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Simple Summary: The noninvasive differentiation of hepatocellular carcinoma (HCC) from intrahepatic
cholangiocarcinoma (ICC) remains challenging. In recent years, the number of studies on the application of
radiomics in liver cancer has grown dramatically. However, there have been very few studies on the
differentiation of HCC from ICC based on multisequence magnetic resonance imaging (MRI) radiomics. This
study aimed to investigate the efficacy of a radiomic model based on preoperative fat suppression T>-weighted
imaging (FS-T2WI) and dynamic contrast-enhanced MRI features in the arterial phase (A) and portal venous
phase (P) for the differentiation of HCC from ICC.

Abstract: The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI)
radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The
clinical and MRI data of 129 pathologically confirmed HCC cases and 48 ICC cases from April 2016 to December
2021 at the Affiliated Hospital of North Sichuan Medical College were retrospectively analyzed. Included cases
were randomly divided at a ratio of 7:3 into a training group of 124 cases (90 HCC cases and 34 ICC cases) and
a validation group of 53 cases (39 HCC cases and 14 ICC cases). Radiomic features were extracted from axial
fat-suppression T>-weighted imaging (FS-T:WI) and axial arterial-phase (A) and portal-venous-phase (P)
dynamic contrast-enhanced MRI sequences, and the corresponding datasets were generated. The least absolute
shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic
regression was used to establish a radiomic model for each sequence (FS-T>WI, A, and P models) and a joint
model (M model) integrating the radiomic features of all the sequences. The performance of each model was
evaluated using the area under the receiver operating characteristic curve (AUC). The AUC of the FS-T-WI, A,
P, and M models for distinguishing HCC from ICC was 0.693, 0.863, 0.818, and 0.914 in the training group and
0.690, 0.784, 0.727, and 0.802 in the validation group, respectively. The results of this study suggest that MRI-
based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomic
features of multiple sequences showed further improvement in performance.

Keywords: radiomics; hepatocellular carcinoma; intrahepatic cholangiocarcinoma; differentiation

1. Introduction

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most
common types of primary liver cancer, with the former accounting for approximately 75%-85% [1-3],
and their morbidity rates are increasing [4-8]. The treatment strategies for and prognosis of patients
with HCC and ICC are very different [2, 3, 9-16]. Therefore, accurate preoperative discrimination
between HCC and ICC is essential.

At present, the noninvasive differentiation of HCC from ICC remains challenging. The
sensitivity and specificity of serum tumor markers, including alpha-fetoprotein (AFP) and
carbohydrate antigen 19-9 (CA19-9), are unsatisfactory [17-20]. The presentation of HCC and ICC on
dynamic contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI) is

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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mostly typical [21-24]. However, both HCC and ICC may occur in patients with chronic hepatitis,
and imaging enhancement patterns may tend to be similar in some patients with both HCC and ICC
[3, 25-29]. In addition, the enhancement may be unremarkable or atypical in some HCC cases
(especially cases of small, hypovascular, or sclerosing HCC lesions) [30-32]. Traditional medical
imaging analysis relies heavily on the physician's subjective judgment and is thus prone to
misdiagnosis [33]. Liver biopsy remains the gold standard for the final diagnosis, but this invasive
procedure is refused by some patients [34]. Therefore, a preoperative, noninvasive method for
distinguishing HCC from ICC is urgently needed.

The rapid development of artificial intelligence in recent years has led to it playing an important
role in personalized precision medicine. Based on existing medical imaging modalities such as CT
and MRI, an emerging technique known as radiomics [35] can be used to convert intrinsic
pathophysiological information that is invisible to the human eye into high-dimensional quantitative
image features, which can then be used to perform tumor classification via an analysis of the
relationship between these features and clinical/genetic data [35-37]. Studies have shown that
radiomics exhibits unique advantages in classifying the disease and predicting the prognosis of
patients with liver cancer [35, 38-52]. However, there have been very few studies on the
differentiation of HCC from ICC based on multisequence MRI radiomics to date. In this paper, the
efficacy of a radiomic model based on preoperative fat suppression T2-weighted imaging (FS-T2WI)
and dynamic contrast-enhanced MRI features in the arterial phase (A) and portal venous phase (P)
for the differentiation of HCC from ICC was investigated.

2. Materials and Methods

2.1. Patients

The preoperative MRI and clinical data of HCC and ICC patients treated at the Affiliated
Hospital of North Sichuan Medical College from April 2016 to December 2021 were retrospectively
analyzed. The inclusion criteria were as follows: (1) a pathological diagnosis of HCC or ICC; (2)
multisequence MRI of the upper abdomen performed within 4 weeks prior to surgery; and (3) no
antitumor-related treatment prior to the MRI scan.The exclusion criteria were as follows: (1)
combined hepatocellular-cholangiocarcinoma (cHCC-CC); (2) incomplete data or poor MR image
quality; and (3) lesion diameter <2 cm or unclear lesion contours. The data of 206 patients with
primary liver cancer (145 with HCC and 61 with ICC) were collected, and 177 (129 with HCC and 48
with ICC) met the criteria and were finally enrolled in this study. The patients were randomly divided
at a 7:3 ratio into a training group (n=124, 90 with HCC and 34 with ICC) and a validation group
(n=53, 39 with HCC and 14 with ICC) (Figure 1).
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Patients underwent pre-operative abdominal
MRI from April 2016 to December 2021
(n=206)

Exclusion criteria:

1. Combined hepatocellular-cholangiocarcinoma
(n=3)

2. Incomplete imaging data or poor imaging
quality (n=3)

3.Lesion diameter less than 2 cm or unclear
lesion boundary (n=23)

A 4

Final study population

(n=177)
v A 4
Training cohort Validation cchort
(n=124) (n=53)

Figure 1. Flow chart of the study population.

The following clinical data were acquired: age; sex; cirrhosis status; hepatitis B serological test
results; pseudocapsule status; hemorrhagic necrosis status; extrahepatic metastasis status; portal vein
tumor thrombus status; number of tumors; ascites status; intrahepatic bile duct dilatation status;
maximum tumor diameter; abnormal prothrombin; AFP level; carcinoembryonic antigen (CEA)
level; and CA19-9 level. The levels of tumor markers were measured within one week before surgery.

2.2. MRI Acquisition

MRI scans were performed using a Discovery 750 3.0 T superconductivity MRI scanner with a
32-channel phased-array surface coil (GE, USA). Prior to the MRI scans, all subjects fasted for 4 hours
and received training in breathing exercises. Scan sequences included axial 3D liver acceleration
volume acquisition (LAVA), FS-T-WI, and axial 3D LAVA dynamic contrast-enhanced sequences
(Table 1). Gd-DTPA at a dose of 15-20 mL was used as the contrast agent for dynamic contrast
enhancement and injected into the dorsal vein of the hand at 2-2.5 mL/s using a high-pressure syringe.

Table 1. MRI sequence and parameters.

Sequence TR/TE (ms) FA (°) Matrix (mm?) FOV (mm?) ST (mm)
BH Ax LAVA-Flex 4/2 12 260x192 320x320-360x%360 2.6
RTr Ax fs T-WI 2,609/97 110 384x384 320x320-380x380 5
BH Ax LAVA-
4/2 12 224x192 320%320-360x360 5
Flex+C

Notes: TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; ST, section thickness; LAVA-Flex,
liver acquisition with volume acceleration flexible.

2.3. Image Segmentation and Feature Extraction

The MR images of patients were imported in DICOM format into IBEX software ([31.0,
http://bit.ly/IBEX_MDAnderson) for tumor image segmentation. The entire tumor volume was
manually delineated as a region of interest (ROI) along the edge of the lesion layer by layer on axial
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FS-T:W as well as A and P images if the clinical and pathological data of the patients were unknown
(Figure 2). The gray-level run-length matrix (GLRLM), gray-level cooccurrence matrix (GLCM),
intensity histogram and shape features were extracted and used to construct the FS-T-WI, A, and P
datasets.

(A) (B)
Figure 2. Delineation of the ROI along the edge of the lesion: (A) HCC; (B) ICC.

2.4. Feature Selection

Sixty-one patients (42 with HCC and 19 with ICC) were randomly selected for intra- and
intergroup consistency analysis. Interobserver consistency was assessed by comparing the
segmentation results of two radiologists (observers 1 and 2, with 5 and 6 years of experience,
respectively). Intraobserver consistency was assessed by comparing the segmentation results
obtained by observer 2 more than one week after the initial results were obtained. The intraclass
correlation coefficient was used to assess interobserver consistency, with a coefficient >0.75
considered to indicate good consistency. To eliminate discrepancies in the index dimension, all data
were standardized by Z score. The dataset generated by each sequence was subjected to intra- and
interobserver consistency tests. Features with an intraclass correlation coefficient <0.75 were
eliminated.

From the stable features that remained, statistically significant features in differentiating HCC
from ICC were selected using one-way statistical analysis (independent-samples ¢ test or Mann—
Whitney U test, according to the characteristics of the data distribution) (p<0.05). To avoid overfitting,
least absolute shrinkage and selection operator (LASSO) regression analysis was performed to select
the core radiomic features for differentiating HCC from ICC. The regularization parameter (A) of the
selected features was adjusted by 10-fold cross-validation using the 1-standard error (1-SE) method.

2.5. Model Establishment and Evaluation

The optimal radiomic features selected from each sequence were used to establish the radiomic
models (FS-T-WI, A, and P models) by logistic regression. By integrating the optimal features, a joint
radiomic model (M) was established [41]. The efficacy of the models was assessed by the area under
the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), accuracy and F1 score as determined from the logistic
regression confusion matrix.
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2.6. Statistical Methods

R software (4.1.2, https://www.r-project.org/) was used for statistical data processing.
Specifically, the software packages "psych", "glmnet”, and "pROC" were used to assess the intergroup
consistency of radiomic features, to perform LASSO regression analysis and to plot ROC curves,
respectively. The normality and homogeneity of variance of the quantitative data were tested by the
Shapiro-Wilk test and Bartlett test, respectively. The independent-samples ¢ test was performed for
quantitative data with a normal distribution and homogeneous variance; otherwise, the Mann-
Whitney U test was performed. Quantitative data are described by the means or medians. Categorical
variables were analyzed by the chi-square test and are described by percentages. Two-sided p values
<0.05 was considered statistically significant.

3. Results

3.1. Patient Characteristics

Among the 177 patients, 129 had HCC (112 men and 17 women), and 48 had ICC (19 men and
29 women). Cirrhosis occurred in 121 patients (107 with HCC and 14 with ICC), and multinodular
liver cancer occurred in 65 patients (47 with HCC and 18 with ICC). The maximum tumor diameter
was 6.57+3.22 cm (Table 2).

Table 2. Patient clinical characteristics.

Training cohort  Validation cohort

Parameter P value
(n=124) (n=53)
Sex
Male 94 38 0.565
Female 30 15
Age
<60 78 32 0.751
>60 46 21
Satellite nodules
Yes 47 18 0.618
No 77 35
Diameter
<5 41 25 0.076
>5 83 28
Intrahepatic bile duct dilation
Yes 31 14 0.843
No 93 39
Ascites
Yes 36 18 0.514
No 88 35
Hemorrhagic necrosis 0.162
Yes 86 31
No 38 22
Pseudocapsule 0.975

Yes 26 11
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6
No 98 42
Extrahepatic metastases
Yes 23 6 0.234
No 101 47
Portal vein tumor thrombus
Yes 35 18 0445
No 89 35
Cirrhosis
Yes 83 38 0.533
No 41 15
Hepatitis B or C
Yes 90 39 0.891
No 34 14
AFP (ng/mL)
<20 54 30
20~400 21 8 0-2%9
>400 49 15
DCP (mAU/mL)
<27.8 11 5 0.905
>27.8 113 48
CA19-9 (U/mL)
<37 68 24 0.244
>37 56 29
CEA (ug/L
s(: - 80 32 0.601
>5 44 21
Histologic result
HCC 90 39 0.891
ICC 34 14

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; AFP, alpha-fetoprotein; CA19-9,
carbohydrate antigen 19-9; DCP, des-gamma-carboxy prothrombin; CEA, carcinoembryonic antigen.

3.2. Feature Extraction and Selection

A total of 352 features were extracted from each of the FS-T-WI, A and P datasets. Features with
intra- and intergroup intraclass correlation coefficients <0.75 were eliminated, and the remaining
features were further analyzed (Figure 3).
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Figure 3. Stability assessment of extracted MRI radiomic features by inter- and intraobserver

intraclass correlation coefficients: (A1) intergroup FS-T>WI; (A2) intragroup FS-T>WT; (B1) intergroup

arterial phase; (B2) intragroup arterial phase; (C1) intergroup portal venous phase; (C2) intragroup

portal venous phase.
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There were 327, 331 and 319 significantly different features in the FS-T2WI, A and P datasets,
respectively (p<0.05), according to the independent-samples ¢ test or Mann—-Whitney U test. Finally,
1, 6 and 4 optimal features of these datasets were selected by LASSO regression, respectively (Figure
4 and Table 3).

(A1) (A2)
(B1) (B2)
(C1) (C2)

Figure 4. Feature selection using LASSO. (A1-A2) FS-ToWI; (B1-B2) arterial phase; (C1-C2) portal
venous phase.
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Table 3. Radiomic features for identifying HCC and ICC selected from each dataset by LASSO.

Cohort Feature type Feature name
FS-T-WI Shape features (n=1) Roundness
Texture features (n=3)
GLCM (n=1) 45-7InverseDiffMomentNorm
OLongRunEmphasis
GLRLM (n=2)
Arterial phase 90ShortRunLowGrayLevelEmpha
Intensity histogram features (n=1) InterQuartileRange
Mass

Shape features (n=2) Round
oundness

Texture features (n=2)

90-1Contrast
GLCM (n=2)
Portal vein phase 45-7InverseDiffMomentNorm

InterQuartileRange
Intensity histogram features (n=2)
MeanAbsoluteDeviation

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; FS-T2WI, fat suppression T2-
weighted imaging; GLCM, gray-level cooccurrence matrix; GLRLM, gray-level run-length matrix. GLCM
features were constructed in four directions (0 = 0°, 45°, 90°, and 135°) and three offsets (d = 1, 4, 7); GLRLM
features were constructed in two directions (0 = 0°, 90°) and one offset (d = 1).

3.3. Model Establishment and Evaluation

The above features selected from the FS-T:WI, A and P datasets were used to establish each
radiomic model, and then the joint model (M model) was established by integrating the 11 features
into a single model. The AUC of the FS-T:WI, A, P and M models was 0.693, 0.863, 0.818 and 0.914 in
the training group and 0.690, 0.784, 0.727 and 0.802 in the validation group, respectively (Table 4 and
Figure 5).

Table 4. Efficacy of each model in identifying HCC and ICC.

Cohort Model AUC Sen Spe PPV NPV ACC Fl-score

FS-T-WImodel 0.693 0.147 0.956 0.556 0.748 0.734 0.233

A model 0.863 0.588 0.933 0.769 0.857 0.839  0.667

Training P model 0.818 0.588 0.922 0.741 0.856 0.831 0.656
M model 0914 0.706 0.922 0.774 0.892 0.863 0.738
FS-T-WImodel 0.690 0.071 0974 05 0.745 0.736 0.125

A model 0.784 0.571 0.897 0.667 0.854 0.811 0.615

Validation P model 0.727 0.357 0.897 0.556 0.795 0.756  0.435
M model 0.802 0.571 0923 0.727 0.857 0.83 0.640

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; FS-T>WI, fat suppression To-

weighted imaging; A, arterial phase; P, portal venous phase; M, multisequence joint; AUC, area under the
receiver operating characteristic curve; ACC, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive
value; NPV, negative predictive value.
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A B

Figure 5. Performance of the FS-T2WI model, A model, P model and M model in identifying HCC and
ICC in the training group (A) and validation group (B) as detected by ROC curve analysis.

4. Discussion

MRI is characterized by high soft-tissue contrast, multiparametric and multidirectional imaging
and a lack of radiation, making it the preferred imaging method for the identification and diagnosis
of liver nodules [53, 54]. Dynamic contrast-enhanced MRI (DCE-MRI) is superior to dynamic
contrast-enhanced CT in the detection and diagnosis of small HCC lesions (maximum diameter <2.0
cm) [55, 56]. Typical HCC displays significant heterogeneous enhancement in the arterial phase on
DCE-MRI and reduced enhancement in the portal and/or parenchymal phase that is lower than that
of normal liver parenchyma, resulting in a "fast-in and fast-out" enhancement pattern [21, 24]. In
contrast, ICC shows less obvious enhancement or heterogeneous mild enhancement in the arterial
phase on DCE-MRI that gradually increases with time [22, 23]. However, it is still difficult to
differentiate HCC from ICC in clinical practice. Studies [26, 30-32] have shown that small ICC lesions
(diameter<3 cm) and some ICC lesions in the setting of cirrhosis (approximately 7%) show the same
enhancement pattern as typical HCC lesions, and approximately 10%-20% of HCC lesions (especially
small, hypovascular, or sclerosing HCC lesions) show less obvious enhancement on imaging.

Choi et al. [57] conducted gadoxetic acid-enhanced MR and dynamic CT scans to identify HCC
and ICC. The results showed that portal venous phase (PVP) washout instead of conventional
washout in gadoxetic acid-enhanced MRI can prevent misidentification of HCC as ICC in patients
with cirrhosis; however, it reduces the sensitivity of the method for identifying HCC. Diffusion-
weighted imaging (DWI) reflects the diffusion of water molecules in tissues by measuring the
apparent diffusion coefficient (ADC). Wei et al. [58] and Lewis et al. [59] found that the ADC can help
differentiate HCC from ICC. However, ICC has multiple cellular origins and shares similar biological
behaviors to some extent with HCC; thus, the ADC of ICC can partially overlap with that of HCC.
Additionally, DWI does not display small lesions well because of the limited spatial resolution, and
conventional DWI is based on a monoexponential model that cannot differentiate between water
molecule diffusion and blood perfusion [60]. Intravoxel incoherent motion-DWI (IVIM-DWI) can
simultaneously quantify the diffusion of water molecules and microcirculatory perfusion in living
tissues. A previous study [61] showed that both the ADC and Dslow values were significantly lower
in HCC than in ICC, but the Dfast value was significantly higher in HCC than in ICC; furthermore,
Dfast was more efficient in the differential diagnosis of HCC and ICC, and there was no significant
difference in the f value between Dfast and Dslow. The value of IVIM-DWTI in identifying HCC and
ICC has also been reported by other scholars [58, 62, 63]. However, the conclusion regarding Drast and
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f in distinguishing HCC from ICC remains inconsistent or controversial; thus, further research is
needed. As an effective tumor imaging tool, positron emission tomography (PET)-MRI can play a
role in patient management. Celebi et al. [64] argued that PET-MRI using '8F-fluorodeoxyglucos (**F-
FDGQG) as a tracer agent can help differentiate between HCC and ICC. However, there is a need to
deeply explore whether there are great differences in FDG uptake between HCC and ICC, the
accuracy of identification in some challenging cases (e.g., specific subgroups of patients in which the
standard uptake value (SUV) is not a determining factor), and the optimal imaging sequence and
model.

To date, few studies have investigated the differentiation of HCC from ICC based on MRI
radiomics [38, 40, 59, 65]. Liu et al. [40] adopted machine learning-based CT and MR image features
in the identification of cHCC-CC, ICC and HCC. The results showed that MRI features had the
highest efficacy in differentiating between cHCC-CC and non-cHCC-CC, while CT features were less
valuable. Moreover, precontrast- and portal-phase CT features were superior to enhanced MRI
features in differentiating between HCC and non-HCC (AUC=0.79-0.81 for MRI, 0.81 for precontrast-
phase CT and 0.71 for portal-phase CT). Wang et al. [65] used MRI radiomics to preoperatively
identify cHCC-CC, HCC and ICC and found that the performance of the higher-order feature-based
model was better than that of the lower-order feature-based model by approximately 10% and that
the former performed better in identifying HCC in the delayed phase. Lewis et al. [59] extracted first-
order radiomic features from ADC data and evaluated the ability of these features and the Liver
Imaging Reporting and Data System (LI-RADS) classification to differentiate HCC, ICC and cHCC-
CC. The results revealed that the AUC of the combination of sex, LI-RADS grade and the fifth
percentile of the ADC in the diagnosis of HCC was 0.90 and 0.89 for two independent observers,
respectively,. T2*WI can reflect the magnetic susceptibility variation in tissues and thus be used to
assess the biological properties of tumor tissues [66]. Huang et al. [38] extracted radiomic features
from T*W images and then established radiomic nomogram models combined with clinical risk
factors to distinguish between HCC and ICC. The results showed that the AUC of the radiomic model
was 0.90 and 0.91 in the training and validation groups, respectively; the AUC of clinical features was
0.88 in the training group and 0.83 in the validation group, and the AUC of the radiomic nomogram
was 0.97 and 0.95 in the training and validation groups, respectively. Similar results were obtained
by Zhou et al. [39]. However, the efficacy of a joint model incorporating multiple sequence features
was not investigated in these studies.

Different kinds of information related to tumor structure can be revealed by different sequences:
T2WI exhibits the underlying tumor morphology and heterogeneity, and enhancement scans can
reflect differences in the tumor blood supply. In this work, enhancements in the arterial and venous
phases were combined based on T:WI to explore the efficacy of a joint model according to the blood
supply status and enhancement patterns of HCC and ICC. The results showed that while each model
had the potential to identify HCC and ICC in both the training and validation groups, the joint model
incorporating multiple sequence features showed the highest efficacy [40, 65]. The AUC of the T2WI
model was relatively low in this study, consistent with the findings of Liu et al. [67]. Therefore, the
value of FS-T:WI-based radiomics in distinguishing between HCC and ICC remains to be properly
determined pending further research.

The radiomic features selected in this study were mainly GLCM and GLRLM features, textural
features used to quantify tumor heterogeneity by reflecting the relationship between adjacent
voxels/pixels [68], which is consistent with the results of related studies [38, 40, 69-74]. Histogram
features show the global distribution of grayscale values in the image and can also be used to assess
tumor heterogeneity [75]; Lewis et al. [59] found that the 5%/10/95t% percentiles of the ADC could
significantly differentiate HCC from ICC and cHCC-CC. Shape features reflect the geometric
characteristics of tumors [68]; Zhao et al. [76] confirmed that HCC tends to be more spherical than
ICC in terms of morphology.

This study had the following limitations. (1) In this retrospective study, many HCC and ICC
patients who did not undergo preoperative MRI scans were excluded, so there may be a potential
selection bias. (2) The sample was small and from a single center, and cHCC-CC and ICC types other
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than the mass-forming type were not included in the study. In the future, the sample size should be
expanded to multiple centers for further model validation. (3) Other relevant MRI sequences were
not analyzed, so their potential contributions might have been ignored.

5. Conclusions

Multisequence MRI radiomic models can be used to preoperatively distinguish between HCC
and ICC, and the efficacy of these models can be further enhanced by including information from
multiple sequences.
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