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Abstract: Melanoma is widely recognized as one of the most lethal forms of skin cancer, with

its incidence showing an upward trend in recent years. Nonetheless, the timely detection of

this malignancy substantially enhances the likelihood of patients’ long-term survival. Several

computer-based methods have recently been proposed in the pursuit of diagnosing skin lesions

at their early stages. Despite achieving some level of success, there still remains a margin of error

that the machine learning community considers to be an unresolved research challenge. This study

presents a novel framework for the classification of skin lesions. The framework incorporates deep

features to generate a highly discriminant feature vector, while also maintaining the integrity of the

original feature space. Recent deep models including Darknet53, DenseNet201, InceptionV3, and

InceptionResNetV2 are employed in our study for the purpose of feature extraction. Additionally,

transfer learning is leveraged to enhance the performance of our approach. In the subsequent phase,

the extracted feature information from the chosen pre-existing models is combined, with the aim

of preserving maximum information, prior to undergoing the process of feature selection using a

novel entropy-controlled grey wolf optimization (ECGWO) algorithm. The integration of fusion

and selection techniques is employed to initially incorporate the feature vector with a high level of

information and subsequently eliminate redundant and irrelevant feature information. The efficacy of

our design is substantiated through the evaluation on three benchmark dermoscopic datasets, namely

PH2, ISIC-MSK, and ISIC-UDA. In order to validate the proposed methodology, a comprehensive

evaluation is conducted, including a rigorous comparison with established techniques in the field.

Keywords: convolutional neural networks; feature selection; transfer learning; feature fusion; gray

wolf optimization; deep learning; skin lesion

1. Introduction

Cancer is caused by the uncontrolled multiplication of abnormal cells. Human cells frequently

possess the capacity to replicate and divide, and abnormally replicated cells can spread through the

lymphatic and vascular systems, wreaking havoc on a healthy body [1]. The five main forms of cancer

recognized by Stanford medical and healthcare are carcinoma, sarcoma, lymphoma, leukemia, and

myeloma. Most cases of the malignant melanoma variety belongs to the class of carcinoma [2,3]. One

of the most lethal and prevalent cancers in the world is skin cancer [4]. Sunlight has been linked to skin

cancer in a recent studies, because radiation is the main source of these rays; however, some artificial

light also causes DNA damage to skin cells. Skin cancer can also be caused by genetic abnormalities or

diseases that run in families [5].
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Skin cancer affects an estimated 9,500 persons every day in the United States alone, as reported by

the American Cancer Society (ACS)[6]. In the year 2022, a total of 99,780 incidents of melanoma were

identified, with 57,180 cases affecting males and 42,600 cases affecting females [7]. It is anticipated that

almost 5,080 men and 2,570 women will lose their lives to this terrifying illness this year. Incidences

of melanoma have been steadily climbing over the course of the past few decades, with rates varied

according to the ages of the people affected [8]. The percentage of skin cancer caused by sun exposure

in different age categories and the number of skin cancer cases diagnosed on each continent are

presented in Figure 1.
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Figure 1. Epidemiological data on skin cancer: a) WHO projections for skin cancer in 2022; b) average

accumulated sun exposure Vs age groups

With a cautious prediction of 17,756 new cases in 2022, the Australian institute of health and

welfare predicts that skin cancer (melanoma) will rise to the third most often diagnosed cancer type in

Australia. Diagnosis rates are as follows: 58.5% male and 41.5% female [9,10]. Clinical examinations

often involve a practitioner or dermatologist observing a suspect’s skin in a series of phases. The

skin’s appearance is heavily influenced by their eyesight, which varies from person to person. Such

observational screening for skin cancer has significant limitations and cannot provide an accurate

diagnosis. Despite the best efforts of great dermatologists, a recent study found that only 80% of skin

cancers were correctly diagnosed [11]. In clinical examination, the most common method is ABCDE

rule, in which the appearance of the lesion (symmetry, border, color, and diameter) and evolution of

the lesion are observed [12]. Despite the best efforts of great dermatologists, a recent study found that

only 80% of skin cancers were correctly diagnosed.

Machine learning methods have been widely implemented in several domains including activity

recognition [13], experimental systems [14], public health care, etc for nearly two decades. The

employment of these cutting-edge methods has simplified the entire process of disease detection

and diagnosis [15]. Computer-aided diagnostic (CAD) systems [16] have the potential to replace

conventional surgical assessment methods based on auto-generated features analysis using machine

learning approaches[17]. Therefore, scientists are certain that machine learning techniques will

eventually replace conventional approaches to evaluating surgical procedures [18–20]. This study

primarily focuses on the use of feature fusion and selection methods jointly. Following feature

extraction from the CNN models, feature fusion is used to combine the best features from each model

into a single set. Next, an evolutionary method with biological inspiration is developed for calculating

the likelihood of having irrelevant and redundant data.

2. Literature Review

In this section, we provide a concise literature assessment of work done on skin lesion classification

using CNN. In a few cases, the classification frameworks are applied directly to the provided image
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samples, while in others, the images are initially pre-processed before being subjected to the main

processing steps. We begin with a discussion of non-traditional/deep-model approaches to image

classification. Several researchers have approached this issue by considering it as a binary classification

problem, where the images are categorized into two primary classes: malignant and benign. Several

image samples are presented to the readers as reference in the Figure 2. However, a small number of

them even employed seven classes.

Figure 2. Selected skin lesion samples showing benign class (left), and the malignant class (right)

The research of [21] has employed deep learning models for the automatic categorization

of multi-class skin lesions. The presented algorithm is based on the deep convolutional neural

network (DCNN), which contains several stacked layers and variable filter sizes. The authors have

claimed to attain 90.1% precision, 93.23% sensitivity, and 91.1% specificity on the ISIC-17 dataset.

The proposed algorithm demonstrates superior performance in comparison to various alternative

methods, particularly in the context of low-resolution images. Similarly, the authors in [22] proposed a

DCNN framework to categorize skin lesions images into seven different classes that are subsequently

consolidated into two overarching classes: healthy and cancerous. One limitation of this study is the

occasional inability to directly consolidate classes into a smaller number. The evaluation of different

CNN architectures is being done in the work proposed by [23] in which authors utilized different

configurations of twelve CNN models, and setting seven different classifiers. The DenseNet201

combined with the KNN classifier resulted in the best F1-Score, accuracy, recall, and precision values.

The methodology proposed by Bi et al. [24] employs a hyper-connected convolutional neural

network (HcCNN) to classify skin lesion images. The proposed approach involves the implementation

of a deep hierarchical convolutional neural network (HcCNN) that incorporates a multi-scale attention

block. This integration enables the model to effectively capture and utilize the visual characteristics

present in both dermoscopy and clinical skin cancer image datasets. The method proposed in this

study demonstrated a slightly reduced level of performance in terms of accuracy (82.70%), sensitivity

(68.18%), specificity (84.62%), and precision (75.98%). Similarly, the work of [25] addresses the

classification of high-resolution images and class variation present in real datasets. They have proposed

a framework known as patch-based attention architecture (pre-trained CNN). The outlined algorithm

provides a global context in between low and high resolution regions. The mean values of achieved

sensitivity, specificity and F1-score are 73.3%, 96.3% and 85.3%, which are quite low as some of the

methods achieve better results compared to the existing techniques. In [26], authors have given a

method to accelerate the performance of classifying the skin lesions using generated adversarial

networks (GANs); that are based on data augmentation technology. On the dataset ISIC-2018 , the

obtained accuracy, specificity, sensitivity, average precision are 95.25%, 96.61%, 83.21%, and 83.11%.

Though the authors have claimed that their achieved parameters are better in comparison to the CNN

model, but yet the achieved multi-class accuracy, specificity and sensitivity need to be improved. The

presented algorithm is effective only to skin lesion regions having high resolution and better diversity.
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The proposed framework of [27] combines a skin lesion boundary segmentation (done using full

resolution convolutional network) stage and a multiple skin cancer lesions classification stage. Then

a CNN such as ResNet-50, inception-v3, DenseNet-201, and Inception-ResNet-v2 is employed. The

maximum achieved values of specificity, sensitivity, accuracy, true-negative rate (F1-score) and area

under the curve and the are 80.62%, 75.67%, 75.75% and 81.57% respectively on ISIC 2017 dataset.

The proposed method in [28] classifies the cancer lesion using ensembles of CNN model known

as multi-resolution EfficientNets with meta data. Lesion classification is done using EfficientNets,

SENet, and ResNet WSI. The achived values of the area under the curve ranged in 77.5%-96% and that

of sensitivity ranged in 0.283%-71% obtained on ISIC-2019 dataset. In [29], authors have proposed

a cascade knowledge diffusion network (CKDNet) that transfers and accumulates the information

gathered from various sub-tasks to increase the efficiency of segmenting and classifying cancer images.

They have reported better performance without ensemble approaches or external datasets, and every

time neural network need to be trained, and it takes much time to do that. Hence in some applications,

it can be a drawback. On contrary, authors in [30] proposed an approach for the multi-label ensemble

multi-class classification of the skin cancer images. The efficiency of the method has only been

compared with that of the specialist’s advice.

Table 1. A comparative analysis of performance, techniques, and datasets in literature for various

techniques and their evaluations

Ref. Year Performance
Parameters

Dataset Remarks

[21] 2021 PRC=94.0%
AUC=96.4%

ISIC-17,19The proposed model has multiple layers and filter sizes; but a
fewer number of filters and parameters to classify the skin lesion
images.

[31] 2018 SEN=89.9%
SPC=92.1%
F1-S=90%
Ppv=91.3%

ISIC-17 An automatic approach to classify melanoma, with the advantage
of transforming the structural co-occurence matrix (SCM) in an
adaptive feature extractor; that helps the classification process to
depend only on the input image as a parameter.

[25] 2019 SEN=73.3%
SPC=96.3%
F1-S=85%

HAM Research has two contributions: first, efficient application of
high-resolution image dataset with pre-trained state of the art
architecture for classification; Second, high variation faced in the
real image database.

[26] 2020 SEN=83.2%
ACC=95.2%
SPC=96.6%

ISIC-18 GAN-based data segmentation approach. The original generator’s
style, control and input noise structures are altered by the model.
The classifier is generated by a pretrained DCNN using transfer
learning method.

[23] 2020 PRC=92.6%
ACC=92.5%
F1-S=92%

PH2 This work presents skin caner lesion classification using transfer
learning and CNN (as resource extractors). The method combines
twelve CNN models with several different classifiers on PH2 and
ISBI-ISIC dataset.

[22] 2020 SEN=73.7%
ACC=92.5%
AUC=91.2%
Ppv=74.1%

ISIC-17 Framework divides dermoscopic images with seven classes
two possible classes: positive/negative. The DCNN is trained
regarding this binary problem. The parameters regarding
classification are later used to adjust for the multi-class
categorization.

[29] 2021 SEN=70.0%
ACC=88.1%
SPC=92.5%
AUC=90.5%
Ppv=73.8%

ISIC-17 In propsed framework which is a series of coarse-level
segmentation, categorization, and fine-level segmentation
networks. The two feature mixing modules are outlined to
accommodate the diffused feature set from starting segmentation;
and to integrate the related knowledge learned to help fine-level
segmentation.
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Table 1. Cont.

Ref. Year Performance
Parameters

Dataset Remarks

[32] 2019 SEN=17.0%
ACC=79.0%
SPC=95.0%
AUC=70.0%

ISIC-17 Seven separate directional sub-bands are created from gabor
wavelet-based DCNN.from input images. Later, the output
sub-band and input images are passed to eight parallel CNNs. To
categorise the skin cancer lesion, the addition rule is used.

[33] 2019 SEN=96.6%
ACC=94.8%
SPC=93.3%

ISIC-16 Kernel sparse representation based method is proposed. A linear
classifier and a kernel-based meta-data are both jointly adopted
by the discriminative kernel sparse coding technique.

[34] 2020 SEN=87.2%
ACC=92.8%
ACC=87.2%

ISIC A multi-class multi-level classification method focuses on "divide
and conquer" is presented. The algorithm is tuned using
traditional NN tools and advanced deep learning methodologies.

[24] 2020 PRC=75.9%
SEN=68.2%
SPC=84.6%

7 Point
Checklist

The method uses a hyper-connected CNN by adding the visual
properties of dermoscopy and clinical skin cancer images, and
introducing a deep HcCNN with multi-scale attention block.

[27] 2020 SEN=75.7%
ACC=81.6%
SPC=80.6%

ISIC-17 The framework integrates a skin lesion boundary segment and
a multiple skin lesions classification stage. Then a CNN such as
inception-v3 is employed.

[28] 2020 SEN=71.0%
AUC=96.0%

ISIC-19 The Method classifies the skin lesions with the help of statistics of
multi-resolution EfficientNets with meta-data; using EfficientNets,
SENet, and ResNet WSI.

[35] 2020 PRC=91.3%
ACC=96.3%
AUC=98.1%

ISIC-18 The authors investigated the image size effect in classifying the
skin lesion images using pre-trained CNNs. The performance
EfficientNetB0 &B1, and SetReNetXt50 has been examined.

[36] 2021 ACC=80.0% ISIC-18 The research uses a Self-supervised Topology Clustering Network
(STCN) by transformation invariant model network with
modularity clustering algorithm.

[37] 2019 SEN=91.7%
ACC=95.2%
SPC=97.9%

ISIC
2016

A recursive feature rejection based layered structured multi-class
image categorization is used. Before the classification, features
such as the shape and size, border non uniformity, color and
texture of the skin lesion region are extracted.

[38] 2020 AUC=92.1% ISIC-17 The authors proposed a lesion classification method centered on
mid-level features. Images are segmented first to identify the
regions of interest, then the pre-trained DenseNet and ResNet are
employed to extract the feature set.

The integration of conventional and contemporary frameworks is a subject of interest among

researchers in the field. The work of [32] uses wavelet-based CNN model. The method decomposes

the input image into seven different directional sub-bands. The sub-band images are fed to eight

pretrained CNNs; as an input; to generate eight probabilistic classifiers. The efficiency of the proposed

method is evaluated for seborrheic keratosis and melanoma classification. The authors have concluded

that the model I-GR0235 tops in the performance among other models. But the achieved values

of the accuracy (83%), receiver operating characteristic curve (91%), and sensitivity (13%) are not

that convincing. Similarly, the authors in [34] have presented a multi-level multi-class algorithm

implemented by available machine learning tools and advanced deep learning methods based on

divide and conquer rule. They achieved the specificity, sensitivity, precision and accuracy of 98.45%,

87.21%, 98.25% and 92.82% respectively for the testing phase.

Researchers are still developing conventional methods for classifying cutaneous lesions. The work

proposed in [33] is based on sparse representation for classification of lesion images. The developed

algorithm produces a discriminating sparse codes representing the features in a high-dimensional

feature set. The reported values of sensitivity, accuracy and specificity are 96.61%, 94.83% and 93.31%

respectively on the ISIC 2016 dataset. Similarly, the approach in [36] they utilize a network called

the Self-supervised Topology Clustering Network (STCN) to transform an invariant network using

a self-supervised modularity clustering algorithm based on the principles of topology analysis. The
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proposed STCN cannot filter negative sample images, which reduces the classification performance,

also STSN cannot utilize hand-crafted features.

The literature review is concisely presented in the Table 1. The given indices are PRC (precision),

SEN (sensitivity), ACC (accuracy), SPC (specificity), AUC (area under the curve), F1-S (F1-Score), Ppv

(+ve predictive value), and Hm (Harmonic Mean).

3. Problem Statement and Contributions

Over the past few years, computer-aided detection (CAD) systems have become increasingly

important in the detection and assessment of skin lesions. Nevertheless, the classification process

is hindered by various limitations at both the image level, including low-contrast lesion regions,

skin flakes, the presence of hair and air bubbles; and at the feature level, such as redundant or

missing feature information. Consequently, achieving accurate classification becomes challenging.

The presence of these undesirable characteristics has a direct or indirect impact on the segmentation

and classification processes, leading to a decline in the overall performance of the system. Hence, it

is imperative to tackle these issues at various stages to establish a resilient framework for detection

and classification. This study primarily examines the impact of feature-level information on the

ultimate classification outcome. Following the feature extraction phase, conventional feature selection

techniques frequently encounter challenges related to increased computational cost and diminished

accuracy. Hence, in order to address the aforementioned issue, hybrid meta-heuristic algorithms have

been introduced to enhance performance.

The research presented in this study makes two primary contributions: The present study

introduces a bio-inspired feature selection strategy aimed at addressing the challenges posed by

the curse of dimensionality and over-fitting. This strategy focuses on identifying the most discriminant

features to mitigate these issues. Second: in order to enhance the efficacy of the extracted features, a

fusion mechanism is employed that leverages the complementary strengths of four pre-trained models.

Given a database of dermoscopic images, we must attribute a label to each and every image,

classifying it as either benign or malignant. Let an image I ⊂ R
(i×j×k) be a dermoscopic image for a

given database Dκ . The set of images are {(Iκ
1), (I

κ
2), . . . , (Iκ

L)} ⊂ {DK} ∈ R
(1×K). For a given image,

the number of channels L ⊂ I
p
l are fixed to be 3, and the number of classes C are provided by the user.

Therefore, for each image the extracted features, φ ∈ R
(r×c), are later subjected to the classifier for

the label assignment, φ̃, against each image. The cascaded system, which consists of a series of steps

including feature fusion and selection, is ultimately represented as:

φ̃ , (φ
f
m, φ f s, κ̃(φ f s)) ∈ R

(r×c) (1)

where φ f denotes the features extracted after employing the transfer learning, φ f s depicts the fused

feature set from fully connected layers of different architectures, and κ̃(φ f s) is the representation of

selected feature set as the output of hierarchical structural design.

4. Material and Methods

4.1. Convolutional Neural Networks (CNN):

It is the most spectacular versions of deep feed-forward neural networks used for feature detecting

and classifying [16,39]. Each neuron in CNN is linked to a group of other neurons in the higher layer

using a feed-forward technique. Convolution, pooling, and fully linked layers make up the three main

sub-blocks of the CNN’s fundamental architecture, as depicted in Figure 3.
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Figure 3. Basic Architecture of CNN

• Convolution layer: In the CNN architecture, this is the most basic and crucial element. The primary

goal of it is to identify and extract local feature sets from an input image, Iκ ⊂ Dκ . Let the image

database is divided into training (DK1
tr ) and testing databases DK2

ts , where {DK1, DK2} ⊂ DK. The

training samples are represented as Y = {y1, y2, · · · , yn}, where n denotes the training image

database size. For each given input image, the resulting output image is Z = {z1, z2, · · · , zn}

where zp ∈ {1, 2, · · · , C}, C signifies the class number. Convolutional layer consists of a kernel

filter that going through each pixel of the input image as I(i×j×k) ∗ H(i′×j′×k). The local feature

set F ∈ Fl is obtained based on the following equation:

F
l
i = σ

(

n

∑
i=1

xl−1
i × δl

i + b
j
l

)

(2)

where F
l
i denotes the output feature map for that particular layer, l; δl

i + b
j
l are the trainable

parameters for layer, l; σ(.) is the activation function.

4.1.1. Pre-trained CNN models

In this study, we utilized four state-of-the-art pre-trained models for feature extraction, including

DarkNet53, InceptionV3, InceptionResNetV2, and DenseNet201. There are various proposed sets

of CNN architectures for computer vision applications. This decision was made based on their

performance, number of parameters, and Top-1 accuracy.

• Inception-V3: The two essential components of Inception-V3 are feature extraction and

classification. It is trained using the ImageNet database. Using inception units,

Inception-framework V3’s can increase a network’s depth and width while also reducing its

computing load.
• Inception-ResNet-V2: The development of Inception-V3, Inception-ResNet-V2 is likewise trained

using the ImageNet database. It combines the ResNet module and inception. The other

connections enable bypass in the model, which strengthens the network. The computational

prowess of the inception units and the optimization leverage provided by the residual connections

are combined in Inception-ResNet-V2.
• DenseNet-201: The ImageNet database is also used to train DenseNet-201. It is built on an

advanced connectivity scheme that continuously integrates all of the output properties in a

feed-forward manner. Further, it strengthens feature propagation, decreases the number of input

and functional parameters, and mitigates the vanishing-gradient problem.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2105.v1

https://doi.org/10.20944/preprints202308.2105.v1


8 of 17

4.1.2. Datasets

Here in this study, we have carried our simulations on the three publicly avaialable benchmark

datasets freely and publicly available image databases:

• PH2 : It consists of 200 RGB images, divided in between 160 benign and 40 melanoma image

samples. Database is maintained by by the Hospital Pedro Hispano, Matsinhos through a clinical

observation using dermoscope. The real physicians response is also provided, i.e. normal,

melanoma or typical nevus.
• ISIC-MSK: The other database incorporated here, is the International Skin Imaging Collaboration

(ISIC). It includes 225 RGB dermoscopic image samples obtained from different well-reputed

international cancer institutes captures by various modalities.
• ISIC-UDA: is another dataset publicly accessible for characterization and study of skin cancer

(total images: 2750, training images: 2200 testing samples: 550). It contains three cancer types:

melanoma, keratosis and benign; but, since keratosis is a fairly common benign skin indication,

the images can be divided into two classes: malignant and benign.

For the evaluation purpose, dermatologists manually labeled all datasets. Table 2 displays the

distribution of images within the previously mentioned datasets.

Table 2. Selected skin lesion image datasets and their respective ratio of training to testing

Dataset Total Images Training/Validation set Testing set

PH2 200 160 40

ISIC MSK-2 287 201 86

ISIC UDA-1 387 271 116

4.2. Proposed framework

In this study, a conventional hierarchical approach was employed, encompassing feature

extraction and concluding with the final classification. The proposed framework employs transfer

learning to extract deep features from pretrained models. Subsequently, the extracted features are

combined in a predetermined order, and these combinations are subsequently subjected to the proposed

feature selection method. The feature vectors obtained at the end of the process are subsequently

employed for classification purposes. Figure 4 demonstrates the detailed flow of the proposed

framework from the image acquisition to the final classification.
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Figure 4. Detailed illustration of proposed skin lesion classification framework

4.2.1. Transfer Learning

Convolutional algorithms operate under the assumption that the feature sets of both the training

and testing datasets are nearly identical, allowing for straightforward estimation. Although numerous

pre-trained models have undergone extensive training on general image datasets, they may not be

optimal for specialized applications. Transfer learning (TL) is a viable approach as it effectively

classifies images using a limited number of training instances, even in scenarios where acquiring

real-world data poses challenges. The optimal performance of transfer learning is achieved when the

input and output source databases exhibit a significant degree of dispersion in terms of their sizes,

thereby ensuring a diverse source domain.

Consider a source domain, Ψs = {(xs
1, ys

1), (xs
2, ys

2), . . . (xs
n, ys

n)}, where

(xs
i , ys

i ) ∈ R
2; with particular learning assignments, LS, and target domain DT =

{(xT
1 , yT

1 ), (xT
2 , yT

2 ), . . . (xT
n , yT

n )} having the learning assignment as LS, (xT
i , yT

i ) ∈ R
2, where 1 ≤ i ≤ n.

Let us consider, for a given dataset, the number of image samples are DT
Tl , and the model is

trained over a large dataset DLS
s , where DT

Tl ≪ DLS
s , and their labels are yT

Tl , and yLS
s . The primary

objective of transfer learning (TL) is to enhance the learning effectiveness of the target function φ̃ by

leveraging the information derived from both the source dataset DLS
s and the target dataset DTl

T .
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4.2.2. Feature fusion

The availability of highly discriminant information is a crucial factor in enhancing classification

accuracy. The presence of redundancy and irrelevant information not only diminishes the accuracy of

classification but also imposes a greater computational load. Furthermore, the likelihood of attaining

a high level of classification accuracy through the utilization of solely a standard feature extraction

approach is quite low. Hence, a methodology for feature fusion has been selected, which not only

generates a comprehensive information vector but also leads to an increase in redundancy my ref.

In order to address this issue, the utilization of feature fusion in conjunction with feature selection

algorithms is employed. In this study, we integrate the extracted set of features obtained from

the chosen pre-trained models following the implementation of transfer learning. Suppose that

for a given set of features extracted from the selected model after applying transfer learning are

φ
f
m = {φ

f
1 , φ

f
2 , φ

f
3 , φ

f
4} ∈ R

(r×n). The dimensions for the extracted features are given as: φ
f
m =

{(s × 2), (s × 1536), (s × 1026), (s × 1920)}, extracted from the fully-connected and average pooling

layers of all the selected models. The fusion process involves a sequential concatenation of feature

vectors, where each new vector is embedded into the existing one. The resultant feature vectors

are generated with a combination of all extracted feature vectors. Let FV1 = φ
f
1 , FV2 = φ

f
2 , FV3 =

φ
f
3 , FV4 = φ

f
4 , the concatenated form follows the property given; φ

f
m := φ

f
1 ⊕ φ

f
2 = R

p ⊕ R
q →

R
p+q =⇒ φ

f
m := (φ

f
1 , φ

f
2 ) → (u1, . . . , up, v1, . . . , vq) where uk ∈ φ

f
1 ⊂ R

p and vl ∈ φ
f
2 ⊂ R

q. For

the rest of combinations, the property still holds; φ
f s
m,1 = [φ

f
2 , φ

f
3 ], φ

f s
m,2 = [φ

f
3 , φ

f
4 ], φ

f s
m,3 = [φ

f
2 , φ

f
4 ],

φ
f s
m,4 = [φ

f
2 , φ

f
3 , φ

f
4 ], φ

f s
m,5 = [φ

f
1 , φ

f
2 , φ

f
3 , φ

f
4 ].

4.2.3. Entropy-Controlled grey wolf optimization

We have employed entropy-controlled grey wolf optimization (GWO) [40] to achieve the desired

result. Here in this section we offer a brief but concise background of the method. GWO is a

meta-heuristic optimization technique that imitates the hunting strategy and social organizational

behavior of grey wolves. This framework counts on three primary steps: skirting the prey, encircling

the prey; and finally attacking and hunting the prey. In GWO, the population is categorized into

alpha (α) wolf; which is the leader of the gang, beta (β) wolf; the second leader and delta (δ) wolf

which is the third leader. Beta wolf assists the alpha leader in making the decisions, and the delta wolf

dominates the pack of wolves (ω). The hunting process is originally guided by three leaders, whereas

the ω wolves only follow the leaders. The first step i.e. the hunting step of the pack is given as:

χ(t + 1) = χp(t)− ̺A · ψD (3)

where χ is the new position of the wolf, χp is current position, and ̺A represents the coefficient vector.

The variable ψD depending on the current location of the prey (χP), and is defined as:

ψD = |̺c · χp(t)− χ(t)| (4)

Here ̺c = 2 · r is a random vector in the range [0, 1]. Other coefficients can be further explored in the

cited article [41]. If we assume that α, β and δ are the three optimum solutions; the new position of the

other wolves is modified using the following set of rules:

χ(t + 1) =
χ1 + χ2 + χ3

3
(5)
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Here ̺co is the leader count-selected to be three. The position vectors are calculated by the Eq.6:

χ1 = |χα − |̺1
A · ψα

D||

χ2 = |χβ − |̺2
A · ψ

β
D||

χ3 = |χδ − |̺3
A · ψδ

D||

(6)

The parameters χα, χβ and χγ are the positions of α, β and δ at t iteration; where other set of parameters

including ̺1
A, ̺2

A and ̺3
A are calculated using the reference article [41], such as:

ψα
D = |̺1

c · χα − χ|

ψ
β
D = |̺2

c · χα − χ|

ψδ
D = |̺3

c · χα − χ|

(7)

where ̺1
c , ̺2

c and ̺3
c are calculated as in [41]. GWO, in general, is utilized to solve the continuous

optimization problem. It optimizes by considering a set of random solutions; for the solution there

is a vector that keeps the parameters’ values of the problem. The beginning step is to estimate the

objective function value of each solution. For the current solution, the entropy-based fitness value is

calculated on the basis of the total amount of information in an entire probability distribution. The

population vector subjected to the entropy calculation offers a maximum information range. The

fitness is therefore calculated using the Shannon entropy:

f iti = −
n

∑
p=1

ηp log2 ηp (8)

where ηp is the selected vector. Hence, each solution has one variable to keep its objective value. There

are vectors and parameters other than the mentioned. These vectors and parameters store the objective

function and location values of α, β and δ wolves. These values are updated before updating the

position of the wolves. The GWO algorithm keeps updating the solutions using Eq.5-7.

As mentioned earlier, we have utilized GWO to solve the continuous optimization problem; but in case

of feature selection, we extend the work of [41]; and embed the concept of entropy fitness function. A

detailed flow of proposed entropy-controlled grey wolf optimization algorithm is given in Figure 5

Figure 5. Detailed flow diagram of proposed entropy-controlled grey wolf optimization
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5. Results and Analysis

The simulations are carried out on three publicly available datasets as shown in Table 2. Three

families of contemporary classifiers, including support vector machines (SVM), k-Nearest neighbors

(KNN), and Ensemble (ES), are used for classification. The proposed framework is evaluated utilizing

two configurations: In the initial configuration, classification results are obtained without feature

selection. In the second simulation setup, the proposed feature selection step is incorporated to obtain

the classification results. In order to make a fair comparison, we have also evaluated the proposed

framework alongside other classifiers. The training/testing ratio of 70:30 is selected, and hold-out

cross-validation is chosen as the cross-validation technique. Table 4 provides all necessary base

parameters for the chosen classifiers. The selected parameters are selected based on the default values

for all the Matlab sessions. In this study, we endeavored to employ a diverse range of classifiers,

encompassing SVM, KNN, and ensemble methods. This selection is predicated on the previous

empirical evidence of consistently achieving superior outcomes in comparison to alternative sets of

classifiers for this specific application.

Table 3. Set of selected classifiers and their corresponding base parameters

Classifier (selected) Base parameters

Linear SVM
Kernel function: Linear
Multi-class method: One-vs-One

Effecient L-SVM
Kernel function: Linear
Multi-class method: One-vs-One

Cubic SVM
Kernel function: Cubic
Multi-class method: One-vs-One

Fine KNN
Number of neighbours:1
Distance metric: Euclidean
Weight: equal

,

Medium KNN
Number of neighbours: 10
Distance metric: Euclidean
Weight: equal

Weighted KNN
Number of neighbours: 10
Distance metric: Euclidean
Weight: Squared inverse

Ensemble-BT

Ensemble method: AdaBoost
Learner type: Decision tree
Max. split: 20
Number of learners: 30

Ensemble S-KNN
Ensemble method: Subspace
Learner type: nearest neighbor
Number of learners: 30

Ensemble RUSB

Ensemble method: RUBoost
Learner type: decision tree
Number of learners: 30
Max. split: 20

Table 4. Selected classifiers and their functional parameters

In the results section, we will discuss the impact of the feature vectors produced by applying

transfer learning to four pre-trained models. The flow is designed to take into account the feature

combination vectors, their initial sizes, and the reduction percentage obtained after implementing the

proposed feature selection algorithm.
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The findings presented in Table 5 demonstrate that the greatest reduction percentage is observed

when all the extracted feature vectors (FV1 - FV2 - FV3 - FV4) are combined. This suggests a high

likelihood of redundant information. Despite the extent of reduction achieved, the classification

accuracies remain satisfactory. The average reduction percentage for the last feature combination,

which includes all feature vectors, is at its maximum value of 91.33%. In contrast, the average

reduction percentages for the remaining feature combinations are 74.33%, 82.33%, 90.66%, and 88.66%

respectively. Additionally, an alternative manifestation of the impact can be observed in Figure 6,

which illustrates that the greatest level of reduction is attained on the ISIC-MSK dataset. Based on the

obtained results, it is strongly believed that our proposed algorithm exhibits superior performance

in handling large feature vectors, primarily due to its notable capability in effectively detecting and

eliminating redundant information.

Table 5. The chosen set of feature vectors and their respective dimensions, along with the percentage

of reduction achieved.

Vector Fusion Input Dimension Output Dimension Reduction Percentage (%)

PH2

FV2 - FV3 140 × 2562 140 × 948 63

FV3 - FV4 140 × 2946 140 × 884 70

FV2 - FV4 140 × 3456 140 × 380 89

FV2 - FV3 - FV4 140 × 4482 140 × 583 87

FV1 - FV2 - FV3 - FV4 140 × 4484 140 × 628 88

ISIC - MSK

FV2 - FV3 201 × 2562 201 × 589 77

FV3 - FV4 201 × 2946 201 × 295 90

FV2 - FV4 201 × 3456 201 × 242 93

FV2 - FV3 - FV4 201 × 4482 201 × 403 91

FV1 - FV2 - FV3 - FV4 201 × 4484 201 × 179 96∗

ISIC - UDA

FV2 - FV3 271 × 2562 271 × 436 83

FV3 - FV4 271 × 2946 271 × 383 87

FV2 - FV4 271 × 3456 271 × 346 90

FV2 - FV3 - FV4 271 × 4482 271 × 538 88

FV1 - FV2 - FV3 - FV4 271 × 4484 271 × 448 90

Figure 6. Comparison of reduction percentage for each selected dataset.
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Based on the findings presented in Table 5, it can be inferred that the final combination exhibits

the highest reduction rate. Building upon this observation, we proceeded to generate the testing

accuracies, as well as other relevant parameters such as sensitivity, specificity, false negative rate

(FNR), false positive rate (FPR), and F1-score in Table 6. We took the accuracy as the primay measure

and compared the performance specifically on this measure in addition to other measures. FNR and

FPR of all the classifiers with greater accuracy and sensitivity are at lowest that clearly indicates the

superior performance of these classifiers including Fine KNN, Q-SVM, ES-KNN. We focused primarily

on accuracy in our comparisons and used this and other metrics to evaluate performance. Classifiers

like Fine KNN, Q-SVM, and ES-KNN that have a high level of accuracy and sensitivity also have low

levels of FNR, and FPR, respectively, demonstrating their superior performance.

Table 6. Performance comparison of various classifiers over selected datasets

Classifier
Dataset Performance Measures

I II III Accuracy (%) Sensitivity Specificity FNR FPR F1 Score

Linear SVM
X 88.13 0.833 0.941 0.167 0.058 0.888

X 85.11 0.801 0.916 0.198 0.083 0.861
X 83.71 0.795 0.885 0.203 0.115 0.845

Q-SVM
X 87.21 0.843 0.907 0.156 0.092 0.877

X 97.12 0.952 0.992 0.048 0.009 0.971
X 96.54 0.951 0.979 0.048 0.021 0.965

Cubic SVM
X 88.52 0.923 0.853 0.076 0.146 0.879

X 88.27 0.905 0.866 0.094 0.133 0.882
X 87.14 0.893 0.849 0.106 0.154 0.866

Fine KNN
X 98.89∗ 0.98 0.989 0.019 0.012 0.985

X 99.01∗ 0.985 0.994 0.014 0.005 0.994
X 97.71 0.974 0.984 0.029 0.015 0.977

Medium KNN
X 94.34 0.931 0.949 0.068 0.051 0.941

X 93.18 0.921 0.938 0.078 0.061 0.930
X 90.55 0.885 0.926 0.114 0.073 0.907

Weighted KNN
X 87.15 0.862 0.876 0.137 0.124 0.871

X 81.39 0.803 0.816 0.196 0.183 0.811
X 79.64 0.792 0.798 0.207 0.202 0.796

Ensemble- BT
X 73.89 0.728 0.742 0.271 0.257 0.738

X 75.24 0.745 0.755 0.254 0.244 0.752
X 77.38 0.777 0.772 0.222 0.227 0.773

Ensemble S-KNN
X 97.58 0.978 0.979 0.029 0.025 0.975

X 95.46 0.959 0.954 0.04 0.049 0.095
X 99.09∗ 0.986 0.994 0.013 0.006 0.993

Ensemble RUSB
X 95.76 0.952 0.961 0.047 0.038 0.957

X 94.89 0.945 0.951 0.054 0.048 0.948
X 93.57 0.932 0.939 0.069 0.063 0.935

A give a better insight, a fair comparison of feature fusion approach with and without applying

feature selection is also provided in Table 7. Three classifiers are being employed due to their

superior accuracy and computational efficiency. The results demonstrate a noticeable enhancement in

performance following the implementation of the feature selection technique. When comparing the

classification accuracy obtained using fine KNN with and without feature selection, it is important

to evaluate the impact of feature selection on the accuracy of the classification model. In the case

of PH2, the maximum achieved accuracy is 98.89%, while the accuracy without feature selection is

85.22%. A discernible disparity of approximately 13% can be observed. Similar patterns are observed

in other datasets. When considering the ISIC-MSK dataset, the accuracy rate is observed to be 99.01%.

However, when utilizing fine KNN with the same dataset, the accuracy rate decreases to 81.23%.

Although the classification accuracy achieved with other classifiers is 83.73%. Regarding ISIC-UDA,

ES-KNN has demonstrated an accuracy of 99.09%. Conversely, the maximum accuracy attained for the

original fused feature vector is 89.74%. Based on the statistical data, we hold the firm belief that our
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proposed feature selection techniques have the potential to yield exceptional results in various other

applications.

Table 7. Overall accuracy comparison of simple fusion approach with the proposed framework

Vector Fusion
OA (%)

Feature Fusion Approach Proposed Feature Selection Approach
Q-SVM Fine KNN ES-KNN Q-SVM Fine KNN ES-KNN

PH2

FV2 - FV3 84.31 74.27 74.13 86.23 88.21 81.37
FV3 - FV4 79.23 78.34 81.20 88.76 86.33 88.90
FV2 - FV4 81.23 81.29 79.45 84.01 88.69 87.54
FV2 - FV3 - FV4 83.71 79.36 84.56 86.66 92.27 87.43
FV1 - FV2 - FV3 - FV4 83.21 85.22 87.69 87.21 98.89∗ 97.58

ISIC - MSK

FV2 - FV3 74.63 82.27 78.27 79.21 81.89 87.23
FV3 - FV4 76.38 83.27 81.17 83.34 81.44 89.28
FV2 - FV4 76.31 79.28 76.84 81.23 87.38 84.38
FV2 - FV3 - FV4 79.48 80.14 79.28 84.27 88.27 90.29
FV1 - FV2 - FV3 - FV4 81.29 81.23 83.73 97.12 99.01∗ 95.46

ISIC - UDA

FV2 - FV3 77.94 79.54 81.24 85.23 85.27 87.07
FV3 - FV4 76.28 81.88 82.13 84.36 88.34 89.69
FV2 - FV4 81.56 83.29 84.63 88.28 91.26 84.26
FV2 - FV3 - FV4 83.16 81.83 87.76 89.31 94.18 94.61
FV1 - FV2 - FV3 - FV4 89.74 86.47 87.90 96.54 97.71 99.09∗

6. Conclusions

Melanoma is widely acknowledged as a highly fatal variant of skin cancer, with its occurrence

demonstrating an increasing pattern in recent times [42]. In recent times, a number of computer-based

methodologies have been put forth with the aim of early detection and diagnosis of skin lesions.

Despite having attained a certain degree of accomplishment, there persists a margin of error that is

regarded as an unresolved research challenge within the machine learning community. The present

study introduces an innovative framework for the categorization of skin lesions. The framework

integrates deep features in order to produce a feature vector that is highly discriminative, while

simultaneously preserving the integrity of the original feature space. Our study utilizes a selection of

contemporary deep models, namely Darknet53, DenseNet201, InceptionV3, and InceptionResNetV2, to

perform feature extraction. Furthermore, the utilization of transfer learning is employed to augment the

efficacy of our methodology, and later feature selection is employed to identify the most discriminant

information. The approach demonstrated satisfactory performance in the majority of cases. However, it

is important to note that the feature selection method may not be effective for feature vectors exhibiting

maximum correlation. Furthermore, the inclusion of a pre-processing step has the potential to enhance

the accuracy even further.

In subsequent research, there is potential for the improvement of the feature selection method

and the implementation of a contrast enhancement procedure as a preprocessing step.

Funding: The authors are thankful to Princess Nourah bint Abdulrahman University Researchers Supporting
Project number (PNURSP2023R410), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amazon, E. Instances [WWW Document](2015). URL http://aws. amazon. com/ec2/instance-types (Accessed 06

July 2015).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2105.v1

https://doi.org/10.20944/preprints202308.2105.v1


16 of 17

2. Ajmal, M.; Khan, M.A.; Akram, T.; Alqahtani, A.; Alhaisoni, M.; Armghan, A.; Althubiti, S.A.; Alenezi, F.

BF2SkNet: Best deep learning features fusion-assisted framework for multiclass skin lesion classification.

Neural Computing and Applications 2022, pp. 1–17.

3. Akram, T.; Lodhi, H.M.J.; Naqvi, S.R.; Naeem, S.; Alhaisoni, M.; Ali, M.; Haider, S.A.; Qadri, N.N.

A multilevel features selection framework for skin lesion classification. Human-centric Computing and

Information Sciences 2020, 10, 1–26.

4. Karimkhani, C.; Green, A.C.; Nijsten, T.; Weinstock, M.A.; Dellavalle, R.P.; Naghavi, M.; Fitzmaurice, C.

The global burden of melanoma: results from the Global Burden of Disease Study 2015. British Journal of

Dermatology 2017, 177, 134–140.

5. Foundation, S.C. The Skin Cancer Foundation, 2018. Skin Cancer Information. [WWW Document]. (2018).

URL https://www.skincancer.org/skin-cancer-information/ (accessed 2.17.20).

6. Rebecca L. Siegel, Kimberly D. Miller, H.E.F.A.J. Cancer statistics, 2022. A Cancer journal for clinicians 2022,

pp. 7–33.

7. Cokkinides, V.; Albano, J.; Samuels, A.; Ward, M.; Thum, J. American cancer society: Cancer facts and

figures. Atlanta: American Cancer Society 2022.

8. Society, A.C. Key Statistics for Melanoma Skin Cancer. [WWW Document]. (2022). URL

https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html/ (accessed 10.17.22).

9. Australia), A.G.C. Melanoma of the skin. [WWW Document]. (2022). URL

https://www.canceraustralia.gov.au/cancer-types/melanoma/statistics/ (accessed 10.18.22).

10. of Health, A.I.; Welfare. Skin Cancer. [WWW Document]. (2022). URL https://www.aihw.gov.au/ (accessed

10.18.22).

11. Marks, R. Epidemiology of melanoma. clinical and experimental dermatology 2000, 25, 459–463.

12. Rigel, D. S., F.R.J.K.A.W..P.D. ABCDE—an evolving concept in the early detection of melanoma. Archives of

dermatology 2005, 141, 1032–1034.

13. Naqvi, S.R.; Akram, T.; Haider, S.A.; Kamran, M. Artificial neural networks based dynamic priority

arbitration for asynchronous flow control. Neural Computing and Applications 2018, 29, 627–637.

14. Haider, S.A.; Naqvi, S.R.; Akram, T.; Kamran, M.; Qadri, N.N. Modeling electrical properties for various

geometries of antidots on a superconducting film. Applied Nanoscience 2017, 7, 933–945.

15. P. Tschandl, C. Rosendahl, B.A.G.A.A.B.R.B.e.a. Expert-level diagnosis of nonpigmented skin cancer by

combined convolutional neural networks. JAMA Dermatol 2019, 155, 58–65.

16. Attique Khan, M.; Sharif, M.; Akram, T.; Kadry, S.; Hsu, C.H. A two-stream deep neural network-based

intelligent system for complex skin cancer types classification. International Journal of Intelligent Systems 2022,

37, 10621–10649.

17. M.A. Khan, T. Akram, M.S.T.S.K.J.I.L. Construction of saliency map and hybrid set of features for efficient

segmentation and classification of skin lesion. Microsc. Res. Tech 2019, 82, 741–763.

18. F. Afza, M.A. Khan, M.S.A.R. Microscopic skin laceration segmentation and classification: a framework of

statistical normal distribution and optimal feature selection. Microsc. Res. Tech 2019, 82, 1471–1488.

19. M.A. Khan, M.Y. Javed, M.S.T.S.A.R. Multi-model deep neu- ral network based features extraction and

optimal selection approach for skin lesion classification. In 2019 international conference on computer and

information sciences (ICCIS) 2019, pp. 1–7.

20. N. Zhang, Y.-.X. Cai, Y.Y.W.Y.T.T.X.L.W.B.B. Skin cancer diagnosis based on optimized convolutional neural

network. Artif. Intell. Med. 2020, 102, 101756.

21. Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions

through deep convolutional neural network with dermoscopic images. Computerized medical imaging and

graphics 2021, 88, 101843.

22. Harangi, B.; Baran, A.; Hajdu, A. Assisted deep learning framework for multi-class skin lesion classification

considering a binary classification support. Biomedical Signal Processing and Control 2020, 62, 102041.

23. Rodrigues, D.d.A.; Ivo, R.F.; Satapathy, S.C.; Wang, S.; Hemanth, J.; Reboucas Filho, P.P. A new approach

for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recognition

Letters 2020, 136, 8–15.

24. Bi, L.; Feng, D.D.; Fulham, M.; Kim, J. Multi-label classification of multi-modality skin lesion via

hyper-connected convolutional neural network. Pattern Recognition 2020, 107, 107502.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2105.v1

https://doi.org/10.20944/preprints202308.2105.v1


17 of 17

25. Gessert, N.; Sentker, T.; Madesta, F.; Schmitz, R.; Kniep, H.; Baltruschat, I.; Werner, R.; Schlaefer, A. Skin

lesion classification using CNNs with patch-based attention and diagnosis-guided loss weighting. IEEE

Transactions on Biomedical Engineering 2019, 67, 495–503.

26. Qin, Z.; Liu, Z.; Zhu, P.; Xue, Y. A GAN-based image synthesis method for skin lesion classification. Computer

Methods and Programs in Biomedicine 2020, 195, 105568.

27. Al-Masni, M.A.; Kim, D.H.; Kim, T.S. Multiple skin lesions diagnostics via integrated deep convolutional

networks for segmentation and classification. Computer methods and programs in biomedicine 2020, 190, 105351.

28. Gessert, N.; Nielsen, M.; Shaikh, M.; Werner, R.; Schlaefer, A. Skin lesion classification using ensembles of

multi-resolution EfficientNets with meta data. MethodsX 2020, 7, 100864.

29. Jin, Q.; Cui, H.; Sun, C.; Meng, Z.; Su, R. Cascade knowledge diffusion network for skin lesion diagnosis and

segmentation. Applied Soft Computing 2021, 99, 106881.

30. Chatterjee, S.; Dey, D.; Munshi, S.; Gorai, S. Extraction of features from cross correlation in space and

frequency domains for classification of skin lesions. Biomedical Signal Processing and Control 2019, 53, 101581.

31. Rebouças Filho, P.P.; Peixoto, S.A.; da Nóbrega, R.V.M.; Hemanth, D.J.; Medeiros, A.G.; Sangaiah, A.K.;

de Albuquerque, V.H.C. Automatic histologically-closer classification of skin lesions. Computerized Medical

Imaging and Graphics 2018, 68, 40–54.

32. Serte, S.; Demirel, H. Gabor wavelet-based deep learning for skin lesion classification. Computers in biology

and medicine 2019, 113, 103423.

33. Moradi, N.; Mahdavi-Amiri, N. Kernel sparse representation based model for skin lesions segmentation and

classification. Computer methods and programs in biomedicine 2019, 182, 105038.

34. Hameed, N.; Shabut, A.M.; Ghosh, M.K.; Hossain, M.A. Multi-class multi-level classification algorithm

for skin lesions classification using machine learning techniques. Expert Systems with Applications 2020,

141, 112961.

35. Mahbod, A.; Schaefer, G.; Wang, C.; Dorffner, G.; Ecker, R.; Ellinger, I. Transfer learning using a multi-scale

and multi-network ensemble for skin lesion classification. Computer methods and programs in biomedicine 2020,

193, 105475.

36. Wang, D.; Pang, N.; Wang, Y.; Zhao, H. Unlabeled skin lesion classification by self-supervised topology

clustering network. Biomedical Signal Processing and Control 2021, 66, 102428.

37. Chatterjee, S.; Dey, D.; Munshi, S. Integration of morphological preprocessing and fractal based feature

extraction with recursive feature elimination for skin lesion types classification. Computer methods and

programs in biomedicine 2019, 178, 201–218.

38. Liu, L.; Mou, L.; Zhu, X.X.; Mandal, M. Automatic skin lesion classification based on mid-level feature

learning. Computerized Medical Imaging and Graphics 2020, 84, 101765.

39. Kamga, G.A.F.; Bitjoka, L.; Akram, T.; Mbom, A.M.; Naqvi, S.R.; Bouroubi, Y. Advancements in satellite

image classification : methodologies, techniques, approaches and applications. International Journal of Remote

Sensing 2021, 42, 7662–7722. doi:10.1080/01431161.2021.1954261.

40. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Advances in engineering software 2014, 69, 46–61.

41. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: a review of recent variants and

applications. Neural computing and applications 2018, 30, 413–435.

42. Oliveira, R.B.; Papa, J.P.; Pereira, A.S.; Tavares, J.M.R. Computational methods for pigmented skin lesion

classification in images: review and future trends. Neural Computing and Applications 2018, 29, 613–636.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2105.v1

https://doi.org/10.1080/01431161.2021.1954261
https://doi.org/10.20944/preprints202308.2105.v1

	Introduction
	Literature Review
	Problem Statement and Contributions
	Material and Methods
	Convolutional Neural Networks (CNN):
	Pre-trained CNN models
	Datasets

	Proposed framework
	Transfer Learning
	Feature fusion
	Entropy-Controlled grey wolf optimization


	Results and Analysis
	Conclusions
	References

