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Abstract: As a typical visual positioning system, monocular ranging is widely used in various fields. 

However, when the distance increases, there is a greater error. YOLOv8 network has the advantages 

of fast recognition speed and high accuracy. This paper proposes a method by combining YOLOv8 

network recognition with a monocular ranging method to achieve target localization and grasping 

for the NAO robots. By establishing a visual distance error compensation model and applying it to 

correct the estimation results of the monocular distance measurement model, the accuracy of the 

NAO robotʹs long-distance monocular visual positioning is improved. Additionally, a grasping 

control strategy based on pose interpolation is proposed. Throughout, the proposed methodʹs 

advantage in measurement accuracy was confirmed via experiments, and the grasping strategy has 

been implemented to accurately grasp the target object. 

Keywords: NAO robot; YOLOv8 network; monocular ranging; error compensation model; pose 

interpolation 

 

1. Introduction 

With the rapid development of robotics technology, robots have been widely used in various 

fields such as transportation, welding, and assembly [1]. However, the precise positioning and 

grasping of robots are key technologies and prerequisites for them to carry out a variety of tasks. 

Zhang L. et al. proposed a robotic grasping method that uses the deep learning method YOLOv3 and 

the auxiliary signs to obtain the target location [2]. Huang M. et al. proposed a multi-category SAR 

image object detection model based on YOLOv5s, to address the issues caused by complex scenes [3]. 

Tan L.et al. adopted the hollow convolution to resample the feature image to improve the feature 

extraction and target detection performance [4]. The improved YOLOv4 algorithm has been adopted 

by numerous studies to facilitate target detection in robotic vision, aiming to enhance detection 

accuracy [5,6]. Sun Y.et al. constructed the error compensation model based on Gaussian process 

regression (GPR), effectively improved the accuracy of positioning and grasping for large-sized 

objects [7]. This study focuses on the target localization and grasping of the NAO robot [8], and the 

target object is recognized through YOLOv8 network training [9]. 

The main contributions include: 1) A monocular ranging model is established for the NAO robot 

to achieve initial location of the target; 2) We propose a visual distance error compensation model to 

improve the NAO robotʹs distance ranging error within 2cm; 3) The multi-point measurement 

compensation technology is proposed to estimate the target’s position and pose, and ultimately 

achieve grasping the target.  

This paper is organized as follows: In Section 2, relevant target recognition and Localization 

technology is reviewed. In Section 3, the visual distance error compensation model is established to 
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improve the long-distance monocular visual positioning accuracy of the Nao robot. In Section 4, a 

grasp control strategy based on pose interpolation is proposed to realize the pose estimation and 

smooth grasping. The experiment and results analysis are given in Section 5. Finally, the conclusions 

are drawn in Section 6. 

2. Target Recognition and Localization Technology 

Target recognition based on traditional color segmentation has high requirements for the 

environment in which the target object is situated. The YOLOv8 network, through training, can 

extract feature points from target to achieve target recognition [11]. The Nao robot operate using a 

single camera. Hence this study employs the monocular vision localization techniques [12–14]. First, 

the position coordinates of the target center under the image coordinate system are obtained through 

target detection using the YOLOv8 network. Then the relationship between the location coordinates 

and image coordinates was determined using the monocular vision positioning model; Finally, obtain 

the location coordinates of the target under the NAO robot coordinate system, and acquire the pose 

of the target object by measuring the endpoint and the center point of the target object, thereby 

ensuring that the NAO robot can accurately grasp the object. 

The principle of monocular ranging based on the YOLOv8 algorithm is shown in Figure 1. The 

system mainly consists of three components: target detection, internal and external parameter 

acquisition, and monocular ranging. 

 

Figure 1. Schematic diagram of monocular ranging based on YOLOv8. 

2.1. Target recognition based on YOLOv8 network 

YOLOv8 is a deep neural network architecture used for target detection tasks, as shown in 

Figure 2, the network consists of four main components. 

 

Figure 2. The network model of YOLOv8. 
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At the input end, the Mosaic data enhancement is used. The backbone network adopts the 

Context modules (C2f) based on ELAN structure, and the Neck module adopts the Path Aggregation 

Network (PAN) structure [15]. The output end uses the Task Aligned Assignor (TAA), the 

Distribution Focal Loss (DFL) and the Complete Intersection Over Union (CIOU) loss function [16,17] 

to achieve accurate and efficient target detection. 

2.2. Modeling of monocular ranging 

Based on the NAO robot, a monocular ranging model is employed, utilizing the pinhole 

perspective principle as depicted in Figure 3. The relationship between the camera coordinate system 𝑋𝑐 − 𝑌𝑐 − 𝑍𝑐 and the image coordinate system 𝑋 − 𝑌 in the camera imaging model is represented. 

The point 𝑀 , possesses coordinates (𝑋𝑐, 𝑌𝑐, 𝑍𝑐) , corresponds to the point 𝑚  in the (𝑋, 𝑌) 

coordinate system, with coordinates (𝑋, 𝑌). The relationship between image coordinates and actual 

spatial coordinates is depicted by Equation (1). 

 

Figure 3. The pinhole imaging model. 

൥𝑋𝑌
1

൩ = 1𝑍௖ ൥𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

൩ ൦𝑋௖𝑌௖𝑍௖
1

൪ (1)

The center point (𝑢0, 𝑣0) of the image pixel is taken as the origin of the image coordinate system. 

The transformation relationship is depicted in Equation (2), where 𝑑𝑥 and 𝑑𝑦 represent the size of 

each pixel, and 𝑢 and 𝑣 correspond to the pixel coordinates of the target point. ൜𝑥 = (𝑢 − 𝑢0)𝑑௫𝑦 = (𝑣 − 𝑣0)𝑑௬ (2)

Figure 4 shows the monocular ranging model established for the NAO robot. The robot is 

positioned at the origin 𝑂ௐ within the coordinate system 𝑂ௐ𝑋ௐ𝑌ௐ𝑍ௐ. Point 𝑂 serves as the camera 

position, and 𝑂1𝑥𝑦 represents the image coordinate system. The endpoints 𝑄1、𝑄2 of the target rod 

correspond to 𝑞1、𝑞2 in the image coordinate system, respectively. Taking point 𝑄1 as an example, 

based on the principles of triangle similarity, the corresponding relationships of various angles can 

be obtained. So then, the X-coordinate 𝑃௑1 of point 𝑄1 can be derived, as depicted in Equation (3). 𝑃௑1 = 𝐻
tan (𝛼 + arctan (𝑣 − 𝑣0𝑓௬ )) (3)

The monocular ranging model for the NAO robot can be simplified into a perspective view, as 

shown in Figure 5. There, 𝜃1 represents the angle between point 𝑄1 and the principal optical axis in 

the horizontal direction. As a result, the distance between the target point and the robot in the Y-axis 

direction can be obtained. This is formulated in Equations (4), where 𝜑 denotes the angle of the NAO 

robotʹs head in the horizontal direction.  𝑃௒1 = 𝑌1 = 𝑃௑1 × tan(𝜃1 + 𝜑) (4)

Similarly, one can derive the coordinates the position coordinates (𝑋W2, 𝑌W2) of point 𝑄2 under 

the robotʹs coordinate system can be obtained. 

𝑀(𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶)

𝑋𝑐  

𝑌𝑐  

𝑂𝑐  

𝑂1 

 

𝑋 

𝑌 
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Figure 4. The monocular ranging model for the NAO robot. 

 

Figure 5. Vertical view of the monocular ranging model. 

By using the monocular ranging model established in Figure 4, range measurements are 

performed on the two end points of the target bar, thereby obtaining the coordinate values of 𝑄1 and 𝑄2, which are (𝑃X1, 𝑃Y1) and (𝑃X2, 𝑃Y2), respectively. Consequently, the deflection angle of the target 

rod on the 𝑂𝑤𝑋𝑤𝑌𝑤 plane 𝜖 can be obtained, as demonstrated in Equation (5). 𝜖 = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝑃௑1 − 𝑃௑2|𝑃௒1| + |𝑃௒2|) (5)

3. Modeling Visual Distance Error Compensation 

Based on the established monocular ranging model of the NAO robot, the distance in the X-axis 

direction of the robotʹs coordinate system is related to the 𝛾 angle in a tangent function relationship, 

as shown in Figure 6(a). The further away, the smaller the 𝛾  angle. This results in larger 

measurement errors for distances that are further away. 

Therefore, an error compensation model is established to reduce the measurement errors when 

the target object is at a distance. The error term 𝑘, as denoted in Equation (6), has a relationship with 

the measured distance 𝑑௠ of the target rod. The relationship is depicted in Figure 6(b). 𝑘 = 𝑑௥/𝑑௠ (6)

A function between the actual measurement distance and the error coefficient is established as 

shown in Equation (7). The values of 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 are respectively set to -0.6654、2.686、-

3.612、1.636、0.7746. 𝑘 = 𝑎1𝑥4 + 𝑎2𝑥3 + 𝑎3𝑥2 + 𝑎4𝑥 + 𝑎5 (7)
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(a) (b) 

Figure 6. (a) Relationship between the γ angle and the measured distance; (b) Relationship between 

the measured distance and error coefficient 𝑘. 

The target coordinates after compensation are given by Equation (8). ൜𝑋1 = 𝑃௑1 × 𝑘𝑌1 = 𝑃௒1        (8)

4. Pose-Interpolated Grasping Control Strategy 

4.1. Linear Path Interpolation 

The path of the NAO robotic arm end effector from the start point to the end point follows a 

linear trajectory. Therefore, interpolation is applied to the straight path between the start and end 

points. Let the positional coordinates of workspace start and end points be denoted as 𝐴 = (𝑥௔, 𝑦௔ , 𝑧௔) 

and 𝐵 = (𝑥௕, 𝑦௕ , 𝑧௕) , respectively. The distance between the start and end points is 𝐿 =ඥ(𝑥௕ − 𝑥௔)2 + (𝑦௕ − 𝑦௔)2 + (𝑧௕ − 𝑧௔)2 , A point 𝑃௜  on the line segment 𝐴𝐵  can be represented as 

( ) ( )/ [0, ]i a b aP P P P S t L t T= + − ∈， , and its coordinates are denoted as Equation (9): 

 
⎩⎪⎨
⎪⎧𝑥௜ = 𝑥௔ + 𝑆(𝑡)(𝑥௕ − 𝑥௔)𝐿𝑦௜ = 𝑦௔ + 𝑆(𝑡)(𝑦௕ − 𝑦௔)𝐿𝑧௜ = 𝑧௔ + 𝑆(𝑡)(𝑧௕ − 𝑧௔)𝐿

 (9)

The interpolation curves of displacement, velocity, and acceleration are depicted in Figure 7. The 

arm velocity and acceleration both become zero at the start and end of the movement, ensuring the 

stability of the robot arm throughout its motion. 
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Figure 7. Interpolation curves for displacement, velocity, and acceleration. 

Substituting the 𝑆(𝑡) from the acceleration-uniform-deceleration trajectory into the 𝑥௜ , results 

in the armʹs linear motion trajectory in space, as shown in Figure 8. It is evident that the points are 

densely packed at the ends of the straight line, while the middle portion is evenly distributed. This 

arrangement achieves the effect of acceleration-uniform-deceleration. 

 

Figure 8. Linear motion interpolation diagram. 

4.2. Position Interpolation 

By employing the fourth-order polynomial interpolation method for trajectory planning, the 

robotic armʹs motion can smoothly connect to the constant velocity trajectory from the beginning and 

end points. 

The arm end displacement, velocity, and acceleration functions are expressed as 𝑆(𝑡), 𝑉(𝑡), and 𝐴(𝑡). The distance between the start and end points is denoted as 𝐿, and the velocity constant is 

represented as 𝑉௠, the time intervals for the three phases are represented as 𝑡 ∈ [0, 𝑇/4, 3𝑇/4, 𝑇]. 𝑆(𝑡), 𝑉(𝑡), and 𝐴(𝑡) of these three phases can be represented by the Equation (10-12) respectively. The 

acceleration phase 𝑡 ∈ [0, 𝑇/4], 𝑆1(𝑡), 𝑉1(𝑡), and 𝐴1(𝑡) are: 

⎩⎪⎪⎨
⎪⎪⎧ 𝑆1(𝑡) = − 𝑉௠

2𝑡1
3

𝑡4 + 𝑉௠𝑡1
2

𝑡3

𝑉1(𝑡) = − 2𝑉௠𝑡1
3

𝑡3 + 3𝑉௠𝑡1
2

𝑡2

𝐴1(𝑡) = − 6𝑉௠𝑡1
3

𝑡2 + 6𝑉௠𝑡1
2

𝑡  (10)

The constant velocity phase 𝑡 ∈ [𝑇/4,3𝑇/4], 𝑆2(𝑡), 𝑉2(𝑡), and 𝐴2(𝑡) are: 
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ቐ 𝑆2(𝑡) = 𝑉௠𝑡 − 𝑉௠𝑡1/2 𝑉2(𝑡) = 𝑉௠                      𝐴2(𝑡) = 0                          (11)

The deceleration phase 𝑡 ∈ [3𝑇/4, 𝑇], 𝑆3(𝑡), 𝑉3(𝑡), and 𝐴3(𝑡) are: 

ቐ𝑆3(𝑡) = 𝑏4𝑡4 + 𝑏3𝑡3 + 𝑏2𝑡2 + 𝑏1𝑡1 + 𝑏0𝑉3(𝑡) = 4𝑏4𝑡3 + 3𝑏3𝑡2 + 2𝑏2𝑡 + 𝑏1        𝐴3(𝑡) = 12𝑏4𝑡2 + 6𝑏3𝑡 + 2𝑏2                    (12)

4.3. Pose Interpolation 

There are two methods for solving the pose of the robotic arm: the Euler method and the 

quaternion method. However, the Euler method struggles with issues such as singularities and 

coupling of angular velocities. Therefore, the quaternion method is chosen to interpolate the arm 

posture of the NAO robot. 

The relationship between the quaternion 𝑞௧  and arm end pose matrix 𝑅  is as shown in the 

Equation (13-17), where 𝐼 is the identity matrix and 𝜔 is the anti-symmetric matrix. 

0 1 2 3 0
2

0

[ , , , ] [ , ]
2 2

t xq q q q q q q

R I q ω ω

= =


= + +

 

(13)

Convert the initial rotation matrix 𝑅௕ and the final rotation matrix 𝑅௙ into quaternions. And 

then attitude angle 𝜃 is obtained. 

ቐ𝑞௕ = [𝑏0, 𝑏1, 𝑏2, 𝑏3]𝑞௙ = [𝑓0, 𝑓1, 𝑓2, 𝑓3]  𝜃 = cosି1(𝑞௕ ∙ 𝑞௙) (14)

At a certain moment 𝑡 within this period 𝑇, the rotation matrix is represented by the quaternion 𝑞௧ as follows: 

t b fq xq yq= +
 

(15)

where 𝑥, 𝑦 are real numbers, and the attitude angle 
௧் 𝜃 between the initial quaternion 𝑞௕ and the 

quaternion 𝑞௧ at time 𝑡 is defined. The attitude angle ቀ1 − ௧்ቁ 𝜃 between the quaternion 𝑞௧ at time 

t and the final quaternion 𝑞௙ is defined. Therefore, the quaternion pose interpolation matrix is: 

sin((1 ) ) sin( )

sin sin
b f

t

t t
q q

T Tq

θ θ

θ θ

−

= +

 
(16)

By performing position interpolation, the displacement matrix 𝑃  can be obtained. Similarly, 

through pose interpolation, the rotation matrix 𝑅 can be derived. By combining the displacement 

matrix 𝑃  and the rotation matrix 𝑅 , the pose interpolation matrix is obtained. Subsequently, by 

solving the inverse kinematics of the pose interpolation matrix, the angle values of various joints 

during the NAO robot armʹs motion process can be determined. 

Conduct simulation experiments for arm trajectory planning by using MATLAB, take two points 

coordinates as the starting and ending points of the arm movement, as illustrated in Equation (17). 

_begin [0.1817, 0.1362, 0.0633]
_fin [0.12, 0.01, 0.03]

xyz

xyz

= −


= −

 

(17)

Using these two points as the starting point and end point for trajectory planning, the 

corresponding pose interpolation matrix is substituted into the inverse kinematics equation, and arm 

motion simulation is performed using MATLAB to obtain the variation curve of the 5 joints in the 

NAO robotic arm. 
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The variation curves of the 5 joints’ angles of the arm from the start point to the end point are 

depicted in Figure 9. From the joint variation curves in the graph, itʹs evident that the NAO robotic 

arm can move smoothly from the start point to the end point. 

 

Figure 9. Joint angle motion curves. 

5. Experiments and Results Analysis 

5.1. Object Detection Experiment 

In this experiment, the NAO robotʹs bottom camera collected 100 images of the target rod at 

different angles, which were then processed through rotation and mirroring. Subsequently, the 

yolov8 network was trained for 800 rounds, with approximately 300 images per round. The original 

image captured by the NAO robotʹs camera is depicted in Figure 10(a). The target bar is identified 

using the Yolov8 network, resulting in a binary image of the target object as shown in Figure 10(b). 

  

(a) (b) 

Figure 10. (a) Original image captured by NAO robot; (b) Original image captured by NAO robot. 

After obtaining the edge point information of the target object, as shown in Figure 11a,b, data 

processing is employed to extract the pixel coordinates of the objectʹs center point and endpoints, and 

then the target is localized. 
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(a) (b) 

Figure 11. (a) Endpoints of the Target Object; (b) Edge of the Target Object. 

The rod is positioned in front of the NAO robot at distances ranging from 0.25m to 1.30m, with 

intervals of 0.05m. Multiple experiments are conducted at each position to calculate an average value. 

From Table 1, it can be observed that the farther the target is from the robot, the larger the error 

becomes. Beyond 60cm, the distance error exceeds the requirements for the task. 

Table 1. Actual and measured positions of the target before improvement. 

Actual Position (cm) Measured Position (cm) Actual Position (cm) Measured Position (cm) 

25 25.50 80 94.71 

30 29.49 85 104.26 

35 35.45 90 113.50 

40 38.83 95 116.43 

45 43.84 100 123.99 

50 52.94 105 133.08 

55 57.17 110 139.06 

60 64.80 115 144.73 

65 73.69 120 152.62 

70 82.55 125 163.13 

75 87.94 130 166.29 

To address the issue of significant measurement error when the targetʹs position exceeds 60cm, 

experiments were conducted using the improved monocular distance model with error 

compensation. 

The target was placed in front of the NAO robot at distances ranging from 0.25m to 1.30m. From 

Table 2, it can be observed that the minimum error between the actual and measured positions is 

0.13cm, and the maximum error is 1.93cm. Whether the targetʹs position is before or after 0.6m, the 

error does not exceed 0.02m. 

Table 2. Actual and measured positions of the target after error compensation. 

Actual Position (cm) Measured Position (cm) Actual Position (cm) Measured Position (cm) 

25 25.47 80 78.67 

30 29.69 85 84.64 

35 35.80 90 90.96 

40 39.12 95 93.10 

45 43.08 100 98.80 

50 51.60 105 106.25 

55 54.89 110 111.18 

60 60.37 115 115.75 

65 66.13 120 121.56 
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70 71.46 125 127.16 

75 74.64 130 128.07 

As shown in Figure 12, the monocular distance measurement with the integrated error 

compensation model effectively reduces the distance error for positions that are farther away in the 

X-axis direction of the robotʹs coordinate system. 

 

Figure 12. Comparison of measured distances before and after error compensation. 

The rod was placed at 90cm in the robotʹs X-direction, with distances of 0cm, 20cm, and 40cm in 

the Y-direction. Each position underwent 10 tests, as shown in Table 3. The RMSEs of the three points 

are 0.644cm, 0.574cm and 1.077cm, respectively. It is evident that the NAO robot can accurately 

measure distances in the Y-axis direction, meeting the subsequent precision requirements. 

Table 3. Actual and measured distances in the Y-axis direction after error compensation. 

Actual Distance (cm) 0 20 40 

Index    

1 0.8 20.4 41.2 

2 0.7 20.9 40.4 

3 0.8 19.5 40.4 

4 0.6 20.4 41.5 

5 0.8 20.3 40.4 

6 0.6 19.7 41.7 

7 0.4 20.2 41.4 

8 0.5 20.9 41.5 

9 0.6 20.8 39.6 

10 0.5 20.5 40.4 

After obtaining the position of the target rod, using the pixel coordinates of the two end points 

of the rod, the end point positions are calculated to determine the deviation angle of the rod. At a 

position of 60cm in the robotʹs X-axis direction, measurements were taken for deviation angles α of 

30°, 45°, and 60°. As shown in Table 4, the RMSEs are 0.820°, 0.904° and 0.901° respectively, so the 

NAO robot can effectively measure the deviation angle of the rod, providing a foundation for 

accurate grasping. 

Table 4. Actual deviation angle vs. measured deviation angle. 𝜶/° 30 45 60 

Index    

1 30.48 45.66 60.85 

2 30.76 45.69 59.36 

3 30.53 45.93 58.82 

4 31.22 45.87 59.56 
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5 29.87 46.05 60.59 

6 30.82 45.92 60.89 

7 30.63 46.15 61.35 

8 29.08 45.56 61.09 

9 29.35 44.58 60.53 

10 31.34 46.37 59.02 

5.2. Object Grasping Experiment 

Due to the low friction between the ground and the feet of the NAO robot, it can experience 

slipping during walking, especially over longer distances. To mitigate this issue, a method involving 

measuring, short-distance walking, adjustment, and then measuring again. This approach ensures 

that the NAO robot can walk to the vicinity of the target rod with the correct orientation. 

Subsequently, adjust its crouching posture using the choreograph software. This ensures that the 

target rod is within the NAO robotʹs workspace. The internal API can obtain the position of its end 

effector. By combining this information with the known coordinates of the targetʹs center point, the 

robot can accurately grasp the target at its center position. This process is illustrated in Figure 13. 

 

Figure 13. NAO robot grasping process. 

6. Conclusions 

This paper combines YOLOv8 network recognition with monocular ranging methods to 

recognize and locate the target object. NAO robot acquires the pose information of the target object 

through its own monocular vision sensor, builds a visual distance error compensation model based 

on monocular ranging to compensate for distance errors, then moves near the target, and grasps the 

target object by adjusting its attitude. 

In the experiments, it is observed that the visual distance error compensation to the monocular 

ranging model effectively can improve the accuracy of the NAO robot’s distance measurement. The 

error between actual position and measurement position is controlled within 2cm. Furthermore, by 

utilizing pose interpolation techniques, the pose of the finger is adjusted to align with the target at a 

constant level. The experimental results show that the rotation angle error is controlled within 2°. 

These results indicate that the NAO robot can precisely estimate the target distance and pose, then 

facilitate precise walking and posture adjustments to ensure accurate object grasping. 
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