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Abstract: The zero-catch problem is a key issue in CPUE(Catch Per Unit Effort) standardization,

and previous studies have treated all zero-catch data uniformly, but this actually loses some

correctly-labeled samples. On the other hand, for the main catches with few zero-catch samples, the

problem of low performance of fisheries forecasting remains unsolved even though the forecasting

model structure is updating constantly, since we cannot know whether the samples are correctly

recorded. In this paper, we propose a method based on confident learning theory to detect anomalous

samples in the datasets and unify zero-catch and non-zero samples as noise through an overarching

framework of learning with noisy labels, which reveals the heterogeneity among zero-catch samples

(as well as among non-zero samples) and the homogeneity between zero-catch samples and non-zero

samples. Using three species of tuna in the tropical Atlantic Ocean with the spatial resolution of

0.5◦ × 0.5◦ and time resolution of days from 2016 to 2019 as experimental material, performance on

all three classical machine learning models(Random forest, Support Vector Machine and XGBoost)

is significantly improved compared to each baseline.This confirms that we propose a self-adaptive,

effective method for detecting and repairing anomalous samples in the fishery dataset.

Keywords: Zero-catch problem; Non-zero samples; Thunnus; Confident learning; Learning with

noisy labels

1. Introduction

For the fisheries forecasting task of by-catches, the dataset is filled with a large number of samples

with zeros of CPUE, which we refer to as zero-catch data, and refer to the phenomenon of a large

number of zeros in the dataset as the zero-catch problem. The existence of zero-catch data involves

many uncertainties, such as the failure or destruction of fishing vessels or gear, errors in the data

recording process, or the fact that the area of fishing operation is indeed unsuitable for fisheries

survival[1]. It’s too complex for researchers to determine whether the existence of zero-catch data in

the grids is due to the chance of the fishing process or the inevitability of the expression of marine

environmental factors. Since zero-catch data can distract the machine learning model training and

forecasting tasks performed on dataset(especially by-catches dataset), the zero-catch problem cannot

be avoided if we want to improve the performance of the model for fisheries forecasting.

Previous works have tended to treat zero values uniformly[2–9]. One of the clearest methods is to

directly discard all zero-catch data, which obviously loses some correctly-labeled samples. In order

to ensure the completeness of the dataset as much as possible, a simpler method is to improve the

data granularity of the spatio-temporal factor[2], i.e., to change the temporal resolution of the CPUE

from days to months, or to decrease the spatial resolution of the CPUE from 0.5◦ × 0.5◦ to 1◦ × 1◦.

However, the result of the fishery prediction obtained by this treatment is rough, and its usefulness for

the fishing of fishery resources in reality is relatively limited. In order to eliminate the negative impact

of zero-catch data and obtain more accurate results, a common method is to add a constant to all the

values with CPUE of 0. However, the process of determining the constant[3,4] is relatively arbitrary,

and the set constant is not necessarily applicable to other fisheries forecasting tasks, because there are
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differences in the probability distributions[5] of each fishery dataset, and it is difficult to accurately

characterize the probability distribution model of a fishery dataset to accurately describe it. In order to

avoid the interference from zero-catch samples in the training process of fishery forecasting models,

some researchers have adopted the delta method[1,6,7] to fit zero-catch samples and non-zero samples

using two relatively independent statistical models, but both non-zero samples and zero-catch samples

are derived from fishery datasets in the same marine environment and spatio-temporal scales, and it is

therefore difficult to find two relatively independent statistical models that fit these two types of data

separately.

All of the above work are the uniform treatments to zero-catch data, but obviously not all

zero-catch data are anomalous, in order to further research those anomalous zero-catch data,

researchers use the zero-inflated[8,9] model to analyze the causes of the zero-catch data. However,

it is only a qualitative analysis of the zero-catch data in terms of the number of zero-catch data,

which cannot be analyzed for each specific sample, and moreover, real-world fishery datasets have a

probability distributions are often irregular and a practical model that perfectly fits the test set cannot

be easily obtained.

To the best of our knowledge, there is no effective method to detect whether non-zero samples in

the fishery dataset are anomalous or not. In order to correct all anomalous samples in a fishery dataset

and to identify the cause of each anomalous sample, we proposes a confident learning[10] based

method for detecting anomalous fishery samples, which analyzes the zero-catch samples and non-zero

samples (the anomalous ones) by treating them uniformly as noises in the dataset. Quantitatively, it

reveals the heterogeneity that exists among zero-catch samples as well as among non-zero samples, i.e.,

it is possible for the samples to be observed with labels that are different from the ones that should have

been expressed. In addition, the methodology presented in this paper was experimented on three tuna

datasets from 2016 to 2019 in tropical waters of the Atlantic ocean[11]. A large number of anomalous

samples were detected on both the by-catch dataset, which has a high number of zero-catch samples,

as well as the main catch dataset, which has a relatively sparse number of zero-catch samples, and

after repairing those anomalous samples, the performance of the fishery forecasting model(Random

Forests, Support Vector Machine and XGBoost),which are classical in the field of machine learning,

gained a more substantial improvement than that feedback on the original dataset before.

2. Materials and Methods

2.1. Dataset

The datasets mainly, which were collected from three species of tuna, include the original fishery

data and the marine environment factors. The raw fishery data were collected from the fishing

logbooks in the tropical waters of the Atlantic Ocean from 2016 to 2019, including vessel name,

operation date(day/month/year), operation site (latitude and longitude of the start position of each

deployment, and fishery information (species/daily catch/hook numbers), and the fishing area

was limited in 14◦20′S-15◦20′N, 47◦38′W–2◦30′E. 29 environmental factors include chlorophyll-a

concentration (chl-a); Wind Speed on the sea surface (WS), Eddy Kinetic Energy (EKE), Mixed Layer

Depth (MLD), the vertical temperature and dissolved oxygen concentration of 0, 50, 100, 200, 250, 300,

350, 400, 450, and 500m below the sea surface(respectively abbreviated as T0, T50, T100, T200, T250,

T300, T350, T400, T450, T500, D0, D50, D100, D200, D250, D300, D350, D400, D450, and D500); and the

vertical salinity of 100, 200, 400 and 500m below the sea surface(abbreviated as S100, S200, S400, and

S500). The wind speed data were derived from the database in the National Oceanic and Atmospheric

Administration (https://oceanwatch.pifsc.noaa.gov/). Other data were all downloaded from the

Copernicus Marine Environmental Monitoring Service center (http://marine.copernicus.eu). The

temporal resolution in all the datasets is modified in days, and the spatial resolution is also modified

in 0.5◦ × 0.5◦ uniformly. The rough CPUE distribution of the three tuna species is shown in Table 1.
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Table 1. The first quantile (Q1) and the second quantile (Q2) of three tuna sepecies datasets in the grids

of 0.5◦ × 0.5◦

Dataset Q11 Q21

Yellowfin tuna 0 0.435
Albacore tuna 0 0.833
Bigeye tuna 5 10.4

1 The first quantile of CPUE(individuals per 1000 hooks). 2 The second quantile of CPUE(individuals per 1000 hooks).

2.2. Data preprocess

The formula for calculating CPUE in each grid is as follows[12]:

CPUEkmnij =
Fkmnij

Hkmnij
× 1000 (1)

where CPUEkmnij, Fkmnij, andHkmnij are the CPUE, total individual catch of tuna, and the number of

hooks in k year, m month, n day, grid longitude i, grid latitude j, respectively. Bi-variate correlation

analysis of CPUE with all spatial, temporal and marine environmental factors in a grid with a temporal

resolution of days and a spatial resolution of 0.5◦ × 0.5◦ was carried out by using the statistical software

SPSS 23.0 to compute the Pearson correlation coefficients(P) and test for significance (assuming that

the level of significance is 0.05, i.e., P is less than 0.05), and the correlation coefficients, R, took values

in the range of correlation coefficient R is [-1, 1], and the larger the absolute value of R, the stronger the

correlation between the two variables. Environmental variables with P greater than 0.05 were deleted

for subsequent multicollinearity analysis.

The purpose of multicollinearity analysis of independent variables is to prevent the covariance

relationship existing between variables from interfering with the forecasting process of the model,

and the performance of which is rather reduced when there are more environmental factors. In

order to exclude the potential high correlation between the marine environmental factors and the

spatio-temporal variables, whether there is multicollinearity between the variables was judged

according to Variance Inflation Factor[13] (VIF), and the marine environmental factors with VIF

less than 10 were retained, and the variables with multicollinearity were deleted, which was calculated

as follows:

VIF =
1

1 − Ri
(2)

where Ri is the correlation coefficient of the ith variable when regressed on all other variables. The

diagnosis of multicollinearity ends when all variables with VIF greater than 10 are filtered out. Since

the scale and order of magnitude of the fishery production data and the marine environmental factors

are not uniform, the role of variables in the data analysis would be affected by the size of the value

itself if the raw data are used directly for analysis. In order to ensure the reliability of the experimental

data, it is necessary to standardize the raw data. We used the data normalization method as shown

below to map the value of each variable to the range of [0,1], and for each variable, the formula is:

x∗ =
x − xmin

xmax − xmin
(3)

where x∗ denotes the value of the variable after normalization, xmax denotes the maximum value of the

variable in the dataset, xmin denotes the minimum value of the variable in the dataset, and x denotes

the original value of the variable in the dataset.

2.3. Proposed method

How to solve the interference of noisy samples for model training while maximizing the value of

the original data is an important topic in the direction of "learning with noisy labels[14](LWNL)" in the
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field of supervised learning. One feasible approach is to measure the differences between the noisy

sample and the normal sample. Confident Learning grasps the whereabouts of the noise samples in

the dataset by estimating the joint distribution between the noise samples and the normal samples

and then outlining the demarcation between them. It does not work on model performance like other

traditional LWNL methods, but takes an alternative approach, working from the sample itself, so it is

a data-centered noise-containing learning method.

Firstly, the fishery dataset which is ready to be probed for noisy samples is cross-validated by

any model which has the ability to classif the input samples (e.g., Random Forests, Support Vector

Machine, XGBoost, Logistic Stochastic regression, etc.), and obtains the probability vector P̂k about

each sample being classified in the every classes:

P̂k :=
{
(xk, ỹ) ∈

(
R

d,Z
[m]
≥0

)
: p̂ (ỹ = i; xk, θ) , i ∈ [m]

}
(4)

where (xk, ỹ) denotes the kth sample in the fishery dataset, and since a sample contains multiple

marine environmental factors, the xk is bolded to indicate a feature vector. Since the confident learning

model is discussed in terms of noisy samples only, ỹ denotes the noise label and therefore normal

samples are not included in the analysis. In addition,
(
R

d,Z
[m]
≥0

)
denotes that the total number of

marine environmental factors about the sample is d. The attribute space of the samples is a set of

natural numbers and there are a total of m mutually exclusive class. Under the dichotomous condition,

m equals to 2. p̂ (ỹ = i; xk, θ) denotes the probability that the kth sample within the fishery dataset

is misclassified as class i, and the probability matrix P̂ of the fishery dataset can be obtained by

obtaining the probabilities vector P̂k of misclassification from all the samples. It should be noted that

the performance of the model will affect the the results of probing noisy samples, so it is better to

choose a model that is robust[15] to noisy data so that the anomalous samples can be detected as many

as possible. Through the probability matrix, we can find the confidence level t for each classification

case. In fact, the confidence level is the core of "confidence" in confident learning. The confidence level

is calculated as follows:

tj =
1∣∣X ỹ=j

∣∣ ∑
x∈X ỹ=j

p̂(ỹ = j; x, θ), j ∈ [m] (5)

where tj denotes the confidence level that a sample is classified as j . It is used to portray how

difficult it is for the sample to be classified as class j . Note that the reason why the right side of the

equation is divided by the total number of samples classified as j is to address the class-imbalance

problem, as avoiding biased classification results due to the imbalance[16] in the weight of one class of

samples among all samples. Dividing by the number of samples effectively solves the problem of class

imbalance; If the number of samples classified as j is high, the confidence level of being classified as

j is low; Conversely, if the number of samples classified as j is low, the threshold for confidence as j

becomes high. Using the confidence level, we can obtain the class which each sample is actually most

likely to be classified through the classification matrix X̂ ỹ=i,y∗=j as shown below:

X̂ ỹ=i,y∗=j :=

{
x ∈ X ỹ=i : p̂(ỹ = j; x, θ), j = argmax

l∈[m]: p̂(ỹ=l;x,θ)≥tl

p̂(ỹ = l; x, θ)

}
(6)

where y∗ denotes the true label and then X̂ ỹ=i,y∗=j denotes the subset of samples where the noise

sample is labeled i, but the label should actually be j. Samples that are not on the diagonal of this

matrix are determined to be noise, i.e., anomalous samples. In the case of binary classification, we can

repair those anomalous samples by reversing its labels.
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3. Experiments

3.1. Preparation for evaluation

In order to eliminate the negative impact of the class imbalance problem as much as possible, we

use Accuracy, Precision, Recall, F1-score, Receiver Operating Characteristic (ROC) and Area under

Curve (AUC) to comprehensively evaluate the effectiveness of proposed method. Since the fishery

forecasting problem in this paper can be statute to the problem of binary classification, we can record

the samples labeled as "1" as positive cases P, and the samples labeled as "0" as negative cases N, then:

Accuracy indicates the proportion of samples whose prediction results are consistent with the

actual labels of the samples, the accuracy reflects the differentiation ability of the model for the whole

of the dataset, the higher the accuracy, the preciser the result of classification in the dataset, the formula

is as follows:

Acc =
100% × (TP + TN)

TP + TN + FP + FN
(7)

Where TP(True Positive) denotes the number of samples with positive actual labels and positive

predictions; FN(False Negative) denotes the number of samples with positive actual labels and

negative predictions; FP(False Positive) denotes the number of samples with negative actual labels and

positive predictions; and TN(True Negative) denotes the number of samples with negative actual labels

and negative predictions, and those abbreviations mentioned above are also used in the evaluation

formulas below:

P =
TP

TP + FP
(8)

R =
TP

TP + FP
(9)

F1 =
100% × (2PR)

P +R
(10)

As mentioned above, P(Precision) indicates the proportion of positively labeled samples in the

predicted positive samples. The higher the precision, the stronger the forecasting performance to

identify negative samples. R(Recall) indicates the proportion of samples predicted to be positive

that are actually labeled as positive to the actual positive samples, the recall reflects the ability of

the classifier to identify positive samples in the dataset, the higher the recall, then the stronger the

forecasting performance to identify positive samples.F1(F1 score) is used to assess the stability of the

model classification performance.It denotes the reconciliation average of the model Precision and

Recall, the value domain is [0, 1], the higher the F1 score, the better the comprehensive performance of

the forecasting task.

The ROC curve is obtained by plotting the true rate TP and the false positive rate FP as the

vertical and horizontal coordinates, respectively, and the AUC value is the area under the ROC and

the horizontal coordinate with the value domain [0, 1].

The confusion matrix is a matrix which represents the forecasting results. In this paper, we use

heat map to visualize the result of the binary classification in the datasets of the three tuna species. The

numbers of TP, TN, FP, and FN obtained for each dataset are used to derive the confusion matrix of

each species.

3.2. Environments

The operating system used for model training is Windows 10, the CPU model is Intel Core

i7-10510U-2.30GHz, the GPU model is NVIDIA GeForce-MX250, the main memory size is 8G, the mass

memory size is 2TB, the programming language is Python 3.7, and the development framework is

scikit-learn 1.1.2.
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3.3. Results

3.3.1. Anomalous samples analysis

In general, the stronger the predictive performance of the model, the more accurate the estimation

of the true labels of the observed sample, i.e., the more accurate the judgment of the noisy samples

in the dataset. However, the study of model performance is obviously not the focus of this paper, so

we choose the classical random forests[17](other models are also optional) model to estimate the joint

distribution of observed and true labels, and probe the proportion and nature of noise in the tuna

datasets.

Table 2. Quantitative relationship between zeros and noisy samples in three datasets

Dataset1 Total number
of zeros

Total number
of noisy
samples

Noisy samples in Zeros Zeros in Noisy samples

Yellowfin tuna 5712 2812 53.77% 26.47%
Albacore tuna 4652 2206 43.20% 20.49%
Bigeye tuna 569 1608 6.15% 2.17%

1 The total number of samples in each dataset is 11252.

Figure 1. Confusion matrix for each tuna dataset

As shown in Table 2 and Fig 1, the Random Forest model is used to probe the noise in the yellowfin

tuna, albacore tuna, and bigeye tuna datasets in the tropical waters of the Atlantic Ocean, respectively.

In detail, yellowfin tuna as bycatch has the most zero-catch samples compared to the other two species,

with 50.76% of the dataset, but 66% of these zeros were consistent with the true labels, and 53.77% of

the zeros are judged to the noise, whereas, 38% of the non-zero samples are noise. About albacore tuna,
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also by-catch, the total number of zero-catch samples is smaller than for yellowfin tuna, the proportion

of noise in zeros is also lower, at 43.20%. About bigeye tuna, which is the main catch, the reason why

the percentage of zeros in the samples is only 5.05% is because the first quantile of CPUE in bigeye

tuna dataset is 5, greater than 0, then labels equal to 0 are not represent that its CPUE equal to 0. Due

to the scarcity of zero-catch data in bigeye tuna dataset, non-zero samples became the major factor

interfering with fishery forecasts, 45% of the non-zero samples were determined to be noise, and the

most dominant source of noise in the dataset.

In summary, whether for by-catch or main catch, zero-catch samples are not necessarily completely

abnormal, and non-zero samples are not always normal, especially in the main catch. While abnormal

samples certainly interfere with model training and prediction, uniformly modifying the labels of

zero-catch samples will also affect the model’s forecasting performance seriously.

3.3.2. Forecasting performance

Unlike the previous subsection which will treat the entire dataset for noise detection, this

subsection uses 75% of the samples in the dataset for model training and the remaining 25% of

the samples for testing the model’s forecasting performance. In order to exclude the effect of repeated

learning of samples in the test set on the forecasting performance, we first estimate the joint distribution

of noisy samples and true samples in the training and test set[18] using two independent models and

repair the noisy samples, and then use the third model to train on the repaired training set and assess

the forecasting performance on the test set.

In order to validate the model universality of the anomalous sample detection method proposed

in this paper and its effectiveness for the performance enhancement of fishery forecasting, we use three

classical machine learning models (Random Forest, Support Vector Machine[19], and XGBoost[20])

to carry out the task of forecasting three species of tuna under the case of binary classification. The

classical models are chosen because it is important to exclude as much as possible the positive impact

of the generalization ability of the model structure on the performance of fishery forecasting, and

to highlight the effectiveness of the anomalous sample detection method we proposed. In addition,

although a variety of fishery forecasting models are currently available, the rate of improvement of

model forecasting performance remains slow even stuck.

From the performance feedback of the three models on the three tuna datasets in Figures 2–4, it

can be seen that the performance of the three fishery forecasting models is still significantly improved

when only the default hyperparameters are used, which verifies the model universality as well as the

effectiveness of the proposed method.
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Figure 2. The forecasting performance of three different kinds of model in the albacore tuna dataset.

Figure 3. The forecasting performance of three different kinds of model in the bigeye tuna dataset.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2081.v1

https://doi.org/10.20944/preprints202308.2081.v1


9 of 11

Figure 4. The forecasting performance of three different kinds of model in the yellowfin tuna dataset.

4. Discussion

In this paper, we take three species of tuna in the tropical waters of the Atlantic Ocean as

experimental objects, and propose an anomalous fishery samples detection method applicable to both

zero-vcatch samples and non-zero samples by utilizing the confident learning theory in learning with

noisy labels. Compared with previous work for analyzing anomalous samples in fishery datasets

(especially zero-catch samples), this paper proposes the concept of noise for the first time in the field of

fishery forecasting, and succeeds in analyzing zero-catch samples and non-zero samples uniformly

as noise. The analysis results show that there is a great heterogeneity among zero-catch samples (as

well as among non-zero samples), i.e., a significant portion of zero-catch samples are corrected-labeled,

revealing that the method of uniformly treating zeros in the previous studies is not conducive to

improving the performance of fishery forecasting.

On the other hand, the method proposed in this paper quantitatively analyzes and detects a large

number of anomalous samples in the non-zero samples, revealing that the large amount of noise in

the non-zero samples is also an important reason hindering the improvement of the performance of

fishery forecasting. The experimental results show that after detecting and repairing all the noises in

the fishery dataset using the method we proposed, the forecasting performance of the three classical

machine learning models (Random Forest, XGBoost, and Support Vector Machine) on the fishing

dataset is significantly improved, confirming the effectiveness of the proposed method.

Although this paper has achieved some reasonable progress on the treatment of zero-catch

problems by using the confident learning theory to unify zero-catch samples and non-zero samples

together to solve the noise problem, it is possible that the fishery forecasting model has little ability to

classify the hard samples to be poorly classified. Therefore, there are still some points that need to be

further researched:

(1)we plan to design a strongly-coupled sample-denoising method by combining the confident

learning theory and the hard negative mining theory[21] at the next stage, which can enable the model
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to exclude the interference of noisy samples while can improve the robustness and classification ability

of itself for difficult samples, so as to obtain higher level.

(2)The confident learning theory adopted in our method can only do the preliminary quantitative

analysis of the noise samples, and in the future, we plan to further expand the theory to quantitatively

analyze the heterogeneity among zero-catch samples (as well as non-zero samples), such as quantifying

the noise content of each noise sample and the signal-to-noise ratio of the dataset, or analyzing the

causes of the anomalous samples through the expression of the environmental factors at the deeper

level. In this way, the performance of the noise detection method for fishery data under the framework

of learning with noisy labels can be improved.
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