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Abstract: By using the Black-Derman-Toy (BDT) model, we predict the future trend of the riskless

rate, and then we build an equation that relates the market price of zero-coupon bonds and the

theoretical price of zero-coupon bonds calculated using a binomial option pricing model. Based on

this, we can find the implied daily return µ, implied natural upturn probability p, and implied daily

volatility σ with respect to different time-to-maturity values of zero-coupon bonds. With these results,

we can give some suggestions to bond traders.

Keywords: BDT model; zero-coupon bond; implied daily return; implied natural upturn probability;

implied daily volatility

1. Introduction

In this paper, we will explore the relationships between a zero-coupon bond’s implied daily return

µ, implied natural upturn probability p, and implied daily volatility σ and the zero-coupon bond’s

time to maturity. Additionally, based on the data visualization, we will obtain a general conclusion,

and thus we can give bond traders some suggestions.

First, we will provide the theoretical support of this research, so that readers can understand the

foundational theorems that we will use. Additionally, two important ideas are described in the next

section: first, we consider a zero-coupon bond as a European contingent claim (ECC), so that we can

use the binomial option pricing algorithm to calculate its theoretical fair value, and second, we explain

that we cannot just assume that the risk-neutral probability ( p̃, q̃) = ( 1
2 , 1

2 ), since this will lead to an

unrealistic natural probability (p, q); a detailed explanation of this can be found in [1]. Thus, we need

to calculate the real risk-neutral probability ( p̃, q̃) by building an equation that relates the market value

of a zero-coupon bond and the theoretical value of the zero-coupon bond.

Second, we will perform empirical research. Before doing this, we will do some preparation—we

need to extract the values of the related parameters from the raw data we obtained from the internet.

Then, we will follow the form of the Black-Derman-Toy (BDT) model to find new coefficients to

calibrate the model. After completing these steps, we can find the implied daily return, implied

natural upturn probability, and implied daily volatility with respect to the zero-coupon bond’s time to

maturity.

Lastly, we will provide a general conclusion about the three relationships described above and

give some suggestions to bond traders.

2. Theoretical Support

2.1. Underlying Asset S

Consider a Black-Scholes-Merton market model consisting of a risky asset S , a riskless bank

account B, and an ECC C that has S as the underlying asset. We also assume that t = 0 is the current

time and t = T is the terminal time of the ECC.
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Now, we will divide the time period [0, T] into N intervals, where N = T
∆

and ∆ = 1
252

1, so that

0 = t0 < t1 < · · · < tN = T. If Stn = Sn∆
2 represents the risky asset’s price at time tn, then based on

the binomial model, the randomness of the price S(n+1)∆ is given by

S(n+1)∆ =





S
(u)
(n+1)∆

= Sn∆(1 + u∆) w.p. p ∈ (0, 1)

S
(d)
(n+1)∆

= Sn∆(1 + d∆) w.p. 1 − p ∈ (0, 1)
. (1)

Next, we define the arithmetic stock return in the sub-time period [n∆, (n + 1)∆):

R(n+1)∆ =
S(n+1)∆ − Sn∆

Sn∆

. (2)

By combining (2) and (1), we can obtain, for n = 0, 1, · · · , N − 1,

R(n+1)∆ =

{
u∆ w.p. p ∈ (0, 1)

d∆ w.p. 1 − p ∈ (0, 1)
. (3)

Then, we let the mean of R(n+1)∆ be ER(n+1)∆ = µ(n+1)∆ = µ∆, where µ is the instantaneous mean

return. We let the variance of R(n+1)∆ be VarR(n+1)∆ = E
(

R(n+1)∆

)2
−
(

ER(n+1)∆

)2
= σ2

(n+1)∆ = σ2
∆,

where σ2 is the instantaneous variance. Thus, we will have the following:





µ(n+1)∆ = µ∆ = pu∆ + (1 − p)d∆

σ2
(n+1)∆ = σ2

∆ = (u − d)2 p(1 − p)∆2
. (4)

Based on (4),





u = µ +
√

1−p
p

σ√
∆

d = µ −
√

p
1−p

σ√
∆

. (5)

By combining (4) and (1), we can obtain

S(n+1)∆ =





S
(u)
(n+1)∆

= Sn∆(1 + µ∆ +
√

1−p
p σ

√
∆) w.p. p ∈ (0, 1)

S
(d)
(n+1)∆

= Sn∆(1 + µ∆ −
√

p
1−p σ

√
∆) w.p. 1 − p ∈ (0, 1)

. (6)

Thus, the up factor of the underlying asset S in the time period [n∆, (n + 1)∆) is 1 + µ∆ +
√

1−p
p σ

√
∆,

and the down factor is 1 + µ∆ −
√

p
1−p σ

√
∆.

2.2. European contingent claim C

In [2], we can find a basic type of binomial option pricing algorithm. If we let fn∆ represent the

price of the ECC at time tn = n∆, then the recursive pricing algorithm will be

fn∆ =
1

1 + r∆

(
p̃ f

(u)
(n+1)∆

+ (1 − p̃) f
(d)
(n+1)∆

)
, (7)

1 We assume that every calendar year has 252 business days.
2 For convenience, we will write tn = n∆; the same applies in the following.
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where f
(u)
(n+1)∆

and f
(d)
(n+1)∆

represent two possible prices of the ECC at time t(n+1) = (n + 1)∆, r is the

riskless rate, and p̃ is the upturn risk-neutral probability.

In the previous subsection, we do not have any information about the risk-neutral probability,

and thus we hope to find a connection between the natural probability and risk-neutral probability.

Suppose that we want to construct a riskless portfolio

Pn∆ = DSn∆ − fn∆. (8)

From [2], we can find that

D =
f
(u)
(n+1)∆

− f
(d)
(n+1)∆

S
(u)
(n+1)∆

− S
(d)
(n+1)∆

=
f
(u)
(n+1)∆

− f
(d)
(n+1)∆

Sn∆

(√
1−p

p +
√

p
1−p

)
σ
√

∆

=
f
(u)
(n+1)∆

− f
(d)
(n+1)∆

Sn∆σ
√

∆

√
p(1 − p). (9)

Then, by combining (8) and (9), we can obtain

fn∆ =
1

1 + r∆

(
(p − θ

√
p(1 − p)∆) f

(u)
(n+1)∆

+ (1 − p + θ
√

p(1 − p)∆ f
(d)
(n+1)∆

)
, (10)

where θ = µ−r
σ .

By combining (10) and (7), we find that the relationship between the natural upturn probability p

and risk-neutral upturn probability p̃ is

p̃ = p − θ
√

p(1 − p)∆. (11)

Observe that we can consider the zero-coupon bond B(t, T) as a kind of ECC with a final payoff

of $1 regardless of the path in the binomial tree.3 Thus, the recursive pricing algorithm for the

zero-coupon bond should be





B(n∆, T) = 1
1+r∆

[
p̃B((n + 1)∆, T)(u) + (1 − p̃)B((n + 1)∆, T)(d)

]
(n = 0, 1, · · · , N − 1)

B(T, T) = B(N∆, T) = 1
. (12)

3. Empirical Research

3.1. Preparation

The main purpose of this research is to find the implied values of the daily return µ, upturn

probability p, and volatility σ. To do this, we need to build an equation that relates the theoretical

value of the zero-coupon bond B(t, T; Theoretical Value) and the market value of the zero-coupon

bond B(t, T; Market Value) for different time-to-maturity values.

To calculate the market value of the zero-coupon bond, we can use the formula given in [3], where

the value of the yield to maturity Y(t, T) satisfies

B(t, T; Market Value) exp {(T − t)Y(t, T)} = 1. (13)

Based on (13),

B(t, T; Market Value) = exp {−(T − t)Y(t, T)} , (14)

3 For a zero-coupon bond B(t, T), t represents the current time, T represents the terminal time, and B(T, T) = 1.
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and from (14), we can easily obtain the market values of zero-coupon bonds with different

time-to-maturity values since the parameters in (14) can be found on the internet.4

To obtain the theoretical value of the zero-coupon bond, we can use the recursive algorithm

in (12). With different time-to-maturity values, we expect to get different values of the

risk-neutral upturn probability p̃, and based on (11), the theoretical value can be written as

B(t, T, µ, p, σ; Theoretical Value).

To find the implied µ, p, and σ values, we should let

B(t, T, µ, p, σ; Theoretical Value) = B(t, T; Market Value) (15)

and fix the other two parameters. In this research, we chose data concerning the SPDR S&P 500 ETF

Trust (SPY) from June 16, 2022 to June 16, 2023 (this time period has exactly 252 business days) as a

sample.5 The initial estimates for µ, p, and σ are µ̂0 = 8.0037 × 10−4, p̂0 = 0.4821, and σ̂0 = 0.0126,

respectively.

Because we cannot consider the riskless rate r to be constant, especially for a long period of time,

we will use the BDT model6 to predict the future riskless rate. In this process, we set June 16, 2023,

as the start date and use 252 days of back data7 to find the coefficient sequences {an} and {bn} to

calibrate the model. Figure 1 shows the fitting effect of the BDT model.

0 50 100 150 200 250

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042
Market Value

BDT Model Value

Figure 1. Comparison between the market value and BDT model value

The mathematical expression of this model, if we consider June 16, 2023, to be the start date, is

Rn(ω1ω2 · · ·ωn) = an · b
#H(ω1ω2···ωn)
n =

0.0377

1.0236n
· 1.0464#H(ω1ω2···ωn) (n = 0, 1, · · · ), (16)

where ωi ∈ {H, T}, H indicates that the riskless rate is strictly increasing, T indicates that the riskless

rate is decreasing, and #H(ω1ω2 · · ·ωn) is the number of periods in which the riskless rate is strictly

increasing.

4 The relevant data can be found at https://home.treasury.gov/.
5 The relevant data can be found at https://finance.yahoo.com/quote/SPY/history?p=SPY.
6 See the detailed explanation in [2].
7 We will treat the 10-year U.S. Treasury yield as the riskless rate, and the relevant data can be found at https://home.treasury.

gov/.
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3.2. Data Visualization and Explanation

As we have previously stated, we will treat June 16, 2023, as the start date, and we choose different

time-to-maturity values8 for the zero-coupon bonds to find the implied µ, p, and σ values. Figures 2, 3,

and 4 show the implied µ, p, and σ values, respectively.
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-0.02
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Figure 2. Trend of the implied daily return
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Figure 3. Trend of the implied daily upturn probability

8 The different time-to-maturity values that we choose are 2 months, 3 months, 4 months, 6 months, 1 year, 2 years, 3 years, 5
years, 7 years, 10 years, 20 years, and 30 years.
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Figure 4. Trend of the implied daily volatility

Based on these figures, we can obtain the following observations:

• In Figure 2, we can see that the value of the implied daily return increases sharply at first, from

about -0.11, and then it begins to increase more slowly; finally, the value converges to about

0.025.
• In Figure 3, we can see that the value of the implied daily upturn probability decreases sharply

at first, from about 0.9, and then it begins to decrease more slowly; finally, the value converges to

about 0.62.
• In Figure 4, we can see that the daily volatility will increase at first and attain its peak value of

0.04 in year 10; then, the value of the daily volatility will slightly decrease to about 0.035.

4. Conclusion

Based on the three graphs that we constructed, it is clear that if the time to maturity is short,

even if the natural upturn probability is high and the daily volatility is low, the daily return is strictly

negative. However, the daily return will become positive quickly, and then its value will converge to a

constant. Similarly, the natural upturn probability and daily volatility will change sharply in a short

amount of time, but on a longer time scale, they will attain stable levels. Thus, based on the graphs,

our suggestion to bond traders is to focus on zero-coupon bonds with a time to maturity of about 2

years, since at this level, the bond trader has a large probability of obtaining a high return, the upturn

probability is about 65%, and the daily volatility is also not very high (at least, it does not attain its

peak).

Of course, there are many factors that should affect bond traders’ choices. They cannot rely only

on the factors that we analyze in this paper when they make decisions; they also need to consider other

factors.
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Abbreviations

Abbreviations

The following abbreviations are used in this manuscript:

BDT model Black-Derman-Toy model

ECC European Contigent Claim

Appendix A. Implied Daily Return, Natural Upturn Probability, and Daily Volatility Data

Table A1. The related data we use in this paper.

Time to Maturity
Indicators

µ p σ

2 mo. -0.1067 0.9092 0.0032
3 mo. -0.0677 0.8313 0.0044
4 mo. -0.0451 0.7833 0.0056
6 mo. -0.0202 0.7282 0.0080
1 yr. 0.0047 0.6716 0.0141
2 yr. 0.0192 0.6378 0.0251
3 yr. 0.0235 0.6277 0.0326
5 yr. 0.0257 0.6255 0.0386
7 yr. 0.0260 0.6217 0.0397
10 yr. 0.0261 0.6215 0.0400
20 yr. 0.0250 0.6240 0.0366
30 yr. 0.0247 0.6248 0.0357
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