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Abstract: The building automation control is a crucial factor for improving buildings energy efficiency and
management, as well as improving the electricity grid's reliability indices. This paper presents the
methodology, describes the necessary technology requirements and presents the decentralized building
automation novel algorithm for Efficient demand side management in a building. All these are applied in an
experimental university microgrid and the results are presented in terms of energy saving in kWh, money in €
and working hours.
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1. Introduction

The primary motivation for any energy management system is the economic gain. Pricing
systems define the appropriate characteristics of smart household management systems (BMSs),
which have a substantial impact on the complexity and dependability of BMSs [1]. Power-grid
authorities recently changed the household electrical pricing to encourage proper demand-side
control by homeowners. Furthermore, many countries support small-scale PV integration on
residential or commercial rooftops and net metering [2,3].

On the other hand, RES-based electricity generation is unaffected by other conventional
sustainable resources or variations in energy use. Sustainable generating is planned in accordance
with expected load levels as well as some technological and environmental constraints. However,
weather-dependent RES, such as PV facilities and wind farms, must run at maximum output
whenever technically practicable in order to show a high proportion of RES in the electric energy
production mixture. When considering limited or isolated energy networks (e.g., islands), these
operating criteria cannot be met and may result in insufficient energy supply. Furthermore, as the
proportion of renewable energy sources (RESs) in electricity generation grows, this problem becomes
increasingly pressing.

All of the concerns listed above can be solved by integrating energy storage systems and
controlled loads into the grid, as well as integrating enhancements to the control infrastructure and
algorithms in a non-invasive manner for the distribution network. The microgrid, which is commonly
characterized as a distribution grid incorporating distributed generators (DGs), energy storage units,
and regulated loads [1], appears to be one of the most significant aspects of future power grid
topologies. The auxiliary services that a microgrid's supply and demand sides could provide are
predicted to improve the value of the future smart grid [2-7]. In general, load levelization and
demand-side management are widely employed to provide services such as voltage regulation and
energy management for isolated microgrids [3,7,8].

Because they are programmable, these authorized automation devices are typically put at the
low-voltage sector of the grid and have numerous capabilities for controlling electric energy use.
Their operation is based on a shared data bus, which allows simple binary signals to be transmitted
to activate their varied capabilities. Accurate assessment and proper control of the State of Charge
(S50C) of energy storage devices are critical during islanded operation of microgrids [12,13].
According to [14], faulty control architecture and algorithms can have a severe impact on grid
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operation, resulting in inaccurate SoC estimate as well as a decrease in customer power supply
reliability. As a result, it is obvious that the control architecture of a smart distribution grid must be
compatible with and adequately interactive with energy storage devices and existing bus
communication technologies.

The developers of [10] use the OPC server solution to address the compatibility issue between
the microgrid's control system and bus communication technologies. This technique has significant
drawbacks, including a relatively expensive cost, the requirement of permanent additional hardware
installation, and software version compatibility concerns. Furthermore, in this scenario, the control
algorithm of an experimental microgrid without bus technology, as described in [15], should be
exposed to numerous changes. Because most DGs' principal energy sources (PV and wind) are
stochastic in nature, incorporating weather prediction into microgrid control algorithms will be
critical [6,7], however this is not a component of this paper.

In order to achieve optimal demand-side management, this paper describes the control
infrastructure and algorithm of an experimental smart microgrid that is compatible with KNX bus
systems [9,16,17] in a very simple and cost-effective manner. The first section describes the smart
microgrid topology by emphasizing the unique control infrastructure components that transform the
distribution network into a "smart grid.", the details of the suggested technique for integrating KNX
bus devices into the microgrid and then, a brief overview of the microgrid's control method is offered,
including interoperability with KNX bus systems. Finally, the experimental results of the microgrid's
operation are shown. According to the findings, incorporating smart cities (bus) systems might
greatly improve consumer reliability performance and the supply/demand balance of microgrid-
based smart grid topologies.

2. Materials and Methods

In the experimental microgrid of UoWM, every DC load, generator, or energy storage device in
a microgrid-based smart distribution grid architecture is equipped with individual DC-AC inverters
and is connected to the AC microgrid via KNX actuator and multi tariff energy meter.

The microgrid is made up of two 1.1 kW PV-inverter with six connected PV panels each, three
loads with a maximum consumption of approximately 1500 W (1 AC-motor, incandescent lamps).
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Figure 1. Implementation of a smart distribution grid topology.
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Interoperability with KNX system

In this paper we have installed some KNX devices: a KNX power supply 160mA, a switch on/off
actuator of 2 channels, a dimmer actuator of 4 channels, an energy 3 channels multi-tariff meter, a
basic weather station, a push button with room temperature control, a presence detector with light
control and a KNX server for the visualization.

The KNX server (HomeLynk from Schneider Electric) is required to incorporate KNX bus
technologies into real-time measurements and decision systems in general. In the case of the
experimental microgrid, in addition to the KNX devices the KNX HomeLynk sever, as illustrated in
Figure 2, should be installed on the microgrid. Load 1 in Figure 2 represents the motor
(heating/cooling pump), while Load 2 and Load 3 represent a 500W incandescent light group.

Table 1. Lab appliance types.

Component Load/source type Rating
PV modules Source 2kW
Light 1 Managed load 250W
Light 2 Managed load 250W
Heating/cooling pump Managed load 1 kW
230V T 1
TCP/IP
Modbus J T
. "

Figure 2. diagram of the BMS.

The BMS, checks the PV energy, the real time energy price and the average energy price through
the multi tariff energy meter continuously every 15 minutes. Recent smart homes have several
possibilities of room occupants. According to this study, the optimal schedule of occupant rooms, i.e.,
the comfort zone, is defined and suggested to home owners. The system checks the internal and
external brightness of the room, the room temperature, the photovoltaic energy flow according to the
weather prediction the electricity real time price and the average electricity price According to all
these parameters the system dims up or down the light in the room, changes the temperature setpoint
and activates the heating or cooling and activates the electric vehicle (EV) charge station.

Cost effective demand side-management

As previously stated, a simple and low-cost alternative option for integrating KNX-controlled
loads into the microgrid control strategy is devised. KNX is the global standard for all building and
smart city applications control.
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The majority of KNX-compatible load control devices are activated by KNX switches as well as
traditional push buttons, the manipulations of which can be converted into binary signals. When the
push button on a KNX dimmer is pressed briefly, the signal is translated into a pulse in the dimming
mechanism. The inbuilt KNX program in the gadget transforms this pulse to full power for the lamps,
and the lamps consume full power. On the other hand, sustained switch pressure indicates that the
KNX device gets 1 bit signals sequentially. In this situation, the device begins lowering the voltage of
the lamps until the pressing stops or the voltage is reduced to the final value set by the dimmer's
original program. The lights and electricity usage are both lowered. If the button is held down for an
extended period of time, the brightness is increased, and so on.

There are two main scenarios according to the flow chart in Figure 3. In scenario 1 the
photovoltaic energy is greater than the demand energy, while in scenario 2 the photovoltaic energy
is less than the demand power and the real time electricity price is greater than the average electricity
price. In scenario 3 the photovoltaic energy is less than the demand energy and the real time electricity
price is less than the average electricity price.

When the photovoltaic power is greater than the demand power, then the power source is the
photovoltaic, otherwise the power source is the grid.

The technical features of the multi-tariff energy meter are presented below:

Table 2. Multi-tariff energy meter characteristics.

Direct measurement (up to 63 A)

Active Energy measurements

Four Quadrant Energy measurements

Electrical measurements (I, V, P, ...)

Multi-tariff (internal clock)

Multi-tariff (controlled by digital inputs)

Measurement display

Digital inputs

Programmable digital outputs

Overload alarm

Modbus communication

2 (2 (2 = = |2 N |k 2|2 <2 | <

MID (legal metrology certification)

The control algorithm's inputs are real-time measurements that are updated by the HomeLynk
at each duty cycle and output variables that are supplied back into the iterative control method at the
end of its execution period.

The algorithm's real-time measurement inputs are:

e the PV energy

o the signal for multi-tariffs

e the L1 energy in channel 1 of the dimmer
e  the L2 energy in channel 1 of the dimmer
e  the motor (heating/cooling) energy

e theinternal lux in the lab

e  the external lux

e  the room temperature

e  the room temperature setpoint


https://doi.org/10.20944/preprints202308.2060.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 August 2023 d0i:10.20944/preprints202308.2060.v1

The HomeLynk algorithm

The HomeLynk algorithm is presented in Figure 3. PV energy is the energy from photovoltaic
panels, Dem is the demand energy, T is the room temperature, L is the internal brightness, REP is the
real time energy price, and AP is the average energy price. According to the algorithm in the Figure
3 there are the cases below:

e  The photovoltaic energy is greater than the demand energy, the room temperature is less than
22 oC (winter) or greater than 27 °C, and the internal brightness is less than 200 lux, then energy
source is the PV, the temperature setpoint is 24 °C (winter) or 25 °C (summer) and the
heating/cooling pump is on and the lamps L1 and L2 are dimmed up at X % brightness as
follows: internal brightness + X% brightness = 200 lux.

e  The photovoltaic energy is greater than the demand energy, the room temperature is less than
22 °C (winter) or greater than 27 °C, and the internal brightness is greater than 200 lux, then
energy source is the PV, the temperature setpoint is 24 °C (winter) or 25 °C (summer) and the
heating/cooling pump is on and the lamps L1 and L2 are switched off.

e  The photovoltaic energy is greater than the demand energy, the room temperature is greater
than 22 °C (winter) or less than 27 °C, and the internal brightness is less than 200 lux, then energy
source is the PV, the temperature setpoint is 24 °C (winter) or 25 °C (summer) and the
heating/cooling pump is on and the lamps L1 and L2 are dimmed up at X % brightness as
follows: internal brightness + X% brightness = 200 lux.

e The photovoltaic energy is greater than the demand energy, the room temperature is greater
than 22 °C (winter) or less than 27 °C, and the internal brightness is greater than 200 lux, then
energy source is the PV, the temperature setpoint is 24 °C (winter) or 25 °C (summer) and the
heating/cooling pump is on and the lamps L1 and L2 are switched off.

e  The photovoltaic energy is less than the demand energy, the real time energy price is greater
than the average price, the room temperature is less than 22 °C (winter) or greater than 27 °C,
and the internal brightness is less than 200 lux, then energy source is the grid, the temperature
setpoint is 22 °C (winter) or 27 °C (summer) and the heating/cooling pump is on and the lamps
L1 and L2 are dimmed up at X % brightness as follows: internal brightness + X% brightness =
200 lux.

e The photovoltaic energy is less than the demand energy, the real time energy price is greater
than the average price, the room temperature is less than 22 °C (winter) or greater than 27 °C,
and the internal brightness is greater than 200 lux, then energy source is the grid, the
temperature setpoint is 22 °C (winter) or 27 °C (summer) and the heating/cooling pump is on
and the lamps L1 and L2 are switched off.

e  The photovoltaic energy is less than the demand energy, the real time energy price is greater
than the average price, the room temperature is greater than 22 °C (winter) or less than 27 °C,
and the internal brightness is less than 200 lux, then energy source is the grid, the temperature
setpoint is 22 °C (winter) or 27 °C (summer) and the heating/cooling pump is on and the lamps
L1 and L2 are dimmed up at X % brightness as follows: internal brightness + X% brightness =
200 lux.

e  The photovoltaic energy is less than the demand energy, the real time energy price is greater
than the average price, the room temperature is greater than 22 °C (winter) or less than 27 °C
(summer), and the internal brightness is greater than 200 lux, then energy source is the grid, the

temperature setpoint is 22 °C (winter) or 27 °C (summer) and the heating/cooling pump is on
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and the lamps L1 and L2 are switched off.

e  The photovoltaic energy is less than the demand energy, the real time energy price is less than
the average price, the room temperature is less than 22 °C (winter) or greater than 27 °C
(summer), and the internal brightness is less than 200 lux, then energy source is the grid, the
temperature setpoint is 24 °C (winter) or 25 °C (summer) and the heating/cooling pump is on
and the lamps L1 and L2 are dimmed up at X % brightness as follows: internal brightness + X%
brightness =200 lux.

e  The photovoltaic energy is less than the demand energy, the real time energy price is less than
the average price, the room temperature is less than 22 °C (winter) or greater than 27 °C
(summer), and the internal brightness is greater than 200 lux, then energy source is the grid, the
temperature setpoint is 24 °C (winter) or 25 °C (summer) and the heating/cooling pump is on
and the lamps L1 and L2 are switched off.

e  The photovoltaic energy is less than the demand energy, the real time energy price is less than
the average price, the room temperature is greater than 22 °C (winter) or less than 27 °C
(summer), and the internal brightness is less than 200 lux, then energy source is the grid, the
temperature setpoint is 24 °C (winter) or 25 °C (summer) and the heating/cooling pump is on
and the lamps L1 and L2 are dimmed up at X % brightness as follows: internal brightness + X%
brightness =200 lux.

e  The photovoltaic energy is less than the demand energy, the real time energy price is less than
the average price, the room temperature is greater than 22 °C (winter) or less than 27 °C
(summer), and the internal brightness is greater than 200 lux, then energy source is the grid, the
temperature setpoint is 24 °C (winter) or 25 °C (summer) and the heating/cooling pump is on

and the lamps L1 and L2 are switched off.
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Figure 3. HomeLynk flow chart algorithm.

The change of the temperature setpoint from 22 °C to 24 °C (winter) or from 27 °C to 25 °C, when
the real time energy price is less than the average energy price, leads to energy efficiency and to
reduction of the energy cost. In Greece the average energy price for the homes is 0,18 €/Kwh, while
the real time energy price is between 0,06 €/Kwh and 0,12 €/Kwh.

3. Results

The results show that none of the loads are totally rejected when KNX automation system is
used for load control actions instead of traditional on-off control [18]. In this paper we present the
results of the HomeLynk server trends application in a single day of summer when the environmental
temperature is 35 °C. In the Figure 4 is presented the low and the high electricity price during the
day. As one can see the low-price periods are 24:00 — 06:00, 15:00 — 17:00 and 19:00 — 24:00. In the
remaining time during the day there is the high electricity price. In the next two figures (Figures 5
and 6) we present the temperature setpoint and the room temperature. As one can see, in the low-
price periods the temperature setpoint is 25 °C and in the high-price periods the temperature setpoint
increases automatically to 27 °C.
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Figure 6. Room setpoint temperature.

In the next five figures (Figures 7-11) we present the room internal brightness according to the
external brightness, the brightness of the lamps L1 and L2 and the energy consumption of the lamps
L1 and L2. The lamps L1 and L2 are dimmed up. During the low price and the if the total room
brightness is less than 200 lux the lamps are dimmed up at X % brightness as follows: internal
brightness + X% brightness = 200 lux.
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Figure 7. Room internal brightness.
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Figure 9. L1 energy consumption.
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Figure 10. L2 brightness value.
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Figure 11. L2 energy consumption.

The Figure 12 below shows the motor energy consumption individually and the figure presents
the motor energy consumption, the room setpoint temperature, the room temperature according to
the low price.

In the Table 3 the results of the first experiment are presented
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Figure 12. Heating/cooling pump energy consumption.
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Figure 13. Low price, room temperature, setpoint temperature and heating/cooling pump energy

consumption.
Table 3. Results during the day.

Hours Temperature °C Energy consumption Wh
01:00 25 403
02:00 25 406
03:00 25 403
04:00 25 405
05:00 25 403
06:00 25 403
07:00 25.7 404
08:00 27 0
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09:00 27 0
10:00 27 0
11:00 27 0
12:00 27 403
13:00 27 406
14:00 27 403
15:00 27 405
16:00 26.5 403
17:00 25.3 405
18:00 25.7 0
19:00 26.2 0
20:00 26 0
21:00 25.1 0
22:00 25 405
23:00 25 403
24:00 25 405
Average 25.89 217.88

After these results a second experiment is following without the low-price signal and the
HomeLynk algorithm. According to this, the energy consumption is presented when the setpoint
temperature is always to 26 °C during the day. In the Table 4 the results of the second experiment are
presented.

Heating/cooling pump energy with 26 C | PR

< August 2023 >
Mo Tu We Th Fr Sa Su

11 2 3 4 5 6
7 8 9 10 11 12 13

400
14 15 16 [ 18 19 20
21 22 23 24 25 26 27
28 29 30 31 1 2

Day v

Show

Current Previous
previous

Single trend Multiple trends

Export trend data

Figure 14. Heating/cooling pump energy consumption with temperature setpoint at 26 °C.

Table 4. Results during the day.

Hours Temperature °C Energy consumption Wh
01:00 26 403
02:00 26 406
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03:00 26 403
04:00 26 205
05:00 26 405
06:00 26 403
07:00 26 407
08:00 26 403
09:00 26 405
10:00 26 203
11:00 26 0
12:00 26 403
13:00 26 406
14:00 26 403
15:00 26 405
16:00 26 403
17:00 26 405
18:00 26 403
19:00 26 406
20:00 26 196
21:00 26 403
22:00 26 405
23:00 26 403
24:00 26 405
Average 26 361.91

By comparing Tables 3 and 4, the suggested system transfers the selected load (heating/cooling
pump) to a time with low electricity prices and the total energy consumption is 217.88Wh with an
average room temperature 25.89 °C, instead of 361.91Wh with an average temperature 26 °C.

Taking account only the energy consumption of the heating/cooling pump and an average
environmental temperature in the summer of 35 °C, the monthly energy cost savings are too high.
The total monthly energy is consumption is lowered to 6,536.4 Wh instead of 10,857 Wh, reducing by
40%.

The suggested BMS schedules the lab appliances based on the tariff category, which changes
based on the total accumulated usage during the day. The proposed BMS take two major factors into
account in order to provide a comfortable lifestyle for the users. Users can change the ambient
temperature to their favorite region. Recent smart homes allow for a variety of room inhabitants. The
best schedule of inhabitant rooms, i.e., the comfort zone, is determined and advised to home owners.
The area covered by a heating/cooling pump (chiller) is simply adjusted to minimize energy
consumption by designating comfort zones, i.e., room/rooms that vary depending on the available
tariff category. Second, all appliances can be switched manually to satisfy the sudden wants of home
residents.

4. Discussion

The next steps of the research of the authors include the integration of energy storage (14,4 kWh
batteries and 2 hydrogen fuel cells of 1,1 kWs each) into the microgrid, which will also be controlled
by KNX decentralized algorithms, highlighting also the impact of energy storage in grid stability and
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grid ancillary services indices, as well as comfort indices. Installing a battery will increase probably
the economic benefits of the home PV system. Vehicle-to-home will be studied also as an alternative
source for smart homes. Therefore, there will be economic benefit of using electric vehicle batteries
as a home source with the studied slab tariff.

5. Conclusions

Many developing countries, including Greece, use IBR tariffs for residential structures or
"homes." There have been no significant studies on this popular tariff in relation to smart homes.

The suggested BMSs rely primarily on a load-shifting technique, which moves controllable loads
to low-cost periods to avoid high loading during peak hours. Many BMSs minimize some loads, such
as heating/cooling pumps and lighting, to reduce total spent energy. All of these options were
investigated for the IBR pricing structure.

This research looks at a developing country's household energy system that uses the Greek
block-rate tariff.

Because of the block-rate tariff structure, shifting loads such as heating/cooling pumps and
lighting has a small influence on total electrical cost. The total monthly cost could be reduced to 40%
of the default value..
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