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Abstract: Contradictory reports are available on vaccine-associated hyperstimulation of the
immune system, provoking the formation of pathological autoantibodies. Despite being
interconnected within the same network, the role of the quieter, yet important non-pathological;
natural autoantibodies (nAAbs) is less defined. We hypothesize that upon a prompt immunological
trigger, also physiological nAAbs exhibit a moderate plasticity. We investigated their inducibility
through aged and recent antigenic triggers. Anti-viral antibodies (anti-MMR; n=1739 and anti-
SARS-CoV-2 IgG; n=330) and nA Abs (anti-citrate synthase IgG, IgM; n=1739) were measured by in-
house and commercial ELISAs, using Croatian (Osijek) anonymous samples with documented
vaccination background. Results were subsequently compared for statistical evaluation.
Interestingly, IgM isotype nAAb showed a statistically significant connection with anti-MMR IgG
seropositivity (p< 0.001 in all cases), while IgG isotype nAAb levels were elevated in association
with anti-SARS CoV-2 specific seropositivity (p= 0.019) and in heterogeneous vaccine regimen
recipients (unvaccinated controls; vector/mRNA vaccines p= 0.002). Increasing evidence supports
the interplay between immune activation and the dynamic expansion of nAAbs. Consequently,
further questions may emerge regarding the ability of nAAbs silently shaping the effectiveness of
immunization. We suggest re-evaluating the impact of nAAbs on the complex functioning of the
immunological network.

Keywords: autoantibody; natural autoantibody; anti-viral antibody; ELISA; serology; MMR; SARS-
CoV-2; IgG; vaccine; immunization; plasticity; immunological network

1. Introduction

Despite increasing evidence supports the overt dynamic adaptation capacity of autoantibodies
(AAbs) in relation to immunological activation, attention is mainly focused on the pathological AAb
formation and the subsequent potential adverse consequences [1-6]. The other subset; also cited as
non-pathological or natural autoantibodies (nAAbs) is much less studied. Although remain usually
quiet, these fundamental participants of the immunological network feature some very important,
yet unrecognized physiological functions [7-27].

According to current knowledge, the term 'natural antibodies’ (nAAbs) refers to
immunoglobulin molecules preexistent prior to antigen stimulation, originating mainly from B1-B

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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and marginal zone B cells. Despite their recognized significance in the innate immune defense as well
as in the removal of altered cells and debris, their restricted immunological capacities are also
reflected in their underappreciated significance in scientific research. These antibodies have moderate
affinity, are typically poly-reactive, and their levels are physiological and thought to be relatively
constant throughout life [12-27]. However, it has been described earlier that pathogen-associated
environmental triggers, as well as the host biome can have a substantial impact on the makeup of the
nAAD repertoire [28-30]. Today, it is also acknowledged that enhanced vaccination strategies
combine primary and secondary vaccine components to achieve optimal bioavailability and
bioactivity of target substances while exhibiting a sufficiently broad spectrum of immune stimulation
[31]. Consequently, we suppose that although primarily aimed at disease prevention, vaccination
may also have an unintended impact on the natural antibody repertoire [29]. In other words, we
hypothesized that upon a competent antigenic trigger, nAAbs display a moderate level of dynamic
adaptability, also detectable at the level of antibody titers. Regarding this theory, evidence had been
previously reported [32-35]. Therefore, we have taken the immunoserological approach of
addressing the scientific question whether there is a quantifiable difference in the adaptation capacity
of the nAAb pool in response to an aged antigenic trigger (like the historic MMR vaccine or childhood
infection) versus a relatively recent stimulation (provided by anti-SARS-CoV-2 vaccines).
Accordingly, we determined our research objectives as follows:
¢  Humoral immunity; vaccine efficacy studies I. Evaluating IgG antibody titers elicited by the
historical measles, mumps, and rubella (MMR) vaccines (or the relevant viral pathogens),
similarly to our former seroepidemiological reports [32,36,37]. Delineating gaps of humoral
immunity and defining potentially susceptible age groups
e Looking for potential connections between nAAb levels (anti-citrate synthase) and persistent
antibody titers after a decades-old antigenic trigger; Is there an association between the aged,
aforetime elicited anti-viral (MMR) antibody levels and the nAAbs?
e  Humoral immunity; vaccine efficacy studies II. Evaluating IgG antibody titers elicited by the
contemporary COVID-19 vaccines.
e Looking for potential connections between nAAb levels (anti-citrate synthase) and a latter
antigenic trigger; Is there an association between the relatively recent anti-SARS-CoV-2 IgG
antigen-induced antibodies and the nAAbs?

2. Results

2.1. Relative differences in anti-MMR seropositivity ratios by age groups

In accordance with previous findings [37—40], in the recently tested Croatian samples
insufficiencies have been found in the anti-MMR (and especially anti-measles) humoral protection.
The seropositivity ratio calculated based on circulating IgG antibody titers (number of positive
samples / number of all samples * 100) was the lowest in age groups 31-40 years, 41- 50 years, and 51-
60 years. The herein illustrated findings can be considered suboptimal, as far as humoral antibody
titers are considered ‘correlates of protection” [41-45]. To maintain stable anti-measles herd
immunity, at least 95% of immunization coverage (in coexistence with adequate responsiveness)
would be required [46—49].
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Figure 1. Measles, mumps, rubella (MMR) seropositivity ratios. N total =1739, n measles = 1431, n
mumps =1438, n rubella =1533. (For detailed age group numbers, please see Supplementary Table S1)
The lowest seropositivity ratios were detectable in the age groups 31-40, 41- 50, 51-60 (highlighted
with red arrows.) Herd immunity threshold (HIT) values; HIT measles = 92-95%, HIT Mumps = 85—
90%, HIT Rubella = 83-86%.

2.2. Relative differences in anti-SARS-CoV-2 specific seropositivity ratios by age groups

In terms of anti-SARS-CoV-2 IgG seropositivity ratios (without differentiation between
vaccines), the lowest ratio (number of positive samples / number of all samples * 100) was found in
the age group of 70- to 80-year-old individuals. All clusters had sufficiently high [50] seropositivity
ratios 280%.
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Figure 2. Anti-SARS-CoV-2 IgG seropositivity ratios. N total =237, only vaccinated individuals.
Sample numbers: n mRNA= 170, n Adenoviral vector= 25, n mRNA + adenoviral vector= 42. Sample
numbers according to age groups: n 21-30 y = 21, n 31-40 y= 30, n 41-50 y= 26, n 51-60 y=50, n 61-70 y=
50, n 71-80 y= 30, n 81-90 y=22. (For detailed seropositive sample numbers per age group, please see
Supplementary Table S2) Blue bars show results calculated using the cut-off value of the equivocal
range suggested by the manufacturer; antibody titers > 8 RU/mL; grey bars show results calculated
using the cut-off value of the positive range suggested by the manufacturer; antibody titers > 11
RU/mL have been considered ‘seropositive’.

2.3. Differences in vaccine response by anti-SARS-CoV-2 vaccines
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We would like to emphasize that the primary target of this article is not the ranking between
vaccine types or different vaccination regimens based on their capacity to evoke humoral immune
response relative to the correlates of protection [41-45]. Nevertheless, for the comparison between
the potential ‘side product’ nAAbs and viral antigen-triggered anti-SARS-CoV-2-specific ‘target’
antibodies, the measurement of anti-SARS-CoV-2 IgG titers was fundamental. We found significant
differences between the unvaccinated (control) group and all the other groups (p < 0.001) (markers
are not shown). Statistically significant differences have been found between the homologous
adenoviral vector recipients and the heterologous vaccine regimen (mRNA/adenoviral vector
vaccines) (p = 0.001), as well as between the mRNA and the adenoviral vector vaccine groups (p =
0.015).

Regarding ‘post-vaccination time’ (i.e., the number of days passed between sample taking and
the last registered immunization episode) versus anti-viral antibody titers, statistically significant
inverse correlation was found only in the heterologous (mRNA/adenoviral vector vaccines) group;
post-vaccination time - vaccine induced anti-SARS-CoV-2 IgG titers; spearman's rho correlation
coefficient <0.001.
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Figure 3. Differences in anti-SARS-CoV-2 IgG quantitative antibody titers between vaccination
groups. Sample numbers: n unvaccinated= 93, n mRNA= 170, n Adenoviral vector= 25, n mRNA +
adenoviral vector= 42. n total =330. statistically significant differences have been found between the
unvaccinated (control) group and all the other groups (p <0.001), between the homologous adenoviral
vector and the heterologous (mRNA/adenoviral vector vaccines) vaccination groups (p = 0.001), and
between the mRNA and the adenoviral vector vaccine groups (p = 0.015). For detailed sample
numbers, please see Table 2 in the Materials and Methods section.

2.4. Differences in nAAb (anti-CS) IgG levels between vaccination groups

When investigating the differences in nAAb (anti-CS) levels between different vaccination
groups and the unvaccinated controls (Figure 4 a), we found statistically significant differences in
terms of IgG isotype nAAbs. Between the unvaccinated group and the adenoviral vector vaccine
recipients (p = 0.032), the unvaccinated group and the heterologous vaccine regimen recipients
(mRNA/adenoviral vector vaccines) (p = 0.002), as well as between the mRNA vaccine recipients and
the heterologous group (p = 0.018). Interestingly, no statistical difference was detectable between the
mRNA vaccine recipients and the unvaccinated individuals considering the nA Ab (anti-CS Ig) levels.

Focusing on connections between anti-CS IgG levels and anti-viral qualitative (positive,
negative) data (Figure 4 b), we found that in the case of anti-SARS-CoV-2 IgG seropositivity (titer >11
RU/mL), also the nAAD levels proved to be significantly higher (p = 0.019).
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Figure 4. (a) Sample numbers: n unvaccinated= 93, n mRNA= 170, n Adenoviral vector= 25, n mRNA
+adenoviral vector= 42. n total =330. (b) n negative = 107, n positive = 222, n total =330. Seropositivity
evaluation was performed as per manufacturer's instructions (threshold: result 211 RU/mL).

2.5. Connection between nAAb (anti-CS) IgM levels and anti-viral (MMR) humoral IgG levels

As shown in Figure 5, and in accordance with previous findings [32,33,35], statistically
significant connections have been found between anti-CS IgM levels and anti-viral (measles, mumps,
rubella) IgG qualitative (positive, negative) results; in case of adequate vaccine or infection-induced
humoral antibody levels also the natural antibody IgG levels proved to be significantly higher (p=
0.007, p=0.002, p= 0.002, for measles, mumps and rubella, respectively).
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Figure 5. n total =1739. (a) Measles; n negative = 308, n positive = 1431. (b) Mumps; n negative = 301,
n positive = 1438. (c) Rubella; n negative = 206, n positive = 1533. Statistically significant connections
have been found between anti-CS IgM levels and anti-viral (measles, mumps, rubella) IgG qualitative
(positive, negative) results; in case of adequate vaccine or infection-induced seropositivity, also the
natural antibody IgM levels proved to be significantly higher (p=0.007, p=0.002, p= 0.002, for measles,
mumps and rubella, respectively).

3. Discussion

Due to the evident burden of the COVID-19 pandemic on public health institutions, aggravated
by the ongoing European refugee crisis, epidemiological concerns are re-emerging regarding MMR
vaccination effectiveness and population immunity levels [39,51,52]. Therefore, we updated our
previous data regarding potentially inadequate humoral immunity levels in terms of anti-MMR IgG
titers. In accordance with previous reports [33,37,38,40], present findings illustrate that potentially
susceptible age groups might be present (also) in the Croatian population (Figure 1). As far as serum
antibody concentrations are relative to correlates of protection (46-50), this result underlines the
critical significance of constant monitoring [39].

Regarding anti-SARS-CoV-2-specific immunity, in the age group weighed comparison, all
clusters performed sufficiently well, with seropositivity ratios 280%. In the context of population
immunity, these findings are within an acceptable range, since the herd immunity threshold value
for SARS-CoV-2 variants of concern (B.1.1.7 “Alpha’) is usually cited around 80%, while for newer
variants (B.1.617.2 ‘Delta’) it may be higher [50].

Considering the analysis by vaccination groups, our results are consistent with data from
previous studies [4]; anti-SARS-CoV-2 antibody levels were lower after homologous adenoviral
vector or mRNA vaccination compared to the heterologous vector/mRNA vaccine regimen
recipients.

The above described seroepidemiological analysis served as a cornerstone for understanding the
dynamic interaction between nAAbs (anti-citrate synthase) and viral antigen-elicited (measles,
mumps, rubella, SARS-CoV-2), promptly inducible antibodies. The main idea behind the current
immunoserological study refers back to animal experiments; it has been described that exposure of
laboratory rats to 'wild-like' conditions can partially reconstitute the nAAb repertoire [28-30]. This
practice of exposing laboratory animals to foreign antigens in order to manipulate their immune
functions mimics the human medical practice of vaccination [28-30]. The empirical evidence
provided by human immunization experience regarding nonspecific effects (NSEs) of vaccines, also
likely to be associated with the ‘by-product’ nAAbs [53-56], is no novelty either.

Numerous conflicting accounts exist in the scientific literature about anti-SARS-CoV-2 vaccine-
triggered hyperstimulation of the immune system; some of these sustain that there is an elevated risk
of vaccine-associated pathological auto-antibody formation [1-3], others state that COVID-19
vaccines do not significantly foster the appearance of pathological autoantibodies commonly linked
to the most prevalent autoimmune conditions [4]. In contrast, various publications favor the idea that
natural infection is the prominent inducer of autoantibody formation [2,5,6]. Interestingly, the
association between vaccination (or infection) and the non-pathological (natural) autoantibodies is
much less defined [8-11].

This alternative approach of investigating associations between ‘off-target’

, non-pathological nAAbs and viral antigen-triggered ‘target” antibodies led to the realization
that the nAAb pool is prone to display a certain adaptability in response to pathogenic triggers.
Interestingly, the nAADb anti-citrate synthase IgM was in statistically relevant positive connection
with the persisting, decades-old anti-MMR antibodies, while the IgG isotype of the same anti-citrate
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synthase nAAb showed significant alignment with the recently acquired anti-SARS-CoV-2 specific
(IgG) seropositivity of the vaccinees. Moreover, it seems that the heterologous vaccine regimen
(mRNA/adenoviral vector vaccines) induced the top antiviral IgG levels, associated with the highest
nAAD formation. At the same time, our results suggest that the homologous regimen of mRNA
vaccines did not induce an elevated nAAb formation; no statistically significant difference has been
found compared to unvaccinated controls.

4. Materials and Methods

4.1. Human serum samples

For measles, mumps and rubella antigen-induced (MMR vaccine or natural infection) humoral
antibody measurements, we evaluated a total of 1739 serum samples (Table 1) received from the
Scientific Centre for Excellence for Personalized Health Care, Josip Juraj Strossmayer University of
Osijek. These specimens were anonymous residual sera with known age and COVID-19 vaccination
history (Table 1).

Table 1. Age group-based subdivision of samples used for anti-MMR IgG and anti-citrate synthase

IgG/M screening.
Age group Total number of samples/age group
20-30 y 143
31-40'y 279
41-50 y 359
51-60 y 307
61-70 y 291
71-80 y 253
81-90 y 107
TOTAL 1739

Of this serum bank, we selected a sample multitude representative for each age group, with the
inclusion criterion of at least one documented anti-SARS-CoV-2 vaccination within one year. (Due to
limited research resources and high material purchase costs, not all the serum banks could be
screened for anti-SARS-CoV-2 IgG.) Thus, 237 samples belonging to vaccinated individuals and 93
unvaccinated sera were selected (n total= 330) (Table 2) for evaluation.

Table 2. Age group based subdivision of samples used for anti-SARS-CoV-2 IgG and anti-citrate
synthase IgG/M screening.

Total number of vaccinated

Age group Number of vaccinated samples samples
(vaccinated + unvaccinated)

1120y 8 8

21-30y 21 21
31-40y 30 50
41-50y 26 47
51-60 y 50 67
61-70 y 50 61

71-80 y 30 49
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81-90 y 22 27
TOTAL 237 330

Vaccine regimen based subdivisions and post-vaccination times are represented in Figure 6 and

Table 3.
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Figure 6. (a) Vaccine regimen based subdivision of the SARS-CoV-2 vaccinated samples. (b)
Distribution of post-vaccination times (days).

Table 3. Vaccine regimen based, numerical subdivision of samples used for anti-SARS-CoV-2 IgG
and anti-citrate synthase IgG/M screening.

VACCINATION n samples
mRNA 170
mRNA + adenoviral vector 42
Adenoviral vector 25
Unvaccinated (control) 93
Vaccinated TOTAL 237
TOTAL 330

For the investigation of potential connections between nAAb levels (anti-citrate synthase IgG,
IgM) and immunization-induced humoral antibody titers, we performed anti-citrate synthase (CS)
IgG, IgM measurements (Ethical license: 5726-PTE 2015-Pécs, Hungary, 5726/8216-PTE 2020-Pécs,
Hungary, 035-01/19-01/14; 381-19-18-Osijek, Croatia) using the same serum bank.

4.2. Citrate Synthase (CS) IgG and IgM in-house ELISA Assays

As nAAbs, we used anti-citrate synthase (CS) antibodies; hence, CS is a pacemaker enzyme in
the Krebs cycle and commonly used as a quantitative marker enzyme for the content of intact
mitochondria [57,58]. As proven by scientific literature [16,32-35,59-63], CS-specific autoantibodies
can be considered a prominent example of nAAbs.

The same assay protocol already used for previous reports [32] has been applied. Accordingly,
96-well polystyrene plates (NUNC) were coated with CS from porcine heart (Sigma-Merck, Munich,
Germany) in 0.1 M bicarbonate buffer, pH 9.6 [16]. Following this, the saturation of nonspecific
binding sites with our alternative, combined blocking buffer (0.5% polyvinyl alcohol solution
combined with bovine gelatin solution, at a ratio of 2:1) at room temperature (RT) for 2 h was
performed. After being washed with PBS + 0.05% Tween 20 (washing buffer; WB), sera were diluted
(1:100 in WB) and incubated for 50 min at 37 °C. The secondary antibodies were incubated at 37 °C
for 45 min (horseradish peroxidase-conjugated antihuman IgG and IgM, polyclonal rabbit antihuman
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(Agilent-Dako Santa Clara, CA, US). TMB substrate solution (Sigma-Merck, Munich, Germany) was
used to visualize the HRP enzymatic reaction, and the reaction was stopped by 1 M H2SOs. Reading
was performed at A = 450/620 nm using the BEP2000 Advanced automated system. Results are
expressed in absorbance (OD) and in quantitative (standard curve-based) results. For data
comparison, results were handled as continuous, non-normally distributed integers, and the
alterations of titers were considered.

4.3. Anti-SARS-CoV-2 Quantivac ELISA (IgG)

Commercial kits SARS-CoV-2 Quantivac ELISA (EI 2606-9601-10 G; EUROIMMUN
Medizinische Labordiagnostika AG, Liibeck, Germany) have been applied as per manufacturer
standard. The ELISA assay provides quantitative in vitro determination of human antibodies of the
immunoglobulin class IgG against SARS-CoV-2 in serum. The immunoassay supports the diagnosis
of SARS-CoV-2 infection; moreover, serological data obtained using this kit can be applied to collect
epidemiological data as well as for antibody determination following vaccination with S1/RBD-based
vaccines [64]. Reagent wells are coated with recombinant S1 domain of the spike protein of SARS-
CoV-2. In the first reaction step, diluted samples (1:101) are incubated in the first wells. In the case of
positive samples, specific IgG antibodies will bind to the antigens. To detect bound antibodies, a
second incubation is carried out using peroxidase enzyme-labeled anti-human IgG (enzyme
conjugate), catalyzing a color reaction [64]. For test evaluation, the standard curve from which the
concentration of antibodies in the samples (expressed in relative units; RU) can be calculated is
obtained by point-to-point plotting of the extinction readings measured for the 6 calibration sera.
Calibration sera are in a linear correlation with the “First WHO International Standard for SARS-
CoV-2"(NIBSC code 20/136), as stated in Manufacturer's Instructions for Use [64]. Euroimmun
recommends quantitative result interpretation as follows: result < 8 RU/mL: negative, 11 RU/mL >
result > 8 RU/mL: borderline, result > 11 RU/mL: positive [64].

4.4. Anti-measles, mumps, rubella (MMR) I1gG in-house ELISA Assays

The assay protocol with the same assay execution guidelines thoroughly detailed in our previous
publications [65,66] has been applied. Briefly; coating antigens: Bio-Rad PIP013 Measles virus,
Edmonston strain (coating concentration: 2.8 pg/mL), Bio-Rad PIP014 Mumps virus, Enders strain
(coating concentration: 3.0 pg/mL), Bio-Rad PIP044 Rubella virus, HPV-77 strain (coating
concentration: 0.4 pug/mL). Antigens were dissolved in ELISA Coating Buffer (Bio-Rad BUF030) and
applied on 96-well plates overnight at 4-6°C. Blocking was performed for > 2 hours, RT, with our in-
house developed, PVA-based blocking buffer. Standards: 3rd WHO International Standard for Anti-
Measles (NIBSC code: 97/648), Anti-Mumps Quality Control Reagent Sample 1 (NIBSC code:
15/B664), Anti-Rubella Immunoglobulin 1st WHO International Standard Human (NIBSC code:
RUBI-1-94). Human serum samples were applied in a final dilution of 1:200 after non-specific
background reduction (incubation followed by centrifugation) using a matrix equalizing,
mammalian protein-containing buffer (IgM Reducing Assay Diluent- Bio-Rad BUF038) diluted in
washing buffer in a ratio of 2:1. Washing steps: 5-times, automated. Uniform incubation times for
primary, secondary antibody binding, and substrate reaction: 3 x 20 minutes, 37°C. For the
visualization of the immunological reaction, we used HRP-conjugated Dako polyclonal rabbit anti-
human IgG (+ TMB). Automated assay execution, photometric reading (A = 450/620 nm), and
quantitative result calculation (4-parametric fitting) were performed using Siemens BEP 2000
Advance System.

4.5. Anti-measles, mumps, rubella commercial ELISA Assays

Commercial kits from EUROIMMUN Medizinische Labordiagnostika AG (Liibeck, Germany)
have been used as a validated control parallel to in-house assay measurements. Assay execution has
been performed as per manufacturer standard.

4.5.1. Anti-Measles Virus ELISA (IgG) (EI 2610-9601 G)

d0i:10.20944/preprints202308.2100.v1
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The commercial kit was used to provide quantitative in vitro determination for IgG class human
antibodies against the measles virus in serum. The test kit contains microtiter strips, each with 8
break-off reagent wells coated with measles virus antigens (inactivated cell lysates of Vero cells
infected with the ‘Edmonston’ strain of measles virus). In the first reaction step, diluted patient
samples (1:101) are incubated in the wells. In the case of positive samples, specific IgG antibodies
(also IgA and IgM) will bind to the antigens. To detect the bound antibodies, a second incubation is
carried out using an enzyme-labeled anti-human IgG (enzyme conjugate), catalyzing a color reaction.
The controls of the Anti-Measles Virus ELISA (IgG) were calibrated using the 3rd international
standard serum NIBSC 97/648 (anti-measles and anti-polio virus serum, National Institute for
Biological Standards and Control, Hertfordshire, England).

Quantitative evaluation: the standard curve from which the concentration of antibodies in the
patient samples can be taken is obtained by point-to-point plotting of the extinction values measured
for the 4 calibrators against the corresponding units (linear/linear). Euroimmun recommends
quantitative result interpretation as follows: result < 200 IU/L: negative, 275 IU/L > result > 200 IU/L:
borderline, result > 275 IU/L: positive

4.5.2. Anti-Mumps Virus ELISA (IgG) (EI 2630-9601 G)

The commercial kit was used to provide quantitative in vitro determination for IgG class human
antibodies against measles virus in serum. The test kit contains microtiter strips, each with 8 break-
off reagent wells coated with mumps antigens (inactivated cell lysates of Vero cells infected with the
‘Enders’ strain of mumps virus). In the first reaction step, diluted patient samples (1:101) are
incubated in the wells. In the case of positive samples, specific Ig antibodies will bind to the antigens.
To detect the bound antibodies, a second incubation is carried out using an enzyme-labeled anti-
human IgG (enzyme conjugate) catalyzing a color reaction.

As no international reference serum exists for antibodies against the mumps virus, the
calibration is performed in relative units (RU/ml).

Quantitative evaluation: the standard curve from which the concentration of antibodies in the
patient samples can be taken is obtained by point-to-point plotting of the extinction readings
measured for the 3 calibration sera against the corresponding units (linear/linear). Euroimmun
recommends quantitative result interpretation as follows: result < 16 RU/mL: negative, 22 RU/mL >
result > 16 RU/mL: borderline, result > 22 RU/mL: positive.

4.5.3. Anti-Rubella Virus ELISA (IgG) (EI 2590-9601 G)

The commercial kit was used to provide quantitative in vitro determination for IgG class human
antibodies against measles virus in serum. The test kit contains microtiter strips, each with 8 break-
off reagent wells coated with mumps antigens. (The antigen source is provided by inactivated cell
lysates of Vero cells infected with the "HPV-77" strain of rubella virus.). In the first reaction step,
diluted patient samples (1:101) are incubated in the wells. In the case of positive samples, specific Ig
antibodies will bind to the antigens. To detect the bound antibodies, a second incubation is carried
out using an enzyme-labeled anti-human IgG (enzyme conjugate) catalyzing a color reaction.
Calibration is performed in international units (I) using the international reference preparation
NIBSC RUBI-1-94 (Anti-Rubella Serum, 1* International Standard for Anti-Rubella Inmunoglobulin,
Human, National Institute for Biological Standards and Control, Hertfordshire, England).

Quantitative evaluation: the standard curve from which the concentration of antibodies in the
patient samples can be taken is obtained by point-to-point plotting of the extinction values measured
for the 4 calibrators against the corresponding units (linear/linear). Euroimmun recommends
quantitative result interpretation as follows: result <16 RU/mL: negative, 8 IU/mL > result > 11 IU/mL:
borderline, result > 11 IU/mL: positive.

4.6. Statistical evaluation
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For statistical evaluation (IBM SPSS), the Mann-Whitney U test was selected (a=0.05). Natural
autoantibody (nAAb) levels have been treated as ordinal, non-normally distributed variables, while
immunization-induced qualitative (positive, negative) results as grouping parameters. Simple bar
chart based seropositivity evaluations were represented using MS Excel.

5. Conclusions

Growing evidence supports the connection between immunization and the associated dynamic
change of the nAAb repertoire [8-11,32-35,62]. Despite acting as covert contributors to the proper
balance of the immune system [7-27], upon immune activation, nAAbs seem to feature limitedly
dynamic adaptation capacities. Although their plasticity lags far behind that of the B2-B cell derived
‘target’ antibodies, there synergistic behavior is increasingly supported [8-11,32-35,62]. This
observation, however, raises another question; their potential feedback mechanisms and their
ensuing silent influence on the effectiveness of immunization. In a broader context, we propose the
possible role of nAAbs in the individual variability of vaccine responsiveness as a focus of further
investigations, as well as the amendment of the underrated contribution of nAAbs to the complexity
of the immunological network.
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Abbreviations

AADb Autoantibody

AU Arbitrary unit (in-house elisas)

CS Citrate synthase

ELISA  Enzyme-linked immunosorbent assay
HIT Herd immunity threshold

IgG Immunoglobulin G isotype
IgM Immunoglobulin M isotype
U International units

MMR Measles, mumps, rubella
mRNA  Messenger ribonucleic acid

n Number of samples
nAAb  Natural autoantibody
OD Optical density

PVA Polyvinyl alchol
RBD Receptor binding domain
RT Room temperature
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RU Relative Unit (Euroimmun ELISAs); quantitative measurement entity in linear correlation

with the “First WHO International Standard for SARS-cov-2"
S1 S1 Subunit of the SARS-cov-2 Spike Protein
SARS-  Severe acute respiratory syndrome coronavirus 2
CoV-2
WB Washing buffer
y Years of age
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