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Abstract: This paper investigates the roll parameter estimation of periodic disturbances where the 

amplitude, frequency, offset, and phase are hardly recognized in real practice. The key problem is 

to make an estimation that could eliminate the unknown disturbance parameters. An adaptive 

mechanism applies these four parameters to the globally exponential convergence using linear 

second-order filters and parameter estimation errors. Then, a backstepping controller is employed 

to make an exponential convergence to zero of the state variables. Moreover, reservoir computing 

is used to forecast chaotic roll motions to support predictability using Lyapunov exponents and the 

Poincaré map. Numerical simulations are demonstrated to validate the dynamical behaviors and 

efficacy of the proposed control scheme with machine learning.  

Keywords: roll prediction; reservoir computing (RC); chaotic roll motions; backstepping 

 

1. Introduction 

Estimating the sinusoidal signal is a significant problem for the control system. It is essential to 

identify the parameters of unknown periodical excitations in tracking and rejection control [1-2]. For 

example, estimating the frequencies of unknown disturbances in practice is difficult because the 

waves acting on a ship are nonstationary and unknown in advance [1]. Under maneuvering 

conditions, it could hardly measure the exact amounts of time-varying disturbances for a ship, such 

as waves, winds, currents, ice-covered waters, green waters, etc. To realize the safe voyage of a 

nonlinear vessel in unexpected sea situations, this paper investigates the parameter estimation of 

unknown disturbances and the suppression of chaotic roll motions with its prediction.  

It is known that a periodic excitation consists of the sum of frequency, amplitude, bias (offset), 

and phase (randomness). The word periodic is still careful since it is close to approximately periodic, 

including perfect condition [3]. As for the real-time processing of chaotic motion in nonlinear 

systems, a potential solution based on Fourier analysis is deemed one of the unwelcome methods 

owing to the maximization of the periodogram [4]. Beyond the perspective of signal processing only, 

further study is needed to converge the parameter estimation related to the tracking performance of 

adaptive mechanisms [5]. The effect of nonlinear plants on parameter convergence is well explained 

in [6].  

A similar work [4] identified the full parameters using a fifth-order estimator, showing the 

complexity and computational cost. The frequency and other parameter estimation techniques are 

separated in the present paper. Other parameter estimations of amplitude, bias, and phase are treated 
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using the simple update law without any observers, as in [2, 7]. To design the disturbance rejection 

control, precise frequency estimation will be guaranteed with finite-time convergence like [1]. As for 

the problem of periodic disturbance cancellation, readers may refer to [8]. 

To achieve the stability and robustness of a nonlinear system [5], this paper implements linear 

second-order filters and parameter estimation errors to converge the global parameter estimation 

without a higher-order estimator. Such a filter operation [9] overcomes the infinitely increasing 

auxiliary vector [10]. Then, a backstepping control will be designed to suppress the chaotic roll 

motions of the nonlinear system under regular disturbances. 

Chaos is aperiodic, long-term motion in a deterministic system [11]. Even slight initial conditions 

(IC) changes result in various outcomes [12]. From a positive viewpoint, the sensitiveness of a chaotic 

dynamical system has merit because, without the whole reconstruction of a system, it shows a 

different periodic orbit using a light adjustment of parameters [13]. However, controlling the 

nonperiodic behaviors of a chaotic system is not a trivial issue in the real world. 

Recently, a simple or complex system under a veil of chaos has been studied with machine 

learning (ML) techniques, which contribute to predicting dynamic behaviors [14]. Notably, echo state 

networks (ESN, [15]), which are termed reservoir computing (RC, [16]), are efficient and easy to apply 

to black box modeling of dynamical systems [17]. As it is known, RC is a recurrent neural network 

(RNN)-based framework [18] that enables the readout to extract the desired output using a linear 

mapping [19]. The sensitivity of a chaotic system challenges long-term prediction [12], which only 

works if the initial uncertainty is not quickly multiplied by the evolution law [20]. However, RC is 

preferable for long-term prediction because it remembers past values and handles external 

disturbances, where all the past elements are implicitly contained in a state vector [18]. Moreover, 

this paper briefly starts to predict the chaotic roll motions before their manipulation and employs the 

Lyapunov exponents and the Poincaré map. 

The remainder of the paper is organized as follows: A prediction scheme with RC, control 

synthesis for chaotic roll regulation using backstepping, estimation of frequency, and other 

parameters will be studied in Section 2. Some numerical simulations verify the proposed schemes in 

Section 3. The dynamical theory will be used to explore the uncontrolled chaotic roll responses using 

the bifurcation diagram, Poincaré map, and Lyapunov exponents (LEs). Finally, final remarks are 

given along with the following research directions in Section 4. 

2. Materials and Methods 

2.1. Prediction of chaotic roll motions using RC 

One may experience walking around Lotus Pond, where the green leaves are naturally situated 

in a reservoir. In contrast to conventional RNN, only the readout weight is trained; input weight (
inW

), feedback weight (
fbW ), and adjacency matrix (

resW ) are fixed and chosen randomly. In some simple 

applications where feedback response is not required, 
fbW  can be omitted [21]. Based on similar 

effects on reservoirs, 
inW  , and 

fbW  are primarily constructed similarly. Both input and feedback 

responses can be used for generating output [22]. For a reservoir with N  neurons, the structure of 

a general ESN, having N  reservoir states 
Nr∈ℜ , I  inputs 

I

inu ∈ℜ , and O outputs 
O

outy ∈ℜ , is 

illustrated in Figure 1 [21]. The linear mapping input-output at a perceptron is presented in Figure 1. 
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Figure 1. Generic structure of RC framework [21]. 

According to [22-23], the complete form of the update equation for reservoir state vector r(n) is 

defined as follows: 

              ( ) tanh ( ) ( 1)
( )

in

in res fb out

in

b
r n W W r n W y n

u n

  
= + + −     

                       (1) 

            ( ) (1 ) ( 1) ( )r n r n r nα α= − − +                   (2) 
where 

inb  is the bias of the reservoir’s input; inu  is the input fed to the reservoir at the sample thn ; 

inW  is the input weight matrix from input to the reservoir; 
resW  is the adjacency matrix describing 

the connection of the nodes in the reservoir; 
fbW  is the feedback weight matrix from the output back 

to the reservoir, α  is the leaking rate ( 0 1α≤ ≤ ); ( ) tanh( )f x x=  is the activation function. The 

weighted sum of the input states is then fed through an activation function to give the final output. 

The most basic activation function is the step function. However, smooth (sigmoid) functions are 

mostly preferred, such as hyperbolic tangent functions tanh( )x . Equations (1) and (2) indicate that 

the reservoir state ( )r n  will be updated based on the current input 
inu  and the feedback from the 

previous sample ( 1)outy n − . The feedback term can be omitted in some tasks where the feedback 

state is unnecessary. The output state 
outy  of the reservoir at the sample is achieved from a linear 

relationship of the reservoir state and input state as below [22-23] 

( ) ( )out outy n W r n=          (3) 

where 
outW  is the weight matrix from the reservoir to the output. In the training procedure, the input 

data is the reference data (teacher data). The actual output of the reservoir would be replaced by the 

desired output [22]. Within a training duration of T  samples, all input and output data will be 

collected into matrices ( )yN T
Y

× and ( )xN T
X

× , by concatenating T columns ( ) ( )refY n y n=  and 

( ) , ( ), ( )
T

out ref
r n b u n r n =   . Regarding equation (3), the linear relation between Y  and X  is defined 

as 

outY W X=             (4) 

At the end of the training phase, the trained weight matrix 
outW  can be computed analytically 

using Ridge regression. 

1( )T T

outW YX XX Iν −= +        (5) 
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where ν  is a parameter added to avoid overfitting. After the training phase, the output weight 
outW  

is computed and can be used for continuous computation. The actual output of the iteration can be 

reapplied as input for the next iteration. The teacher data is now unnecessary because the reservoir 

computer can keep on generating prediction data. As presented in equation (3), the actual output of 

the reservoir can be obtained.  

2.2. Control synthesis for chaotic roll suppression using backstepping algorithm. 

The idea of backstepping is to recursively design a controller by considering some of the state 

variables as “virtual controls” and creating intermediate control laws for them [24]. This method is 

one of the proper nonlinear controllers for regulating the desired ship motions [25-26]. By adding the 

actuation input u  to a ship model [27-28], the complete control system represents a forced rolling 

system with active control input by  

                         3
1 2 ( ) ( )x b x b x x x kx Fcos t u t+ + − + = Ω +            (6) 

where the periodic excitation cos( )F tΩ  is given as a time-varying disturbance ( )d t . In fact, an 

active controller is essential to achieve a satisfactory anti-rolling effect because roll motions may 

result in the phenomenon of resonance or parametric instability [29-30]. With selecting the state 

variables as 1x x=  and 2x x= , the governing equation (6) can be rewritten into the state-space 

representation as follows: 

                  ( ) 1,x Ax f x t Bu B d= + + +                     (7) 
where state vector ( x ), system matrices ( 1A, B, B ), and nonlinear term ( f ) are described by 

                      
( )

1

2 1

1 3
2 2 2 1

0 1
, ,

1

00
, ,

1

x
x A

x b

B B f x t
b x x kx

   
= =   −   

  
= = =    − −   

               (8) 

The two state variables 1x  and 2x  are rewritten in the state-space representation form: 

                    1 2
3

2 1 1 2 2 2 2 1

x x

x x b x b x x kx d u

=


= − − − + +


                 (9) 

From the first equation in (9), 2x  is considered a virtual control input for 1x . To make 1x  

exponentially converge to zero, the desired value for 2x  is chosen at 2 1 1dx xγ= −  where 1γ  is a 

positive constant. Consequently, 2 2dx x→  would yield the solution 1
1 1 1 (0) t

dx x x e γ−→ = . Declare 

2 2 2 2 1 1dz x x x xγ= − = +  as tracking error of state 2x  and define a Positive Definite (P.D, [31]) 

Lyapunov function as 

                          2 2
1 1 2

1 1
2 2

V x z= +                   (10) 
Then the derivative of 1V  is given as 

     
2

1 1 1 2 2 1 1
3

2 1 1 2 1 2 2 2 2 1(2 )
V x x z z x

z x x b x b x x kx d u

γ

γ

= + = −

+ + − − − + +

  
           (11) 

As 2z  should be asymptotically stable, 1V
  is expected to be a Negative Definite (N.D) function. 

In case the disturbance d  is well-defined, the control input u  can be chosen as  

       3
1 1 2 1 2 2 2 2 1 2 2( ) 2u t x x b x b x x kx d zγ γ= − − + + + − −           (12) 

where 2γ  is a positive constant, resulting in a P.D function 2 2
1 1 1 2 2V x zγ γ= − − . However, the 

amplitude and frequency of disturbance are hardly recognized, meaning that the control input u  

cannot be defined as (12). In fact, u is dependent on the estimated value d  instead of d , so the 

controller in (12) should be rewritten as 

            3
1 1 2 1 2 2 2 2 1 2 2( ) 2u t x x b x b x x kx d zγ γ= − − + + + − −        (13) 

which would yield 
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                         2 2
1 1 1 2 2 2 ( )V x z z d dγ γ= − − + −                  (14) 

The critical problem is to make an estimation d  that could eliminate the term 
2 ( )z d d− . In 

general, four crucial features must be determined to completely define a sinusoidal signal, including 

offset, amplitude, frequency, and phase. Without loss of generality, assuming that 
 ˆ ˆ ˆ( ) cos( ) sin( )od t F a t b t= + Ω + Ω  where ôF  is the estimate offset, Ω̂  is the estimate frequency, 

 2 2
F̂ a b= +   is the estimate amplitude and ( )ˆˆ ˆarctan /b aψ =  is the estimate phase, the following 

subsections will present an adaptive mechanism to update those components. 

2.3. Frequency estimation 

Let us introduce a second-order filter for disturbance d  as shown below  

                            0
2

1 2

( ) ( )s d s
s s

λ
ξ

λ λ
=

+ +
                  (15) 

where 0 1 2, ,λ λ λ  are positive constants that make 2
1 2( )s s sλ λΛ = + +  a Hurwitz polynomial [2]. 

Neglecting the IC, it is simple to obtain the relation:  

                     2( ) ( ) ( )t t tξ ξ ξ= −Ω = −Θ                             (16) 
By choosing the updated law [1] 

                       

 




3

2 2
3 3

χ γ ζζ

χ γ ζ γ ζ

Ω = Θ

Θ = +


= − Θ −




 

                     (17) 

With a positive constant 3γ , the estimate error  Ω = Ω − Ω  is guaranteed to converge to zero as 

explained below 

                            





2
3 3

2 2 2
3 3 3 3
2

3

( ) ( )

χ γ ξ γ ξξ

γ ξ γ ξ γ ξ γ ξ ξ

γ ξ

Ω = Ω − Ω

= − − −

= − − Θ − − − Θ

= − Θ


 

 
    

 

                    (18) 

With a P.D Lyapunov function  
2 1

1
2

T

V = Θ Γ Θ  where 1Γ  is a symmetric P.D matrix, using the 

result in (18) the following can be obtained 

                     2 2
2 1 1 3 3 2( ) 0

T T

V Vγ ξ γ ξ= Θ Γ Θ = Θ Γ − Θ = − ≤                    (19) 
It is clear from (19) that 2V

  is a non-increasing function and hence 2V  is bounded. According 

to Barbalat’s Lemma, 2 0V →  as t → ∞ , which also leads to 0Ω → . Consequently, the updated law 

in (17) is proven to estimate the frequency Ω → Ω  for the sinusoidal signal. 

2.4. Estimation of offset, amplitudes, and phase 

To estimate the rest of the parameters, the disturbance d  will be reformed as below  

               ( ) ( )Td t tθ ϕ=                               (20) 

where [ ]ToF a bθ =  is vector of unknown constants and [ ]( ) 1 cos( ) sin( ) T
t t tϕ = Ω Ω  is the 

regression vector. Replacing into (14) gives 

                   




2 2
1 1 1 2 2 2

2 2
1 1 2 2 2

( )
T

T

T

V x z z

x z z

γ γ θ ϕ θ ϕ

γ γ θ ϕ

= − − + −

= − − +


                 (21) 
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where  θ θ θ= −  is the estimated error. With a P.D Lyapunov function  1
3 1 2

1
2

T

V V θ θ−= + Γ  where 

2Γ  is a symmetric P.D matrix, the derivative 3V
  is given as 

                         

 

 

 

1
3 1 2

2 2 1
1 1 2 2 2 2

2 2 1
1 1 2 2 2 2( )

T

TT

T

V V

x z z

x z z

θ θ

γ γ θ ϕ θ θ

γ γ θ ϕ θ

−

−

−

= + Γ

= − − + − Γ

= − − + − Γ







 

                 (22) 

To make 3V
  an N.D function, the update law should be chosen as 

                         
2 2zθ ϕ= Γ



              (23) 

Finally, with the chosen update law, 2 2
3 1 1 2 2V x zγ γ= − −  is a non-increasing function. 1V  and 3V  

are bounded, hence 1 0x →  and θ θ→  as t → ∞ . To sum up, the necessary parameters for 

estimating sinusoidal disturbances and controllers have been explained. In the next section, some 

simulation results will be illustrated to show the system's dynamic behavior under backstepping 

control with adaptive mechanisms as well as the estimation process to formulate the external 

disturbance. 

3. Simulation results  

In this section, finding the chaos using dynamical theory, its prediction via RC, stabilization, and 

parametric identification of unknown periodic disturbances are discussed in sequence. Numerical 

simulations are performed to reveal the effectiveness of the proposed mechanism. The main 

parameters of the chosen model from a marine vessel [28], which shows strong nonlinear 

characteristics such as chaos or limit cycles under periodic disturbances, are given in Table 1. For the 

whole simulation in this section, the IC of the roll dynamics is 0 0[ ]φ φ = [0.5 (rad) 0.2 (rad/s)].  

Table 1. Details of a chaotic marine model.  

Parameters Value 

Non-dimensional value ( 1b ) 0.081 

Non-dimensional value ( 2b ) 0.419 

Non-dimensional value ( k ) 1.746 

3.1. Dynamical analysis of chaotic roll motions  

At first, the chaotic roll motions are briefly analyzed before parametric estimation and 

stabilization. The bifurcation diagram easily recognizes the chaos roll motions, representing the 

qualitatively sudden change as a smoothly varied parameter. 

Figure 2 shows the stable and unstable roll motions based on the second iterative method, where 

2 2
1 2( )r x x= +  is the distance from the origin in the Poincaré map [32]. Unstable regions are more 

dominant as the forcing amplitude reaches 1. The ramp-up (blue line) and ramp-down parts (red 

line) enable checking the bistable region. Period-doubling routes to chaos and period-undoubling 

routes to single branches are clearly observed when the F  increases [33]. With a slight increase in 

forcing amplitude, the periodic windows [11], which are stable regions, can be seen among the chaotic 

clouds of dots.  
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Figure 2. Bifurcation diagram using the second iterative method. 

Figure 3 shows the Lyapunov exponents (LEs) of the uncontrolled system. The stretching and 

contracting of attractors are well defined by LEs, whose positive values signify chaos [11, 34]. LE 

measures the mean rate of exponential divergence of nearby trajectories, which gives information on 

the growth rate of IC [20]. Positive LEs show that a roll system is sensitive to IC and trajectories will 

diverge within time evolution, while negative LEs indicate a convergence tendency. The larger the 

exponent, the more unstable the system. Particularly, a negative LE indicates that the system is stable 

[35]. Negative LEs are characteristics of dissipative systems such that the roll system exhibits 

asymptotic stability; the more negative the exponent, the greater the stability [36]. 

 

Figure 3. Lyapunov exponents of the uncontrolled system with IC [0.5 (rad) 0.2(rad/s)]. 

It appears to be nonperiodic, as seen in Figure 4, where the Poincaré section shows the 

uncontrolled roll of a deterministic system that has no random or noisy inputs [11]. The main 

parameters are adopted in a marine model [28], whereas the obscure values of IC are set to be changed 

only. The Poincaré map reduces the n-dimensional flow to a 1n−  dimensional map [34]. All 

trajectories of an n-dimensional system starting on the 1n−  dimensional surface of a section flow 

through it [11]. Such reduced dimensionality makes it possible to preserve periodic and quasi-

periodic orbits [37]. To make an autonomous flow in a torus, a third value tθ = Ω  can be considered 

from the equation (6) without control action. A trajectory flowing around a torus with period (
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2 /T π= Ω ) leads to the Poincaré mapping of a 0θ θ=  plane [32]. Picking up a cross-section of roll 

angle and rate, the Poincaré map is mainly varied according to the strength of the forcing function. 

The manifolds become tangent and intersect transversely when the F  increases [38]. If a trajectory 

in the phase plane intersects itself repeatedly, then a strange attractor and fractals may be observed 

in the chaotic roll dynamics [39]. 

 

Figure 4. Poincaré section of the uncontrolled system with IC [0.5 (rad) 0.2(rad/s)]. 

3.2. Prediction of chaotic roll motions using RC  

Secondly, the chaotic roll motions are predicted via RC. Such an ESN algorithm is used to 

forecast the reference data of roll angle and roll rate for the training and prediction processes of the 

reservoir. After initializing input weight (
inW ) and feedback weight (

fbW ) are fixed, the predicted 

process is performed from the computation of the trained reservoir. The elements of weights are 

withdrawn with the equal possibility in [ , ]σ σ− , where σ  means a hyper-parameter to adjust the 

performance [21]. The main parameter for prediction via RC is listed in Table 2. For example, the 

spectral radius and leaking rate, which relate to magnitude of the largest eigenvalue value of weight 

and performance, are set as ρ = 0.75, α = 0.08. The adjustment of the leaking rate (α ) indicates the 

level of dependence of the network on past information. The lower α , the more dependent it is on 

past information [22-23]. The input range [ , ]σ σ−  indicates the dispersion level of components in 

weight matrices (
inW , 

fbW ). As the α  increases, the wider it spreads on the weight matrices. The 

author decides that α  should not be too low because it will inflict an amplitude value on input and 

feedback responses.  

Table 2. Main parameters of prediction via RC [21]. 

Parameters Value 

Leaking rate (α ) 0.08 

Spectral radius ( ρ ) 0.75 

Range of input (σ ) 0.5 

Figures 5 and 6 show the results of chaos roll prediction, in which the roll angle and rate are 

trained until 95 and 980 seconds, respectively. Until the training time, the predicted values almost 

coincided with the actual behaviors in both Figs. 5 and 6. As for the short range of prediction, the 

values of MSE (mean-square error) for roll angle and rate are calculated as 0.0158 and 0.04169, 

respectively, as seen in Figure 5. To compare with the results of the uncontrolled chaotic roll angle in 
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[28], we trained until 980 seconds in the case of Figure 6. As a result of the mention in the Introduction 

part, the RC process seems to be suitable even for long-term prediction of future states, even though 

the LEs show a lack of predictability [20]. 

 
(a) 

 
(b) 

Figure 5. Prediction of roll angle (a) and roll rate (b) for 100 seconds. Training until 95 seconds. 
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(a) 

 
(b) 

Figure 6. Prediction of roll angle (a) and roll rate (b) for 1000 seconds. Training until 980 seconds. 

3.3. Parametric identification of periodic disturbances 

Finally, the simulations for the proposed backstepping control are conducted. The filter and 

controller design parameters are set as 0 1 2 1 2 3( , , , , , )λ λ λ γ γ γ = (0.15, 2, 8, 5, 5, 2.5). The update rate 

matrix is chosen as 2 (2,1.2,1.2)diagΓ =  and the IC is   ( (0), (0), (0), (0))oF a b Ω = (0.2, 0.3, 0.1, 0). 

Figures 7 to 10 demonstrate the estimation process for the frequency, offset, amplitude, and phase, 

respectively. In contrast, Figure 11 verifies a combination of the above results to form a complete 

estimation for the sinusoidal disturbance. All parameters of periodic disturbances can be precisely 

estimated. Suppression of roll angle and rate is achieved using the backstepping control, as seen in 
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Figure 12 and 13. Finally, filtered signals are illustrated in Figure 14, according to the updated law in 

equation (17). 

 

Figure 7. Estimated frequency. 

 

Figure 8. Estimated offset. 
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Figure 9. Estimated amplitude. 

 

Figure 10. Estimated phase. 
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Figure 11. Complete estimation for disturbances. 

 

Figure 12. Control input activity. 
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Figure 13. Controlled roll motions. 

 

Figure 14. Filtered signals. 

4. Conclusions  

In this paper, parameter estimation and stabilization of unknown periodic disturbances are 

performed based on the adaptive mechanism without any observers. All parameters, such as 

frequency, offset, amplitude, and phase, were precisely estimated. The linear second-order filters and 

parameter estimation errors were used to achieve global exponential convergence. This paper has a 

limitation of slow convergence in transient performance; however, it sows less oscillation due to the 

second-order filtered signals as in [2, 7]. So, more proper values should be set to make a tradeoff 

between fast convergence speed and transient performance. Also, the backstepping method was used 

to regulate the chaos roll angle and rate in the case of severe disturbances to marine vessels. 

Moreover, the RC process revealed its predictive performance of the long-term chaos behaviors; thus, 

it may help to support the lack of predictability of LEs [20]. To make a safe and robust system in the 

real world, it should be considered an adversarial attack based on adaptive control and the RL 

method [40] in the subsequent work. 
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