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Abstract: As a typical visual positioning system, monocular ranging is widely used in various fields.
However, when the distance increases, there is a greater error. YOLOvVS8 network has the advantages
of fast recognition speed and high accuracy. This paper proposes a method by combining YOLOv8
network recognition with a monocular ranging method to achieve target localization and grasping
for the NAO robots. By establishing a visual distance error compensation model and applying it to
correct the estimation results of the monocular distance measurement model, the accuracy of the
NAO robot's long-distance monocular visual positioning is improved. Additionally, a grasping
control strategy based on pose interpolation is proposed. Throughout, the proposed method's
advantage in measurement accuracy was confirmed via experiments, and the grasping strategy has
been implemented to accurately grasp the target object.

Keywords: NAO robot; YOLOv8 network; monocular ranging; error compensation model; pose
interpolation

1. Introduction

With the rapid development of robotics technology, robots have been widely used in various
fields such as transportation, welding, and assembly [1]. However, the precise positioning and
grasping of robots are key technologies and prerequisites for them to carry out a variety of tasks.
Zhang L. et al. proposed a robotic grasping method that uses the deep learning method YOLOv3 and
the auxiliary signs to obtain the target location [2]. Huang M. et al. proposed a multi-category SAR
image object detection model based on YOLOvS5s, to address the issues caused by complex scenes [3].
Tan L.et al. adopted the hollow convolution to resample the feature image to improve the feature
extraction and target detection performance [4]. The improved YOLOv4 algorithm has been adopted
by numerous studies to facilitate target detection in robotic vision, aiming to enhance detection
accuracy [5,6]. Sun Y.et al. constructed the error compensation model based on Gaussian process
regression (GPR), effectively improved the accuracy of positioning and grasping for large-sized
objects [7]. This study focuses on the target localization and grasping of the NAO robot [8], and the
target object is recognized through YOLOvS8 network training [9].

The main contributions include: 1) A monocular ranging model is established for the NAO robot
to achieve initial location of the target; 2) We propose a visual distance error compensation model to
improve the NAO robot's distance ranging error within 2cm; 3) The multi-point measurement
compensation technology is proposed to estimate the target’s position and pose, and ultimately
achieve grasping the target.

This paper is organized as follows: In Section 2, relevant target recognition and Localization
technology is reviewed. In Section 3, the visual distance error compensation model is established to

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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improve the long-distance monocular visual positioning accuracy of the Nao robot. In Section 4, a
grasp control strategy based on pose interpolation is proposed to realize the pose estimation and
smooth grasping. The experiment and results analysis are given in Section 5. Finally, the conclusions
are drawn in Section 6.

2. Target Recognition and Localization Technology

Target recognition based on traditional color segmentation has high requirements for the
environment in which the target object is situated. The YOLOvS8 network, through training, can
extract feature points from target to achieve target recognition [11]. The Nao robot operate using a
single camera. Hence this study employs the monocular vision localization techniques [12-14]. First,
the position coordinates of the target center under the image coordinate system are obtained through
target detection using the YOLOv8 network. Then the relationship between the location coordinates
and image coordinates was determined using the monocular vision positioning model; Finally, obtain
the location coordinates of the target under the NAO robot coordinate system, and acquire the pose
of the target object by measuring the endpoint and the center point of the target object, thereby
ensuring that the NAO robot can accurately grasp the object.

The principle of monocular ranging based on the YOLOvS algorithm is shown in Figure 1. The
system mainly consists of three components: target detection, internal and external parameter
acquisition, and monocular ranging.
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Figure 1. Schematic diagram of monocular ranging based on YOLOVS.

2.1. Target recognition based on YOLOvS8 network

YOLOVS is a deep neural network architecture used for target detection tasks, as shown in
Figure 2, the network consists of four main components.
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Figure 2. The network model of YOLOVS.
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At the input end, the Mosaic data enhancement is used. The backbone network adopts the
Context modules (C2f) based on ELAN structure, and the Neck module adopts the Path Aggregation
Network (PAN) structure [15]. The output end uses the Task Aligned Assignor (TAA), the
Distribution Focal Loss (DFL) and the Complete Intersection Over Union (CIOU) loss function [16,17]
to achieve accurate and efficient target detection.

2.2. Modeling of monocular ranging

Based on the NAO robot, a monocular ranging model is employed, utilizing the pinhole
perspective principle as depicted in Figure 3. The relationship between the camera coordinate system
Xc —Yc—Zc and the image coordinate system X —Y in the camera imaging model is represented.
The point M, possesses coordinates (Xc,Yc,Zc), corresponds to the point m in the (X,Y)
coordinate system, with coordinates (X,Y). The relationship between image coordinates and actual
spatial coordinates is depicted by Equation (1).

MXe, Ye, Z¢)

Figure 3. The pinhole imaging model.
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The center point (u, vy) of the image pixel is taken as the origin of the image coordinate system.
The transformation relationship is depicted in Equation (2), where dx and dy represent the size of
each pixel, and u and v correspond to the pixel coordinates of the target point.

{x = (u —up)d, @)
y=w-v)d,

Figure 4 shows the monocular ranging model established for the NAO robot. The robot is
positioned at the origin 0y, within the coordinate system Oy, Xy, Y, Zy,. Point O serves as the camera
position, and 0;xy represents the image coordinate system. The endpoints Q;. @, of the target rod
correspond to q;- ¢, in the image coordinate system, respectively. Taking point Q; as an example,
based on the principles of triangle similarity, the corresponding relationships of various angles can
be obtained. So then, the X-coordinate Py; of point Q; can be derived, as depicted in Equation (3).

Py; =

fi

The monocular ranging model for the NAO robot can be simplified into a perspective view, as

tan (a + arctan Y- 170)) ®)
y

shown in Figure 5. There, 8; represents the angle between point @; and the principal optical axis in
the horizontal direction. As a result, the distance between the target point and the robot in the Y-axis
direction can be obtained. This is formulated in Equations (4), where ¢ denotes the angle of the NAO
robot's head in the horizontal direction.

Py =Y; = Pyx; X tan(; + @) )
Similarly, one can derive the coordinates the position coordinates (X, Yiy2) of point Q, under
the robot's coordinate system can be obtained.
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Figure 4. The monocular ranging model for the NAO robot.
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Figure 5. Vertical view of the monocular ranging model.

By using the monocular ranging model established in Figure 4, range measurements are
performed on the two end points of the target bar, thereby obtaining the coordinate values of Q; and
Q,, which are (Pxy,Py;) and (Pxp, Pyy), respectively. Consequently, the deflection angle of the target
rod on the OwXwYw plane € can be obtained, as demonstrated in Equation (5).

€= arctan(M (5)
|Py1l + [Pyl

3. Modeling Visual Distance Error Compensation

Based on the established monocular ranging model of the NAO robot, the distance in the X-axis
direction of the robot's coordinate system is related to the y angle in a tangent function relationship,
as shown in Figure 6(a). The further away, the smaller the y angle. This results in larger
measurement errors for distances that are further away.

Therefore, an error compensation model is established to reduce the measurement errors when
the target object is at a distance. The error term k, as denoted in Equation (6), has a relationship with
the measured distance d,, of the target rod. The relationship is depicted in Figure 6(b).

k=d-/dn (©)

A function between the actual measurement distance and the error coefficient is established as
shown in Equation (7). The values of a;, a,, as, a4, and as are respectively set to -0.6654. 2.686+ -
3.612. 1.636. 0.7746.

k = a;x* + a,x® + azx* + aux + as (7)
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Figure 6. (a) Relationship between the y angle and the measured distance; (b) Relationship between
the measured distance and error coefficient k.
The target coordinates after compensation are given by Equation (8).
X;=Px; Xk
G2 h ®
1= vl

4. Pose-Interpolated Grasping Control Strategy

4.1. Linear Path Interpolation

The path of the NAO robotic arm end effector from the start point to the end point follows a
linear trajectory. Therefore, interpolation is applied to the straight path between the start and end
points. Let the positional coordinates of workspace start and end points be denoted as A = (x4, ¥4, Z,)
and B = (xp,¥p,2p) , respectively. The distance between the start and end points is L =

Vo — %)+ O — Ya)? + (2, — 24)%, A point P; on the line segment AB can be represented as
P=P +(B-P)St)/L, te[0,T], and its coordinates are denoted as Equation (9):

S (xp — Xa)

xi=xa+ L
S(t -

y, =y, + 20 ) ©)
SO~ 70)

e

The interpolation curves of displacement, velocity, and acceleration are depicted in Figure 7. The
arm velocity and acceleration both become zero at the start and end of the movement, ensuring the
stability of the robot arm throughout its motion.
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Figure 7. Interpolation curves for displacement, velocity, and acceleration.

Substituting the S(t) from the acceleration-uniform-deceleration trajectory into the x;, results
in the arm's linear motion trajectory in space, as shown in Figure 8. It is evident that the points are
densely packed at the ends of the straight line, while the middle portion is evenly distributed. This
arrangement achieves the effect of acceleration-uniform-deceleration.
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Figure 8. Linear motion interpolation diagram.

4.2. Position Interpolation

By employing the fourth-order polynomial interpolation method for trajectory planning, the
robotic arm's motion can smoothly connect to the constant velocity trajectory from the beginning and
end points.

The arm end displacement, velocity, and acceleration functions are expressed as S(t), V(t), and
A(t). The distance between the start and end points is denoted as L, and the velocity constant is
represented as V,, the time intervals for the three phases are represented as t € [0,T/4,3T/4,T]. S(t),
V(t), and A(t) of these three phases can be represented by the Equation (10-12) respectively. The
acceleration phase t € [0,T/4], S;(t), Vi(t), and A;(t) are:

Vin

Vin

[s:0) = tt+ =t
2t] 7
2V, 3V
Vi(t) = _t_3mt3 + t—;”tz (10)
1 1
v 6V,
A(t) = ——t? t—zm
1 1

The constant velocity phase t € [T/4,3T/4], S,(t), V»(t), and A,(t) are:
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V() =V, (11)
The deceleration phase t € [3T/4,T], S;(t), V3(t), and A;(t) are:
S5(t) = byt* + byt + byt? + byt + b,
V3(t) = 4b4t3 + 3b3t2 + szt + b1 (12)
A;(t) = 12byt? + 6bst + 2b,

4.3. Pose Interpolation

There are two methods for solving the pose of the robotic arm: the Euler method and the
quaternion method. However, the Euler method struggles with issues such as singularities and
coupling of angular velocities. Therefore, the quaternion method is chosen to interpolate the arm
posture of the NAO robot.

The relationship between the quaternion g, and arm end pose matrix R is as shown in the
Equation (13-17), where [ is the identity matrix and w is the anti-symmetric matrix.

{qt =[40,91-9,-9:1=149,]
(13)

R=1+2q,0+20’

Convert the initial rotation matrix R, and the final rotation matrix R, into quaternions. And
then attitude angle 6 is obtained.

qp = [bo, by, by, bs]
ar = o f1. fo. f3] (14)

6 = cos™!(qp qr)
At a certain moment t within this period T, the rotation matrix is represented by the quaternion
q: as follows:

q9,=xq,+yq, (15)

where x, y are real numbers, and the attitude angle %9 between the initial quaternion g, and the
quaternion g, attime t is defined. The attitude angle (1 - %) 0 between the quaternion g, attime

t and the final quaternion ¢, is defined. Therefore, the quaternion pose interpolation matrix is:

Cgsin(1=)0) g, sin(6)

= +
qt sin 6 sin 8

(16)

By performing position interpolation, the displacement matrix P can be obtained. Similarly,
through pose interpolation, the rotation matrix R can be derived. By combining the displacement
matrix P and the rotation matrix R, the pose interpolation matrix is obtained. Subsequently, by
solving the inverse kinematics of the pose interpolation matrix, the angle values of various joints
during the NAO robot arm's motion process can be determined.

Conduct simulation experiments for arm trajectory planning by using MATLAB, take two points
coordinates as the starting and ending points of the arm movement, as illustrated in Equation (17).

{xyz_begin =[0.1817, —0.1362, 0.0633]

xyz_fin=[0.12, —0.01, 0.03] 17

Using these two points as the starting point and end point for trajectory planning, the
corresponding pose interpolation matrix is substituted into the inverse kinematics equation, and arm
motion simulation is performed using MATLAB to obtain the variation curve of the 5 joints in the
NAO robotic arm.


https://doi.org/10.20944/preprints202308.2157.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2023 d0i:10.20944/preprints202308.2157.v1

The variation curves of the 5 joints’ angles of the arm from the start point to the end point are
depicted in Figure 9. From the joint variation curves in the graph, it's evident that the NAO robotic
arm can move smoothly from the start point to the end point.
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joint angle /rad
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05
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Figure 9. Joint angle motion curves.
5. Experiments and Results Analysis

5.1. Object Detection Experiment

In this experiment, the NAO robot's bottom camera collected 100 images of the target rod at
different angles, which were then processed through rotation and mirroring. Subsequently, the
yolov8 network was trained for 800 rounds, with approximately 300 images per round. The original
image captured by the NAO robot's camera is depicted in Figure 10(a). The target bar is identified
using the Yolov8 network, resulting in a binary image of the target object as shown in Figure 10(b).

(@) (b)
Figure 10. (a) Original image captured by NAO robot; (b) Original image captured by NAO robot.

After obtaining the edge point information of the target object, as shown in Figure 11a,b, data
processing is employed to extract the pixel coordinates of the object's center point and endpoints, and
then the target is localized.
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(a) (b)
Figure 11. (a) Endpoints of the Target Object; (b) Edge of the Target Object.
The rod is positioned in front of the NAO robot at distances ranging from 0.25m to 1.30m, with
intervals of 0.05m. Multiple experiments are conducted at each position to calculate an average value.

From Table 1, it can be observed that the farther the target is from the robot, the larger the error
becomes. Beyond 60cm, the distance error exceeds the requirements for the task.

Table 1. Actual and measured positions of the target before improvement.

Actual Position (cm) Measured Position (cm) Actual Position (cm) Measured Position (cm)

25 25.50 80 94.71

30 29.49 85 104.26
35 35.45 90 113.50
40 38.83 95 116.43
45 43.84 100 123.99
50 52.94 105 133.08
55 57.17 110 139.06
60 64.80 115 144.73
65 73.69 120 152.62
70 82.55 125 163.13
75 87.94 130 166.29

To address the issue of significant measurement error when the target's position exceeds 60cm,
experiments were conducted using the improved monocular distance model with error
compensation.

The target was placed in front of the NAO robot at distances ranging from 0.25m to 1.30m. From
Table 2, it can be observed that the minimum error between the actual and measured positions is
0.13cm, and the maximum error is 1.93cm. Whether the target's position is before or after 0.6m, the
error does not exceed 0.02m.

Table 2. Actual and measured positions of the target after error compensation.

Actual Position (cm) Measured Position (cm) Actual Position (cm) Measured Position (cm)

25 25.47 80 78.67
30 29.69 85 84.64
35 35.80 90 90.96
40 39.12 95 93.10
45 43.08 100 98.80
50 51.60 105 106.25
55 54.89 110 111.18
60 60.37 115 115.75

65 66.13 120 121.56
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70 71.46 125 127.16
75 74.64 130 128.07

As shown in Figure 12, the monocular distance measurement with the integrated error
compensation model effectively reduces the distance error for positions that are farther away in the
X-axis direction of the robot's coordinate system.

5

Measured Distances /m
o o o
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o
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Figure 12. Comparison of measured distances before and after error compensation.

The rod was placed at 90cm in the robot's X-direction, with distances of Ocm, 20cm, and 40cm in
the Y-direction. Each position underwent 10 tests, as shown in Table 3. The RMSEs of the three points
are 0.644cm, 0.574cm and 1.077cm, respectively. It is evident that the NAO robot can accurately
measure distances in the Y-axis direction, meeting the subsequent precision requirements.

Table 3. Actual and measured distances in the Y-axis direction after error compensation.

Actual Distance (cm) 0 20 40
Index
1 0.8 20.4 41.2
2 0.7 20.9 40.4
3 0.8 19.5 40.4
4 0.6 20.4 41.5
5 0.8 20.3 40.4
6 0.6 19.7 41.7
7 04 20.2 41.4
8 0.5 20.9 41.5
9 0.6 20.8 39.6
10 0.5 20.5 40.4

After obtaining the position of the target rod, using the pixel coordinates of the two end points
of the rod, the end point positions are calculated to determine the deviation angle of the rod. At a
position of 60cm in the robot's X-axis direction, measurements were taken for deviation angles « of
30°, 45°, and 60°. As shown in Table 4, the RMSEs are 0.820°, 0.904° and 0.901° respectively, so the
NAO robot can effectively measure the deviation angle of the rod, providing a foundation for
accurate grasping.

Table 4. Actual deviation angle vs. measured deviation angle.

a/° 30 45 60
Index
1 30.48 45.66 60.85

2 30.76 45.69 59.36
3 30.53 45.93 58.82
4 31.22 45.87 59.56
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5 29.87 46.05 60.59
6 30.82 45.92 60.89
7 30.63 46.15 61.35
8 29.08 45.56 61.09
9 29.35 44.58 60.53
10 31.34 46.37 59.02

5.2. Object Grasping Experiment

Due to the low friction between the ground and the feet of the NAO robot, it can experience
slipping during walking, especially over longer distances. To mitigate this issue, a method involving
measuring, short-distance walking, adjustment, and then measuring again. This approach ensures
that the NAO robot can walk to the vicinity of the target rod with the correct orientation.
Subsequently, adjust its crouching posture using the choreograph software. This ensures that the
target rod is within the NAO robot's workspace. The internal API can obtain the position of its end
effector. By combining this information with the known coordinates of the target's center point, the
robot can accurately grasp the target at its center position. This process is illustrated in Figure 13.

Figure 13. NAO robot grasping process.

6. Conclusions

This paper combines YOLOV8 network recognition with monocular ranging methods to
recognize and locate the target object. NAO robot acquires the pose information of the target object
through its own monocular vision sensor, builds a visual distance error compensation model based
on monocular ranging to compensate for distance errors, then moves near the target, and grasps the
target object by adjusting its attitude.

In the experiments, it is observed that the visual distance error compensation to the monocular
ranging model effectively can improve the accuracy of the NAO robot’s distance measurement. The
error between actual position and measurement position is controlled within 2cm. Furthermore, by
utilizing pose interpolation techniques, the pose of the finger is adjusted to align with the target at a
constant level. The experimental results show that the rotation angle error is controlled within 2°.
These results indicate that the NAO robot can precisely estimate the target distance and pose, then
facilitate precise walking and posture adjustments to ensure accurate object grasping.
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