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Article 
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Abstract: Contradictory reports are available on vaccine-associated hyperstimulation of the 
immune system, provoking the formation of pathological autoantibodies. Despite being 
interconnected within the same network, the role of the quieter, yet important non-pathological; 
natural autoantibodies (nAAbs) is less defined. We hypothesize that upon a prompt immunological 
trigger, also physiological nAAbs exhibit a moderate plasticity. We investigated their inducibility 
through aged and recent antigenic triggers. Anti-viral antibodies (anti-MMR; n=1739 and anti-
SARS-CoV-2 IgG; n=330) and nAAbs (anti-citrate synthase IgG, IgM; n=1739) were measured by in-
house and commercial ELISAs, using Croatian (Osijek) anonymous samples with documented 
vaccination background. Results were subsequently compared for statistical evaluation. 
Interestingly, IgM isotype nAAb showed a statistically significant connection with anti-MMR IgG 
seropositivity (p< 0.001 in all cases), while IgG isotype nAAb levels were elevated in association 
with anti-SARS CoV-2 specific seropositivity (p= 0.019) and in heterogeneous vaccine regimen 
recipients (unvaccinated controls; vector/mRNA vaccines p= 0.002). Increasing evidence supports 
the interplay between immune activation and the dynamic expansion of nAAbs. Consequently, 
further questions may emerge regarding the ability of nAAbs silently shaping the effectiveness of 
immunization. We suggest re-evaluating the impact of nAAbs on the complex functioning of the 
immunological network. 

Keywords: autoantibody; natural autoantibody; anti-viral antibody; ELISA; serology; MMR; SARS-
CoV-2; IgG; vaccine; immunization; plasticity; immunological network 

 

1. Introduction 

Despite increasing evidence supports the overt dynamic adaptation capacity of autoantibodies 
(AAbs) in relation to immunological activation, attention is mainly focused on the pathological AAb 
formation and the subsequent potential adverse consequences [1–6]. The other subset; also cited as 
non-pathological or natural autoantibodies (nAAbs) is much less studied. Although remain usually 
quiet, these fundamental participants of the immunological network feature some very important, 
yet unrecognized physiological functions [7–27]. 

According to current knowledge, the term 'natural antibodies' (nAAbs) refers to 
immunoglobulin molecules preexistent prior to antigen stimulation, originating mainly from B1-B 
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and marginal zone B cells. Despite their recognized significance in the innate immune defense as well 
as in the removal of altered cells and debris, their restricted immunological capacities are also 
reflected in their underappreciated significance in scientific research. These antibodies have moderate 
affinity, are typically poly-reactive, and their levels are physiological and thought to be relatively 
constant throughout life [12–27]. However, it has been described earlier that pathogen-associated 
environmental triggers, as well as the host biome can have a substantial impact on the makeup of the 
nAAb repertoire [28–30]. Today, it is also acknowledged that enhanced vaccination strategies 
combine primary and secondary vaccine components to achieve optimal bioavailability and 
bioactivity of target substances while exhibiting a sufficiently broad spectrum of immune stimulation 
[31]. Consequently, we suppose that although primarily aimed at disease prevention, vaccination 
may also have an unintended impact on the natural antibody repertoire [29]. In other words, we 
hypothesized that upon a competent antigenic trigger, nAAbs display a moderate level of dynamic 
adaptability, also detectable at the level of antibody titers. Regarding this theory, evidence had been 
previously reported [32–35]. Therefore, we have taken the immunoserological approach of 
addressing the scientific question whether there is a quantifiable difference in the adaptation capacity 
of the nAAb pool in response to an aged antigenic trigger (like the historic MMR vaccine or childhood 
infection) versus a relatively recent stimulation (provided by anti-SARS-CoV-2 vaccines). 

Accordingly, we determined our research objectives as follows: 
• Humoral immunity; vaccine efficacy studies I. Evaluating IgG antibody titers elicited by the 

historical measles, mumps, and rubella (MMR) vaccines (or the relevant viral pathogens), 
similarly to our former seroepidemiological reports [32,36,37]. Delineating gaps of humoral 
immunity and defining potentially susceptible age groups 

• Looking for potential connections between nAAb levels (anti-citrate synthase) and persistent 
antibody titers after a decades-old antigenic trigger; Is there an association between the aged, 
aforetime elicited anti-viral (MMR) antibody levels and the nAAbs? 

• Humoral immunity; vaccine efficacy studies II. Evaluating IgG antibody titers elicited by the 
contemporary COVID-19 vaccines.  

• Looking for potential connections between nAAb levels (anti-citrate synthase) and a latter 
antigenic trigger; Is there an association between the relatively recent anti-SARS-CoV-2 IgG 
antigen-induced antibodies and the nAAbs? 

2. Results 

2.1. Relative differences in anti-MMR seropositivity ratios by age groups 

In accordance with previous findings [37–40], in the recently tested Croatian samples 
insufficiencies have been found in the anti-MMR (and especially anti-measles) humoral protection. 
The seropositivity ratio calculated based on circulating IgG antibody titers (number of positive 
samples / number of all samples * 100) was the lowest in age groups 31-40 years, 41- 50 years, and 51-
60 years. The herein illustrated findings can be considered suboptimal, as far as humoral antibody 
titers are considered ‘correlates of protection’ [41–45]. To maintain stable anti-measles herd 
immunity, at least 95% of immunization coverage (in coexistence with adequate responsiveness) 
would be required [46–49].  
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Figure 1. Measles, mumps, rubella (MMR) seropositivity ratios. N total =1739, n measles = 1431, n 
mumps =1438, n rubella =1533. (For detailed age group numbers, please see Supplementary Table S1) 
The lowest seropositivity ratios were detectable in the age groups 31-40, 41- 50, 51-60 (highlighted 
with red arrows.) Herd immunity threshold (HIT) values; HIT measles = 92–95%, HIT Mumps = 85–
90%, HIT Rubella = 83–86%. 

2.2. Relative differences in anti-SARS-CoV-2 specific seropositivity ratios by age groups 

In terms of anti-SARS-CoV-2 IgG seropositivity ratios (without differentiation between 
vaccines), the lowest ratio (number of positive samples / number of all samples * 100) was found in 
the age group of 70- to 80-year-old individuals. All clusters had sufficiently high [50] seropositivity 
ratios ≥80%. 

 

Figure 2. Anti-SARS-CoV-2 IgG seropositivity ratios. N total =237, only vaccinated individuals. 
Sample numbers: n mRNA= 170, n Adenoviral vector= 25, n mRNA + adenoviral vector= 42. Sample 
numbers according to age groups: n 21-30 y = 21, n 31-40 y= 30, n 41-50 y= 26, n 51-60 y=50, n 61-70 y= 
50, n 71-80 y= 30, n 81-90 y= 22. (For detailed seropositive sample numbers per age group, please see 
Supplementary Table S2) Blue bars show results calculated using the cut-off value of the equivocal 
range suggested by the manufacturer; antibody titers ≥ 8 RU/mL; grey bars show results calculated 
using the cut-off value of the positive range suggested by the manufacturer; antibody titers ≥ 11 
RU/mL have been considered ‘seropositive’. 

2.3. Differences in vaccine response by anti-SARS-CoV-2 vaccines 
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We would like to emphasize that the primary target of this article is not the ranking between 
vaccine types or different vaccination regimens based on their capacity to evoke humoral immune 
response relative to the correlates of protection [41–45]. Nevertheless, for the comparison between 
the potential ‘side product’ nAAbs and viral antigen-triggered anti-SARS-CoV-2-specific ‘target’ 
antibodies, the measurement of anti-SARS-CoV-2 IgG titers was fundamental. We found significant 
differences between the unvaccinated (control) group and all the other groups (p < 0.001) (markers 
are not shown). Statistically significant differences have been found between the homologous 
adenoviral vector recipients and the heterologous vaccine regimen (mRNA/adenoviral vector 
vaccines) (p = 0.001), as well as between the mRNA and the adenoviral vector vaccine groups (p = 
0.015). 

Regarding ‘post-vaccination time’ (i.e., the number of days passed between sample taking and 
the last registered immunization episode) versus anti-viral antibody titers, statistically significant 
inverse correlation was found only in the heterologous (mRNA/adenoviral vector vaccines) group; 
post-vaccination time - vaccine induced anti-SARS-CoV-2 IgG titers; spearman's rho correlation 
coefficient <0.001.  

 

Figure 3. Differences in anti-SARS-CoV-2 IgG quantitative antibody titers between vaccination 
groups. Sample numbers: n unvaccinated= 93, n mRNA= 170, n Adenoviral vector= 25, n mRNA + 
adenoviral vector= 42. n total =330. statistically significant differences have been found between the 
unvaccinated (control) group and all the other groups (p < 0.001), between the homologous adenoviral 
vector and the heterologous (mRNA/adenoviral vector vaccines) vaccination groups (p = 0.001), and 
between the mRNA and the adenoviral vector vaccine groups (p = 0.015). For detailed sample 
numbers, please see Table 2 in the Materials and Methods section. 

2.4. Differences in nAAb (anti-CS) IgG levels between vaccination groups  

When investigating the differences in nAAb (anti-CS) levels between different vaccination 
groups and the unvaccinated controls (Figure 4 a), we found statistically significant differences in 
terms of IgG isotype nAAbs. Between the unvaccinated group and the adenoviral vector vaccine 
recipients (p = 0.032), the unvaccinated group and the heterologous vaccine regimen recipients 
(mRNA/adenoviral vector vaccines) (p = 0.002), as well as between the mRNA vaccine recipients and 
the heterologous group (p = 0.018). Interestingly, no statistical difference was detectable between the 
mRNA vaccine recipients and the unvaccinated individuals considering the nAAb (anti-CS Ig) levels. 

Focusing on connections between anti-CS IgG levels and anti-viral qualitative (positive, 
negative) data (Figure 4 b), we found that in the case of anti-SARS-CoV-2 IgG seropositivity (titer ≥11 
RU/mL), also the nAAb levels proved to be significantly higher (p = 0.019). 
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(a) Differences in anti-citrate synthase IgG levels between 
vaccination groups.  

(b) Connection between anti-citrate 
synthase Ig levels and anti-SARS-CoV-2 
IgG qualitative results 

 

Figure 4. (a) Sample numbers: n unvaccinated= 93, n mRNA= 170, n Adenoviral vector= 25, n mRNA 
+ adenoviral vector= 42. n total =330. (b) n negative = 107, n positive = 222, n total =330. Seropositivity 
evaluation was performed as per manufacturer's instructions (threshold: result ≥11 RU/mL). 

2.5. Connection between nAAb (anti-CS) IgM levels and anti-viral (MMR) humoral IgG levels  

As shown in Figure 5, and in accordance with previous findings [32,33,35], statistically 
significant connections have been found between anti-CS IgM levels and anti-viral (measles, mumps, 
rubella) IgG qualitative (positive, negative) results; in case of adequate vaccine or infection-induced 
humoral antibody levels also the natural antibody IgG levels proved to be significantly higher (p= 
0.007, p= 0.002, p= 0.002, for measles, mumps and rubella, respectively). 
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(a) Connection between anti-
citrate synthase IgM levels and 

anti-measles IgG qualitative 
results 

(b) Connection between anti-
citrate synthase IgM levels and 

anti-mumps IgG qualitative 
results 

(c) Connection between anti-
citrate synthase IgM levels and 

anti-rubella IgG qualitative 
results 

Figure 5. n total =1739. (a) Measles; n negative = 308, n positive = 1431. (b) Mumps; n negative = 301, 
n positive = 1438. (c) Rubella; n negative = 206, n positive = 1533. Statistically significant connections 
have been found between anti-CS IgM levels and anti-viral (measles, mumps, rubella) IgG qualitative 
(positive, negative) results; in case of adequate vaccine or infection-induced seropositivity, also the 
natural antibody IgM levels proved to be significantly higher (p= 0.007, p= 0.002, p= 0.002, for measles, 
mumps and rubella, respectively). 

3. Discussion 

Due to the evident burden of the COVID-19 pandemic on public health institutions, aggravated 
by the ongoing European refugee crisis, epidemiological concerns are re-emerging regarding MMR 
vaccination effectiveness and population immunity levels [39,51,52]. Therefore, we updated our 
previous data regarding potentially inadequate humoral immunity levels in terms of anti-MMR IgG 
titers. In accordance with previous reports [33,37,38,40], present findings illustrate that potentially 
susceptible age groups might be present (also) in the Croatian population (Figure 1). As far as serum 
antibody concentrations are relative to correlates of protection (46–50), this result underlines the 
critical significance of constant monitoring [39]. 

Regarding anti-SARS-CoV-2-specific immunity, in the age group weighed comparison, all 
clusters performed sufficiently well, with seropositivity ratios ≥80%. In the context of population 
immunity, these findings are within an acceptable range, since the herd immunity threshold value 
for SARS-CoV-2 variants of concern (B.1.1.7 ‘Alpha’) is usually cited around 80%, while for newer 
variants (B.1.617.2 ‘Delta’) it may be higher [50].  

Considering the analysis by vaccination groups, our results are consistent with data from 
previous studies [4]; anti-SARS-CoV-2 antibody levels were lower after homologous adenoviral 
vector or mRNA vaccination compared to the heterologous vector/mRNA vaccine regimen 
recipients.  

The above described seroepidemiological analysis served as a cornerstone for understanding the 
dynamic interaction between nAAbs (anti-citrate synthase) and viral antigen-elicited (measles, 
mumps, rubella, SARS-CoV-2), promptly inducible antibodies. The main idea behind the current 
immunoserological study refers back to animal experiments; it has been described that exposure of 
laboratory rats to 'wild-like' conditions can partially reconstitute the nAAb repertoire [28–30]. This 
practice of exposing laboratory animals to foreign antigens in order to manipulate their immune 
functions mimics the human medical practice of vaccination [28–30]. The empirical evidence 
provided by human immunization experience regarding nonspecific effects (NSEs) of vaccines, also 
likely to be associated with the ‘by-product’ nAAbs [53–56], is no novelty either.  

Numerous conflicting accounts exist in the scientific literature about anti-SARS-CoV-2 vaccine-
triggered hyperstimulation of the immune system; some of these sustain that there is an elevated risk 
of vaccine-associated pathological auto-antibody formation [1–3], others state that COVID-19 
vaccines do not significantly foster the appearance of pathological autoantibodies commonly linked 
to the most prevalent autoimmune conditions [4]. In contrast, various publications favor the idea that 
natural infection is the prominent inducer of autoantibody formation [2,5,6]. Interestingly, the 
association between vaccination (or infection) and the non-pathological (natural) autoantibodies is 
much less defined [8–11]. 

This alternative approach of investigating associations between ‘off-target’ 
, non-pathological nAAbs and viral antigen-triggered ‘target’ antibodies led to the realization 

that the nAAb pool is prone to display a certain adaptability in response to pathogenic triggers. 
Interestingly, the nAAb anti-citrate synthase IgM was in statistically relevant positive connection 
with the persisting, decades-old anti-MMR antibodies, while the IgG isotype of the same anti-citrate 
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synthase nAAb showed significant alignment with the recently acquired anti-SARS-CoV-2 specific 
(IgG) seropositivity of the vaccinees. Moreover, it seems that the heterologous vaccine regimen 
(mRNA/adenoviral vector vaccines) induced the top antiviral IgG levels, associated with the highest 
nAAb formation. At the same time, our results suggest that the homologous regimen of mRNA 
vaccines did not induce an elevated nAAb formation; no statistically significant difference has been 
found compared to unvaccinated controls. 

4. Materials and Methods 

4.1. Human serum samples 

For measles, mumps and rubella antigen-induced (MMR vaccine or natural infection) humoral 
antibody measurements, we evaluated a total of 1739 serum samples (Table 1) received from the 
Scientific Centre for Excellence for Personalized Health Care, Josip Juraj Strossmayer University of 
Osijek. These specimens were anonymous residual sera with known age and COVID-19 vaccination 
history (Table 1).  

Table 1. Age group-based subdivision of samples used for anti-MMR IgG and anti-citrate synthase 
IgG/M screening. 

Age group Total number of samples/age group 
 

20-30 y 143  

31-40 y 279  

41-50 y 359  

51-60 y 307  

61-70 y 291  

71-80 y 253  

81-90 y 107  

TOTAL 1739  

Of this serum bank, we selected a sample multitude representative for each age group, with the 
inclusion criterion of at least one documented anti-SARS-CoV-2 vaccination within one year. (Due to 
limited research resources and high material purchase costs, not all the serum banks could be 
screened for anti-SARS-CoV-2 IgG.) Thus, 237 samples belonging to vaccinated individuals and 93 
unvaccinated sera were selected (n total= 330) (Table 2) for evaluation.  

Table 2. Age group based subdivision of samples used for anti-SARS-CoV-2 IgG and anti-citrate 
synthase IgG/M screening. 

Age group Number of vaccinated samples 

Total number of vaccinated 

samples 

(vaccinated + unvaccinated) 

11-20 y 8 8 

21-30 y 21 21 

31-40 y 30 50 

41-50 y 26 47 

51-60 y 50 67 

61-70 y 50 61 

71-80 y 30 49 
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81-90 y 22 27 

TOTAL 237 330 

Vaccine regimen based subdivisions and post-vaccination times are represented in Figure 6 and 
Table 3. 

 

 

(a) (b) 

Figure 6. (a) Vaccine regimen based subdivision of the SARS-CoV-2 vaccinated samples. (b) 
Distribution of post-vaccination times (days). 

Table 3. Vaccine regimen based, numerical subdivision of samples used for anti-SARS-CoV-2 IgG 
and anti-citrate synthase IgG/M screening. 

VACCINATION n samples 

mRNA 170 

mRNA + adenoviral vector 42 

Adenoviral vector 25 

Unvaccinated (control) 93 

Vaccinated TOTAL 237 

TOTAL 330 

For the investigation of potential connections between nAAb levels (anti-citrate synthase IgG, 
IgM) and immunization-induced humoral antibody titers, we performed anti-citrate synthase (CS) 
IgG, IgM measurements (Ethical license: 5726-PTE 2015-Pécs, Hungary, 5726/8216-PTE 2020-Pécs, 
Hungary, 035-01/19-01/14; 381-19-18-Osijek, Croatia) using the same serum bank. 

4.2. Citrate Synthase (CS) IgG and IgM in-house ELISA Assays 

As nAAbs, we used anti-citrate synthase (CS) antibodies; hence, CS is a pacemaker enzyme in 
the Krebs cycle and commonly used as a quantitative marker enzyme for the content of intact 
mitochondria [57,58]. As proven by scientific literature [16,32–35,59–63], CS-specific autoantibodies 
can be considered a prominent example of nAAbs. 

The same assay protocol already used for previous reports [32] has been applied. Accordingly, 
96-well polystyrene plates (NUNC) were coated with CS from porcine heart (Sigma-Merck, Munich, 
Germany) in 0.1 M bicarbonate buffer, pH 9.6 [16]. Following this, the saturation of nonspecific 
binding sites with our alternative, combined blocking buffer (0.5% polyvinyl alcohol solution 
combined with bovine gelatin solution, at a ratio of 2:1) at room temperature (RT) for 2 h was 
performed. After being washed with PBS + 0.05% Tween 20 (washing buffer; WB), sera were diluted 
(1:100 in WB) and incubated for 50 min at 37 °C. The secondary antibodies were incubated at 37 °C 
for 45 min (horseradish peroxidase-conjugated antihuman IgG and IgM, polyclonal rabbit antihuman 
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(Agilent-Dako Santa Clara, CA, US). TMB substrate solution (Sigma-Merck, Munich, Germany) was 
used to visualize the HRP enzymatic reaction, and the reaction was stopped by 1 M H2SO4. Reading 
was performed at λ = 450/620 nm using the BEP2000 Advanced automated system. Results are 
expressed in absorbance (OD) and in quantitative (standard curve-based) results. For data 
comparison, results were handled as continuous, non-normally distributed integers, and the 
alterations of titers were considered. 

4.3. Anti-SARS-CoV-2 Quantivac ELISA (IgG) 

Commercial kits SARS-CoV-2 Quantivac ELISA (EI 2606-9601-10 G; EUROIMMUN 
Medizinische Labordiagnostika AG, Lübeck, Germany) have been applied as per manufacturer 
standard. The ELISA assay provides quantitative in vitro determination of human antibodies of the 
immunoglobulin class IgG against SARS-CoV-2 in serum. The immunoassay supports the diagnosis 
of SARS-CoV-2 infection; moreover, serological data obtained using this kit can be applied to collect 
epidemiological data as well as for antibody determination following vaccination with S1/RBD-based 
vaccines [64]. Reagent wells are coated with recombinant S1 domain of the spike protein of SARS-
CoV-2. In the first reaction step, diluted samples (1:101) are incubated in the first wells. In the case of 
positive samples, specific IgG antibodies will bind to the antigens. To detect bound antibodies, a 
second incubation is carried out using peroxidase enzyme-labeled anti-human IgG (enzyme 
conjugate), catalyzing a color reaction [64]. For test evaluation, the standard curve from which the 
concentration of antibodies in the samples (expressed in relative units; RU) can be calculated is 
obtained by point-to-point plotting of the extinction readings measured for the 6 calibration sera. 
Calibration sera are in a linear correlation with the “First WHO International Standard for SARS-
CoV-2”(NIBSC code 20/136), as stated in Manufacturer's Instructions for Use [64]. Euroimmun 
recommends quantitative result interpretation as follows: result < 8 RU/mL: negative, 11 RU/mL > 
result ≥ 8 RU/mL: borderline, result ≥ 11 RU/mL: positive [64]. 

4.4. Anti-measles, mumps, rubella (MMR) IgG in-house ELISA Assays 

The assay protocol with the same assay execution guidelines thoroughly detailed in our previous 
publications [65,66] has been applied. Briefly; coating antigens: Bio-Rad PIP013 Measles virus, 
Edmonston strain (coating concentration: 2.8 µg/mL), Bio-Rad PIP014 Mumps virus, Enders strain 
(coating concentration: 3.0 µg/mL), Bio-Rad PIP044 Rubella virus, HPV-77 strain (coating 
concentration: 0.4 µg/mL). Antigens were dissolved in ELISA Coating Buffer (Bio-Rad BUF030) and 
applied on 96-well plates overnight at 4-6°C. Blocking was performed for ≥ 2 hours, RT, with our in-
house developed, PVA-based blocking buffer. Standards: 3rd WHO International Standard for Anti-
Measles (NIBSC code: 97/648), Anti-Mumps Quality Control Reagent Sample 1 (NIBSC code: 
15/B664), Anti-Rubella Immunoglobulin 1st WHO International Standard Human (NIBSC code: 
RUBI-1-94). Human serum samples were applied in a final dilution of 1:200 after non-specific 
background reduction (incubation followed by centrifugation) using a matrix equalizing, 
mammalian protein-containing buffer (IgM Reducing Assay Diluent- Bio-Rad BUF038) diluted in 
washing buffer in a ratio of 2:1. Washing steps: 5-times, automated. Uniform incubation times for 
primary, secondary antibody binding, and substrate reaction: 3 x 20 minutes, 37°C. For the 
visualization of the immunological reaction, we used HRP-conjugated Dako polyclonal rabbit anti-
human IgG (+ TMB). Automated assay execution, photometric reading (λ = 450/620 nm), and 
quantitative result calculation (4-parametric fitting) were performed using Siemens BEP 2000 
Advance System. 

4.5. Anti-measles, mumps, rubella commercial ELISA Assays 

Commercial kits from EUROIMMUN Medizinische Labordiagnostika AG (Lübeck, Germany) 
have been used as a validated control parallel to in-house assay measurements. Assay execution has 
been performed as per manufacturer standard. 

4.5.1. Anti-Measles Virus ELISA (IgG) (EI 2610-9601 G) 
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The commercial kit was used to provide quantitative in vitro determination for IgG class human 
antibodies against the measles virus in serum. The test kit contains microtiter strips, each with 8 
break-off reagent wells coated with measles virus antigens (inactivated cell lysates of Vero cells 
infected with the ‘Edmonston’ strain of measles virus). In the first reaction step, diluted patient 
samples (1:101) are incubated in the wells. In the case of positive samples, specific IgG antibodies 
(also IgA and IgM) will bind to the antigens. To detect the bound antibodies, a second incubation is 
carried out using an enzyme-labeled anti-human IgG (enzyme conjugate), catalyzing a color reaction. 
The controls of the Anti-Measles Virus ELISA (IgG) were calibrated using the 3rd international 
standard serum NIBSC 97/648 (anti-measles and anti-polio virus serum, National Institute for 
Biological Standards and Control, Hertfordshire, England).  

Quantitative evaluation: the standard curve from which the concentration of antibodies in the 
patient samples can be taken is obtained by point-to-point plotting of the extinction values measured 
for the 4 calibrators against the corresponding units (linear/linear). Euroimmun recommends 
quantitative result interpretation as follows: result < 200 IU/L: negative, 275 IU/L > result ≥ 200 IU/L: 
borderline, result ≥ 275 IU/L: positive 

4.5.2. Anti-Mumps Virus ELISA (IgG) (EI 2630-9601 G) 

The commercial kit was used to provide quantitative in vitro determination for IgG class human 
antibodies against measles virus in serum. The test kit contains microtiter strips, each with 8 break-
off reagent wells coated with mumps antigens (inactivated cell lysates of Vero cells infected with the 
‘Enders’ strain of mumps virus). In the first reaction step, diluted patient samples (1:101) are 
incubated in the wells. In the case of positive samples, specific Ig antibodies will bind to the antigens. 
To detect the bound antibodies, a second incubation is carried out using an enzyme-labeled anti-
human IgG (enzyme conjugate) catalyzing a color reaction. 

As no international reference serum exists for antibodies against the mumps virus, the 
calibration is performed in relative units (RU/ml).  

Quantitative evaluation: the standard curve from which the concentration of antibodies in the 
patient samples can be taken is obtained by point-to-point plotting of the extinction readings 
measured for the 3 calibration sera against the corresponding units (linear/linear). Euroimmun 
recommends quantitative result interpretation as follows: result < 16 RU/mL: negative, 22 RU/mL > 
result ≥ 16 RU/mL: borderline, result ≥ 22 RU/mL: positive. 

4.5.3. Anti-Rubella Virus ELISA (IgG) (EI 2590-9601 G) 

The commercial kit was used to provide quantitative in vitro determination for IgG class human 
antibodies against measles virus in serum. The test kit contains microtiter strips, each with 8 break-
off reagent wells coated with mumps antigens. (The antigen source is provided by inactivated cell 
lysates of Vero cells infected with the "HPV-77" strain of rubella virus.). In the first reaction step, 
diluted patient samples (1:101) are incubated in the wells. In the case of positive samples, specific Ig 
antibodies will bind to the antigens. To detect the bound antibodies, a second incubation is carried 
out using an enzyme-labeled anti-human IgG (enzyme conjugate) catalyzing a color reaction. 
Calibration is performed in international units (I) using the international reference preparation 
NIBSC RUBI-1-94 (Anti-Rubella Serum, 1* International Standard for Anti-Rubella Immunoglobulin, 
Human, National Institute for Biological Standards and Control, Hertfordshire, England). 

Quantitative evaluation: the standard curve from which the concentration of antibodies in the 
patient samples can be taken is obtained by point-to-point plotting of the extinction values measured 
for the 4 calibrators against the corresponding units (linear/linear). Euroimmun recommends 
quantitative result interpretation as follows: result < 16 RU/mL: negative, 8 IU/mL > result ≥ 11 IU/mL: 
borderline, result ≥ 11 IU/mL: positive. 

4.6. Statistical evaluation 
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For statistical evaluation (IBM SPSS), the Mann-Whitney U test was selected (α=0.05). Natural 
autoantibody (nAAb) levels have been treated as ordinal, non-normally distributed variables, while 
immunization-induced qualitative (positive, negative) results as grouping parameters. Simple bar 
chart based seropositivity evaluations were represented using MS Excel.  

5. Conclusions 

Growing evidence supports the connection between immunization and the associated dynamic 
change of the nAAb repertoire [8–11,32–35,62]. Despite acting as covert contributors to the proper 
balance of the immune system [7–27], upon immune activation, nAAbs seem to feature limitedly 
dynamic adaptation capacities. Although their plasticity lags far behind that of the B2-B cell derived 
‘target’ antibodies, there synergistic behavior is increasingly supported [8–11,32–35,62]. This 
observation, however, raises another question; their potential feedback mechanisms and their 
ensuing silent influence on the effectiveness of immunization. In a broader context, we propose the 
possible role of nAAbs in the individual variability of vaccine responsiveness as a focus of further 
investigations, as well as the amendment of the underrated contribution of nAAbs to the complexity 
of the immunological network. 
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Abbreviations 

AAb Autoantibody 
AU Arbitrary unit (in-house elisas) 
CS Citrate synthase 
ELISA Enzyme-linked immunosorbent assay 
HIT Herd immunity threshold 
IgG Immunoglobulin G isotype 
IgM Immunoglobulin M isotype 
IU International units 
MMR Measles, mumps, rubella 
mRNA Messenger ribonucleic acid 
n Number of samples 
nAAb Natural autoantibody 
OD Optical density 
PVA Polyvinyl alchol 
RBD Receptor binding domain 
RT Room temperature 
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RU Relative Unit (Euroimmun ELISAs); quantitative measurement entity in linear correlation 
with the “First WHO International Standard for SARS-cov-2” 

S1 S1 Subunit of the SARS-cov-2 Spike Protein 
SARS-
CoV-2 

Severe acute respiratory syndrome coronavirus 2 

WB Washing buffer 
y Years of age 
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