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Abstract: In addition to identifying and prosecuting cyber attackers, attack attribution activities can provide
valuable information guiding the defenders’ security procedures and giving them greater confidence in
incident response and remediation. However, technical analysis involved in cyberattack attribution requires
high skills, experience, access to up-to-date Cyber Threat Intelligence, and significant investigators’ effort.
Attribution results are not always reliable, and skilful attackers often work hard to cover their traces and
mislead or confuse investigators. In this article, we present a tool designed to support technical attack
attribution and implemented as a machine learning model extending the OpenCTI platform. We also discuss
the tool’s performance in the investigation of a recent cyberattack.

Keywords: cyberattack; technical cyberattack attribution; digital forensics; machine learning; cyber
threat intelligence

1. Introduction

Law Enforcement Agencies (LEAs), forensic institutes, national cybersecurity centres and
Computer Emergency Response Teams (CERTSs), and companies providing cybersecurity services
routinely have to investigate cyberattacks on organisations and citizens. In many cases, a key
question in such investigations is who is responsible for conducting a given cyberattack. This
identification of the source of a cyberattack — which can be a nation state, a crime syndicate, other
nefarious group, or even an individual cybercriminal - is often referred to as ‘cyberattack attribution’.
In this article, the focus is on technical attack attribution, which is based on the analysis of technical
attack traces and Cyber Threat Intelligence (CTI). While it was pointed in [1] that “... questions of
responsibility are rarely decided solely through a single technological tool or form of evidence ...”
[1] (p. 382) and “... a legal approach, rather than a technological one, can solve the attribution
problem.” [1] (p. 376), technical attribution is nearly always an indispensable element of any
attribution efforts, providing key facts and hypotheses.

Knowing the threat actor behind a cyberattack can be very important and valuable, though the
attribution value and investigation priorities vary and depend significantly on the context. For
internal cybersecurity teams, CERTs and commercial service providers, attribution efforts usually
help understand the attacker's intentions, capabilities and level of sophistication, modi operandi, and
expected behaviour, informing the defenders’ security procedures from prevention to response and
remediation and giving them greater confidence. For example, the understanding of the attacker’s
tactics, techniques, and procedures (TTPs) guides the defenders in what additional attack traces and
artefacts they should look for and what vulnerabilities they have to prioritise for minimising the
impact of the ongoing attack and the risk of future ones. In the context of cyberattacks driven by
political, military or industrial competition reasons, the attribution (e.g., to a nation state) value can
include a reliable view of the impact of sensitive information loss and can extend to driving foreign
policy measures. Also, importantly for LEAs, the insights brought by attribution efforts can be
instrumental in identifying and prosecuting attackers.

With all the potential benefits, technical analysis involved in cyberattack attribution requires
high skills, experience, access to up-to-date CTI, and significant investigators” effort. Furthermore,
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attribution results are not always reliable, and skilful attackers often work hard to cover their traces
and mislead or confuse investigators. Recognising the challenges, the EU-funded CC-DRIVER [2] and
CYBERSPACE [3] projects contributed to designing and developing a tool supporting cyberattack
attribution. This article presents the tool and discusses the results of its application in the
investigation of a recent cyberattack. We first briefly review several noteworthy challenges of
technical attack attribution, the data used in attack analysis, the connections between attribution and
other key questions that arise in digital forensics and cyber incident response activities, and the earlier
work on applying machine learning to the attack attribution problem. We then explain the technical
approach, present the tool, based on a machine learning model and implemented as an extension of
the OpenCTI platform [4], and show its performance in the ‘No Pineapple!” cyberattack investigation
carried out by one of the CC-DRIVER and CYBERSPACE partners — WithSecure Corporation. The
article is concluded by discussing the challenges and directions for future work.

2. Technical Attack Attribution

When running analysis in order to identify the source of a cyberattack, investigators face
multiple problems. Cybercriminals and other perpetrators usually hide the origin of their attack
network traffic by routing it via multiple links on the Internet, for instance, using proxy servers or
onion-routing tools such as Tor [5] instead of directly connecting to the victim (which is essentially
enabled by the structural design of the Internet), or by using compromised or stolen devices of other
people (since identifying the source devices of an attack is not the same as identifying the people
behind it). They also increasingly often rely on tools commonly available on the victim devices
instead of using custom malware that can be fingerprinted and associated with their authors — the
technique known as “living-off-the-land” [6]. Attribution activities are further complicated by the
growing popularity of the “Crime-as-as-a-service” mode of cybercriminal operations (malware-as-a-
service, ransomware-as-a-service, DDoS-as-a-service, bulletproof hosting, etc.), the use of malicious
code which is open-sourced, shared or stolen from other attackers (and sometimes even from state
security agencies and security researchers [7,8]), and the use of malicious infrastructure (such as
command-and-control servers) and other TTPs previously attributed to other attackers. One should
also note that CTT and other information crucial for attack attribution can be kept confidential by
certain parties due to laws, contracts, and various - justified or unjustified — concerns.

Attack attribution is closely connected with several other questions asked typically by incident
responders and investigators when trying to gain visibility into the threat actor’s operations in the
victim’s cyber estate. Good examples of such questions are:

e  When did the threat actor breach the victim’s systems and networks?

e What level of privilege does the threat actor have at the moment?

e  What assets has the threat actor touched and potentially compromised?
e  What is the impact caused by the breach?

So, essentially any data collected in an incident response operation can be useful for attribution-
related analysis, while the data revealing the threat actor’s capabilities, objectives and behaviour is
of particular value. This includes:

o  Attacker’s TTPs. The MITRE ATT&CK framework [9] is commonly used to structure and model
this information.

e Indicators of Compromise (IOCs) and attacker’s infrastructure, such as the file hashes of
malicious payloads and IP-addresses which the attack traffic originates from or where the
command-and-control (C2) servers are hosted.

e  Malware analysis results (especially for victim-tailored malware with no public source code),
which can provide high-value information. For instance, sometimes attackers make mistakes or
leave traces in their malware code, and in other cases, they use evolving versions of the same
malware for many years.

e  Benign tools used by the attacker. These can be popular living-off-the-land binaries, such as
Powershell and Windows Management Instrumentation (WMI), or other benign software found
in the victim’s estate and providing capabilities beneficial for the attacker.
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e  Exploited vulnerabilities, either previously unknown ones (zero-day vulnerabilities) or used
earlier in other attacks. Exploitation techniques can be implemented in malware or by using
appropriate benign tools, and we often see the same vulnerabilities used in multiple attacks
conducted by the same threat actor.

e  Attack metadata, such as the times when the attacker communicates with the victim’s systems
(which can hint at the attacker’s geographical location) or information about the victim (as their
operations, core business domains, location, etc. can reveal the attacker’s objectives).

Given the nature of the attack attribution problem, an obvious approach is to look for similarities
in the data collected from attacks and about attackers (presumably structured and stored in a
convenient form). Identifying, ranking and aggregating such similarities in large volumes of highly
heterogeneous data is, however, time-consuming for investigators and requires expertise and
experience. So, the growing number and sophistication of cyberattacks prompt analysis automation,
and machine learning techniques come here as a natural choice.

While machine learning has recently been very popular in attack detection and malware analysis
methods, it seems very few reports are available on its applications to cyberattack attribution.

Han et al. [10] implemented WHAP, a web-hacking profiling system that uses a simple similarity
measure for hacking cases, which is based on heuristically assigned similarity weights for selected
features (such as IP addresses and domain names) and Case-Based Reasoning. While the use of
feature vectors for representing website hacking cases and the defined similarity measure for those
vectors are the only connections of the proposed approach to machine learning, conceptually it can
be extended to attack attribution methods utilising similarity search and clustering based on
“learning from data”.

Noever at al. [11] presented a Random Forest classifier for attributing attack techniques (such as
backdoor, man-in-the-middle, ransomware, DoS) to the types of threat actors (organised crime,
nation-state, hacktivist, unknown). While this approach can be relevant, e.g., for policy discussions,
it does not have the attribution of specific cyberattacks as its objective.

Noor et al. [12] presented a framework for attributing unstructured (natural language) CTI
reports and documents. Since “low-level Indicators of Compromise (IOCs) are rarely re-used and can
be easily modified and disguised resulting in a deceptive and biased cyber threat attribution” [12] (p.
227), the work focuses on common high-level attack patterns (i.e., TTPs) for mapping a CTI report to
a threat actor. With the labels for high-level attack patterns taken from the MITRE ATT&CK
taxonomy, Latent Semantic Analysis (LSA) is used to index CTI reports with relevant labels. Then a
small set of CTI reports collected from publicly available datasets and marked with the threat actors
behind the reported cyberattacks is used to train several machine learning models for attributing new
reports. Although some of the models showed a very good performance in the tests, this is likely
explained by the training and validation dataset’s toy size. More generally, we think that fully
focusing on high-level attack patterns and ignoring low-level indicators will result in poor real-world
performance because: (i) many attackers use very similar TTPs (e.g., in ransomware attacks); (ii) high-
level TTPs are easy to mimic in false flag operations; (iii) low-level indicators are actually re-used
(mainly due to attacker’s mistakes or time and cost pressures on their side) and very useful in such
cases. We will further comment on this high-level vs. low-level balance issue in the “Discussion and
Future Work” section.

The use of pattern recognition and anomaly detection methods for TTP and IOC extraction from
raw log data was also proposed by Landauer et al. in [13], illustrated by system log data analysis.

3. STIX-based Attack Attribution Approach

A key technical objective defined in both CC-DRIVER and CYBERSPACE is to produce tools for
following the threat landscape and actors (CTI management) and for investigating cyberattacks
(digital forensics), and this toolkit serves a natural foundation for adding attack attribution
capabilities. As fully automated reliable attack attribution is hardly feasible, we chose to build an
attack attribution recommender, based on the Structured Threat Information Expression [14] (STIX


https://doi.org/10.20944/preprints202308.1936.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 August 2023 d0i:10.20944/preprints202308.1936.v1

2) language and implemented as an OpenCTI extension, aiming to guide incident investigators and
significantly reduce their efforts.

To facilitate the process of identifying threat actors responsible for cyberattacks, the problem
was framed as follows: Design and implement a machine learning model that takes a bundle of STIX
2 objects representing adversarial operations as input and predicts “the most probable” threat actors behind
the operations.

‘Bundle’ here is a STIX 2 term that refers to a collection of STIX 2 objects. While in principle any
STIX 2 entities can be included in a bundle, we started with an important special case when a bundle
is a set of incidents which were observed in a given (attacked) organisation in a given timeframe. In
STIX 2, such ‘incidents’ represent information collected during attack investigation activities
(conducted usually by law enforcement, CERTs or companies providing incident response services).

Threat actors are typically understood as identities representing an individual, a group or an
organisation which operates in cyberspace with a malicious intent. We, however, chose to build our
recommender model to predict intrusion sets (which can subsequently be mapped to identities, e.g.,
by LEAs) in order to provide greater flexibility. Cyberattacks are often leveraged by threat actors,
e.g., a nation state or a cybercriminal group, as part of a coordinated campaign against a specific
target and contain similar properties, behaviours and attributes in order to achieve multiple
objectives over a significant period of time. Such an entire attack package is represented in STIX 2 as
an intrusion set, and there are advantages in reasoning about attribution in terms of intrusion sets.
For example, the threat actor behind a given attack may not be known but their multiple operations
can be grouped together, in an intrusion set, and then a new attack can be attributed to that intrusion
set. A threat actor can move from one intrusion set to another, changing their TTPs, or they can
“utilise” multiple intrusion sets at the same time. Attribution relationships in STIX 2 are shown in
Figure 1.
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Figure 1. Attributed-to relationships in STIX 2 are shown with the arrows in bold. (the icons are
taken from https://github.com/MISP/intelligence-icons).

Our preliminary investigations confirmed that obtaining sufficiently large incident datasets for
training a good attribution support model would be challenging, particularly because such datasets
are often considered highly confidential. So, in parallel to extending the data collection, we simplified
our problem to predicting an intrusion set for a single incident (instead of a bundle), as shown in
Figure 2.
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Figure 2. The simplified version of the attribution problem. (the icons are taken from
https://github.com/MISP/intelligence-icons).

For intrusion sets, a decent collection of over 350 entities (identified by their names, such as
‘APT28 or ‘Lazarus’) was obtained from MITRE [15], AlienVault [16], Malpedia [17], and
WithSecure. To compensate for the shortage of incident data, we chose to rely on the data
augmentation approach, generating a number of synthetic incidents based on the data from the
available intrusion sets. In producing incidents, specific rules designed together with cybersecurity
experts, guided by their experience and observations, were followed:

e Incident data re-uses the elements (attributes) present in a specific intrusion set.

e  The number of elements should be between 10 and 50 per incident, following a beta-binomial
distribution with the median value around 15.

e  From the attributes present in an intrusion set, the following STIX 2 objects are re-used: TTPs
(up to 50%), tools (up to 20%), malware (up to 20%) and others (up to 10%). ‘Others” here include
indicators, locations and so on (all the entities that can be found in the intrusion set). The
numbers in brackets indicate the upper bounds on the share of re-used attributes of a given type.
However, if, for example, an intrusion set does not have ‘tool” attributes at all, we will end up
having zero tools added to synthetic incidents. Having the upper bounds, actual numbers of
attributes of a given type are selected uniformly at random.

e To keep the synthetic dataset balanced, each non-empty intrusion set is used to generate the
same number of incidents.

Using this approach, hundreds of thousands of synthetic incidents can be produced from the
available intrusion sets, and those form the main body of a labeled dataset for supervised learning. It
is split into training and testing sets, where the testing (validation) set has 20% of the data and the
rest is used for training a model. CountVectorizer is applied as a one-hot encoder: the entity IDs and
names seen in all the incidents are used as our features (names of malware families and tools, MITRE
IDs of TTPs, etc.), and for a given incident the value of a specific feature is 1 if the corresponding
entity is present in the incident and 0 otherwise.

After multiple rounds of experiments with several multi-class classification models (with the
same collection of intrusion sets but new sets of synthetic incidents produced for each round), we
selected for the recommender model the Bernoulli Naive Bayes classifier, which showed good results
with a low variation over the testing rounds. Of course, the good observed performance can be due
to the synthetic nature of the data, so we are collecting more real-world incident data and planning
further extensive modeling and validation experiments.

4. Attribution Results for ‘No Pineapple!” Incident

The attack attribution recommender runs as an OpenCTI extension, and the OpenCTI platform,
with a growing user community and a convenient framework for extending the platform’s
capabilities, has become a popular choice for storing, analysing and sharing both CTI and fresh digital
forensics data from ongoing cyber incident investigations. STIX 2, the underlying OpenCTI data
format, allows for a rich representation of incidents as collections of associated entities and
observables (such as TTPs, malware, command-and-control infrastructure), combining high-level,
abstracted views of attacks with relevant technical details. This data expression power explains why
increasingly many incident response operations by WithSecure, a major European provider of
cybersecurity services and solutions, rely on OpenCTI for data management and analysis, which
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recently gave us an opportunity to validate the recommender as part of a real-world attack
investigation engagement.

The attack, which was codenamed ‘No Pineapple!” by the WithSecure’s Threat Intelligence team
due to one error message found in the malicious code, turned out to be part of a sophisticated
campaign targeting public and private sector research organisations, the medical research and energy
sectors as well as their supply chains. The WithSecure’s engagement started when a threat huntin a
customer estate identified beaconing [18] to a Cobalt Strike C2 server. Since the C2 server IP was
earlier listed as an IOC for the BianLian ransomware group and some other details also pointed in
that direction, the initial (low confidence) assessment of the WithSecure’s experts was that they were
dealing with a potential ransomware incident. However, as more attacker tools, techniques and
actions were collected from the customer environment, it became evident that the main objective of
the attack was espionage, and a North Korean state-sponsored threat actor was behind it. Notably,
the attacker took a serious effort of hiding their traces, clearing logs and deleting files, tools and other
indicators of their presence [19].

The collected digital forensics data were added to OpenCTI as an incident object representing
the details of a single attack against a single organisation. The object has quite a rich set of
relationships, as can be seen in Figure 3.

9

IPv4 address

Figure 3. Relationships of the ‘No Pineapple!” incident as seen in OpenCTIL

We then applied the attack attribution recommender tool to the ‘No Pineapple!” data and
received the ‘Lazarus’ intrusion set associated with a North Korean state-sponsored threat actor on
the top of the list. It should be noted that at the time of the recommender validation experiment, the
Lazarus intrusion set was not updated with the ‘No Pineapple!” investigation data but represented
the state of knowledge prior to the investigation.

The top three results reported by the tool (with the respective model confidence values) were:
1. Lazarus Group: 0.996186486423268

. Elephant Beetle: 0.003794891776652858
3. APT29: 0.000018620678059799746

So, the Lazarus group was suggested by the model as the most probable intrusion set for ‘No
Pineapple!” with an overwhelming confidence, and this was fully confirmed by the WithSecure’s
experts. Elephant Beetle, which is a financially motivated cybercrime group, was the second model’s
pick. While the model confidence for the Elephant Beetle intrusion set is low, we note that it shares a
set of common attack techniques with Lazarus, including: blending in with the environment;
deploying JSP web shells (JSP file browser, in particular); operating out of temp directories. It also
exploits known vulnerabilities in public facing devices to gain initial access, although we do not know
any vulnerabilities exploited by both Lazarus and Elephant Beetle. That is where the similarities end.
Elephant Beetle is known to target different geographies, their operations have been financially
motivated and they often target web services and their components.

5. Discussion and Future Work

The results obtained so far indicate that the approach of building machine learning models for
attributing STIX 2 incidents to intrusion sets is promising and can bring significant value to incident
investigators. The reliability of such models, especially when attackers actively work to counter
attribution efforts through the use of false flags and other techniques, critically depends on the
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availability of sufficiently rich incident data and on finding in the incident representation a suitable
balance between high-level attack patterns and attributes and low-level indicators and other details.
While STIX 2 is good for expressing TTPs, malware, tools, exploited vulnerabilities, targeted
geography and sectors at certain level, more subtle details — such as malware code similarities, custom
passwords, developer host information, attacker’s email language, malicious domain registrar and
registrant information — are not supported yet. For example, malware binaries and resource files are
identified by their hash values, so even a very high similarity of two different files is of no use for our
models, no matter how important it could be for attribution.
We see several ideas to explore for improving the attack attribution recommender:

e  Acquiring more real-world incident data, preferably with attribution labels (but even unlabeled
incidents can be useful), instead of heavily relying on synthetically generated incidents.

e If many organisations agree to combine their incident data, a high-quality attribution model can
likely be trained, but incident data is usually highly sensitive. One way to address the data
confidentiality issue is to train a model in a federated learning manner [20] on data of multiple
organisations. In particular, joint efforts with the FATE project [21] working on collaborative
confidentiality-preserving learning on CTI data can be considered.

e  Use of inherited STIX 2 relationships (through the OpenCTI rule engine). At the moment, only
the data of direct neighbours, i.e., first-level relationships, is used in the model for both incidents
and intrusion sets. For example, a file associated with an incident may have another relationship
with a custom directory where this file was located. If the same directory is associated with other
files, this information may be valuable for attribution but is currently ignored.

e  STIX 2 supports timestamps which can be used for building a timeline of attacker’s actions.
Because most of the incident data in our model training sets is produced synthetically from the
intrusion sets, timestamps are currently ignored. Collecting timestamps whenever possible and
including them in modeling should be explored for utilising attack timelines in attribution.

e  Controlling the weights of features in the incident representation. For example, while many
attackers use similar attack tactics or can easily imitate the tactics used by others, the presence
of specific files can be a more reliable indicator for attribution. At the moment, the influence of
specific features is learned implicitly when the model is trained. Combining the data-driven
approach with expert-defined rules could be explored.

In conclusion, we would like to emphasize that even when large and clean training datasets are
available, attack attribution models will make mistakes and can be deceived by skilful and
determined attackers. Therefore, such models should primarily be used in the recommendation
mode, with human experts verifying their output.
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