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Abstract: Melanoma is widely recognized as one of the most lethal forms of skin cancer, with
its incidence showing an upward trend in recent years. Nonetheless, the timely detection of
this malignancy substantially enhances the likelihood of patients’ long-term survival. Several
computer-based methods have recently been proposed in the pursuit of diagnosing skin lesions
at their early stages. Despite achieving some level of success, there still remains a margin of error
that the machine learning community considers to be an unresolved research challenge. This study
presents a novel framework for the classification of skin lesions. The framework incorporates deep
features to generate a highly discriminant feature vector, while also maintaining the integrity of the
original feature space. Recent deep models including Darknet53, DenseNet201, InceptionV3, and
InceptionResNetV2 are employed in our study for the purpose of feature extraction. Additionally,
transfer learning is leveraged to enhance the performance of our approach. In the subsequent phase,
the extracted feature information from the chosen pre-existing models is combined, with the aim
of preserving maximum information, prior to undergoing the process of feature selection using a
novel entropy-controlled grey wolf optimization (ECGWO) algorithm. The integration of fusion
and selection techniques is employed to initially incorporate the feature vector with a high level of
information and subsequently eliminate redundant and irrelevant feature information. The efficacy of
our design is substantiated through the evaluation on three benchmark dermoscopic datasets, namely
PH?2, ISIC-MSK, and ISIC-UDA. In order to validate the proposed methodology, a comprehensive
evaluation is conducted, including a rigorous comparison with established techniques in the field.

Keywords: convolutional neural networks; feature selection; transfer learning; feature fusion; gray
wolf optimization; deep learning; skin lesion

1. Introduction

Cancer is caused by the uncontrolled multiplication of abnormal cells. Human cells frequently
possess the capacity to replicate and divide, and abnormally replicated cells can spread through the
lymphatic and vascular systems, wreaking havoc on a healthy body [1]. The five main forms of cancer
recognized by Stanford medical and healthcare are carcinoma, sarcoma, lymphoma, leukemia, and
myeloma. Most cases of the malignant melanoma variety belongs to the class of carcinoma [2,3]. One
of the most lethal and prevalent cancers in the world is skin cancer [4]. Sunlight has been linked to skin
cancer in a recent studies, because radiation is the main source of these rays; however, some artificial
light also causes DNA damage to skin cells. Skin cancer can also be caused by genetic abnormalities or
diseases that run in families [5].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Skin cancer affects an estimated 9,500 persons every day in the United States alone, as reported by
the American Cancer Society (ACS)[6]. In the year 2022, a total of 99,780 incidents of melanoma were
identified, with 57,180 cases affecting males and 42,600 cases affecting females [7]. It is anticipated that
almost 5,080 men and 2,570 women will lose their lives to this terrifying illness this year. Incidences
of melanoma have been steadily climbing over the course of the past few decades, with rates varied
according to the ages of the people affected [8]. The percentage of skin cancer caused by sun exposure
in different age categories and the number of skin cancer cases diagnosed on each continent are
presented in Figure 1.
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Figure 1. Epidemiological data on skin cancer: a) WHO projections for skin cancer in 2022; b) average
accumulated sun exposure Vs age groups

With a cautious prediction of 17,756 new cases in 2022, the Australian institute of health and
welfare predicts that skin cancer (melanoma) will rise to the third most often diagnosed cancer type in
Australia. Diagnosis rates are as follows: 58.5% male and 41.5% female [9,10]. Clinical examinations
often involve a practitioner or dermatologist observing a suspect’s skin in a series of phases. The
skin’s appearance is heavily influenced by their eyesight, which varies from person to person. Such
observational screening for skin cancer has significant limitations and cannot provide an accurate
diagnosis. Despite the best efforts of great dermatologists, a recent study found that only 80% of skin
cancers were correctly diagnosed [11]. In clinical examination, the most common method is ABCDE
rule, in which the appearance of the lesion (symmetry, border, color, and diameter) and evolution of
the lesion are observed [12]. Despite the best efforts of great dermatologists, a recent study found that
only 80% of skin cancers were correctly diagnosed.

Machine learning methods have been widely implemented in several domains including activity
recognition [13], experimental systems [14], public health care, etc for nearly two decades. The
employment of these cutting-edge methods has simplified the entire process of disease detection
and diagnosis [15]. Computer-aided diagnostic (CAD) systems [16] have the potential to replace
conventional surgical assessment methods based on auto-generated features analysis using machine
learning approaches[17]. Therefore, scientists are certain that machine learning techniques will
eventually replace conventional approaches to evaluating surgical procedures [18-20]. This study
primarily focuses on the use of feature fusion and selection methods jointly. Following feature
extraction from the CNN models, feature fusion is used to combine the best features from each model
into a single set. Next, an evolutionary method with biological inspiration is developed for calculating
the likelihood of having irrelevant and redundant data.

2. Literature Review

In this section, we provide a concise literature assessment of work done on skin lesion classification
using CNN. In a few cases, the classification frameworks are applied directly to the provided image
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samples, while in others, the images are initially pre-processed before being subjected to the main
processing steps. We begin with a discussion of non-traditional /deep-model approaches to image
classification. Several researchers have approached this issue by considering it as a binary classification
problem, where the images are categorized into two primary classes: malignant and benign. Several
image samples are presented to the readers as reference in the Figure 2. However, a small number of
them even employed seven classes.

Figure 2. Selected skin lesion samples showing benign class (left), and the malignant class (right)

The research of [21] has employed deep learning models for the automatic categorization
of multi-class skin lesions. The presented algorithm is based on the deep convolutional neural
network (DCNN), which contains several stacked layers and variable filter sizes. The authors have
claimed to attain 90.1% precision, 93.23% sensitivity, and 91.1% specificity on the ISIC-17 dataset.
The proposed algorithm demonstrates superior performance in comparison to various alternative
methods, particularly in the context of low-resolution images. Similarly, the authors in [22] proposed a
DCNN framework to categorize skin lesions images into seven different classes that are subsequently
consolidated into two overarching classes: healthy and cancerous. One limitation of this study is the
occasional inability to directly consolidate classes into a smaller number. The evaluation of different
CNN architectures is being done in the work proposed by [23] in which authors utilized different
configurations of twelve CNN models, and setting seven different classifiers. The DenseNet201
combined with the KNN classifier resulted in the best F1-Score, accuracy, recall, and precision values.

The methodology proposed by Bi et al. [24] employs a hyper-connected convolutional neural
network (HcCNN) to classify skin lesion images. The proposed approach involves the implementation
of a deep hierarchical convolutional neural network (HcCNN) that incorporates a multi-scale attention
block. This integration enables the model to effectively capture and utilize the visual characteristics
present in both dermoscopy and clinical skin cancer image datasets. The method proposed in this
study demonstrated a slightly reduced level of performance in terms of accuracy (82.70%), sensitivity
(68.18%), specificity (84.62%), and precision (75.98%). Similarly, the work of [25] addresses the
classification of high-resolution images and class variation present in real datasets. They have proposed
a framework known as patch-based attention architecture (pre-trained CNN). The outlined algorithm
provides a global context in between low and high resolution regions. The mean values of achieved
sensitivity, specificity and F1-score are 73.3%, 96.3% and 85.3%, which are quite low as some of the
methods achieve better results compared to the existing techniques. In [26], authors have given a
method to accelerate the performance of classifying the skin lesions using generated adversarial
networks (GANSs); that are based on data augmentation technology. On the dataset ISIC-2018, the
obtained accuracy, specificity, sensitivity, average precision are 95.25%, 96.61%, 83.21%, and 83.11%.
Though the authors have claimed that their achieved parameters are better in comparison to the CNN
model, but yet the achieved multi-class accuracy, specificity and sensitivity need to be improved. The
presented algorithm is effective only to skin lesion regions having high resolution and better diversity.
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The proposed framework of [27] combines a skin lesion boundary segmentation (done using full
resolution convolutional network) stage and a multiple skin cancer lesions classification stage. Then
a CNN such as ResNet-50, inception-v3, DenseNet-201, and Inception-ResNet-v2 is employed. The
maximum achieved values of specificity, sensitivity, accuracy, true-negative rate (F1-score) and area
under the curve and the are 80.62%, 75.67%, 75.75% and 81.57% respectively on ISIC 2017 dataset.
The proposed method in [28] classifies the cancer lesion using ensembles of CNN model known
as multi-resolution EfficientNets with meta data. Lesion classification is done using EfficientNets,
SENet, and ResNet WESI. The achived values of the area under the curve ranged in 77.5%-96% and that
of sensitivity ranged in 0.283%-71% obtained on ISIC-2019 dataset. In [29], authors have proposed
a cascade knowledge diffusion network (CKDNet) that transfers and accumulates the information
gathered from various sub-tasks to increase the efficiency of segmenting and classifying cancer images.
They have reported better performance without ensemble approaches or external datasets, and every
time neural network need to be trained, and it takes much time to do that. Hence in some applications,
it can be a drawback. On contrary, authors in [30] proposed an approach for the multi-label ensemble
multi-class classification of the skin cancer images. The efficiency of the method has only been
compared with that of the specialist’s advice.

Table 1. A comparative analysis of performance, techniques, and datasets in literature for various
techniques and their evaluations

Ref. Year Performance Dataset Remarks

Parameters

[21] 2021 PRC=94.0% ISIC-17,19 The proposed model has multiple layers and filter sizes; but a
AUC=96.4% fewer number of filters and parameters to classify the skin lesion

images.

[31] 2018 SEN=89.9% ISIC-17 An automatic approach to classify melanoma, with the advantage
SPC=92.1% of transforming the structural co-occurence matrix (SCM) in an
F1-5=90% adaptive feature extractor; that helps the classification process to
Ppv=91.3% depend only on the input image as a parameter.

[25] 2019 SEN=73.3% HAM  Research has two contributions: first, efficient application of
SPC=96.3% high-resolution image dataset with pre-trained state of the art
F1-5=85% architecture for classification; Second, high variation faced in the

real image database.
[26] 2020 SEN=83.2% ISIC-18 GAN-based data segmentation approach. The original generator’s

ACC=95.2% style, control and input noise structures are altered by the model.
SPC=96.6% The classifier is generated by a pretrained DCNN using transfer
learning method.
[23] 2020 PRC=92.6% PH2 This work presents skin caner lesion classification using transfer
ACC=92.5% learning and CNN (as resource extractors). The method combines
F1-5=92% twelve CNN models with several different classifiers on PH2 and

ISBI-ISIC dataset.
[22] 2020 SEN=73.7% ISIC-17 Framework divides dermoscopic images with seven classes

ACC=92.5% two possible classes: positive/negative. The DCNN is trained

AUC=91.2% regarding this binary problem. The parameters regarding

Ppv=74.1% classification are later used to adjust for the multi-class
categorization.

[29] 2021 SEN=70.0% ISIC-17 In propsed framework which is a series of coarse-level
ACC=88.1% segmentation, categorization, and fine-level segmentation
SPC=92.5% networks. The two feature mixing modules are outlined to
AUC=90.5% accommodate the diffused feature set from starting segmentation;
Ppv=73.8% and to integrate the related knowledge learned to help fine-level

segmentation.
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Table 1. Cont.

Ref. Year Performance Dataset Remarks

Parameters

[32] 2019 SEN=17.0% ISIC-17 Seven separate directional sub-bands are created from gabor
ACC=79.0% wavelet-based DCNN.from input images. Later, the output
SPC=95.0% sub-band and input images are passed to eight parallel CNNs. To
AUC=70.0% categorise the skin cancer lesion, the addition rule is used.

[33] 2019 SEN=96.6% ISIC-16 Kernel sparse representation based method is proposed. A linear
ACC=94.8% classifier and a kernel-based meta-data are both jointly adopted
SPC=93.3% by the discriminative kernel sparse coding technique.

[34] 2020 SEN=87.2% ISIC A multi-class multi-level classification method focuses on "divide
ACC=92.8% and conquer” is presented. The algorithm is tuned using
ACC=87.2% traditional NN tools and advanced deep learning methodologies.

[24] 2020 PRC=75.9% 7 Point The method uses a hyper-connected CNN by adding the visual
SEN=68.2% Checklist properties of dermoscopy and clinical skin cancer images, and

SPC=84.6% introducing a deep HcCNN with multi-scale attention block.

[27] 2020 SEN=75.7% ISIC-17 The framework integrates a skin lesion boundary segment and
ACC=81.6% a multiple skin lesions classification stage. Then a CNN such as
SPC=80.6% inception-v3 is employed.

[28] 2020 SEN=71.0% ISIC-19 The Method classifies the skin lesions with the help of statistics of
AUC=96.0% multi-resolution EfficientNets with meta-data; using EfficientNets,

SENet, and ResNet WSI.

[35] 2020 PRC=91.3% ISIC-18 The authors investigated the image size effect in classifying the
ACC=96.3% skin lesion images using pre-trained CNNs. The performance
AUC=98.1% EfficientNetB0 &B1, and SetReNetXt50 has been examined.

[36] 2021 ACC=80.0% ISIC-18 The research uses a Self-supervised Topology Clustering Network
(STCN) by transformation invariant model network with
modularity clustering algorithm.

[37] 2019 SEN=91.7% ISIC A recursive feature rejection based layered structured multi-class
ACC=95.2% 2016 image categorization is used. Before the classification, features
SPC=97.9% such as the shape and size, border non uniformity, color and

texture of the skin lesion region are extracted.

[38] 2020 AUC=92.1% ISIC-17 The authors proposed a lesion classification method centered on
mid-level features. Images are segmented first to identify the
regions of interest, then the pre-trained DenseNet and ResNet are
employed to extract the feature set.

The integration of conventional and contemporary frameworks is a subject of interest among
researchers in the field. The work of [32] uses wavelet-based CNN model. The method decomposes
the input image into seven different directional sub-bands. The sub-band images are fed to eight
pretrained CNNSs; as an input; to generate eight probabilistic classifiers. The efficiency of the proposed
method is evaluated for seborrheic keratosis and melanoma classification. The authors have concluded
that the model I-GR0235 tops in the performance among other models. But the achieved values
of the accuracy (83%), receiver operating characteristic curve (91%), and sensitivity (13%) are not
that convincing. Similarly, the authors in [34] have presented a multi-level multi-class algorithm
implemented by available machine learning tools and advanced deep learning methods based on
divide and conquer rule. They achieved the specificity, sensitivity, precision and accuracy of 98.45%,
87.21%, 98.25% and 92.82% respectively for the testing phase.

Researchers are still developing conventional methods for classifying cutaneous lesions. The work
proposed in [33] is based on sparse representation for classification of lesion images. The developed
algorithm produces a discriminating sparse codes representing the features in a high-dimensional
feature set. The reported values of sensitivity, accuracy and specificity are 96.61%, 94.83% and 93.31%
respectively on the ISIC 2016 dataset. Similarly, the approach in [36] they utilize a network called
the Self-supervised Topology Clustering Network (STCN) to transform an invariant network using
a self-supervised modularity clustering algorithm based on the principles of topology analysis. The
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proposed STCN cannot filter negative sample images, which reduces the classification performance,
also STSN cannot utilize hand-crafted features.

The literature review is concisely presented in the Table 1. The given indices are PRC (precision),
SEN (sensitivity), ACC (accuracy), SPC (specificity), AUC (area under the curve), F1-S (F1-Score), Ppv
(+ve predictive value), and Hm (Harmonic Mean).

3. Problem Statement and Contributions

Over the past few years, computer-aided detection (CAD) systems have become increasingly
important in the detection and assessment of skin lesions. Nevertheless, the classification process
is hindered by various limitations at both the image level, including low-contrast lesion regions,
skin flakes, the presence of hair and air bubbles; and at the feature level, such as redundant or
missing feature information. Consequently, achieving accurate classification becomes challenging.
The presence of these undesirable characteristics has a direct or indirect impact on the segmentation
and classification processes, leading to a decline in the overall performance of the system. Hence, it
is imperative to tackle these issues at various stages to establish a resilient framework for detection
and classification. This study primarily examines the impact of feature-level information on the
ultimate classification outcome. Following the feature extraction phase, conventional feature selection
techniques frequently encounter challenges related to increased computational cost and diminished
accuracy. Hence, in order to address the aforementioned issue, hybrid meta-heuristic algorithms have
been introduced to enhance performance.

The research presented in this study makes two primary contributions: The present study
introduces a bio-inspired feature selection strategy aimed at addressing the challenges posed by
the curse of dimensionality and over-fitting. This strategy focuses on identifying the most discriminant
features to mitigate these issues. Second: in order to enhance the efficacy of the extracted features, a
fusion mechanism is employed that leverages the complementary strengths of four pre-trained models.

Given a database of dermoscopic images, we must attribute a label to each and every image,
classifying it as either benign or malignant. Let an image I C R(*/*K) be a dermoscopic image for a
given database D*. The set of images are {(I¥), (I5), ..., (If)} c {DX} € R(*K)_ For a given image,
the number of channels L C ]If are fixed to be 3, and the number of classes C are provided by the user.
Therefore, for each image the extracted features, ¢ € R, are later subjected to the classifier for
the label assignment, ¢, against each image. The cascaded system, which consists of a series of steps
including feature fusion and selection, is ultimately represented as:

2 (9}, ¢/, R(¢7)) € RUXO (1)

where ¢/ denotes the features extracted after employing the transfer learning, ¢/* depicts the fused
feature set from fully connected layers of different architectures, and &(¢/*) is the representation of
selected feature set as the output of hierarchical structural design.

4. Material and Methods

4.1. Convolutional Neural Networks (CNN):

It is the most spectacular versions of deep feed-forward neural networks used for feature detecting
and classifying [16,39]. Each neuron in CNN is linked to a group of other neurons in the higher layer
using a feed-forward technique. Convolution, pooling, and fully linked layers make up the three main
sub-blocks of the CNN'’s fundamental architecture, as depicted in Figure 3.
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Figure 3. Basic Architecture of CNN

e Convolution layer: In the CNN architecture, this is the most basic and crucial element. The primary
goal of it is to identify and extract local feature sets from an input image, I* C D*. Let the image
database is divided into training (DK!) and testing databases DX?, where {DX!, DX2} < DX, The
training samples are represented as Y = {y1,y2, - - - ,yn }, Wwhere n denotes the training image
database size. For each given input image, the resulting output image is Z = {z1,z2,- - ,zn}
where z, € {1,2,--- ,C}, C signifies the class number. Convolutional layer consists of a kernel
filter that going through each pixel of the input image as I(*/*k) x H('*/'*k)_ The local feature

set F € F; is obtained based on the following equation:
n .
Fi=c|Y x ' xd+b ¢)
i=1

where IF% denotes the output feature map for that particular layer, / ;5f + b{ are the trainable
parameters for layer, [;0(.) is the activation function.

4.1.1. Pre-trained CNN models

In this study, we utilized four state-of-the-art pre-trained models for feature extraction, including
DarkNet53, InceptionV3, InceptionResNetV2, and DenseNet201. There are various proposed sets
of CNN architectures for computer vision applications. This decision was made based on their
performance, number of parameters, and Top-1 accuracy.

* Inception-V3: The two essential components of Inception-V3 are feature extraction and
classification. It is trained using the ImageNet database.  Using inception units,
Inception-framework V3’s can increase a network’s depth and width while also reducing its
computing load.

* Inception-ResNet-V2: The development of Inception-V3, Inception-ResNet-V2 is likewise trained
using the ImageNet database. It combines the ResNet module and inception. The other
connections enable bypass in the model, which strengthens the network. The computational
prowess of the inception units and the optimization leverage provided by the residual connections
are combined in Inception-ResNet-V2.

® DenseNet-201: The ImageNet database is also used to train DenseNet-201. It is built on an
advanced connectivity scheme that continuously integrates all of the output properties in a
feed-forward manner. Further, it strengthens feature propagation, decreases the number of input
and functional parameters, and mitigates the vanishing-gradient problem.
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4.1.2. Datasets

Here in this study, we have carried our simulations on the three publicly avaialable benchmark
datasets freely and publicly available image databases:

e PH? : It consists of 200 RGB images, divided in between 160 benign and 40 melanoma image
samples. Database is maintained by by the Hospital Pedro Hispano, Matsinhos through a clinical
observation using dermoscope. The real physicians response is also provided, i.e. normal,
melanoma or typical nevus.

e ISIC-MSK: The other database incorporated here, is the International Skin Imaging Collaboration
(ISIC). It includes 225 RGB dermoscopic image samples obtained from different well-reputed
international cancer institutes captures by various modalities.

e [SIC-UDA: is another dataset publicly accessible for characterization and study of skin cancer
(total images: 2750, training images: 2200 testing samples: 550). It contains three cancer types:
melanoma, keratosis and benign; but, since keratosis is a fairly common benign skin indication,
the images can be divided into two classes: malignant and benign.

For the evaluation purpose, dermatologists manually labeled all datasets. Table 2 displays the
distribution of images within the previously mentioned datasets.

Table 2. Selected skin lesion image datasets and their respective ratio of training to testing

Dataset Total Images Training/Validation set  Testing set
PH? 200 160 40
ISIC MSK-2 287 201 86
ISIC UDA-1 387 271 116

4.2. Proposed framework

In this study, a conventional hierarchical approach was employed, encompassing feature
extraction and concluding with the final classification. The proposed framework employs transfer
learning to extract deep features from pretrained models. Subsequently, the extracted features are
combined in a predetermined order, and these combinations are subsequently subjected to the proposed
feature selection method. The feature vectors obtained at the end of the process are subsequently
employed for classification purposes. Figure 4 demonstrates the detailed flow of the proposed
framework from the image acquisition to the final classification.
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Figure 4. Detailed illustration of proposed skin lesion classification framework

4.2.1. Transfer Learning

Convolutional algorithms operate under the assumption that the feature sets of both the training
and testing datasets are nearly identical, allowing for straightforward estimation. Although numerous
pre-trained models have undergone extensive training on general image datasets, they may not be
optimal for specialized applications. Transfer learning (TL) is a viable approach as it effectively
classifies images using a limited number of training instances, even in scenarios where acquiring
real-world data poses challenges. The optimal performance of transfer learning is achieved when the
input and output source databases exhibit a significant degree of dispersion in terms of their sizes,
thereby ensuring a diverse source domain.

Consider a source domain, ¥s = {(x3,y3), (x3,¥5), ... (x5, v5)}, where

(x$,¥5) € R?% with particular learning assignments, Lg, and target domain Dy =
{(xI,yD), (x1,yD), ... (xI,yl)} having the learning assignment as Lg, (x],y! ) € R, where 1 <i < n.

Let us consider, for a given dataset, the number of image samples are DT, and the model is
trained over a large dataset D15, where DI, <« DL%, and their labels are yr,, and yLS. The primary
objective of transfer learning (TL) is to enhance the learning effectiveness of the target function ¢ by
leveraging the information derived from both the source dataset D-5 and the target dataset DX
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4.2.2. Feature fusion

The availability of highly discriminant information is a crucial factor in enhancing classification
accuracy. The presence of redundancy and irrelevant information not only diminishes the accuracy of
classification but also imposes a greater computational load. Furthermore, the likelihood of attaining
a high level of classification accuracy through the utilization of solely a standard feature extraction
approach is quite low. Hence, a methodology for feature fusion has been selected, which not only
generates a comprehensive information vector but also leads to an increase in redundancy my ref.
In order to address this issue, the utilization of feature fusion in conjunction with feature selection
algorithms is employed. In this study, we integrate the extracted set of features obtained from
the chosen pre-trained models following the implementation of transfer learning. Suppose that
for a given set of features extracted from the selected model after applying transfer learning are
gbf,l = {gb{ , gbg , 47/ , gbf: } € R0 The dimensions for the extracted features are given as: gb{n =
{(s x 2),(s x1536), (s x 1026), (s x 1920) }, extracted from the fully-connected and average pooling
layers of all the selected models. The fusion process involves a sequential concatenation of feature
vectors, where each new vector is embedded into the existing one. The resultant feature vectors
are generated with a combination of all extracted feature vectors. Let FV; = <pf , FVp = ¢>§ ,FV3 =
47§ , FVy = 4>£ , the concatenated form follows the property given; 47f = (,b{ @ 4>£ = R’” eRI —
RFFH — gbf (¢1,¢2) (U1, ..., up,v1,.. vq) where u;, € 4)1 C R? and vl € 4)2 C R9. For
the rest of combmatlons, the property still holds; cpm 1= [¢£, 4>3] <pm ) = [4)3,4)4 m Ty = 4>f ,cpf I,

Or = 105,04, 01) Ol s = (0], 5. 04, 0.

4.2.3. Entropy-Controlled grey wolf optimization

We have employed entropy-controlled grey wolf optimization (GWO) [40] to achieve the desired
result. Here in this section we offer a brief but concise background of the method. GWO is a
meta-heuristic optimization technique that imitates the hunting strategy and social organizational
behavior of grey wolves. This framework counts on three primary steps: skirting the prey, encircling
the prey; and finally attacking and hunting the prey. In GWO, the population is categorized into
alpha (a) wolf; which is the leader of the gang, beta () wolf; the second leader and delta (6) wolf
which is the third leader. Beta wolf assists the alpha leader in making the decisions, and the delta wolf
dominates the pack of wolves (w). The hunting process is originally guided by three leaders, whereas
the w wolves only follow the leaders. The first step i.e. the hunting step of the pack is given as:

x(t+1) = xp(t) —0a ¢p @)

where x is the new position of the wolf, x, is current position, and ¢4 represents the coefficient vector.
The variable ip depending on the current location of the prey (xp), and is defined as:

Yo = loc - xp(t) — x(t)] )

Here o, = 2 - r is a random vector in the range [0, 1]. Other coefficients can be further explored in the
cited article [41]. If we assume that &, § and J are the three optimum solutions; the new position of the
other wolves is modified using the following set of rules:
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Here ¢, is the leader count-selected to be three. The position vectors are calculated by the Eq.6:

X1 = |xa — ok - 9h|
X2 = lxp— 104 ¢h] ©)
X3 = x5 — 105 bl

The parameters x,, Xp and yx, are the positions of &, f and J at t iteration; where other set of parameters
including ¢!, 0% and o3 are calculated using the reference article [41], such as:

1
¥b = lec - Xa — A
B 102y, — 7)
¥p = lec - Xa — Xl
1)
¥b = |0 - xa — x|
where ¢!, 02 and o3 are calculated as in [41]. GWO, in general, is utilized to solve the continuous
optimization problem. It optimizes by considering a set of random solutions; for the solution there
is a vector that keeps the parameters’ values of the problem. The beginning step is to estimate the
objective function value of each solution. For the current solution, the entropy-based fitness value is
calculated on the basis of the total amount of information in an entire probability distribution. The

population vector subjected to the entropy calculation offers a maximum information range. The
fitness is therefore calculated using the Shannon entropy:

n
fit' = — 1p loga 1y (8)
p=1
where 77, is the selected vector. Hence, each solution has one variable to keep its objective value. There
are vectors and parameters other than the mentioned. These vectors and parameters store the objective
function and location values of #, § and § wolves. These values are updated before updating the
position of the wolves. The GWO algorithm keeps updating the solutions using Eq.5-7.

As mentioned earlier, we have utilized GWO to solve the continuous optimization problem; but in case
of feature selection, we extend the work of [41]; and embed the concept of entropy fitness function. A
detailed flow of proposed entropy-controlled grey wolf optimization algorithm is given in Figure 5

Deep Features from Pretrained _>| Threshold Updation
Models

| Parameters Initialization | Yes

v

| Population Generation, X |

Competition

'L | Wolves position update |
| Entropy based fitness evaluation | ¢
‘L | Entropy based fitness evaluation |
| Declaration of max wolves and iterations | >
v
| Leaders updation and reinforcement |
v
Max Iteration | Fitness evaluation |
v

| Iteration gain }—‘

Alpha: Best wolf |—>| Discriminant features |

Figure 5. Detailed flow diagram of proposed entropy-controlled grey wolf optimization
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5. Results and Analysis

The simulations are carried out on three publicly available datasets as shown in Table 2. Three
families of contemporary classifiers, including support vector machines (SVM), k-Nearest neighbors
(KNN), and Ensemble (ES), are used for classification. The proposed framework is evaluated utilizing
two configurations: In the initial configuration, classification results are obtained without feature
selection. In the second simulation setup, the proposed feature selection step is incorporated to obtain
the classification results. In order to make a fair comparison, we have also evaluated the proposed
framework alongside other classifiers. The training/testing ratio of 70:30 is selected, and hold-out
cross-validation is chosen as the cross-validation technique. Table 4 provides all necessary base
parameters for the chosen classifiers. The selected parameters are selected based on the default values
for all the Matlab sessions. In this study, we endeavored to employ a diverse range of classifiers,
encompassing SVM, KNN, and ensemble methods. This selection is predicated on the previous
empirical evidence of consistently achieving superior outcomes in comparison to alternative sets of
classifiers for this specific application.

Table 3. Set of selected classifiers and their corresponding base parameters

Classifier (selected) Base parameters

Kernel function: Linear

Linear SVM Multi-class method: One-vs-One

Kernel function: Linear

Effecient L-SVM Multi-class method: One-vs-One

Kernel function: Cubic

Cubic SVM Multi-class method: One-vs-One

Number of neighbours:1
Fine KNN Distance metric: Euclidean,
Weight: equal

Number of neighbours: 10
Medium KNN Distance metric: Euclidean
Weight: equal

Number of neighbours: 10
Weighted KNN Distance metric: Euclidean
Weight: Squared inverse

Ensemble method: AdaBoost
Learner type: Decision tree
Max. split: 20

Number of learners: 30

Ensemble-BT

Ensemble method: Subspace
Ensemble SSKNN  Learner type: nearest neighbor
Number of learners: 30

Ensemble method: RUBoost
Learner type: decision tree
Number of learners: 30
Max. split: 20

Ensemble RUSB

Table 4. Selected classifiers and their functional parameters

In the results section, we will discuss the impact of the feature vectors produced by applying
transfer learning to four pre-trained models. The flow is designed to take into account the feature
combination vectors, their initial sizes, and the reduction percentage obtained after implementing the
proposed feature selection algorithm.
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The findings presented in Table 5 demonstrate that the greatest reduction percentage is observed
when all the extracted feature vectors (FV1 - FV2 - FV3 - FV4) are combined. This suggests a high
likelihood of redundant information. Despite the extent of reduction achieved, the classification
accuracies remain satisfactory. The average reduction percentage for the last feature combination,
which includes all feature vectors, is at its maximum value of 91.33%. In contrast, the average
reduction percentages for the remaining feature combinations are 74.33%, 82.33%, 90.66%, and 88.66%
respectively. Additionally, an alternative manifestation of the impact can be observed in Figure 6,
which illustrates that the greatest level of reduction is attained on the ISIC-MSK dataset. Based on the
obtained results, it is strongly believed that our proposed algorithm exhibits superior performance
in handling large feature vectors, primarily due to its notable capability in effectively detecting and
eliminating redundant information.

Table 5. The chosen set of feature vectors and their respective dimensions, along with the percentage
of reduction achieved.

Vector Fusion Input Dimension ~ Output Dimension  Reduction Percentage (%)
PH?
FV2-FV3 140 x 2562 140 x 948 63
FV3-Fv4 140 x 2946 140 x 884 70
FV2-Fv4 140 x 3456 140 x 380 89
FV2-FV3-Fv4 140 x 4482 140 x 583 87
FV1-FV2-FV3-FV4 140 x 4484 140 x 628 88
ISIC - MSK
Fv2-FV3 201 x 2562 201 x 589 77
FV3-Fv4 201 x 2946 201 x 295 90
FV2-Fv4 201 x 3456 201 x 242 93
FV2-FV3-Fv4 201 x 4482 201 x 403 91
FV1-FV2-FV3-FVv4 201 x 4484 201 x 179 96*
ISIC - UDA
FV2-FV3 271 x 2562 271 x 436 83
FV3-Fv4 271 x 2946 271 x 383 87
FV2-Fv4 271 x 3456 271 x 346 90
FV2-FV3-Fv4 271 x 4482 271 x 538 88
FV1-FV2-FV3-FV4 271 x 4484 271 x 448 90

Reduction percentage of selected feature
vector for each dataset

A v
PH2 63 ‘ 70 ‘ 89 L 87 1 86
A -
ISIC-MSK T/ ‘ 90 ‘ 93 L 91 96
V. vl
ISIC-UDA | 83 ‘ 87 [ 90 L 88 j 90

Reduction Percentage

Figure 6. Comparison of reduction percentage for each selected dataset.
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Based on the findings presented in Table 5, it can be inferred that the final combination exhibits
the highest reduction rate. Building upon this observation, we proceeded to generate the testing
accuracies, as well as other relevant parameters such as sensitivity, specificity, false negative rate
(FNR), false positive rate (FPR), and F1-score in Table 6. We took the accuracy as the primay measure
and compared the performance specifically on this measure in addition to other measures. FNR and
FPR of all the classifiers with greater accuracy and sensitivity are at lowest that clearly indicates the
superior performance of these classifiers including Fine KNN, Q-SVM, ES-KNN. We focused primarily
on accuracy in our comparisons and used this and other metrics to evaluate performance. Classifiers
like Fine KNN, Q-SVM, and ES-KNN that have a high level of accuracy and sensitivity also have low
levels of FNR, and FPR, respectively, demonstrating their superior performance.

Table 6. Performance comparison of various classifiers over selected datasets

Classifier Dataset Performance Measures
I II III Accuracy (%) Sensitivity Specificity FNR FPR  F1 Score
v 88.13 0.833 0.941 0.167 0.058 0.888
Linear SVM v 85.11 0.801 0.916 0.198 0.083 0.861
v 83.71 0.795 0.885 0.203 0.115 0.845
v 87.21 0.843 0.907 0.156  0.092 0.877
Q-SVM v 97.12 0.952 0.992 0.048 0.009 0.971
v 96.54 0.951 0.979 0.048 0.021 0.965
v 88.52 0.923 0.853 0.076 0.146 0.879
Cubic SVM v 88.27 0.905 0.866 0.094 0.133 0.882
v 87.14 0.893 0.849 0.106  0.154 0.866
v 98.89* 0.98 0.989 0.019 0.012 0.985
Fine KNN v 99.01* 0.985 0.994 0.014 0.005 0.994
v 97.71 0.974 0.984 0.029 0.015 0.977
v 94.34 0.931 0.949 0.068 0.051 0.941
Medium KNN v 93.18 0.921 0.938 0.078  0.061 0.930
v 90.55 0.885 0.926 0.114 0.073 0.907
v 87.15 0.862 0.876 0.137 0.124 0.871
Weighted KNN v 81.39 0.803 0.816 0.196 0.183 0.811
v 79.64 0.792 0.798 0.207 0.202 0.796
v 73.89 0.728 0.742 0271 0.257 0.738
Ensemble- BT v 75.24 0.745 0.755 0.254 0.244 0.752
v 77.38 0.777 0.772 0222 0.227 0.773
v 97.58 0.978 0.979 0.029 0.025 0.975
Ensemble S-KNN v 95.46 0.959 0.954 0.04 0.049 0.095
v 99.09* 0.986 0.994 0.013  0.006 0.993
v 95.76 0.952 0.961 0.047 0.038 0.957
Ensemble RUSB v 94.89 0.945 0.951 0.054 0.048 0.948
v 93.57 0.932 0.939 0.069 0.063 0.935

A give a better insight, a fair comparison of feature fusion approach with and without applying
feature selection is also provided in Table 7. Three classifiers are being employed due to their
superior accuracy and computational efficiency. The results demonstrate a noticeable enhancement in
performance following the implementation of the feature selection technique. When comparing the
classification accuracy obtained using fine KNN with and without feature selection, it is important
to evaluate the impact of feature selection on the accuracy of the classification model. In the case
of PH2, the maximum achieved accuracy is 98.89%, while the accuracy without feature selection is
85.22%. A discernible disparity of approximately 13% can be observed. Similar patterns are observed
in other datasets. When considering the ISIC-MSK dataset, the accuracy rate is observed to be 99.01%.
However, when utilizing fine KNN with the same dataset, the accuracy rate decreases to 81.23%.
Although the classification accuracy achieved with other classifiers is 83.73%. Regarding ISIC-UDA,
ES-KNN has demonstrated an accuracy of 99.09%. Conversely, the maximum accuracy attained for the
original fused feature vector is 89.74%. Based on the statistical data, we hold the firm belief that our
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proposed feature selection techniques have the potential to yield exceptional results in various other
applications.

Table 7. Overall accuracy comparison of simple fusion approach with the proposed framework

OA (%)
Vector Fusion Feature Fusion Approach Proposed Feature Selection Approach
Q-SVM  Fine KNN ES-KNN Q-SVM Fine KNN ES-KNN
PH?
FV2-FV3 84.31 74.27 74.13 86.23 88.21 81.37
FV3-Fv4 79.23 78.34 81.20 88.76 86.33 88.90
FV2-Fv4 81.23 81.29 79.45 84.01 88.69 87.54
FV2-FV3-Fv4 83.71 79.36 84.56 86.66 92.27 87.43
FV1-FV2-FV3-Fv4 8321 85.22 87.69 87.21 98.89* 97.58
ISIC - MSK
FV2-FV3 74.63 82.27 78.27 79.21 81.89 87.23
FV3-Fv4 76.38 83.27 81.17 83.34 81.44 89.28
FV2-Fv4 76.31 79.28 76.84 81.23 87.38 84.38
FV2-FV3-FVv4 79.48 80.14 79.28 84.27 88.27 90.29
FV1-FV2-FV3-Fv4  81.29 81.23 83.73 97.12 99.01* 95.46
ISIC - UDA
FV2-FV3 77.94 79.54 81.24 85.23 85.27 87.07
FV3-Fv4 76.28 81.88 82.13 84.36 88.34 89.69
FV2-Fv4 81.56 83.29 84.63 88.28 91.26 84.26
FV2-FV3-Fv4 83.16 81.83 87.76 89.31 94.18 94.61
FV1-FV2-FV3-Fv4  89.74 86.47 87.90 96.54 97.71 99.09*

6. Conclusions

Melanoma is widely acknowledged as a highly fatal variant of skin cancer, with its occurrence
demonstrating an increasing pattern in recent times [42]. In recent times, a number of computer-based
methodologies have been put forth with the aim of early detection and diagnosis of skin lesions.
Despite having attained a certain degree of accomplishment, there persists a margin of error that is
regarded as an unresolved research challenge within the machine learning community. The present
study introduces an innovative framework for the categorization of skin lesions. The framework
integrates deep features in order to produce a feature vector that is highly discriminative, while
simultaneously preserving the integrity of the original feature space. Our study utilizes a selection of
contemporary deep models, namely Darknet53, DenseNet201, InceptionV3, and InceptionResNetV2, to
perform feature extraction. Furthermore, the utilization of transfer learning is employed to augment the
efficacy of our methodology, and later feature selection is employed to identify the most discriminant
information. The approach demonstrated satisfactory performance in the majority of cases. However, it
is important to note that the feature selection method may not be effective for feature vectors exhibiting
maximum correlation. Furthermore, the inclusion of a pre-processing step has the potential to enhance
the accuracy even further.

In subsequent research, there is potential for the improvement of the feature selection method
and the implementation of a contrast enhancement procedure as a preprocessing step.
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