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Abstract: In addition to identifying and prosecuting cyber attackers, attack attribution activities can provide 

valuable information guiding the defenders’ security procedures and giving them greater confidence in 

incident response and remediation. However, technical analysis involved in cyberattack attribution requires 

high skills, experience, access to up-to-date Cyber Threat Intelligence, and significant investigators’ effort. 

Attribution results are not always reliable, and skilful attackers often work hard to cover their traces and 

mislead or confuse investigators. In this article, we present a tool designed to support technical attack 

attribution and implemented as a machine learning model extending the OpenCTI platform. We also discuss 

the tool’s performance in the investigation of a recent cyberattack. 

Keywords: cyberattack; technical cyberattack attribution; digital forensics; machine learning; cyber 

threat intelligence 

 

1. Introduction 

Law Enforcement Agencies (LEAs), forensic institutes, national cybersecurity centres and 

Computer Emergency Response Teams (CERTs), and companies providing cybersecurity services 

routinely have to investigate cyberattacks on organisations and citizens. In many cases, a key 

question in such investigations is who is responsible for conducting a given cyberattack. This 

identification of the source of a cyberattack – which can be a nation state, a crime syndicate, other 

nefarious group, or even an individual cybercriminal – is often referred to as ‘cyberattack attribution’. 

In this article, the focus is on technical attack attribution, which is based on the analysis of technical 

attack traces and Cyber Threat Intelligence (CTI). While it was pointed in [1] that “… questions of 

responsibility are rarely decided solely through a single technological tool or form of evidence …” 

[1] (p. 382) and “… a legal approach, rather than a technological one, can solve the attribution 

problem.” [1] (p. 376), technical attribution is nearly always an indispensable element of any 

attribution efforts, providing key facts and hypotheses. 

Knowing the threat actor behind a cyberattack can be very important and valuable, though the 

attribution value and investigation priorities vary and depend significantly on the context. For 

internal cybersecurity teams, CERTs and commercial service providers, attribution efforts usually 

help understand the attacker's intentions, capabilities and level of sophistication, modi operandi, and 

expected behaviour, informing the defenders’ security procedures from prevention to response and 

remediation and giving them greater confidence. For example, the understanding of the attacker’s 

tactics, techniques, and procedures (TTPs) guides the defenders in what additional attack traces and 

artefacts they should look for and what vulnerabilities they have to prioritise for minimising the 

impact of the ongoing attack and the risk of future ones. In the context of cyberattacks driven by 

political, military or industrial competition reasons, the attribution (e.g., to a nation state) value can 

include a reliable view of the impact of sensitive information loss and can extend to driving foreign 

policy measures. Also, importantly for LEAs, the insights brought by attribution efforts can be 

instrumental in identifying and prosecuting attackers. 

With all the potential benefits, technical analysis involved in cyberattack attribution requires 

high skills, experience, access to up-to-date CTI, and significant investigators’ effort. Furthermore, 
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attribution results are not always reliable, and skilful attackers often work hard to cover their traces 

and mislead or confuse investigators. Recognising the challenges, the EU-funded CC-DRIVER [2] and 

CYBERSPACE [3] projects contributed to designing and developing a tool supporting cyberattack 

attribution. This article presents the tool and discusses the results of its application in the 

investigation of a recent cyberattack. We first briefly review several noteworthy challenges of 

technical attack attribution, the data used in attack analysis, the connections between attribution and 

other key questions that arise in digital forensics and cyber incident response activities, and the earlier 

work on applying machine learning to the attack attribution problem. We then explain the technical 

approach, present the tool, based on a machine learning model and implemented as an extension of 

the OpenCTI platform [4], and show its performance in the ‘No Pineapple!’ cyberattack investigation 

carried out by one of the CC-DRIVER and CYBERSPACE partners – WithSecure Corporation. The 

article is concluded by discussing the challenges and directions for future work. 

2. Technical Attack Attribution 

When running analysis in order to identify the source of a cyberattack, investigators face 

multiple problems. Cybercriminals and other perpetrators usually hide the origin of their attack 

network traffic by routing it via multiple links on the Internet, for instance, using proxy servers or 

onion-routing tools such as Tor [5] instead of directly connecting to the victim (which is essentially 

enabled by the structural design of the Internet), or by using compromised or stolen devices of other 

people (since identifying the source devices of an attack is not the same as identifying the people 

behind it). They also increasingly often rely on tools commonly available on the victim devices 

instead of using custom malware that can be fingerprinted and associated with their authors – the 

technique known as “living-off-the-land” [6]. Attribution activities are further complicated by the 

growing popularity of the “Crime-as-as-a-service” mode of cybercriminal operations (malware-as-a-

service, ransomware-as-a-service, DDoS-as-a-service, bulletproof hosting, etc.), the use of malicious 

code which is open-sourced, shared or stolen from other attackers (and sometimes even from state 

security agencies and security researchers [7,8]), and the use of malicious infrastructure (such as 

command-and-control servers) and other TTPs previously attributed to other attackers. One should 

also note that CTI and other information crucial for attack attribution can be kept confidential by 

certain parties due to laws, contracts, and various – justified or unjustified – concerns. 

Attack attribution is closely connected with several other questions asked typically by incident 

responders and investigators when trying to gain visibility into the threat actor’s operations in the 

victim’s cyber estate. Good examples of such questions are: 

• When did the threat actor breach the victim’s systems and networks? 

• What level of privilege does the threat actor have at the moment? 

• What assets has the threat actor touched and potentially compromised? 

• What is the impact caused by the breach? 

So, essentially any data collected in an incident response operation can be useful for attribution-

related analysis, while the data revealing the threat actor’s capabilities, objectives and behaviour is 

of particular value. This includes: 

• Attacker’s TTPs. The MITRE ATT&CK framework [9] is commonly used to structure and model 

this information. 

• Indicators of Compromise (IOCs) and attacker’s infrastructure, such as the file hashes of 

malicious payloads and IP-addresses which the attack traffic originates from or where the 

command-and-control (C2) servers are hosted. 

• Malware analysis results (especially for victim-tailored malware with no public source code), 

which can provide high-value information. For instance, sometimes attackers make mistakes or 

leave traces in their malware code, and in other cases, they use evolving versions of the same 

malware for many years. 

• Benign tools used by the attacker. These can be popular living-off-the-land binaries, such as 

Powershell and Windows Management Instrumentation (WMI), or other benign software found 

in the victim’s estate and providing capabilities beneficial for the attacker. 
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• Exploited vulnerabilities, either previously unknown ones (zero-day vulnerabilities) or used 

earlier in other attacks. Exploitation techniques can be implemented in malware or by using 

appropriate benign tools, and we often see the same vulnerabilities used in multiple attacks 

conducted by the same threat actor. 

• Attack metadata, such as the times when the attacker communicates with the victim’s systems 

(which can hint at the attacker’s geographical location) or information about the victim (as their 

operations, core business domains, location, etc. can reveal the attacker’s objectives). 

Given the nature of the attack attribution problem, an obvious approach is to look for similarities 

in the data collected from attacks and about attackers (presumably structured and stored in a 

convenient form). Identifying, ranking and aggregating such similarities in large volumes of highly 

heterogeneous data is, however, time-consuming for investigators and requires expertise and 

experience. So, the growing number and sophistication of cyberattacks prompt analysis automation, 

and machine learning techniques come here as a natural choice. 

While machine learning has recently been very popular in attack detection and malware analysis 

methods, it seems very few reports are available on its applications to cyberattack attribution. 

Han et al. [10] implemented WHAP, a web-hacking profiling system that uses a simple similarity 

measure for hacking cases, which is based on heuristically assigned similarity weights for selected 

features (such as IP addresses and domain names) and Case-Based Reasoning. While the use of 

feature vectors for representing website hacking cases and the defined similarity measure for those 

vectors are the only connections of the proposed approach to machine learning, conceptually it can 

be extended to attack attribution methods utilising similarity search and clustering based on 

“learning from data”. 

Noever at al. [11] presented a Random Forest classifier for attributing attack techniques (such as 

backdoor, man-in-the-middle, ransomware, DoS) to the types of threat actors (organised crime, 

nation-state, hacktivist, unknown). While this approach can be relevant, e.g., for policy discussions, 

it does not have the attribution of specific cyberattacks as its objective. 

Noor et al. [12] presented a framework for attributing unstructured (natural language) CTI 

reports and documents. Since “low-level Indicators of Compromise (IOCs) are rarely re-used and can 

be easily modified and disguised resulting in a deceptive and biased cyber threat attribution” [12] (p. 

227), the work focuses on common high-level attack patterns (i.e., TTPs) for mapping a CTI report to 

a threat actor. With the labels for high-level attack patterns taken from the MITRE ATT&CK 

taxonomy, Latent Semantic Analysis (LSA) is used to index CTI reports with relevant labels. Then a 

small set of CTI reports collected from publicly available datasets and marked with the threat actors 

behind the reported cyberattacks is used to train several machine learning models for attributing new 

reports. Although some of the models showed a very good performance in the tests, this is likely 

explained by the training and validation dataset’s toy size. More generally, we think that fully 

focusing on high-level attack patterns and ignoring low-level indicators will result in poor real-world 

performance because: (i) many attackers use very similar TTPs (e.g., in ransomware attacks); (ii) high-

level TTPs are easy to mimic in false flag operations; (iii) low-level indicators are actually re-used 

(mainly due to attacker’s mistakes or time and cost pressures on their side) and very useful in such 

cases. We will further comment on this high-level vs. low-level balance issue in the “Discussion and 

Future Work” section. 

The use of pattern recognition and anomaly detection methods for TTP and IOC extraction from 

raw log data was also proposed by Landauer et al. in [13], illustrated by system log data analysis. 

3. STIX-based Attack Attribution Approach 

A key technical objective defined in both CC-DRIVER and CYBERSPACE is to produce tools for 

following the threat landscape and actors (CTI management) and for investigating cyberattacks 

(digital forensics), and this toolkit serves a natural foundation for adding attack attribution 

capabilities. As fully automated reliable attack attribution is hardly feasible, we chose to build an 

attack attribution recommender, based on the Structured Threat Information Expression [14] (STIX 
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2) language and implemented as an OpenCTI extension, aiming to guide incident investigators and 

significantly reduce their efforts. 

To facilitate the process of identifying threat actors responsible for cyberattacks, the problem 

was framed as follows: Design and implement a machine learning model that takes a bundle of STIX 

2 objects representing adversarial operations as input and predicts "the most probable" threat actors behind 

the operations. 

‘Bundle’ here is a STIX 2 term that refers to a collection of STIX 2 objects. While in principle any 

STIX 2 entities can be included in a bundle, we started with an important special case when a bundle 

is a set of incidents which were observed in a given (attacked) organisation in a given timeframe. In 

STIX 2, such ‘incidents’ represent information collected during attack investigation activities 

(conducted usually by law enforcement, CERTs or companies providing incident response services). 

Threat actors are typically understood as identities representing an individual, a group or an 

organisation which operates in cyberspace with a malicious intent. We, however, chose to build our 

recommender model to predict intrusion sets (which can subsequently be mapped to identities, e.g., 

by LEAs) in order to provide greater flexibility. Cyberattacks are often leveraged by threat actors, 

e.g., a nation state or a cybercriminal group, as part of a coordinated campaign against a specific 

target and contain similar properties, behaviours and attributes in order to achieve multiple 

objectives over a significant period of time. Such an entire attack package is represented in STIX 2 as 

an intrusion set, and there are advantages in reasoning about attribution in terms of intrusion sets. 

For example, the threat actor behind a given attack may not be known but their multiple operations 

can be grouped together, in an intrusion set, and then a new attack can be attributed to that intrusion 

set. A threat actor can move from one intrusion set to another, changing their TTPs, or they can 

“utilise” multiple intrusion sets at the same time. Attribution relationships in STIX 2 are shown in 

Figure 1. 

 

Figure 1. Attributed-to relationships in STIX 2 are shown with the arrows in bold. (the icons are 

taken from https://github.com/MISP/intelligence-icons). 

Our preliminary investigations confirmed that obtaining sufficiently large incident datasets for 

training a good attribution support model would be challenging, particularly because such datasets 

are often considered highly confidential. So, in parallel to extending the data collection, we simplified 

our problem to predicting an intrusion set for a single incident (instead of a bundle), as shown in 

Figure 2. 
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Figure 2. The simplified version of the attribution problem. (the icons are taken from 

https://github.com/MISP/intelligence-icons). 

For intrusion sets, a decent collection of over 350 entities (identified by their names, such as 

‘APT28’ or ‘Lazarus’) was obtained from MITRE [15], AlienVault [16], Malpedia [17], and 

WithSecure. To compensate for the shortage of incident data, we chose to rely on the data 

augmentation approach, generating a number of synthetic incidents based on the data from the 

available intrusion sets. In producing incidents, specific rules designed together with cybersecurity 

experts, guided by their experience and observations, were followed: 

• Incident data re-uses the elements (attributes) present in a specific intrusion set. 

• The number of elements should be between 10 and 50 per incident, following a beta-binomial 

distribution with the median value around 15. 

• From the attributes present in an intrusion set, the following STIX 2 objects are re-used: TTPs 

(up to 50%), tools (up to 20%), malware (up to 20%) and others (up to 10%). ‘Others’ here include 

indicators, locations and so on (all the entities that can be found in the intrusion set). The 

numbers in brackets indicate the upper bounds on the share of re-used attributes of a given type. 

However, if, for example, an intrusion set does not have ‘tool’ attributes at all, we will end up 

having zero tools added to synthetic incidents. Having the upper bounds, actual numbers of 

attributes of a given type are selected uniformly at random. 

• To keep the synthetic dataset balanced, each non-empty intrusion set is used to generate the 

same number of incidents. 

Using this approach, hundreds of thousands of synthetic incidents can be produced from the 

available intrusion sets, and those form the main body of a labeled dataset for supervised learning. It 

is split into training and testing sets, where the testing (validation) set has 20% of the data and the 

rest is used for training a model. CountVectorizer is applied as a one-hot encoder: the entity IDs and 

names seen in all the incidents are used as our features (names of malware families and tools, MITRE 

IDs of TTPs, etc.), and for a given incident the value of a specific feature is 1 if the corresponding 

entity is present in the incident and 0 otherwise. 

After multiple rounds of experiments with several multi-class classification models (with the 

same collection of intrusion sets but new sets of synthetic incidents produced for each round), we 

selected for the recommender model the Bernoulli Naïve Bayes classifier, which showed good results 

with a low variation over the testing rounds. Of course, the good observed performance can be due 

to the synthetic nature of the data, so we are collecting more real-world incident data and planning 

further extensive modeling and validation experiments. 

4. Attribution Results for ‘No Pineapple!’ Incident 

The attack attribution recommender runs as an OpenCTI extension, and the OpenCTI platform, 

with a growing user community and a convenient framework for extending the platform’s 

capabilities, has become a popular choice for storing, analysing and sharing both CTI and fresh digital 

forensics data from ongoing cyber incident investigations. STIX 2, the underlying OpenCTI data 

format, allows for a rich representation of incidents as collections of associated entities and 

observables (such as TTPs, malware, command-and-control infrastructure), combining high-level, 

abstracted views of attacks with relevant technical details. This data expression power explains why 

increasingly many incident response operations by WithSecure, a major European provider of 

cybersecurity services and solutions, rely on OpenCTI for data management and analysis, which 
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recently gave us an opportunity to validate the recommender as part of a real-world attack 

investigation engagement. 

The attack, which was codenamed ‘No Pineapple!’ by the WithSecure’s Threat Intelligence team 

due to one error message found in the malicious code, turned out to be part of a sophisticated 

campaign targeting public and private sector research organisations, the medical research and energy 

sectors as well as their supply chains. The WithSecure’s engagement started when a threat hunt in a 

customer estate identified beaconing [18] to a Cobalt Strike C2 server. Since the C2 server IP was 

earlier listed as an IOC for the BianLian ransomware group and some other details also pointed in 

that direction, the initial (low confidence) assessment of the WithSecure’s experts was that they were 

dealing with a potential ransomware incident. However, as more attacker tools, techniques and 

actions were collected from the customer environment, it became evident that the main objective of 

the attack was espionage, and a North Korean state-sponsored threat actor was behind it. Notably, 

the attacker took a serious effort of hiding their traces, clearing logs and deleting files, tools and other 

indicators of their presence [19]. 

The collected digital forensics data were added to OpenCTI as an incident object representing 

the details of a single attack against a single organisation. The object has quite a rich set of 

relationships, as can be seen in Figure 3. 

 

Figure 3. Relationships of the ‘No Pineapple!’ incident as seen in OpenCTI. 

We then applied the attack attribution recommender tool to the ‘No Pineapple!’ data and 

received the ‘Lazarus’ intrusion set associated with a North Korean state-sponsored threat actor on 

the top of the list. It should be noted that at the time of the recommender validation experiment, the 

Lazarus intrusion set was not updated with the ‘No Pineapple!’ investigation data but represented 

the state of knowledge prior to the investigation. 

The top three results reported by the tool (with the respective model confidence values) were: 

1. Lazarus Group: 0.996186486423268 

2. Elephant Beetle: 0.003794891776652858 

3. APT29: 0.000018620678059799746 

So, the Lazarus group was suggested by the model as the most probable intrusion set for ‘No 

Pineapple!’ with an overwhelming confidence, and this was fully confirmed by the WithSecure’s 

experts. Elephant Beetle, which is a financially motivated cybercrime group, was the second model’s 

pick. While the model confidence for the Elephant Beetle intrusion set is low, we note that it shares a 

set of common attack techniques with Lazarus, including: blending in with the environment; 

deploying JSP web shells (JSP file browser, in particular); operating out of temp directories. It also 

exploits known vulnerabilities in public facing devices to gain initial access, although we do not know 

any vulnerabilities exploited by both Lazarus and Elephant Beetle. That is where the similarities end. 

Elephant Beetle is known to target different geographies, their operations have been financially 

motivated and they often target web services and their components. 

5. Discussion and Future Work 

The results obtained so far indicate that the approach of building machine learning models for 

attributing STIX 2 incidents to intrusion sets is promising and can bring significant value to incident 

investigators. The reliability of such models, especially when attackers actively work to counter 

attribution efforts through the use of false flags and other techniques, critically depends on the 
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availability of sufficiently rich incident data and on finding in the incident representation a suitable 

balance between high-level attack patterns and attributes and low-level indicators and other details. 

While STIX 2 is good for expressing TTPs, malware, tools, exploited vulnerabilities, targeted 

geography and sectors at certain level, more subtle details – such as malware code similarities, custom 

passwords, developer host information, attacker’s email language, malicious domain registrar and 

registrant information – are not supported yet. For example, malware binaries and resource files are 

identified by their hash values, so even a very high similarity of two different files is of no use for our 

models, no matter how important it could be for attribution. 

We see several ideas to explore for improving the attack attribution recommender: 

• Acquiring more real-world incident data, preferably with attribution labels (but even unlabeled 

incidents can be useful), instead of heavily relying on synthetically generated incidents. 

• If many organisations agree to combine their incident data, a high-quality attribution model can 

likely be trained, but incident data is usually highly sensitive. One way to address the data 

confidentiality issue is to train a model in a federated learning manner [20] on data of multiple 

organisations. In particular, joint efforts with the FATE project [21] working on collaborative 

confidentiality-preserving learning on CTI data can be considered. 

• Use of inherited STIX 2 relationships (through the OpenCTI rule engine). At the moment, only 

the data of direct neighbours, i.e., first-level relationships, is used in the model for both incidents 

and intrusion sets. For example, a file associated with an incident may have another relationship 

with a custom directory where this file was located. If the same directory is associated with other 

files, this information may be valuable for attribution but is currently ignored. 

• STIX 2 supports timestamps which can be used for building a timeline of attacker’s actions. 

Because most of the incident data in our model training sets is produced synthetically from the 

intrusion sets, timestamps are currently ignored. Collecting timestamps whenever possible and 

including them in modeling should be explored for utilising attack timelines in attribution. 

• Controlling the weights of features in the incident representation. For example, while many 

attackers use similar attack tactics or can easily imitate the tactics used by others, the presence 

of specific files can be a more reliable indicator for attribution. At the moment, the influence of 

specific features is learned implicitly when the model is trained. Combining the data-driven 

approach with expert-defined rules could be explored. 

In conclusion, we would like to emphasize that even when large and clean training datasets are 

available, attack attribution models will make mistakes and can be deceived by skilful and 

determined attackers. Therefore, such models should primarily be used in the recommendation 

mode, with human experts verifying their output. 
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