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Abstract: There has been considerable progress in implicit neural representation to upscale an image

to any arbitrary resolution. However, existing methods are based on defining a function to predict

the RGB value from just four specific loci. Relying on just four loci is insufficient as it leads to losing

fine details from the neighboring region(s). We show that by taking into account the semi-local

region leads to an improvement in performance. In this paper, we propose applying a new technique

called Overlapping Windows on Semi-Local Region (OW-SLR) to an image to obtain any arbitrary

resolution by taking the coordinates of the semi-local region around a point in the latent space. This

extracted detail is used to predict the RGB value of a point. We illustrate the technique by applying

the algorithm to the Optical Coherence Tomography-Angiography (OCT-A) images and show that

it can upscale them to random resolution. This technique outperforms the existing state-of-the-art

methods when applied to the OCT500 dataset. OW-SLR provides better results for classifying healthy

and diseased retinal images such as diabetic retinopathy and normals from the given set of OCT-A

images. The project page is available at https://rishavbb.github.io/ow-slr/index.html.

Keywords: super-resolution; OCT-A; implicit neural representation; retina; diabetic retinopathy;

opthalmic images

1. Introduction

The primary objective of super resolution (SR) is to obtain a credible high resolution (HR) image

from a low resolution (LR) image. The major challenge is to retrieve the information which is too

minute or almost non existent, and to extrapolate this information to higher dimensions which is

plausible to the human eye. Furthermore, the availability of paired HR-LR image data poses another

concern. Typically, an image is downsampled using a specific method in the hope of encountering a

real-life LR image that is somewhat similar. The aim of SR models is to fill in the deficient information

between the HR and LR images, thereby bridging the gap.

Most of the architectures [1–5] proposed for SR of images upsample them by a fixed factor only.

This means that a separate architecture needs to be trained for each unseen upscaling factor. However,

the real world is continuous in nature, whereas images are represented and stored as discrete values

in 2D arrays. Inspired by [6–9] for 3D shape reconstruction using implicit neural representation,

[10] proposed Local Implicit Image Function (LIIF) to represent images in a continuous fashion. In

LIIF, the extracted features of the neighboring four corners of a query point in the latent space are

unfolded, and then passed through a multi-layer perceptron (MLP). Subsequently, some postprocessing

is performed to obtain the RGB value of the query point. This approach enables representing and

manipulating images in a continuous manner, departing from the traditional discrete representation in

2D arrays.

In our work, we draw partial inspiration from advancements in 3D shape reconstruction, but

we extend the approach by considering a semi-local region rather than relying solely on four specific

locations. Our method allows for extrapolation to any random upscaling factor using the same

architecture. This architecture takes into account the semi-local region and specifically learns to

extract important details related to a query point in the latent space that needs to be upscaled. In this
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paper, we propose an image representation technique called Overlapping Windows for Semi-Local

Representation in a continuous domain. Each image is represented as a set of latent codes, establishing

a continuous nature. To determine the RGB value of a point in the HR image within the latent space,

we employ a decoding function. This semi-local region is fed into network as input which generates

the embeddings of the intricate details in it which have high probability of getting lost when an entire

image is taken into consideration by the networks. Next, the overlapping window technique allows

for effective learning of features within the semi-local region around a point in the latent space using

the embeddings. Finally, a decoder takes the features derived from the overlapping window technique

and produces the RGB value of the corresponding point in the HR image.

In summary, our work makes two key contributions. Firstly, we introduce a novel technique

called overlapping windows, which enables efficient learning of features within the semi-local region

around a point. This approach allows for more effective representation and extraction of important

details. Secondly, our architecture is capable of upscaling an image to any arbitrary factor, providing

flexibility and versatility without the need for separate architectures for different upscaling factors.

This contribution enables seamless and consistent image upscaling using a unified framework.

2. Related Work

During the early stages of SR research, images were typically upsampled by a certain factor using

simple interpolation techniques, and the network was trained to learn the extrapolation of the LR

images [11,12]. However, this approach presents some issues. Firstly, the pre-upsampling process

introduces more parameters compared to the post-upsampling process. Secondly, due to the higher

requirement of parameters more training time becomes a requisite. The network needed to learn the

intricacies of the pre-upsampling method, which added to the overall training complexity. Finally,

the pre-upsampling process using traditional bicubic interpolation does not yield realistic results

during testing. Since it is the first step of the SR pipeline, the network often attempts to mimic this

interpolation, which limits the realism of the output images. On the other hand, post-upsampling

approaches, where the LR image is downscaled in the very first step, typically involve the use of bicubic

interpolation for resizing. However, downscaling an image, even with bicubic interpolation, tends to

yield more realistic results compared to upscaling. As a result, the research focus has shifted towards

post-upsampling techniques, which provides more efficient and realistic SR results by leveraging

downscaling with appropriate interpolation methods in the very first step.

As already mentioned, downscaling of images happens as the initial step in post-upsampling

process. The network learns features from the downscaled image and the upsamples the learned

features towards the very end. A technique proposed by Shi et al. in their work [2] is known as

sub-pixel convolution. Sub-pixel convolution handles the extrapolation of each pixel by accumulating

the features along the channel of that pixel. By rearranging the feature channels, sub-pixel convolution

enables the network to effectively upscale the LR image to a higher resolution. While sub-pixel

convolution provides a practical solution for upsampling by integral factors (×1,×2,×3, etc.), it does

not support fractional upsampling factors (×1.4,×2.9, etc.). However, for cases where fixed integral

upsampling factors are sufficient, sub-pixel convolution offers an efficient approach to achieving

high-quality upsampling. The work by Ledig et al. [13] introduced the use of multiple residual blocks

for feature extraction in super-resolution (SR) tasks. Their approach demonstrated the effectiveness

of residual blocks in capturing and enhancing image details. Building upon Ledig et al.’s work, Lim

et al. [5] proposed an enhanced SR model that incorporated insights regarding batch normalization.

They postulated that removing batch normalization from the residual blocks could lead to improved

performance for SR tasks. This is because batch normalization tends to normalize the input, which may

reduce the network’s ability to capture and amplify the fine details required for SR. Removing batch

normalization not only results in a reduction in memory requirements but also makes the network

faster. Additionally, the work by Shi et al. [2] contributed to the development of various approaches

for SR using CNNs. These approaches include methods proposed by [3,13–15]. These methods aimed

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1919.v1

https://doi.org/10.20944/preprints202308.1919.v1


3 of 10

to enhance feature extraction capabilities specifically tailored for SR problems, further advancing the

state-of-the-art in SR research.

After the success of CNNs in SR tasks, researchers explored the use of generative adversarial

networks (GANs) to further improve SR performance. Several works, such as [13,16,17], introduced

different GAN architectures for extrapolating low-resolution (LR) images to higher resolution.

ESRGAN (Enhanced Super-Resolution Generative Adversarial Network) proposed by Wang et al. [18]

introduced a perceptual loss function and modified the generator network to produce HR images. This

perceptual loss function aimed to align the visual quality of the generated HR images with that of the

ground truth HR images, improving the perceptual realism of the results.

In Real-ESRGAN [19], the authors addressed the issue of using LR images downsampled with

simple techniques like bicubic interpolation during training. They note that real-world LR images

undergo various types of degradations, compressions, and noise, unlike the simple interpolation-based

downsampling. To simulate realistic LR images during training, they proposed a novel technique

that subjected the training images to various degradation processes, mimicking real-life scenarios.

Additionally, Real-ESRGAN introduced an U-Net discriminator to enhance the adversarial training

process and improve the quality of the generated HR images.

3. Method

We illustrate the three main components of our approach in this section. In section 3.1, we

introduce the backbone of our framework. We represent the LR image as a feature map, which serves

as the basis for subsequent processing and analysis. In section 3.2, we demonstrate how we find the

semi-local region of an arbitrary point in the HR image. This region contains valuable information

that helps determine the corresponding RGB value. In section 3.3, we highlight the Overlapping

Windows technique, which plays a crucial role in predicting the RGB value of a point in the HR image.

We accomplish this by leveraging the semi-local region extracted around the sampling points of the

feature map. These three parts collectively form the foundation of our approach, allowing for accurate

prediction of RGB values.

3.1. Backbone Framework

To extract features from the LR image, we employ the enhanced deep residual networks (EDSR)

[5]. Specifically, we utilize the baseline architecture of EDSR, which consists of 16 residual blocks.

ψ = EDSR(ILR) (1)

Given an LR image denoted as ILR ∈ RH×W×C , we express it in the form of a feature map

ψ ∈ RP×Q×D . Here, H and W represent the height and width of the LR image, respectively, and C

signifies the number of channels. P and Q represent the spatial dimensions of the feature map, and D

denotes the depth of the feature map.
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Figure 1. (a) Given an HR image, a point of interest (red dot) is selected to predict its RGB value. (b) Its

corresponding spatially equivalent 2D coordinate is selected from the feature map. (c) Locating the

semi-local region (M=6) around the calculated 2D coordinate.

3.2. Locating the Semi-Local Region

In our scenario, we aim to predict the RGB value at any random point in a continuous HR image

of arbitrary dimensions. Let IHR ∈ RX×Y×C represent the HR image. To predict the RGB value at a

specific point, we first select a point of interest. Then, we identify its corresponding spatially equivalent

point in the feature map ψ obtained from the LR image using bilinear interpolation denoted as ℧BI .

x̂ = ℧BI(x, ψ) (2)

where x̂ and x are the 2D coordinates of the ψ and IHR respectively.

Furthermore, we extract a square semi-local region around this corresponding point. The size of

this region is determined by a length parameter M units, where each unit dimension of the square

region corresponds to the inverse of the dimensions P and Q of the feature map ψ along its length and

breadth respectively. Once we have identified the square semi-local region around the corresponding

point in the feature map ψ, we proceed to extract M × M depth features from this region. These depth

features capture the important information necessary for predicting the RGB value at the desired point

in the HR image. To extract these features, we employ a closest Euclidean distance approach denoted

by ðED. Each point within the M × M region in ψ is mapped to the nearest point in the latent space,

which represents the extracted depth feature. Figure 2 illustrates the working of selecting of features

from the feature map. This mapping ensures that we capture the most relevant information from the

semi-local region.

X̂ = (x̂x − ψx ∗ i, x̂y − ψy ∗ j) (3)

i = {
−M

2
,
−M

2
+ 1, ...

+M

2
− 1,

+M

2
}, j = {

−M

2
,
−M

2
+ 1, ...

+M

2
− 1,

+M

2
} (4)

fx =
1

P
, fy =

1

Q
(5)

Thus X̂ holds the 2D coordinates of all the M × M points.

S = ðED(X̂, ψ) (6)

Figure 1 illustrates how the semi-local region is identified and used to extract the M × M depth

features from the feature map ψ. This depiction helps to visualize the steps involved in the feature

extraction process.
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Figure 2. To extract features from a feature map of size 3 × 3, we focus on a specific query point

represented by a red dot. In order to determine which pixel locations in the feature map correspond to

this query point, we compute the Euclidean distance between the query point and the center points of

each pixel location. In the provided image, the black line represents the closest pixel location in the

feature map to the query point.

3.3. Overlapping Windows

After extracting the semi-local region S ∈ RM×M×D, our objective is to obtain the RGB value of

the center point using this region. To achieve this, we employ a overlapping window-based approach.

We start with four windows, each with a size of M − 1, positioned at the four corners of S. Each

window extracts information from its respective region and passes it on to the next subsequent window

in the process. With each iteration, the size of the window decreases by 1 until it reaches a final size

of M
2 . This iterative process ensures that information is progressively gathered and refined towards

the center point. This approach allows us to effectively capture and utilize the information from the

semi-local region while focusing on the features that are most relevant for determining the RGB value.

Γ = si ∗ wi (7)

In each iteration i, where the window size decreases by 1 for the next step, we utilize weights wi

for combining the features from all four corners. This ensures that the information from each corner

is properly incorporated and made available for the subsequent iteration. In the last step, we take a

final window size of 2, but instead of being positioned at the corners as in previous iterations, it is

centered around the target point of interest. The features extracted from this final window are then

passed through a Multi-Layer Perceptron (MLP) to make the final prediction.

By adapting the window positions and sizes throughout the iterations, we effectively capture

and aggregate the relevant information from the semi-local region. This approach allows us to make

accurate predictions at the target point, utilizing the combined features from all iterations and the final

MLP-based processing. Figure 3 shows the working of the overlapping windows.
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Figure 3. The first iteration of overlapping windows, where the window size=M-1 (M=6). Assuming

the feature map is of negligible depth and four windows are positioned at the four corners of the

feature map.

4. Results and Discussion

4.1. Dataset

We used the OCT500 [20] datatset and randomly sampled 524 images from it to train our network.

For evaluation, 80 images were selected and we report the results using peak signal-to-noise ratio

(PSNR) metric.

4.2. Implementation Details

During the training process, we apply downsampling to each image using bicubic interpolation

in PyTorch [21]. This downsampling is performed by selecting a random factor, which introduces the

desired level of degradation to the images. For training, we utilize a batch size of 16 images. From

each high-resolution (HR) image, we randomly select 1500 points for which we aim to calculate the

RGB values. These points serve as the targets for our network during the optimization process.

To optimize the network, we employ the L1 loss function and use the Adam optimizer [22]. The

learning rate is initialized as 1.e − 4 and is decayed by a factor of 0.3 at specific epochs, namely [40, 60,

70]. We train the network for a total of 100 epochs, allowing it to learn the necessary representations

and refine its predictions over time.

Furthermore, each LR image is converted into a feature map of size 48 × 48 with a depth of 64

using the EDSR-baseline architecture. This conversion process ensures that the LR images are properly

represented and aligned with the architecture used in the training process.
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Input
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Bicubic

(96x96)
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x2 x2 x2 x2

SRCNN

(96x96)

 EDSR

(96x96)
    OW-SLR

(ours - 96x96)

   GT

(96x96)

  

Figure 4. A 96 × 96 patch is taken and its size is reduced to 24 × 24 (first row), 32 × 32 (second row)

and 48 × 48 (third row) using bicubic interpolation. Our architecture uses the same set to weights

reproduce the given results. However, others require different set of weights for a newer scale to be

trained on.

4.3. Quantitative results

In Figure 4, we present a comparison of the performance of our proposed OW-SLR method against

existing works. The original image patch is first downsampled using bicubic interpolation to a lower

resolution. It is evident that there is a significant loss of image quality in the LR patches compared to the

ground truth (GT) image. However, our model outperforms the other existing methods, demonstrating

a significant improvement when the LR image is extrapolated to a higher scale. The results obtained

by our model show better preservation of details and higher fidelity compared to the other approaches

when the given image is extrapolated to higher scale.

In Figure 5, a given image is directly upscaled to higher dimensions without downsampling.

SRCNN performs reasonably well up to a scaling factor of ×4, but for the ×8 upscaled image, sharp

and unnatural edges can be observed. The model seems to force the connection between blood

vessels, leading to unrealistic artifacts. Real-ESRGAN, although providing good results for thicker

blood vessels, exhibits a loss of information in minute details like fine blood vessels. In contrast, our

proposed model produces realistic and high-quality results even for the ×8 upscaled image, preserving

the details effectively.

It is worth noting that our model achieves these results for different scaling factors using the same

set of weights trained once. In contrast, the other models would need to be retrained for each new

scale to which the LR image is extrapolated. This highlights the versatility and efficiency of our model

in handling various scaling factors without the need for additional training.

In Table 1, we present the results of this technique compared to the existing state-of-the-art

methods on the OCT500 [20] dataset. The evaluation metric used in this case is the peak signal-to-noise

ratio (PSNR). Our work demonstrates superior performance compared to LIIF, highlighting the

effectiveness of considering the semi-local region instead of solely focusing on four specific locations.

By incorporating the information from the semi-local region, our approach achieves improved results

in terms of PSNR, showcasing the benefits of our methodology for super-resolution tasks.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1919.v1

https://doi.org/10.20944/preprints202308.1919.v1


8 of 10

Input SRCNN
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x4
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Real-ESRGAN
OW_SLR

   (ours)

Figure 5. With the increase in scale, we tend to see edges which are unnaturally sharper for SRCNN.

Real-ESRGAN tends to lose minute details. However, OW-SLR gives sharper edges with realistically

plausible results. All the results are retrieved using the same set of weights for OW-SLR unlike the

other models.

Table 1. PSNR result on the 300 images from OCT500 [20].

Methods PSNR ↑

Real-ESRGAN [18] 15.66
SRCNN [11] 16.51

EDSR[5] 17.49
LIIF[10] 17.60

OW-SLR(ours) 17.93

5. Conclusion

OCTA images help us for the diagnosis of retinal diseases. However, due to various reasons like

speckle noise, movement of the eye, hardware incapabilities, etc. we lose onto intricate details in the

capillaries that play a crucial role for correct diagnosis. We propose this architecture which upscales

a given LR image to arbitrary higher dimensions with enhanced image quality. First, we extract the

image features using a backbone architecture. We then select a random point in the HR image and

calculate its equivalent spatial point in the extracted feature map. We find the semi-local region around

this calculated point and pass it through the proposed Overlapping Windows architecture. Finally, an

MLP is used to predict the RGB value using the output of the overlapping window architecture. We

hope our work will help the people in the medical field in their diagnosis. The technique outperforms
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the existing methods and allows upscaling images to arbitrary resolution by training the architecture

just once.
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