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Abstract: In the present study, linear novel polymer poly(1-(2-((3-amino-2-
hydroxypropyl)amino)ethyl)-1'-ethyl-[4,4-bipyridine]-1,1'-di-ium)  (poly(AHAEBD)) and its
complex with iron (III) ([Fe(poly(AHAEBD):].Nas) were synthesized and then their anticancer
effects on A375 human malignant melanoma cells line were evaluated. The structure of the
synthesized compounds was confirmed using Fourier transform infrared spectroscopy (FT-IR),
nuclear magnetic resonance spectroscopy ('"HNMR), field emission scanning electron microscopy
(FE-SEM), X-ray energy diffraction analysis (EDS) and gel permeation chromatography (GPC). Also,
the cytotoxicity of cisplatin as a reference, on A375 melanoma cell line was tested. The ICso of
polymer-complex [Fe(poly(AHAEBD):2].Nas (0.71 pg/mL), cisplatin (4.58 ug/mL) and
poly(AHAEBD) (1.73 pg/mL) were obtained. Our results revealed that the polymer-complex
[Fe(poly(AHAEBD):].Nas exhibited better performance compared to cisplatin. Furthermore, the
coordination with iron (III) enhanced the cytotoxicity levels of poly(AHAEBD). According to these
findings, the synthesized polymer-complex demonstrates remarkable potential as an anti-cancer
agent. This study could provide the basis for future research focused on employing this new
polymer-complex for in vivo testing, highlighting its potential for therapeutic applications.

Keywords: 1-(2-((3-amino-2-hydroxypropyl)amino)ethyl)-1'-ethyl-[4,4'-bipyridine]-1,1'-diium; iron
polymer-complex; MTT; A375 cells

1. Introduction

Melanoma, a type of skin cancer that originates in melanocytes, the cells responsible for
producing the pigment melanin is a topic of increasing concern in the field of oncology [1]. With its
potential to metastasize rapidly, melanoma poses a significant threat to patients' health and survival.
Chemotherapy stands as one of the most common methods in the treatment of skin cancer [2]. Metal-
based compounds have held a significant role in chemotherapy research for an extended period [3].
Meanwhile, iron complexes are promising alternatives to conventional platinum-based
chemotherapy due to their wide range of reactions and targeting different biological systems [4]. Iron
assumes a pivotal role in programmed cell death, and many studies have been conducted on iron
compounds to develop potential strategies for tumor therapy [5]. The rapid multiplication of
malignant cancer cells is significantly influenced by the disruption of iron homeostasis. This
dysregulation commonly occurs during the stages of growth and proliferation, driven by the
heightened iron demands of these cells. Consequently, compounds incorporating iron hold the
capability to efficiently entrance the cells, effectively stopping the growth of cancerous tumors, and
ultimately inducing the demise of cancer cells [6,7]. Moreover, elevating the cellular iron dose triggers
an upsurge in radical species like hydroxyl radicals. These radicals launch an attack on the nucleic
acid sequences within DNA, consequently disrupting the life cycle of cancer cells and inhibiting their
proliferation [8,9].

Polymer-metal complexes embody featuring a polymer backbone coupled with a metal ion or
metal nanoparticles, linked via coordination bonds. Renowned for their distinctive physical and
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chemical attributes, these complexes have gained widespread utility across diverse fields, including
pharmaceuticals, biomedicine, and biological research [10-12]. Within the pharmaceutical domain,
polymer-metal complexes have emerged as an important strategy in novel drug development. Using
metal coordination chemistry, these complexes can be tailored to precisely target disease-causing
biomolecules, yielding substantial therapeutic outcomes [13].

Beyond pharmaceuticals, polymer-metal complexes have demonstrated important applications
in the realm of biomedicine. For example, polymer-gold complexes have been investigated for their
use as nanocarriers in targeted drug delivery due to their ability to selectively accumulate in tumor
tissues [14]. Also, in medical imaging, polymer-iron complexes function as contrast agents in
magnetic resonance imaging (MRI), contributing to enhanced diagnostic capabilities [15]. some
research has been conducted to explore the anti-cancer impact of polymer-complexes containing
diverse metals [16,17], including the investigation of the anti-cancer effect of polymer-complexes of
iron and zinc on cancer cells [18].

In recent years, substantial focus has been directed towards viologen compounds, specifically
bipyridinium, attributed to their notable charge density and integral involvement in redox reactions
[19]. Constructing linear polymers based on ionic compounds like viologen, characterized by
alternating functional groups such as amine and hydroxy, offers a pathway to create complex
polymers with many metals. Due to their positive charge, polycationic compounds have attracted a
lot of attention in biological systems [20]. Synthesis a linear polymer that coordinates with metals via
various functional groups is an innovative approach for creating anti-cancer polymer compounds.
The polymer's positive charge enhances its applications by improving water solubility and
facilitating binding to multiple metals. This charge also promotes stronger binding with biological
macromolecules [21,22].

In the present work, poly(1-(2-aminoethyl)-'1-(2-((2-hydroxypropyl)amino)ethyl)-[4,'4-
bipyridine]-1,'1-dioe ) (poly(AHAEBD)) was synthesized and its iron polymer-complex was used to
investigate the effect on A375 human malignant melanoma cells. New design in poly(AHAEBD)
structure, high solubility, ability to form complex with ions such as iron and high cytotoxicity for
cancer cells are distinguishing features of this study.

2. Materials and Methods

2.1. Materials

The following chemicals were used in the study: 4,4'-bipyridine (4,4'-BP, 98%, Sigma-Aldrich),
2-bromoethylamine hydrobromide (2-BEA, 99%, Merck), ethanol, dimethylsulfoxid (DMSO), ethyl
acetate, epichlorohydrine (ECH) and acetone were of high purity (>99%, Merck), Fe(NO3)s.9H20 and
NaPFé6 (Sigma-Aldrich). DMEM (Dulbecco's modified Eagle's medium), 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) and cisplatin were obtained from Sigma-Aldrich and A375
human malignant melanoma cells line was obtained from Pasteur Institute of Iran. Other solvents
and materials were obtained from Merck and used without further purification.

2.2. Characterization

Fourier-transform infrared (FT-IR) spectra were recorded on a SHIMADZU 8400
spectrophotometer using KBr pellets (4000-400 cm). The field emission scanning electron
microscope (FE-SEM) used in this study was the TESCAN MIRA III, (Czech Republic) and energy
dispersive X-ray analysis (EDS) was carried out using SAMx EDS (France). 'H nuclear magnetic
resonance ('HNMR) spectra were recorded using a VARIAN NMR spectrometer (Inova 500MHz) in
D20. The molecular weight of the polymer was determined using permeation gel chromatography
(GPC, Agilent Instrument).
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2.3. Synthesis procedures

2.3.1. Synthesis of 1,1'-bis(2-aminoethyl)-[4,4'-bipyridine]-1,1'-diium (BABD)

To a 10 mL solution of anhydrous ethanol, 4,4'-BP (0.2 g, 1.28 mmol) and 2-BEA (0.525 g, 2.56
mmol) were added, and the mixture was refluxed at 80 °C for 48 h. After filtration and washing with
ethanol and acetone, 0.63 g of BAED was obtained with an 87% yield. EDS (At%) elemental analysis
results, (C1aNsBrsHz): C (63.41%), N (18.42%) and Br (18.14%).

2.3.2. Synthesis of poly(1-(2-((3-amino-2-hydroxypropyl)amino)ethyl)-1'-ethyl-[4,4"-bipyridine]-1,1'-
di-ium) (poly(AHAEBD))

1.13 g of BABD (2 mmol) and 3.5 mL of ECH (about 4.2 mmol) were added to 10 mL of DMSO
and refluxed at 70 °C for 4 h, then 5 mL of ethyl acetate was added to the above solution to precipitate
the poly(AHAEBD). Subsequently, the synthesized compound was washed several times using ethyl
acetate. The final product displayed a reaction yield of 83%. The EDS elemental analysis showed the
following composition, (C17N4OCl2): C (70.13%), N (15.90%), Cl1 (9.03%) and O (4.94%).

2.3.3. Synthesis of polymer-complex [Fe(poly(AHAEBD):].Nas

In a 15 mL deionized water, 0.75 g of poly(AHAEBD) (2 mmol) and 0.41 g of Fe(NOs)3.9H20 (1
mmol) were added and stirred for 48 h at 40 °C. Then, 0.67 g of NaPFs (4 mmol) was introduced to
the solution, resulting in the formation of a pale-yellow precipitate. The obtained precipitate was
filtered and subjected to multiple washes using deionized water (DI) and acetone, yielding a reaction
efficiency of 79%. The EDS elemental analysis showed the following composition:
(C3aNsO2P4F24NasFe): C (42.08%), N (10.02%), O (3.66%), P (4.94%), F (33.23%), Na (4.12%), and Fe
(1.95%). The synthesis route of [Fe(poly(AHAEBD)2)].Nas is illustrated in Figure 1.
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Figure 1. Synthesis route of BABD, poly(AHAEBD) and [Fe(poly(AHAEBD):].Nas.

2.4. Cell culture

A375 human malignant melanoma CELLS were cultured in DMEM containing 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin (PS) in a humid environment (95% humidity) with 5%
COz at 37 °C. The viable cells were counted using a hemocytometer, based on their ability to exclude
trypan blue. Drug treatment was initiated after a 4-hour incubation period. Stock solutions (20 pg/mL
in DMSO) of [Fe(poly(AHAEBD):].Nas and poly(AHAEBD), and cisplatin (40 pg/mL in deionized
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water) were prepared and subsequently diluted with the culture medium to achieve the desired
concentrations whenever needed [23-25].

3. Results and discussion

3.1. FT-IR Spectroscopy

The FT-IR spectra of BABD, poly(AHAEBD), and [Fe(poly(AHAEBD)2)].Nas compounds are
depicted in Figure 2. In the BABD spectrum, absorption bands at 3464 and 3526 cm™ correspond to
N-H stretching vibrations, while bands at 1601 and 1643 cm™ related to C=N and C=C stretching
vibrations, respectively [26]. Similar absorption bands at 1601 and 1643 cm are also observed in the
spectrum of poly(AHAEBD). Both BABD and poly(AHAEBD) display aliphatic and aromatic C-H
regions in the range of 2950-12850 cm and 3020 cm respectively. A broad absorption band in the
3200 to 3400 cm is indicative of the hydroxy group in the poly(AHAEBD). The absorption band at
1558 cm ! in both BABD and poly(AHAEBD) signifies the N-H bending frequency [27]. Additionally,
the absorption band at 1407 cm! corresponds to the C-O stretching frequency [28].

In [Fe(poly(AHAEBD)2)].Nas, the frequencies aligned with C=N and C=C stretching vibrations
are evident at 1604 and 1639 cm [29]. The disappearance of the absorption band of N-H bending
vibration and the absence of the absorption band associated with the hydroxy group indicate the
hydrogen removal from the hydroxy and amine groups of poly(AHAEBD), signifying their
coordination to iron (III).

[Fe(poly(AHAEBD)>)].Nas ;.

N-H bending mode

C=C vibrations

O-H vibrations S it i
=N vibrations I.:E

Transmitance (a.u.)

3900 3400 2900 2400 1900 1400 900 400

Wavenumber (cm-?)
Figure 2. The FT-IR spectra of BABD, poly(AHAEBD) and [Fe(poly(AHAEBD)2].Nas.

3.2. 'THNMR study

The Figure 3 illustrates the 'HNMR spectra of BABD, poly(AHAEBD), and
[Fe(poly(AHAEBD)2)].Nas compounds. Within the poly(AHAEBD) compound, three distinct
hydrogen types are identifiable. These including the hydrogen of the hydroxy group (at 9.94 ppm,
associated with carbon number 1), along with hydrogens attached to carbon numbers 5 and 6 (with
chemical shifts of 4.89 ppm and 4.46 ppm, respectively). These two hydrogens have been
incorporated into the BABD spectrum as a result of the reaction with ECH. In the
[Fe(poly(AHAEBD)2)].Nas spectrum, the absence of the hydrogen associated with the hydroxy group
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and changes in the chemical shift of hydrogens signifies the interaction of the iron ion with the
poly(AHAEBD) [30].
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Figure 3. 500 MHz 'H NMR spectrum of BABD, poly(AHAEBD) and [Fe(poly(AHAEBD):].Nas
obtained in DMSO-ds at 298 K.

3.3. GPC analysis of poly(AHAEBD)

The poly(AHAEBD) exhibits remarkable water solubility owing to its polycationic nature. This
characteristic makes it an ideal candidate for reactions in aqueous medium. Also, its distinctive
arrangement of alternating amine and hydroxy groups renders it proficient in forming effective
coordination bonds with various metals, including iron (IIl). For GPC analysis, a sample was
prepared using DI at a concentration of 1 g/L. The analysis was conducted utilizing a water eluent
phase and employing a differential refractometer (DRI) as detector. The chromatogram was shown
in Figure 4. The GPC analysis unveiled the weight-average molecular weight (Mw) at 21290 g/mol,
the number-average molecular weight (Mn) at 10138 g/mol, and a polydispersity index (PDI) of 2.1
for the poly(AHAEBD) polymer.
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Figure 4. Molecular weight distribution of poly(AHAEBD) analyzed by GPC (with eluent phase of

water).

3.4. EDS and FE-SEM analysis

Figure 5 represents FE-SEM images of poly(AHAEBD) and the [Fe(poly(AHAEBD)2)].Nas
complex-polymer. Sample preparation for FE-SEM analysis included sonicating a 5 mg/mL aqueous
suspension of [Fe(poly(AHAEBD)2)].Nas and an aqueous solution of poly(AHAEBD) for 5 min in an
ultrasonic bath. Then, the prepared samples were dried onto a silicon wafer substrate. In the FE-SEM
image of, poly(AHAEBD) (Figure 5a) an abundance of accumulated spherical structures can be seen,
while the FE-SEM of [Fe(poly(AHAEBD):].Nas (Figure 5d) reveals faceted structures characterized
by sharper edges. Elemental distribution maps in Figure 5b,e illustrate iron distribution for
poly(AHAEBD) and [Fe(poly(AHAEBD)2)].Nas, respectively. Notably, the absence of iron in Figure
5b and the distinct distribution of iron elements in Figure 5e are evident. Figure 5¢,f also display the
EDS spectra of poly(AHAEBD) and [Fe(poly(AHAEBD)2].Nas, respectively. As shown, the spectrum
of [Fe(poly(AHAEBD):].Nas clearly reveals the presence of iron, whereas the spectrum of
poly(AHAEBD) shows no detectable iron content. Alongside with other analyses, these findings
emphasize the alterations in structure and coordination of the poly(AHAEBD) compound with iron
ions.

G

Intensity

Intensity

FeKa o s "

Figure 5. FE-SEM images of a) poly(AHAEBD) and e) [Fe(poly(AHAEBD):].Nas, EDS mapping
images of b) poly(AHAEBD) and e) [Fe(poly(AHAEBD):].Nas, and EDS spectra of c) poly(AHAEBD)
and f) [Fe(poly(AHAEBD)2].Nas.
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3.5. Cytotoxicity analysis

The cytotoxic properties of [Fe(poly(AHAEBD)2)].Nas, poly(AHAEBD), and cisplatin (as a
reference) were evaluated on A375 cancer cells using the MTT method. Table 1 presents the ICso
values resulting from a 24 h treatment of these compounds on A375 cancer cells in a culture medium.
Cisplatin exhibited ICso value of 4.58 ug/mL [31], while [Fe(poly(AHAEBD)2)].Nas and
poly(AHAEBD) displayed ICso values of 0.71 pg/mL and 1.73 pg/mL, respectively.

Table 1. ICs0 + SD (ug/mL) values for [Fe(poly(AHAEBD)2].Nas, poly(AHAEBD) and cisplatin on
A375 cancer cell line.

ICs0% SD (ug/mlL) Compound
0.71+£0.006 [Fe(poly(AHAEBD)2].Nas
1.73 +0.011 Poly(AHAEBD)

4.58 + 0.032 Cis-platin

Figure 6 illustrates the cell viability percentages under six treatment concentrations of
[Fe(poly(AHAEBD)2)].Nas, poly(AHAEBD), and cisplatin. It is evident from the results that the
polymer-complex [Fe(poly(AHAEBD)2)].Nas exhibits a significantly lower ICs0 value compared to
both cisplatin and poly(AHAEBD). This reduction in ICs for [Fe(poly(AHAEBD)2)].Nas when
contrasted with cisplatin suggests an enhanced cytotoxicity of this compound against A375 cancer
cells. Moreover, in comparison to poly(AHAEBD), the polymer-complex [Fe(poly(AHAEBD)2)].Nas
demonstrates heightened cytotoxicity, highlighting how the formation of the polymer-complex
contributes to an enhancement in cytotoxicity against melanoma cells.
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Figure 6. Cell viability% + SD of A375 cell line after 24 h treatment with six doses of the a)
[Fe(poly(AHAEBD):].Nas, b) cisplatin and c) poly(AHAEBD).

Iron complexes can exert diverse effects on the cell life cycle, encompassing the stabilization or
inhibition of iron absorption, disruption of iron signaling pathways, and the induction of iron free
radical generation within cancer cells [32]. Elevating cellular iron levels leads to an upsurge in radical
species, such as hydroxyl radicals, resulted in the fragmentation of DNA nucleotide sequences and
eventual demise of cancer cells [33]. Notably, the influence of the synthesized polymer-complex
stands out surpassing both cisplatin (4.58 pg/mL) as a reference and other iron complexes. For
example, the ICso for pyridoxal-thiosemicarbazide-iron (III) and N,N'-bis[salicylidene]-1,3-diamino-
1,2,2-trimethylcyclopentane-iron (III) on the A375 cancer cell line are approximately 29.79 ug/mL and
12.10 pg/mL, respectively [34,35]. The notably low ICso value (0.71 pg/mL) of the synthesized
polymer-complex, coupled with the innovative structural design, can be regarded as a distinct
advantage of this study.

4. Conclusion

The complex polymer [Fe(poly(AHAEBD):].Nas was synthesized by reacting the
poly(AHAEBD) polymer with iron (III), and subsequently, its anticancer potential, along with that of
poly(AHAEBD) and cisplatin as a reference, was evaluated on a A375 human malignant melanoma
cells line using the MTT method. The results obtained indicate that the ICs0 value of the polymer
complex [Fe(poly(AHAEBD)2].Nas (0.71 pg/mL) is lower than that of cisplatin (4.58 ug/mL),

do0i:10.20944/preprints202308.2171.v1
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highlighting the superior efficacy of this complex-polymer against the A375 cells. Moreover, after the
formation of the complex polymer, the ICs value of the poly(AHAEBD) polymer (1.73 ug/mL)
reduces, indicating an increase in the polymer-complex cytotoxicity and anticancer effects. The
synthesized polymer demonstrates a pronounced tendency to coordination with iron ions due to its
arrangement of alternating amine and hydroxy groups. Furthermore, its remarkable water solubility
can enhance its reactivity with a variety of metal ions.

The noteworthy aspect of this study is its establishment of a novel path using polycationic linear
polymers for synthesis of effective polymer-complexes targeting cancer cells in in-vitro experiments.
Thanks to its remarkable characteristics, this polymer complex holds the potential to serve as a
candidate for future in-vivo tests.
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