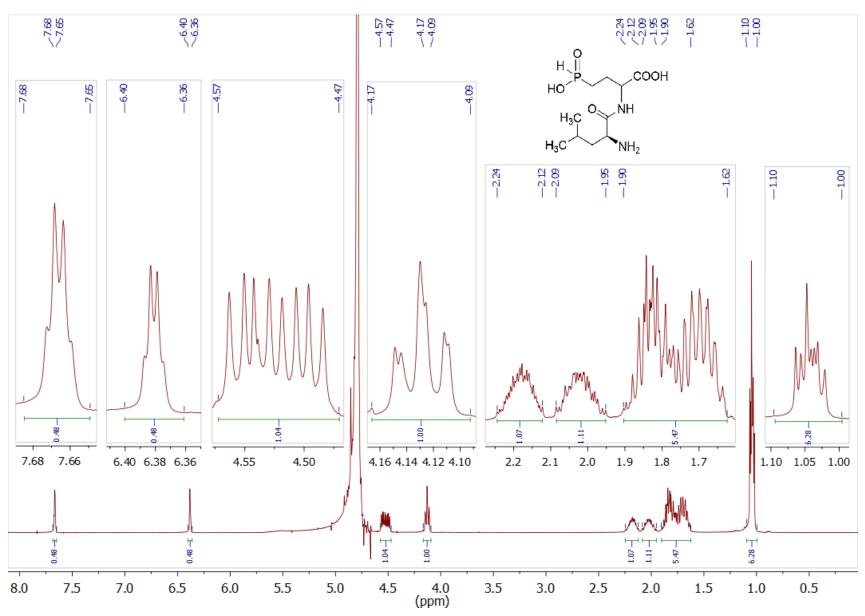
*D*-Ala-P<sub>5</sub> (cat. # 06657) and *L*-Alanyl-*L*-Ala-P<sub>5</sub> (cat. # 05260) were obtained from Fluka; *N*-(benzyloxycarbonyl)-*L*-alanyl *N*-hydroxysuccinimide ester (Z-*L*-Ala-OSu) was prepared according to [1] and was recrystallized from *i*-PrOH before use.

TLC was carried out on plastic sheet Cellulose  $F_{254}$  (Merck, Germany) in *i*-PrOH–25% NH<sub>4</sub>OH–H<sub>2</sub>O = 7:1:2. *L*-Alanyl-*D*-Ala-P<sub>5</sub> was detected on TLC plates following staining with ninhydrin (0.4% in acetone).

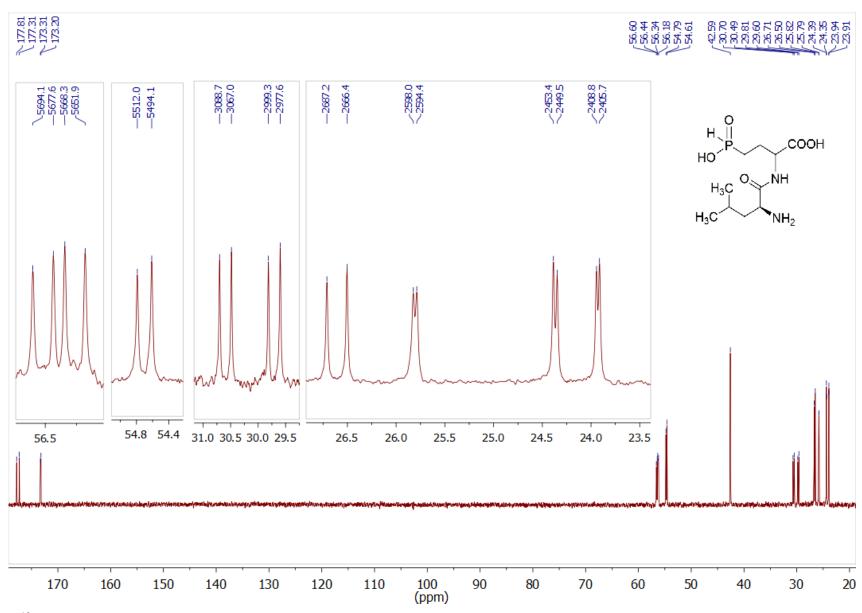
Ion-exchange chromatography was carried out on Dowex 50WX8, H+-form, 100-200 mesh (BioRad) using water for elution.

NMR spectra were recorded on a Bruker AM-300 (300.13 MHz for <sup>1</sup>H and 121.44 MHz for <sup>31</sup>P) using D<sub>2</sub>O as a solvent with sodium 3-trimethyl-1-propanesulfonate (DSS) as internal, or 85% H<sub>3</sub>PO<sub>4</sub> as external standards. Chemical shifts are given in parts per million (ppm), the letter "*J*" indicates spin-spin coupling constants which are given in Hertz (Hz).

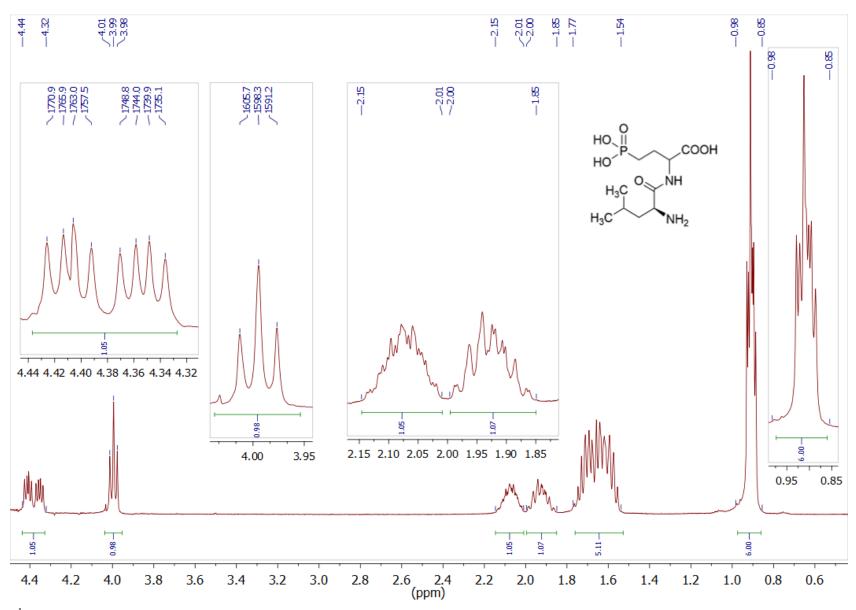
Scheme. i- Cbz-L-Ala-OSu/dioxane/H<sub>2</sub>O/NaHCO<sub>3</sub>; ii- HBr/AcOH; iii- Dowex 50X8 (H+), elution with H<sub>2</sub>O.


## Synthesis of L-Alanyl-D-Ala-P<sub>5</sub>

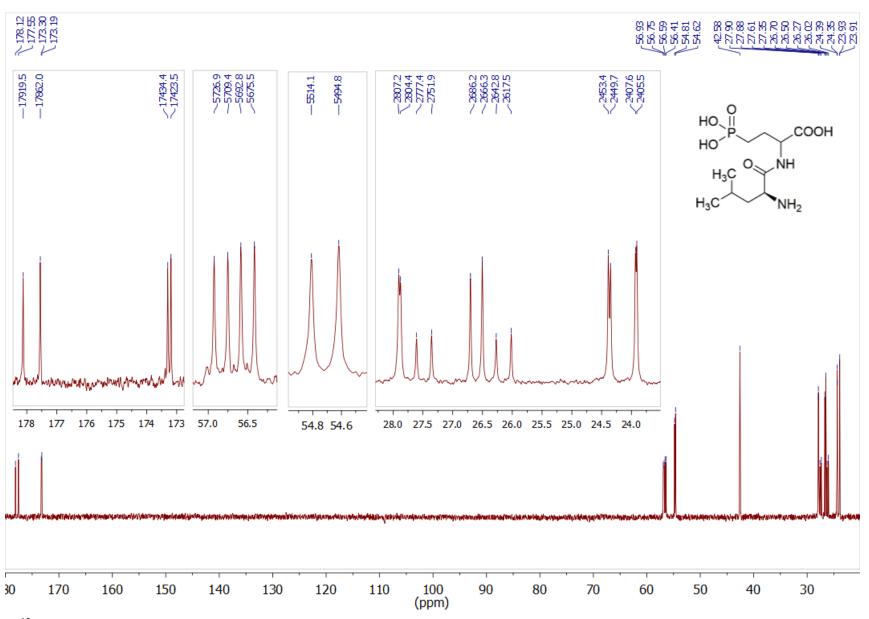
To the solution of *D*-Ala-P<sub>5</sub> (375 mg, 3.0 mmol) in water (10 mL) and 1,4-dioxane (5 mL) containing NaHCO<sub>3</sub> (840 mg, 10 mmol), a solution of *N*-Cbz-*L*-Ala-OSu (0.96 g, 3.0 mmol) in 1,4-dioxane (5 mL) was added and the reaction was stirred overnight at 20°C. The reaction mixture was concentrated *in vacuo*, the residue was dissolved in water (15 mL), acidified with 37% HCl to pH 1.0, and the separated oil was extracted with EtOAc (3 x 5 mL). The combined EtOAc extracts were washed with water (3.0 mL), brine (2 x 5 mL) and dried (MgSO<sub>4</sub>). Solvent was removed *in vacuo* and the residue was dried *in vacuo* at 1.0 Torr at 40°C for 1 h. Thus obtained viscous oil was dissolved in glacial AcOH (1.7 mL); upon the addition of anisole (2 drops) and 35% HBr/AcOH (1.15 mL) the reaction mixture was incubated at 20°C for 1.5 h (until the end of the evolution of CO<sub>2</sub>), pooled into abs. Et<sub>2</sub>O (30 mL) and left overnight at -20°C. Solvents were decantated, the residual oil was co-evaporated *in vacuo* with water (2 x 10 mL), the residue was dissolved in water (5 mL) and applied on a Dowex 50WX8 column (V=7.5 mL). Column was eluted with water, collecting 10 mL fractions. Ninhydrin-positive fractions


(from 7 to 16) were pooled and evaporated to dryness *in vacuo*. The residue was recrystallized from water-EtOH and crystals were dried *in vacuo* over  $P_2O_5$  to give *L*-Leu-*D*-Ala- $P_5$  (165 mg, yield 28% for two steps),  $R_f$  0.22. <sup>1</sup>H NMR (300.13 MHz,  $D_2O$ ):  $\delta$  = 4.07- 3.88 (m, 2H, >CH-C(O) + >CH-P), 1.48 (d, 3H, <sup>3</sup> $J_{HH}$  7.0 Hz,  $C_{H_3}$ -CH-C(O)-), 1.25 (dd, 3H, <sup>3</sup> $J_{HH}$  7.3 Hz, <sup>3</sup> $J_{HP}$  14.4 Hz,  $C_{H_3}$ -CH-P). <sup>31</sup>P NMR (121.44 MHz,  $D_2O$ ):  $\delta$  = 18.37. For the original spectra see Figure S5 and Figure S6.

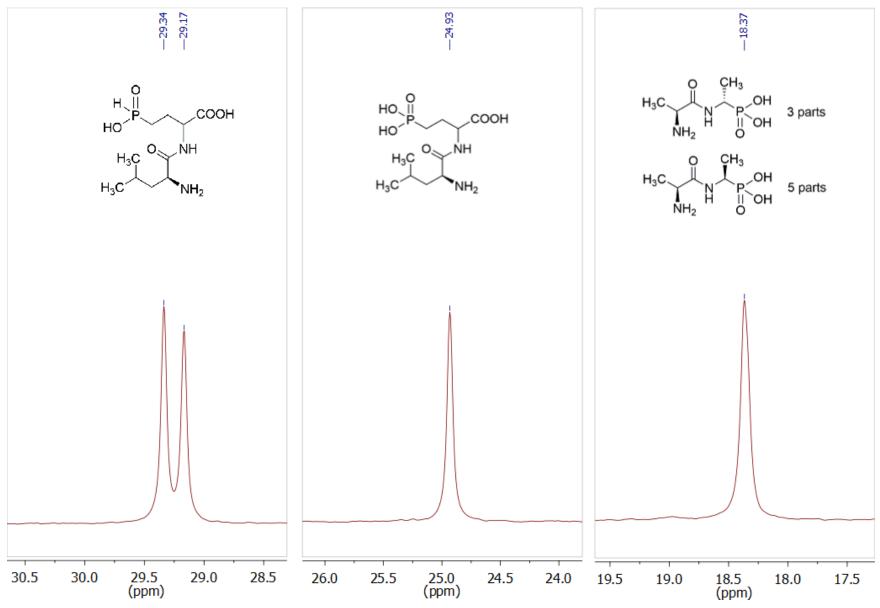
## References


1. Anderson, G.W.; Zimmerman, J.E.; Callahan, F.M. N-Hydroxysuccinimide Esters in Peptide Synthesis. *Journal of the American Chemical Society* **1963**, *85*, 3039-3039, doi:10.1021/ja00902a047.

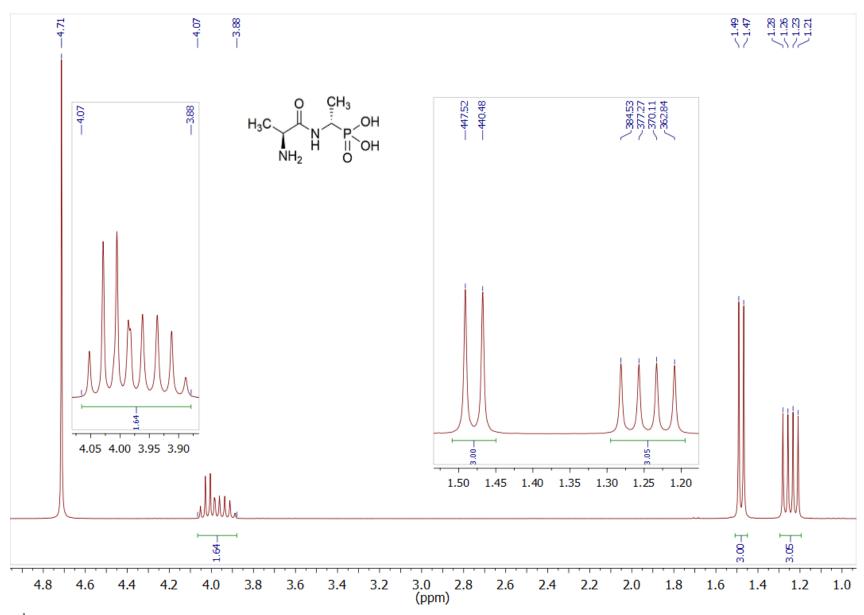



**Figure S1.**  $^{1}$ H-NMR spectrum of L-Leu-Glu- $\gamma$ -P<sub>H</sub>.

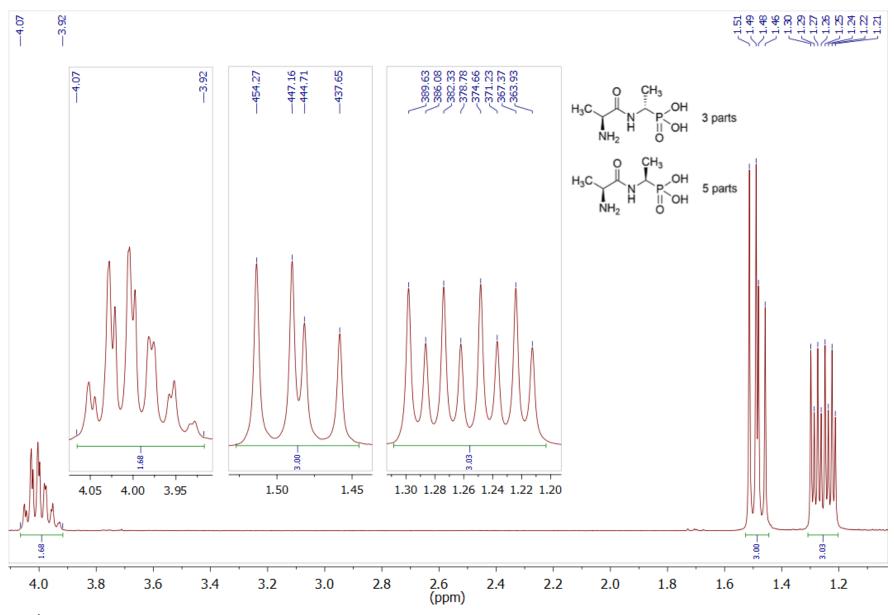



**Figure S2.**  $^{13}$ C-NMR spectrum of *L*-Leu-Glu- $\gamma$ -P<sub>H</sub>.




**Figure S3.**  $^{1}$ H-NMR spectrum of L-Leu-Glu- $\gamma$ -P<sub>5</sub>.




**Figure S4.**  $^{13}$ C-NMR spectrum of *L*-Leu-Glu- $\gamma$ -P<sub>5</sub>.



**Figure S5.**  $^{31}$ P-NMR spectra of L-Leu-Glu- $\gamma$ -P<sub>H</sub> (A); L-Leu-Glu- $\gamma$ -P<sub>5</sub> (B); and a mixture (5:3) of L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-Ala-L-A



**Figure S6**. <sup>1</sup>H-NMR spectrum of *L*-Ala-*D*-Ala-P<sub>5</sub>.



**Figure S7**. <sup>1</sup>H-NMR spectrum of *L*-Ala-*L*-Ala-P<sub>5</sub> and *L*-Ala-D-Ala-P<sub>5</sub> mixture (5:3).