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Article 
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* Correspondence: to linyangmd@163.com. 

Simple Summary: The noninvasive differentiation of hepatocellular carcinoma (HCC) from intrahepatic 

cholangiocarcinoma (ICC) remains challenging. In recent years, the number of studies on the application of 

radiomics in liver cancer has grown dramatically. However, there have been very few studies on the 

differentiation of HCC from ICC based on multisequence magnetic resonance imaging (MRI) radiomics. This 

study aimed to investigate the efficacy of a radiomic model based on preoperative fat suppression T2-weighted 

imaging (FS-T2WI) and dynamic contrast-enhanced MRI features in the arterial phase (A) and portal venous 

phase (P) for the differentiation of HCC from ICC. 

Abstract: The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI) 

radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The 

clinical and MRI data of 129 pathologically confirmed HCC cases and 48 ICC cases from April 2016 to December 

2021 at the Affiliated Hospital of North Sichuan Medical College were retrospectively analyzed. Included cases 

were randomly divided at a ratio of 7:3 into a training group of 124 cases (90 HCC cases and 34 ICC cases) and 

a validation group of 53 cases (39 HCC cases and 14 ICC cases). Radiomic features were extracted from axial 

fat-suppression T2-weighted imaging (FS-T2WI) and axial arterial-phase (A) and portal-venous-phase (P) 

dynamic contrast-enhanced MRI sequences, and the corresponding datasets were generated. The least absolute 

shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic 

regression was used to establish a radiomic model for each sequence (FS-T2WI, A, and P models) and a joint 

model (M model) integrating the radiomic features of all the sequences. The performance of each model was 

evaluated using the area under the receiver operating characteristic curve (AUC). The AUC of the FS-T2WI, A, 

P, and M models for distinguishing HCC from ICC was 0.693, 0.863, 0.818, and 0.914 in the training group and 

0.690, 0.784, 0.727, and 0.802 in the validation group, respectively. The results of this study suggest that MRI-

based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomic 

features of multiple sequences showed further improvement in performance. 

Keywords: radiomics; hepatocellular carcinoma; intrahepatic cholangiocarcinoma; differentiation 

 

1. Introduction 

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most 

common types of primary liver cancer, with the former accounting for approximately 75%-85% [1-3], 

and their morbidity rates are increasing [4-8]. The treatment strategies for and prognosis of patients 

with HCC and ICC are very different [2, 3, 9-16]. Therefore, accurate preoperative discrimination 

between HCC and ICC is essential. 

At present, the noninvasive differentiation of HCC from ICC remains challenging. The 

sensitivity and specificity of serum tumor markers, including alpha-fetoprotein (AFP) and 

carbohydrate antigen 19-9 (CA19-9), are unsatisfactory [17-20]. The presentation of HCC and ICC on 

dynamic contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI) is 
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mostly typical [21-24]. However, both HCC and ICC may occur in patients with chronic hepatitis, 

and imaging enhancement patterns may tend to be similar in some patients with both HCC and ICC 

[3, 25-29]. In addition, the enhancement may be unremarkable or atypical in some HCC cases 

(especially cases of small, hypovascular, or sclerosing HCC lesions) [30-32]. Traditional medical 

imaging analysis relies heavily on the physician's subjective judgment and is thus prone to 

misdiagnosis [33]. Liver biopsy remains the gold standard for the final diagnosis, but this invasive 

procedure is refused by some patients [34]. Therefore, a preoperative, noninvasive method for 

distinguishing HCC from ICC is urgently needed. 

The rapid development of artificial intelligence in recent years has led to it playing an important 

role in personalized precision medicine. Based on existing medical imaging modalities such as CT 

and MRI, an emerging technique known as radiomics [35] can be used to convert intrinsic 

pathophysiological information that is invisible to the human eye into high-dimensional quantitative 

image features, which can then be used to perform tumor classification via an analysis of the 

relationship between these features and clinical/genetic data [35-37]. Studies have shown that 

radiomics exhibits unique advantages in classifying the disease and predicting the prognosis of 

patients with liver cancer [35, 38-52]. However, there have been very few studies on the 

differentiation of HCC from ICC based on multisequence MRI radiomics to date. In this paper, the 

efficacy of a radiomic model based on preoperative fat suppression T2-weighted imaging (FS-T2WI) 

and dynamic contrast-enhanced MRI features in the arterial phase (A) and portal venous phase (P) 

for the differentiation of HCC from ICC was investigated. 

2. Materials and Methods 

2.1. Patients 

The preoperative MRI and clinical data of HCC and ICC patients treated at the Affiliated 

Hospital of North Sichuan Medical College from April 2016 to December 2021 were retrospectively 

analyzed. The inclusion criteria were as follows: (1) a pathological diagnosis of HCC or ICC; (2) 

multisequence MRI of the upper abdomen performed within 4 weeks prior to surgery; and (3) no 

antitumor-related treatment prior to the MRI scan.The exclusion criteria were as follows: (1) 

combined hepatocellular-cholangiocarcinoma (cHCC-CC); (2) incomplete data or poor MR image 

quality; and (3) lesion diameter <2 cm or unclear lesion contours. The data of 206 patients with 

primary liver cancer (145 with HCC and 61 with ICC) were collected, and 177 (129 with HCC and 48 

with ICC) met the criteria and were finally enrolled in this study. The patients were randomly divided 

at a 7:3 ratio into a training group (n=124, 90 with HCC and 34 with ICC) and a validation group 

(n=53, 39 with HCC and 14 with ICC) (Figure 1). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2164.v1

https://doi.org/10.20944/preprints202308.2164.v1


 3 

 

 

Figure 1. Flow chart of the study population. 

The following clinical data were acquired: age; sex; cirrhosis status; hepatitis B serological test 

results; pseudocapsule status; hemorrhagic necrosis status; extrahepatic metastasis status; portal vein 

tumor thrombus status; number of tumors; ascites status; intrahepatic bile duct dilatation status; 

maximum tumor diameter; abnormal prothrombin; AFP level; carcinoembryonic antigen (CEA) 

level; and CA19-9 level. The levels of tumor markers were measured within one week before surgery. 

2.2. MRI Acquisition 

MRI scans were performed using a Discovery 750 3.0 T superconductivity MRI scanner with a 

32-channel phased-array surface coil (GE, USA). Prior to the MRI scans, all subjects fasted for 4 hours 

and received training in breathing exercises. Scan sequences included axial 3D liver acceleration 

volume acquisition (LAVA), FS-T2WI, and axial 3D LAVA dynamic contrast-enhanced sequences 

(Table 1). Gd-DTPA at a dose of 15-20 mL was used as the contrast agent for dynamic contrast 

enhancement and injected into the dorsal vein of the hand at 2-2.5 mL/s using a high-pressure syringe. 

Table 1. MRI sequence and parameters. 

Sequence TR/TE (ms) FA (°) Matrix (mm2) FOV (mm2) ST (mm) 

BH Ax LAVA-Flex 4/2 12 260×192 320×320–360×360 2.6 

RTr Ax fs T2WI 2,609/97 110 384×384 320×320–380×380 5 

BH Ax LAVA-

Flex+C 
4/2 12 224×192 320×320–360×360 5 

Notes: TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; ST, section thickness; LAVA-Flex, 

liver acquisition with volume acceleration flexible. 

2.3. Image Segmentation and Feature Extraction 

The MR images of patients were imported in DICOM format into IBEX software (β1.0, 
http://bit.ly/IBEX_MDAnderson) for tumor image segmentation. The entire tumor volume was 

manually delineated as a region of interest (ROI) along the edge of the lesion layer by layer on axial 
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FS-T2W as well as A and P images if the clinical and pathological data of the patients were unknown 

(Figure 2). The gray-level run-length matrix (GLRLM), gray-level cooccurrence matrix (GLCM), 

intensity histogram and shape features were extracted and used to construct the FS-T2WI, A, and P 

datasets. 

 

 
 

(A) (B) 

Figure 2. Delineation of the ROI along the edge of the lesion: (A) HCC; (B) ICC. 

2.4. Feature Selection 

Sixty-one patients (42 with HCC and 19 with ICC) were randomly selected for intra- and 

intergroup consistency analysis. Interobserver consistency was assessed by comparing the 

segmentation results of two radiologists (observers 1 and 2, with 5 and 6 years of experience, 

respectively). Intraobserver consistency was assessed by comparing the segmentation results 

obtained by observer 2 more than one week after the initial results were obtained. The intraclass 

correlation coefficient was used to assess interobserver consistency, with a coefficient ≥0.75 
considered to indicate good consistency. To eliminate discrepancies in the index dimension, all data 

were standardized by Z score. The dataset generated by each sequence was subjected to intra- and 

interobserver consistency tests. Features with an intraclass correlation coefficient <0.75 were 

eliminated. 

From the stable features that remained, statistically significant features in differentiating HCC 

from ICC were selected using one-way statistical analysis (independent-samples t test or Mann‒
Whitney U test, according to the characteristics of the data distribution) (p<0.05). To avoid overfitting, 

least absolute shrinkage and selection operator (LASSO) regression analysis was performed to select 

the core radiomic features for differentiating HCC from ICC. The regularization parameter (λ) of the 
selected features was adjusted by 10-fold cross-validation using the 1-standard error (1-SE) method. 

2.5. Model Establishment and Evaluation 

The optimal radiomic features selected from each sequence were used to establish the radiomic 

models (FS-T2WI, A, and P models) by logistic regression. By integrating the optimal features, a joint 

radiomic model (M) was established [41]. The efficacy of the models was assessed by the area under 

the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), accuracy and F1 score as determined from the logistic 

regression confusion matrix. 
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2.6. Statistical Methods 

R software (4.1.2, https://www.r-project.org/) was used for statistical data processing. 

Specifically, the software packages "psych", "glmnet", and "pROC" were used to assess the intergroup 

consistency of radiomic features, to perform LASSO regression analysis and to plot ROC curves, 

respectively. The normality and homogeneity of variance of the quantitative data were tested by the 

Shapiro‒Wilk test and Bartlett test, respectively. The independent-samples t test was performed for 

quantitative data with a normal distribution and homogeneous variance; otherwise, the Mann‒
Whitney U test was performed. Quantitative data are described by the means or medians. Categorical 

variables were analyzed by the chi-square test and are described by percentages. Two-sided p values 

<0.05 was considered statistically significant. 

3. Results 

3.1. Patient Characteristics  

Among the 177 patients, 129 had HCC (112 men and 17 women), and 48 had ICC (19 men and 

29 women). Cirrhosis occurred in 121 patients (107 with HCC and 14 with ICC), and multinodular 

liver cancer occurred in 65 patients (47 with HCC and 18 with ICC). The maximum tumor diameter 

was 6.57±3.22 cm (Table 2). 

Table 2. Patient clinical characteristics. 

Parameter 
Training cohort 

 (n=124) 

Validation cohort 

(n=53) 
P value 

Sex 

Male 

Female 

 

94 

30 

 

38 

15 

0.565 

Age 

≤60 

>60 

 

78 

46 

 

32 

21 

0.751 

Satellite nodules 

Yes 

No 

 

47 

77 

 

18 

35 

0.618 

Diameter 

≤5 

>5 

 

41 

83 

 

25 

28 

0.076 

Intrahepatic bile duct dilation 

Yes 

No 

 

31 

93 

 

14 

39 

0.843 

Ascites 

Yes 

No 

 

36 

88 

 

18 

35 

0.514 

Hemorrhagic necrosis 

Yes 

No 

Pseudocapsule 

Yes 

 

86 

38 

 

26 

 

31 

22 

 

11 

0.162 

 

 

0.975 
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No 98 42  

Extrahepatic metastases 

Yes 

No 

 

23 

101 

 

6 

47 

0.234 

Portal vein tumor thrombus 

Yes 

No 

 

35 

89 

 

18 

35 

0.445 

 

Cirrhosis 

Yes 

No 

 

83 

41 

 

38 

15 

0.533 

Hepatitis B or C 

Yes 

No 

 

90 

34 

 

39 

14 

0.891 

AFP (ng/mL) 

<20 

20~400 

>400 

 

54 

21 

49 

 

30 

8 

15 

0.259 

DCP (mAU/mL) 

≤27.8 

>27.8 

 

11 

113 

 

5 

48 

0.905 

CA19-9 (U/mL) 

≤37 

>37 

 

68 

56 

 

24 

29 

0.244 

CEA (µg/L) 

≤5 

>5 

 

80 

44 

 

32 

21 

0.601 

 

Histologic result 

HCC 

ICC 

 

90 

34 

 

39 

14 

0.891 

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; AFP, alpha-fetoprotein; CA19-9, 

carbohydrate antigen 19-9; DCP, des-gamma-carboxy prothrombin; CEA, carcinoembryonic antigen. 

3.2. Feature Extraction and Selection 

A total of 352 features were extracted from each of the FS-T2WI, A and P datasets. Features with 

intra- and intergroup intraclass correlation coefficients <0.75 were eliminated, and the remaining 

features were further analyzed (Figure 3). 
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B2 

 

C1 

 

C2 

Figure 3. Stability assessment of extracted MRI radiomic features by inter- and intraobserver 

intraclass correlation coefficients: (A1) intergroup FS-T2WI; (A2) intragroup FS-T2WI; (B1) intergroup 

arterial phase; (B2) intragroup arterial phase; (C1) intergroup portal venous phase; (C2) intragroup 

portal venous phase. 
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There were 327, 331 and 319 significantly different features in the FS-T2WI, A and P datasets, 

respectively (p<0.05), according to the independent-samples t test or Mann‒Whitney U test. Finally, 

1, 6 and 4 optimal features of these datasets were selected by LASSO regression, respectively (Figure 

4 and Table 3). 

 

 

(A1) (A2) 

 

 

(B1) (B2) 

  

(C1) (C2) 

Figure 4. Feature selection using LASSO. (A1-A2) FS-T2WI; (B1-B2) arterial phase; (C1-C2) portal 

venous phase. 
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Table 3. Radiomic features for identifying HCC and ICC selected from each dataset by LASSO. 

Cohort Feature type Feature name 

FS-T2WI Shape features (n=1) Roundness 

Arterial phase 

Texture features (n=3)  

GLCM (n=1) 45-7InverseDiffMomentNorm 

GLRLM (n=2) 
0LongRunEmphasis 

90ShortRunLowGrayLevelEmpha 

Intensity histogram features (n=1) InterQuartileRange 

Shape features (n=2) 
Mass 

Roundness 

Portal vein phase 

Texture features (n=2)  

GLCM (n=2) 
90-1Contrast 

45-7InverseDiffMomentNorm 

Intensity histogram features (n=2) 
InterQuartileRange 

MeanAbsoluteDeviation 

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; FS-T2WI, fat suppression T2-

weighted imaging; GLCM, gray-level cooccurrence matrix; GLRLM, gray-level run-length matrix. GLCM 

features were constructed in four directions (θ = 0°, 45°, 90°, and 135°) and three offsets (d = 1, 4, 7); GLRLM 

features were constructed in two directions (θ = 0°, 90°) and one offset (d = 1). 

3.3. Model Establishment and Evaluation 

The above features selected from the FS-T2WI, A and P datasets were used to establish each 

radiomic model, and then the joint model (M model) was established by integrating the 11 features 

into a single model. The AUC of the FS-T2WI, A, P and M models was 0.693, 0.863, 0.818 and 0.914 in 

the training group and 0.690, 0.784, 0.727 and 0.802 in the validation group, respectively (Table 4 and 

Figure 5). 

Table 4. Efficacy of each model in identifying HCC and ICC. 

Cohort Model AUC Sen Spe PPV NPV ACC F1-score  

 

Training 

FS-T2WI model 0.693 0.147 0.956 0.556 0.748 0.734 0.233 
 

A model 0.863 0.588 0.933 0.769 0.857 0.839 0.667 
 

P model 0.818 0.588 0.922 0.741 0.856 0.831 0.656 
 

M model 0.914 0.706 0.922 0.774 0.892 0.863 0.738 
 

 

Validation 

FS-T2WI model 0.690 0.071 0.974 0.5 0.745 0.736 0.125 
 

A model 0.784 0.571 0.897 0.667 0.854 0.811 0.615 
 

P model 0.727 0.357 0.897 0.556 0.795 0.756 0.435 
 

M model 0.802 0.571 0.923 0.727 0.857 0.83 0.640 
 

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; FS-T2WI, fat suppression T2-

weighted imaging; A, arterial phase; P, portal venous phase; M, multisequence joint; AUC, area under the 

receiver operating characteristic curve; ACC, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive 

value; NPV, negative predictive value. 
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A B 

Figure 5. Performance of the FS-T2WI model, A model, P model and M model in identifying HCC and 

ICC in the training group (A) and validation group (B) as detected by ROC curve analysis. 

4. Discussion 

MRI is characterized by high soft-tissue contrast, multiparametric and multidirectional imaging 

and a lack of radiation, making it the preferred imaging method for the identification and diagnosis 

of liver nodules [53, 54]. Dynamic contrast-enhanced MRI (DCE-MRI) is superior to dynamic 

contrast-enhanced CT in the detection and diagnosis of small HCC lesions (maximum diameter ≤2.0 
cm) [55, 56]. Typical HCC displays significant heterogeneous enhancement in the arterial phase on 

DCE-MRI and reduced enhancement in the portal and/or parenchymal phase that is lower than that 

of normal liver parenchyma, resulting in a "fast-in and fast-out" enhancement pattern [21, 24]. In 

contrast, ICC shows less obvious enhancement or heterogeneous mild enhancement in the arterial 

phase on DCE-MRI that gradually increases with time [22, 23]. However, it is still difficult to 

differentiate HCC from ICC in clinical practice. Studies [26, 30-32] have shown that small ICC lesions 

(diameter<3 cm) and some ICC lesions in the setting of cirrhosis (approximately 7%) show the same 

enhancement pattern as typical HCC lesions, and approximately 10%-20% of HCC lesions (especially 

small, hypovascular, or sclerosing HCC lesions) show less obvious enhancement on imaging. 

Choi et al. [57] conducted gadoxetic acid-enhanced MR and dynamic CT scans to identify HCC 

and ICC. The results showed that portal venous phase (PVP) washout instead of conventional 

washout in gadoxetic acid-enhanced MRI can prevent misidentification of HCC as ICC in patients 

with cirrhosis; however, it reduces the sensitivity of the method for identifying HCC. Diffusion-

weighted imaging (DWI) reflects the diffusion of water molecules in tissues by measuring the 

apparent diffusion coefficient (ADC). Wei et al. [58] and Lewis et al. [59] found that the ADC can help 

differentiate HCC from ICC. However, ICC has multiple cellular origins and shares similar biological 

behaviors to some extent with HCC; thus, the ADC of ICC can partially overlap with that of HCC. 

Additionally, DWI does not display small lesions well because of the limited spatial resolution, and 

conventional DWI is based on a monoexponential model that cannot differentiate between water 

molecule diffusion and blood perfusion [60]. Intravoxel incoherent motion-DWI (IVIM-DWI) can 

simultaneously quantify the diffusion of water molecules and microcirculatory perfusion in living 

tissues. A previous study [61] showed that both the ADC and Dslow values were significantly lower 

in HCC than in ICC, but the Dfast value was significantly higher in HCC than in ICC; furthermore, 

Dfast was more efficient in the differential diagnosis of HCC and ICC, and there was no significant 

difference in the f value between Dfast and Dslow. The value of IVIM-DWI in identifying HCC and 

ICC has also been reported by other scholars [58, 62, 63]. However, the conclusion regarding Dfast and 
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f in distinguishing HCC from ICC remains inconsistent or controversial; thus, further research is 

needed. As an effective tumor imaging tool, positron emission tomography (PET)-MRI can play a 

role in patient management. Çelebi et al. [64] argued that PET-MRI using 18F-fluorodeoxyglucos (18F-

FDG) as a tracer agent can help differentiate between HCC and ICC. However, there is a need to 

deeply explore whether there are great differences in FDG uptake between HCC and ICC, the 

accuracy of identification in some challenging cases (e.g., specific subgroups of patients in which the 

standard uptake value (SUV) is not a determining factor), and the optimal imaging sequence and 

model. 

To date, few studies have investigated the differentiation of HCC from ICC based on MRI 

radiomics [38, 40, 59, 65]. Liu et al. [40] adopted machine learning-based CT and MR image features 

in the identification of cHCC-CC, ICC and HCC. The results showed that MRI features had the 

highest efficacy in differentiating between cHCC-CC and non-cHCC-CC, while CT features were less 

valuable. Moreover, precontrast- and portal-phase CT features were superior to enhanced MRI 

features in differentiating between HCC and non-HCC (AUC=0.79-0.81 for MRI, 0.81 for precontrast-

phase CT and 0.71 for portal-phase CT). Wang et al. [65] used MRI radiomics to preoperatively 

identify cHCC-CC, HCC and ICC and found that the performance of the higher-order feature-based 

model was better than that of the lower-order feature-based model by approximately 10% and that 

the former performed better in identifying HCC in the delayed phase. Lewis et al. [59] extracted first-

order radiomic features from ADC data and evaluated the ability of these features and the Liver 

Imaging Reporting and Data System (LI-RADS) classification to differentiate HCC, ICC and cHCC-

CC. The results revealed that the AUC of the combination of sex, LI-RADS grade and the fifth 

percentile of the ADC in the diagnosis of HCC was 0.90 and 0.89 for two independent observers, 

respectively,. T2∗WI can reflect the magnetic susceptibility variation in tissues and thus be used to 

assess the biological properties of tumor tissues [66]. Huang et al. [38] extracted radiomic features 

from T2∗W images and then established radiomic nomogram models combined with clinical risk 

factors to distinguish between HCC and ICC. The results showed that the AUC of the radiomic model 

was 0.90 and 0.91 in the training and validation groups, respectively; the AUC of clinical features was 

0.88 in the training group and 0.83 in the validation group, and the AUC of the radiomic nomogram 

was 0.97 and 0.95 in the training and validation groups, respectively. Similar results were obtained 

by Zhou et al. [39]. However, the efficacy of a joint model incorporating multiple sequence features 

was not investigated in these studies. 

Different kinds of information related to tumor structure can be revealed by different sequences: 

T2WI exhibits the underlying tumor morphology and heterogeneity, and enhancement scans can 

reflect differences in the tumor blood supply. In this work, enhancements in the arterial and venous 

phases were combined based on T2WI to explore the efficacy of a joint model according to the blood 

supply status and enhancement patterns of HCC and ICC. The results showed that while each model 

had the potential to identify HCC and ICC in both the training and validation groups, the joint model 

incorporating multiple sequence features showed the highest efficacy [40, 65]. The AUC of the T2WI 

model was relatively low in this study, consistent with the findings of Liu et al. [67]. Therefore, the 

value of FS-T2WI-based radiomics in distinguishing between HCC and ICC remains to be properly 

determined pending further research. 

The radiomic features selected in this study were mainly GLCM and GLRLM features, textural 

features used to quantify tumor heterogeneity by reflecting the relationship between adjacent 

voxels/pixels [68], which is consistent with the results of related studies [38, 40, 69-74]. Histogram 

features show the global distribution of grayscale values in the image and can also be used to assess 

tumor heterogeneity [75]; Lewis et al. [59] found that the 5th/10th/95th percentiles of the ADC could 

significantly differentiate HCC from ICC and cHCC-CC. Shape features reflect the geometric 

characteristics of tumors [68]; Zhao et al. [76] confirmed that HCC tends to be more spherical than 

ICC in terms of morphology. 

This study had the following limitations. (1) In this retrospective study, many HCC and ICC 

patients who did not undergo preoperative MRI scans were excluded, so there may be a potential 

selection bias. (2) The sample was small and from a single center, and cHCC-CC and ICC types other 
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than the mass-forming type were not included in the study. In the future, the sample size should be 

expanded to multiple centers for further model validation. (3) Other relevant MRI sequences were 

not analyzed, so their potential contributions might have been ignored. 

5. Conclusions 

Multisequence MRI radiomic models can be used to preoperatively distinguish between HCC 

and ICC, and the efficacy of these models can be further enhanced by including information from 

multiple sequences. 
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