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Abstract: By employing the stochastic extension of the Madelung quantum-hydrodynamic 
description within a discrete methodology, we establish a solution using the path integral approach 
to explore the progression of quantum states' superposition. This investigation aims to understand 
the eventual establishment of a stable end-state configuration amid the backdrop of gravitational 
background fluctuations. The model identifies the circumstances that lead to a limited range of 
interaction for the quantum potential, allowing for the emergence of sizeable, classically described 
macroscopic phenomena. The theory unveils the lowest achievable level of uncertainty in an open 
quantum system and investigate its congruence with the localized behaviors of macroscopic 
classical systems. The study examines agreements and differences with decoherence theory and the 
Copenhagen interpretation of quantum mechanics, and evaluates the impact of wave function decay 
on the measurement process. 

Keywords: decoherence; gravitational background; dark energy; quantum entanglement; measure 
process; quantum stochastic dynamics 

 

1. Introduction 
The notion that quantum mechanics embodies a stochastic process traces its origins back to 

Nelson's research [1] and has persisted over time. However, Nelson's assumptions were deemed 
unsatisfactory due to the imposition of time-inversion symmetry constraints on the stochastic 
dynamics, limiting its applicability. 

A definitive resolution to this matter was provided by Kleinert [2], who utilized the path integral 
approach to demonstrate that quantum mechanics can be conceptualized as an imaginary-time 
stochastic process. These imaginary-time quantum fluctuations differ from the more familiar real-
time fluctuations, as they give rise to a "reversible" pseudo-diffusion kinetics, expounded by the 
Madelung quantum hydrodynamic model through the influence of the so-called quantum potential. 
The quantum pseudo-diffusion is characterized by a diffusion coefficient that lacks a positive 
definition. The key implication is that processes may transpire over a specific time interval or within 
a subsection of the system that result in a decrease in entropy. In this study, the author examines the 
quantum imaginary-time stochastic process within the context of concurrent real-time random noise 
presence. 

The main topics are:  

i. Formulating the equation of motion for the stochastic quantum hydrodynamic system in the 
presence of fluctuations in spacetime curvature, attributed to the existence of gravitational dark 
energy. 

ii. Developing a path integral solution for the dynamics of quantum systems influenced by 
stochastic noise, with an emphasis on tracking the progression of quantum states' superposition 
and their possible relaxation into stable configurations. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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iii. Characterizing the configurations of stationary states under the influence of noise and 
establishing their relationship with deterministic quantum states. 

iv. Defining the specific circumstances in which the deterministic limit of the stochastic theory 
approaches the quantum mechanics, thereby identifying the conditions for convergence. 

v. Identifying the scenarios in which classical behavior emerges within extensive systems, 
shedding light on the transition to classical-like phenomena on a larger scale. 

vi. Extending the principles of uncertainty relations within fluctuating quantum systems, exploring 
how these relations are compatible with the presence of stochastic effects. 

vii. Investigating the phenomenon of quantum entanglement, analyzing the decay of wave 
functions, and scrutinizing the intricacies of the measurement process in this stochastic quantum 
framework. 

viii. Comparing the measurement process as described by the stochastic quantum hydrodynamic 
model with viewpoints from decoherence theory and the Copenhagen interpretation of 
quantum mechanics. 

2. The quantum potential fluctuations elicited by the stochastic gravitational background  

The quantum-hydrodynamic representation of the Schrodinger equation  

2 2

2 ( q )i V
t m q q 
 

  
       

       (2.1) 

for the complex wave function 
iS

| | e 


  , are given [3] by the conservation equation for the mass 

density 2| |  

2 2 0i
i

| | (| | q )
t q
  

 
 

        (2.2) 

and by the motion equation 

 1 ( q ) qu(| |)
j( t )

j

V V
q

m q


 
 


        (2.3) 

where jq is defined, through the momentum ( q ,t )
j

j

S
p

q





, where
2( q,t )S ln

*



 


and where 

2 21
2qu

j j

| |V
m | | q q





 

 


.       (2.4) 

In order to introduce the metric tensor fluctuations of the space-time background, we assume 
that: 

1. The fluctuations of the vacuum curvature are described by the wave function vac with density 
2

vac| | ; 

2. The (dark) energy density E  of the gravitational waves is proportional to 2
vac| |  ; 

3. The equivalent mass of vacuum fluctuations darkm is defined by the identity 2 2
dark vacE m c | |  

4. The stochastic gravitational wrinkles originated by the big-bang and the gravitational dynamics of 
space-time, are approximately assumed to not interact with the physical system (gravitational 
interaction is sufficiently weak to be disregarded). 
In this case the wave function of the overall system tot  reads 
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tot vac           (2.5) 

Moreover, by assuming that, the equivalent mass darkm  of the dark energy of gravitational 

waves is much smaller than the mass of the system (i.e., tot darkm m m m   ), the overall quantum 
potential (2.4) reads 

1 1

1 1 1 1

22

22 2

2

2

vac
qu vac(n )tot tot i i

vac vac
vac vac

i i i i i i

| || |
V = | | | |

m q q

| | | || | | |            | | | | | | | |
m q q q q q q

 
 

     

 

   




 

   
          




. (2.6) 

Furthermore, given the vacuum mass density fluctuation of wave-length   

2 2 2
vac( )| | cos q




       (2.7) 

associated to the fluctuation wave-function 
2

vac cos q


  ,        (2.8) 

it follows that the overall fluctuating quantum potential energy read 

2
qu tot ( q ,t ) qu( q ,t )

V

E  | | V dV    ,       (2.9) 

where 

1 1 1

1

1

22

2 12

22

2

2 2 2
2

2 2
2

vac vac
qu( q,t ) vac vac

i i i i

i

i

| | | | | |V | | | | | |
m q q q q

| |              | | cos q sin q
m q

| |              | | tan
m q

     

   
  

 


  







   
   

    
                      

     





 q


 
  
 

.  (2.10) 

For V    , the unidimensional case leads to 

1

1

22

22

22

1 2 2
2

1 2 2
2

2
2

qu( ) tot( q,t )
tot iV

tot( q,t ) tot( q,t )
tot iV V

| |E  n | | tan q dq
n V m q

| |              n dq  n | | tan q dq
n V m q

              
m


   
 

  
 








        
            

   
 



 







 (2.11) 

In (2.11) it has been used the normalization condition 2
tot ( q ,t ) tot

V

| | dq n V   and, on large 

volume ( 3
cV   see (2.15) below), it has been used the approximation 

1
2

2
0

2 2
tot ( q ,t ) tot

i

| |lim  | | | | tan q dq n V
q
   

 







   
      

  .  (2.12) 
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For the three-dimensional case, (2.11) leads to 

 
2 2

2 2

2 2
qu( ) i

i
E k | k |

m m
   

      (2.13) 

The result (2.13) shows that the mass/energy density fluctuations, increases as the inverse 
squared of   . Being so, the quantum potential fluctuations, of very short wave length (i.e., 0 ) can 
lead to unlimited large energy fluctuations even for vanishing noise amplitude 0T . This fact, in 
principle, could prevent the realization of the deterministic, zero noise, limit (2.2-4) representing the 
quantum mechanics, if the background fluctuations would produce a white noise. 

Actually, the convergence to the deterministic limit (2.2-4) of quantum mechanics for 0T   
is warranted by the fact that uncorrelated fluctuations on shorter and shorter distances are 
energetically unlikely so that the noise is not white. Thence, the requirement of convergence to the 
conventional quantum mechanics for 0T   is warranted by the special form of the spatial 
correlation function of the noise as 0  [4]. 

The calculation of the correlation function G( )  brings a quite heavy stochastic calculation 
[4]. A more simple and straight way to obtain G( )  is through the analysis of the spectrum of 
fluctuations. 

Since each component of spatial frequency 
2k 


  brings the quantum potential energy 

contribution (2.11), its probability of happening, reads 

 

22

2
2

2

qu

c

E
p exp

kT

m      exp exp
kT









 
  

  
  
                  
  

     (2.14) 

where 

1 22c /( mkT )
 


        (2.15) 

is the De Broglie length. 
From (2.14) the spectrum S( k )of the spatial frequency reads 

2 22
2

c ck
S( k ) p( ) exp exp

 
 

                
         

    (2.16) 

From (2.16) we can see that the components with wave-length     smaller than c  go 

quickly to zero. Besides, from (2.16) the spatial shape G( ) reads 

2

21 2

2
c

( ) ( k )

/

c c

G exp[ ik ]S dk exp[ ik ] exp k dk

           exp




 

 
 

 

 

      
   

  
   
   

 
.  (2.17) 
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The expression (2.17) shows that uncorrelated mass density fluctuations on shorter and shorter 
distance are progressively suppressed by the quantum potential allowing the realization of the 
conventional “deterministic” quantum mechanics for systems whose physical length is much smaller 
than the De Broglie one c . 

For the sufficiently general case to be of practical interest, where the mass density noise correlation 
function can be assumed Gaussian with null correlation time, isotropic into the space and 
independent among different co-ordinates, it can be assumed of the form 

( q ,t ) ( q ,t ) ( q ) ( q ) ( T )n , n n , n  G( ) ( )     
           ,   (2.18) 

that, for system whose physical length L  is much smaller than the De Broglie’ one (i.e.,  1
c
L

), 

reads 
2 2

1 1 1 11
2( )

c c c c c

mkTG exp
 

    

                         
  (2.19) 

On this ansatz, equation (2.3) assumes the stochastic form [5] (see appendix A) 

  1 21 ( q ) qu( ) /
j j ( t )( t ) ( t )

j

V V
q q D

m q


  
 

   


  .    (2.20) 

where the probability mass density function   is defined by the Smolukowski conservation 

equation stemming from (2.20) and obeys to the condition 2
0Tlim | |   since by (2.17-18) the 

convergence to the quantum mechanics is warranted. 

3. The Langevin-Schrodinger equation from the stochastic quantum hydrodynamic approach 

Generally assuming for the stochastic case, the complex field 

 
 1 2 q,t/

( q ,t )q ,t exp i 
 

  
  

S
,                          (3.21)

 

where close to the deterministic limit of quantum mechanics we can utilize the identity

 
1 2/

( q ,t ) q,t| |  , it follows that, by utilizing (2.20), the quantum-hydrodynamic equations lead to 

2

2 2
1 2 1 2 1 2

1 1 1

1
21

/ / /
( q ) ( t )

d S S S S S S Sq
m dt q t q m q q q q t m q q

| |V S q q m D
m | | q q

m q


       

 
 



   


         
                

 
        







     

 (3.22) 

and, finally, to the partial stochastic differential equation 

2 2
1 2 1 2 1 21

2
/ / /

( q ) ( t ) ( t )
S S S | |m V S q q m D C
t q q m | | q q  

   

   


    
             


. (3.23)

 

Equation (3.23) leads to the Langevin-Schrodinger equation, by observing that, for system of 

physical length L   (such as 1
c
L

 ),   obeys to the Smolukowski conservation equation (see 

Equations (A22) in appendix A) that reads 
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0

0

( q ,t ) i
t ( q ,t ) diss( q,t )

ic

( q,t ) i
t ( q ,t ) diss( q,t )

i

q
lim Q

q

q
         Q

q











 
   
  

 
      





L

    (3.24) 

where 3
( q ,t ) ,t )d p  N(q, p  and the diffusional dissipation diss( q,t )Q (see B22-7) in appendix B) 

reads 

3

2

0

1 1
2

k ( k )
,t ) h,t ) ........

diss( q ,t )
h

( k terms )

CDQ d p...
p n! p ... p

 

  







 
 

       
 
 

 


(q,p(q,p
NN .  (3.25) 

In fact, since close to the deterministic limit of quantum mechanics it holds that 

clim q q


 
L

,         (3.26) 

where upper dash stands for the mean value (see (B24) in appendix B, and  

2
clim  



L

,          (3.27) 

it follows that 

1 1
2 2

diss( q,t )Q| | | | S S| |
t m q q m q q | |   

  


    
   

    
.   (3.28)

 

Equation (3.28) with the help of (3.23), leads to the generalized Langevin-Schrodinger equation 
(GLSE) that for time-independent systems reads 

2 2
1 2 1 2 1 2

22 2
diss(q,t )/ / /

(q) (t )

Q
i V Const S q q m D i

t m q q | | 
 

     


  
       

     

    (3.29) 

Close to the deterministic limit of quantum mechanics (i.e., microscopic system with physical 
length L much smaller than c )  it is possible to characterize the ability of the system to dissipate 

by the semiempirical parameter  defined by the relation [5] 0
0

2
T

c

kTlim lim
mD



 



L

. On this 

ansatz, the realization of the quantum mechanics is warranted (see Equation (2.20)) by the condition 

0
0

c

lim






L

. In this case, it can be readily seen that the GLSE (3.29) reduces to the Schrodinger 

equation.  

4. The quantum Brownian motion 

When non-vanishing drag force is present in microscopic systems even if they are very close to 

the quantum deterministic limit (i.e., 1
c




 L
), Equation (3.29) does not converges to the 
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conventional quantum mechanics. When the parameter   remains finite close to quantum limit 
such as 

00
c

lim


 


L .                 (4.31) 

Equation (3.29) converges to the quantum Brownian motion. In fact, under condition (4.31) and 
by utilizing dimensional considerations, the following relations apply: 

I. 

2

2
0 0

0 2 4
0T D T D

c
c

kTlim D lim lim  
m



 
 



 
   

 


L

L L              (4.32) 

II. 0 0 2
0

2 8
T

D
c

finite
kTlim lim

mD m


 


 


  
L L

 ,    (4.33) 

III. 
0

0diss( q,t )
c

lim Q





L
 .       (4.34) 

where D  is a pure not-null number. 

Thus, by (4.32,34) being 20 2
diss( q,t )

c

Q
lim | | | S |

| |






L

, the term 2
diss( q,t )Q

i
| |

 can be disregarded 

in (3.29) and close to the deterministic limit we have 

 
2 2

1 2 1 2 1 2
0 2

/ / /
T ( q ) ( t ) ( t )lim i V S q q m D C

t m q q  
 

     
 

     
  

 . (4.35) 

that describes the quantum Brownian motion. 
It is worth noting that Equations (3.29,4.35) can be established by the integrability of the velocity 

field  
1 Sq
m q







  that can be warranted close to the quantum behaviour, but that it may fail in 

macroscopic large-scale classical system since, generally speaking, the velocity field is not-integrable. 

5. The quantum path integral motion equation in presence of stochastic noise 

The Markov process (2.20) obeys the Smolukowski integro-differential equation for the Markov 
probability transition function (PTF) [6]  

 0 0 0 0 0
rP q,q | t ,t ) P q,z | ,t )P z,q | t t ,t )d z 





  ( ( (     (5.1) 

where the PTF P ,z | ,t )(q  represents the probability that a quantity of the probability mass density 

(PMD) ,t )(q  at instant t, in a time interval , in a point z, is transferred to the point q [6]. 
The conservation of the PMD   in integral form shows that the PTF generates the displacement of 

a vector (q,t) – (z,0) according to the rule [6] 

00 r
( , )q,t ) P q,z | t , ) d z   z( (        (5.2) 

5.1. Stationary eigenstates in presence of noise 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1904.v1

https://doi.org/10.20944/preprints202308.1904.v1


 8 

 

Generally speaking, for the quantum case, equation (5.1) cannot be reduced to a Fokker-Planck 
equation (FPE), since the quantum potential qu( )V

  owns a functional dependence by ,t )(q  and  

the PTF 0 0P q,q |t ,t )(  is non-Gaussian (see Appendix B) .  
Nonetheless, if the initial distribution 

0( q,t )  is stationary (e.g., quantum eigenstate [7]) and is 

close to the long-time final stationary distribution eq  of the stochastic case, it is possible to assume 

the approximation 
222

2
1

4 2
eq( q ) eq( q )

qu
ln ln

V ( )
m qq

                  


.     (5.3) 

Being in this case the quantum potential not function of time, the stationary long-time solution 
(warranted in time independent Hamiltonian potentials by the presence of the viscous force) is given 
by the Fokker-Plank equation  

0 0 0q,z|t , ) q ,z|t , )P P
t q

 
 

 
( (         (5.4) 

where 
222

2
1

4 21
2

eq eq
( q )

eq

ln ln
V ( )

m qq lnD
m q q

 






                       
 



   (5.5) 

leading to the final equilibrium ( 0  ) identity 
222

2
1

4 21 0
2

eq eq
( q )

eq

ln ln
V ( )

m qq lnD
m q q

 




                       
 



   (5.6) 

In appendix C the stationary states of linear systems obeying to (5.6) in presence of small noise 
are shown. The results show that the quantum eigenstates are stable and maintain their shape (with 
a small change of their variance) when subject to fluctuations. 

5.2. Evolution of quantum superposition of states submitted to noise 

In order to determine the evolution of quantum superposition of states, that are not stationary, 
(not considering fast kinetics, large fluctuations and jumps) we have to integrate the stochastic 
differential equation (SDE) (2.20) that eliminating the fast variables reads 

22 2

22 2

8 2

( q )

D D ( t )

ln lnV ( )
m qq kTq

q

 

  


                      





 

L L
   (5.7) 

As shown below, this can be done by using the discrete approach with the help of both the 
Smolukowski integro-differential equation (5.1) and the associated conservation equation (5.2) for the 
PMD  .  

We integrate the SDE (5.7) by using its 2nd order discrete expansion  

   
1 2

2

1
1 1

2
q kq k kk /

( q ) qu( ,t )( q ) qu( t )k , k k
k k k k

k k

V VV V tdq q t D
m q m dt q



 

   
     

 
W  (5.8) 

where  

k ( t )kq q           (5.9) 
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1k k kt t t             (5.10) 

1k ( t ) ( t )k k
  W W W         (5.11) 

where kW  has Gaussian zero mean and unitary variance whose probability function 

k , t ) P( W , for kt t k     , reads 

 

   

 

1 2

1 2

1 2

2

0 0

2
1 1

0

2
2

1

4
4

14
4

214
4

/

/

/

k
t k t

k k
t

k
k k k

lim , t ) lim D t exp
t

q q
lim D t exp

t D

qq q q t t
D t exp

t D








   

  
 







   


  
  



  
       

   




                           

                            

W
P( W

  (5.12) 

where it has been introduced the midpoint approximation  

1

2
k k

k
q qq  

 ,         (5.13) 

and where 

1 q kk k
( q ) qu( t )

k
k

V V
q

m q





   
   


         (5.14) 

and 

 1
2

( q kk
( q ) qu( ,t ))k

k
k

V Vdq
m dt q





 
  


        (5.15) 

are the solutions of the deterministic problem 

    2

1
1 1

2
q kq k kk

( q ) qu( ,t )( q ) qu( t )k , k k
k k k

k k

V VV V tdq q t
m q m dt q



 

   
     

 
. (5.16) 

By using standard manipulations [2], from (5.12), the PTF reads 

  2

1 2

0 0 0 0 0 0

0 1 1 1

2
1

1
1 1 2

0 1 1 1

1

0 0

1
2 4

4

4

/

/

n t n

n
t k k k k

k kn n

k k
n k kn

t k k k

)

P q,q ,t ,t ) P q ,q | t t , ) lim q ,q | n t , )

lim dq q ,q | t ,( k t )

q q
tq q t

D D
lim dq D t exp q

t D
D



 



    





  

    


 

   

  

 
                

  






 






( ( P(

P(

1

0

0 0

1
1

2
21

1

1
1 1 1

1

2 2

1
2 4

2

1 1 2
2 4

n

k k ( q )k
k

k k
q kn n

k k
k kq k

k

q q

( q ,t )
q q

q

q q q
t tq exp q q exp

D D qD
q

exp q dq q exp dt q q D
D D

 






  



 
 
 
 
 
 

   
  
                         

  
 
        
 
 



 

 








  

W

D

D
0

t

t

q
q

   
  




 (5.17) 
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where it has been introduced the discrete PTF 1 1k k )q ,q | t ,( k t )  P(  that reads 

 

   

1 2

1 2

1
1

2
21

0 1 0 1

1

1

2
0 1 1

1 4
2 1

2
2

4 2
4

/

/

k k
k

k k
t k k t k

k

k

k
t k k

)

q qq
t

t q qlim q ,q | t,( k t ) lim D t exp q
D t

qD
q

qtlim D t exp q q D
D








 
    






   

 

       
                       


     









P(

1

1kq




 
  

.  (5.18) 

Since the quantum potential is a function of the PMD   

0 0 00k k k k, ) P , | t , ) )dq 




 (q t (q q (q ,0 ,                           (5.19) 

the evolution of equation (5.8) depends on the exact sequence of the noise inputs 1 2/
kD W and, 

therefore, also on the discrete time interval of integration. This behavior can be easily verified by 
performing the numerical integration of (5.8). The vagueness of the problem can be analytically 

identified by the fact that,  1 kk qq     
 and  1

1

kk q

k

q

q
  



  





depend on k kq , t ) (  and 

 1 1k kq , t )   ( , that define the quantum potential values 
k

qu( )V
 , 

1k
qu( )V

 
 , unknown at the 

time instant  1k t  .  

Although there is no general solution to this problem, in the limit of small speed kq  and small 
noise amplitude, it is possible to proceed by successive steps of approximation since the existence of 
the deterministic limit (see appendix D) 

0 0 0t D k t k klim lim q lim q q                (5.20) 
warrants that, for sufficiently short time interval t , the speed change is small enough to have that 

1 1k

k

q
q

 
   

 



          (5.21) 

with 1  , since 0 0tlim      , and that 

1 1
2 2

k k
k k k

q qq q q              
 

        (5.22) 

Therefore, by starting from the zero order of approximation k kq q    , there exists a 

sufficiently small noise amplitude, as well as small diffusion coefficient 
2

4D
kTD 


L
 , to obtain 

the PTF by successive steps of approximation where the starting zero-order reads 
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 

 

 

1 2

1 2

1 2

0
1

2
1 1

1
1

2
1

1 1
1

1

1

4
4 2

4 1
4 2

4
4

/

/

/

( )
k k

k k k k
k

k

k k
k k

k

k

)q ,q | t ,( k t )

q q q qtD t exp q D
D q

q qtD t exp q q D
D q

tD t exp q
D









  




 
 






 

                       
                         


  

   

  



P (

 2 1
1

1
2 k

k
k

qq D
q






   
     



  (5.23) 

which can be used to find the zero-order of approximation of the PMD 0( )  at the next instant k  

   0 0
1 1 11 1( ) ( )

k k k k kkq , t ) q ,q | t , k t ) q , k t )dq 


  


       ( P ( (   (5.24) 

and to define the approximated quantum potential at the instant k that allows to obtain  
2

0
2 02

2

0

4 2

1

k
k

( )
( ) ( q ,t )k( q ,t )k

( q )k

( )
k

k

lnln q
V ( )

m q

q
m q





                    
  

     




 .  (5.25) 

Thence, at the next order of approximation, the PTF and the associated PMD read, respectively, 

 

 

1 2

1 2

1
1

20 0
1 1

1
1

20 0
1 1

1
1

1

4
4 2

4 2
4 2

/

/

( )
k k

( ) ( )
k k k k

k
k

( ) ( )
k k k k

k
k k

)q ,q | t,( k t )

q q q qtD t exp q D
D q

q q q qtD t exp q D
D q q







  




  




 

                
   

                       
      

   

   

P (

  (5.26) 

and 

   1 1
1 11 1( ) ( )

k k k k kkq , t ) q ,q | t , k t ) q , k t )dq 


 


       ( P ( (   (5.27) 

that leads to the mean velocity  
2 1 22

1
2

1

1
4 2

1

k

k

( )
( q ,t ) ( )k

( q ) ( q ,t )k k
( )

k
k

ln
V ( ) ln

m qq
q

m q






                         




 . (5.28) 

Thence, repeating the procedure, at successive u-th order of approximation (u=2, ,3, .......r) we 
obtain 
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 

 

1 2

1 2

1
21 1

1 1
1
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(u)
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(u ) (u )
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k
k
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k k k k

k
k k

)q ,q | t,(k t )

q q q qtD t exp q D
D q

q q q qtD t exp q D
D q q







 
  




 
  




 

                
   

                    
      

   

   

P (




     (5.29) 

and 

   1 11 1( u ) ( u )
k k k k kkq , t ) q ,q | t , k t ) q , k t )dq 



 


       ( P ( (   (5.30) 

2 22

2
1

4 2
1

k

k

( u )
( q ,t ) ( u )k

( q ) ( q ,t )k k
( u )

k
k

ln
V ( ) ln

m qq
q

m q






                         




 ,  (5.31) 

so that the final PTF 1 1( )
k k )q ,q | t ,( k t )

  P (  reads 

  1 2

1 1
2

1 1
1

1

1 1

4
4 2

/

( ) (u )
k k u k k

( ) ( )
k k k k

k
k k

) )q ,q | t,(k t ) lim q ,q | t,(k t )

q q q qtD t exp q D
D q q




  

 
  




     

                     
      

   

P ( P (

.    (5.32) 

It worth noting that the convergence of (5.32) generally depends by the chaoticity of the classical 
trajectories of motion of the system, by the amplitude of the noise T  and by the discrete time 
interval t .  

The existence of the deterministic limit of quantum mechanics warrants the existence of the basin 
of convergence of (5.32) in the   0lim T , t  , but its wideness depends by the specificity of each 

physical system.  

If, for discrete values of T and t  of integration , ( u )P fluctuates and ( u )
ulim  P  cannot 

be precisely determined, the PTF ( u )P  can be estimated by taking its mean values beyond the u th-  
order of approximation such as 

  1
1

u
( ) ( u ) ( i )

u u
i u

lim Re g lim
u u


 



 
  P P P .     (5.33) 

Finally, by using 1 1k k )q ,q | t ,( k t )  P( , the PMD at the k -th instant reads 

 1 1 11 1( ) ( )
k k k k kk )q , t ) q ,q | t ,( k t ) q , k t )dq 


 

  


       ( P ( ( .   (5.34) 

leading to the velocity field 
2 22

2
1

4 2
1

k

k

( )
( q ,t ) ( )k

( q ) ( q ,t )k k
( )

k
k

ln
V ( ) ln

m qq
q

m q












                         




   (5.35) 

As far as it concerns the continuous limit of the  PTF, it reads 
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D
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q q t
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q q t
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D D q

                 
  

  D

   (5.36) 

Where it has been used the identity 1
1 2

( ) ( )
( ) k k

k
q qq

 
 


    

  
  .  

The general solution, given by the recursive formula (5.36), can be applied also to non-linear 
system that cannot be treated by standard approaches [8]. 

5.3. General features of relaxation of quantum superposition of states 

In the classical case, the FPE describing the Brownian process, admits the stationary long-time 
solution  

 0
0

1 1
t ,t

q q

t ( q' )
q q

P q,q | t t ,t ) lim N exp q dq' N exp K( q')dq'
D D

 

        (   (5.37) 

where
1 ( q )V

K( q )
m q


 


leading to the canonical expression [2] 

0 0 0

2 2
0 0 0

1 1 2
2 4

q q t

q q t

K( q )P q,q |t t ,t ) exp K( q')dq' qexp dt q K ( q ) D
D D q

             
   ( D   (5.38) 

Generally speaking, in the quantum case, (5.36)  cannot be given in a closed form (5.37) since 
the quantum potential depends on the specific relaxation path q,t )( of the system toward the steady 

state which significantly depends on the initial conditions 
0q ,t )(  ,

0( q ,t )q  and, therefore, on the 

initial time 0t  when the quantum  superposition of states are submitted to fluctuations. 

Besides, from (5.8) we can see that 
ktq depends by the exact sequence of inputs of stochastic 

noise since the quantum potential is not fixed, but influenced by them. This behavior, in classically 
chaotic systems, can lead to relevant divergences of the trajectories in a short time. Thus, in principle, 
different long-period stationary configurations q,t ) (  (i.e., eigenstates described by 5.6) can be 

reached whenever starting from the same superposition of states. Being so, in classically chaotic 
systems, the Born’s rule can be applied also to the measure of the single quantum state.  

Even if c qu L  , it is noteworthy to observe that, in order to have finite quantum lengths 

c and qu  (necessary to have the quantum-stochastic dynamics of Equation (5.7) and the quantum 

decoupled (classical) environment and/or measuring apparatus) the non-linearity of the system-
environment interaction is necessary: The quantum decoherence with the decay of the superposition 
of states is strongly based upon the ubiquitous classical chaoticity of real systems.  

On the other hand, a perfect linear universal system would maintain c    as well as 
quantum correlations on global scale and would never allow the quantum decoupling between the 
system and the measuring apparatus necessary for the measure process.  
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Furthermore, since the connection (A6.28) between the PMD and the MDD holds only at leading 
order of approximation of  q  (i.e.,  slow relaxation process and small amplitude of fluctuations), 
in the case of  large fluctuations (that can occur on time scale much longer than the relaxation one)  

q,t ) q ,t )( (  can make transitions not described by (5.36) even from a stationary eigenstate to a generic 

superposition of states (e.g., following quantum synchronization [9]). In this case a new relaxation 
toward different stationary eigenstate will follow: The PMD q,t )(  (5.34) describes the relaxation 

process in the time interval between two large fluctuations, but not the complete evolution of the 
system toward the statistical mixture. Due to the jumping process on long time scale, the system 
made by collection of a large number of particles (or independent subsystems) relaxes toward an 
assigned statistical mixture (whose distribution is determined by the temperature dependence of the 
diffusion coefficient). 

5.4. Emerging of the classical behavior on large size systems 

It's indeed a fact that when one manually nullifies the quantum potential in the quantum 
hydrodynamic equations (2.1-3), the traditional equation of motion that corresponds to classical 
mechanics emerges [4]. Even though this might hold true, such an operation lacks mathematical 
validity as it alters the fundamental properties of the quantum hydrodynamic equations. By taking 
this step, the stable arrangements (referred to as eigenstates) are eliminated due to the removal of the 
counterbalancing effect between the quantum potential and the Hamiltonian force [7], which is 
responsible for establishing the stability of the eigenstates. Therefore, even a minor quantum 
potential cannot be disregarded within the framework of the deterministic quantum hydrodynamic 
model. 

Conversely, in the stochastic generalization it is possible to correctly neglect the quantum 
potential in (2.20) when its force is much smaller than the force noise   such as 

1 qu( )
( q,t ,T )

i

V
| | | |

m q
 




 that by (5.7) leads to 

1 2 1 21
2 2 2

/ /
qu( )

D D
i c

V mkT| |
m q m m

    


                    

 


L L
,                (5.39) 

and hence, in a coarse-grained description with elemental cell side q , to 
1 2

2 2 2

/
qu( n )

q q
i c

V kTlim m m
q m

 


         




L L
,    (5.40) 

where L  is the physical system length. 
Besides, even if the noise ( q ,t ,T )  has zero mean, the mean of the quantum potential 

fluctuations st( n,S )V S  is not null so that the dissipative force ( t )q  in (2.20) appears. In this 

way, the stochastic sequence of inputs of noise alters the coherent evolution of the quantum 
superposition of state.  Moreover, by observing that the stochastic noise 

1 2

2

/

D ( t )
c m

  


  
  

  

L
         (5.41) 

grows with the size of the system, it follows that for macroscopic systems (i,e., 
c


L
), condition 

(5.39) is satisfied if  

1 qu( n )( q )
q

ic c

V
lim limited

m q 
 




L         (5.42) 
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Actually, in order to have a large-scale description, completely free from quantum correlations, 
we can more strictly require  

1 1 0
qu( n ) qu( n ) qu( n )( q ) ( q ) ( q )

q q
i i ic c

V V V
lim lim

m q m q q 
 

  
 

  
.   (5.43) 

Thus, by observing that for linear systems  

2
q qu( q )lim V q  ,          (5.44) 

it immediately follows that they cannot lead to the classical macroscopic phase. 
Generally speaking, stronger the Hamiltonian potential higher the wave function localization and 
larger the quantum potential behavior at infinity [10]. This can be easily proven by observing that 
given the MDD  

2 k
( q )| | exp P              (5.45) 

where 
k

( q )P  is a polynomial of order k, in order to have a finite quantum potential range of 

interaction, it must result 
3
2

k  , so that linear systems, with 2k  , own an infinite range of action 

of quantum potential.  
A concrete illustration can be found in solids that possess a quantum lattice structure. When 

observing phenomena occurring at intermolecular distances where the interaction follows the linear 
behavior, quantum characteristics become evident (such as in x-ray diffraction). However, when 
focusing on macroscopic attributes (like low-frequency acoustic waves with wavelengths 
significantly surpassing the linear interatomic distance range), classical behavior becomes 
predominant. 

For instance, for systems that interact by the Lennard-Jones potential, whose long-distance wave 
function reads [10] 

1 2 1/
rlim | | a

r
 

  ,           (5.46) 

the quantum potential reads 

2 2 2
2

2
1 1

2r qu( n ) q
| |lim V lim a | |

m | | r r mr
 

 


  
 

 
      (5.47) 

leading to the quantum force 

2
2 2 2 2

3

1
1 12 0

2 2
qu( n )

r q
V | | rlim lim r

r m r | | r r m r r r m r


 

   
     

      
  

,      (5.48) 

so that by (5.39, 5.43), the large-scale classical behavior can appear [10, 11] in a sufficiently rarefied 
phase.  

It is interesting to note that in (5.47) the quantum potential reproduces the hard sphere potential 
model of the “pseudo potential Hamiltonian model” of the Gross-Pitaevskii equation [12, 13] where 

4
a


is the boson-boson s-wave scattering length. 

By observing that, in order to fulfill the condition (5.43) we can sufficiently require that 
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1

0

1 qu( n )( q )
( r , , )

i

V
r | | dr lim ited             ,

m q    





 
  ,    (5.49) 

so that it is possible to define the quantum potential range of interaction qu  as [5,10] 

1

0

qu( n )( q )
( r , , )

i
qu c c qu

qu( n )( q )
( r , , )c

i

V
r | | dr

q
IV

| |
q

 

  

  









 






                          (5.50) 

that gives a measure of the physical length of the quantum non-local interactions.  
For L-J potentials the convergence of the integral (5.49) for 0r   is warranted since, at short 

distance the L-J interaction is linear (i.e., 2
0r qu( r )lim V r  ) and  

1
0

qu( r )
r ( r , , )

V
lim r | | cons tant

r  








 .      (5.51) 

5.5. From micro to macro description: the coarse-grained approach 

Given the PMD current j( q,t ) q,t ) j( t )J q ( , that reads 

 

 

2

1 2

4

1

( q ) qu
( q,t ) ( q,t ,T )( t )

( q ) qu /
jk k( t )

j

V V
J q

q

V V
                      D

m q

  


 


  
    

 
 
  
   

 
 

 mL

,
  

   (5.52) 

The macroscopic behavior can be obtained by the discrete coarse-grained spatial description of 
(5.52), with local cell of side l  , that as a function of the j-th cell reads [14] 

 
2

4
qu

j jm ( m ) mk k qu jk ( k ) ( k ) k( t )mk k
dx x V V dt x dW


    

mL D' D D D''     (5.53) 

where 
3

j ( q ,t )jx l  ,            (5.54) 

k ( q )kV V ,           (5.55) 

qu( )qu ( q )k k
V V  ,          (5.56) 

k ( q ,t )k   ,           (5.57) 

where  
6

0l j k ( q ) ( q ) ( T ) ( l( k j ))j klim l , , F 
      .      (5.58) 
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where ( k j )F   is the spatial correlation length of the noise, where the terms jkD , jkD' , jkD''  and 
qu
mk

D  are matrices of coefficients corresponding to the discrete approximation of  the derivatives 

kq



at the j-th point.  

Generally speaking, the quantum potential interaction qukV stemming by the k-th cell, depends 

by the strength of the Hamiltonian potential 
k( q )V  .  

By setting, in a system of a huge number of particles, the side length l  equal to the mean 
intermolecular distanceL , andL  is much bigger than the quantum potential length of interaction

qu  we have the realization of the classical rarefied phase. 

Typically, the Lennard-Jones potential (5.48) leads to 
2

3 3 3
1 12 0

2
qu( )

r qu
ququ qu

qu qu

V kT mkTlim I
r m r r



  

 

 


   

    
      
   


L ,    (5.59) 

so that the interaction of the quantum potential (stemming by the k-th cell) into the adjacent cells is 

null and qu
mk

D  is diagonal.  Thus, the quantum effects are confined into each single molecular cell 

domain.   
Furthermore, being for classical systems  c qu L , it follows that the spatial correlation 

length of the noise reads  ( k j ) kjG    and the fluctuations appears spatially uncorrelated in 

macroscopic classical systems  
Conversely, given that for stronger than linearly interacting systems qu   so that the 

quantum potential of each cell extends its interaction to the other ones, the quantum character 
appears on the coarse-grained large-scale description [10, 15, 16]. 

5.6. Macroscopic quantum phenomena and transition to the classical behavior 

By discretizing the current conservation equation (5.52) for the system of N particles [14], it is 
possible to obtain the quantum hydrodynamic master equation for macroscopic system of a huge 
number of molecules.  

Generally speaking we observe that, given  the range of interaction of the quantum potential 

qu , the De Broglie length c , and the system size L   ( 3 L represents the mean available volume 

per molecule in isotropic phase), we can generally distinguish in isotropic systems the cases: 

1. qu c, L   

2. qu c, L   

3. qu c > L>  

4. c > L   

In order to describe the typical phases originating by “1-4”, we observe that, typically, for L-J 

potential  interacting molecules, the quantum potential range of interaction qu   extends itself a 

little bit further the equilibrium position 0r ,  in the linear zone of interaction, let’s say up to 0r    
.  

This can be readily checked by assuming the L-J interaction is linear for 0r r  , leading to 
the quantum force 
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qu( n )V
r

q



 


,                                          (5.60) 

while for 0r r  ,  by (5.48)  we have that 

2

3
12qu( n )V

q m r


 



.                                  (5.61) 

On this ansatz qu  reads 

 

0

0
4 4

0
0 3

03

1

1 3

r

r c
qu c

c

c

drdr r
r

r


 








 
 
 

      
  

 
 


              (5.62) 

that, for 4T k  (so that  for ordinary microscopic mass 2710 Kgm  we have 
9

0 10c r m  and c qu  ), leads to  

0qu r    .                         (5.63) 

Thus, for Lennard-Jones interacting particles, under the condition 

0qu cr    L        (5.64) 

of “case 1.” we have the rarefied classic gas phases. 
Case 2. 

The more condensed phase of Lennard-Jones particles, with 0qu cr    L , still owns 

a classical behavior since, as a mean, the particles are distant each-other more than the range of 
interaction of the quantum potential.  

In this case, since the inter-particle distance mostly lies in the non-linear range of L-J interaction 
( 0qu r  L ) just beyond to the crystalline phase (staring at 0qu r   L ), we typically 

have a liquid phase [10]. 
Case 3. 

When 0 qu cr     L  the neighbouring molecules lie in the linear intermolecular 
range of interaction at a distance smaller than the range of non-local quantum potential interaction

qu .  

The observables based on this physical length show quantum behavior (e.g., the Bragg’s 
diffraction of the atomic lattice). 
Case 4. 

When the temperature is very low ( 0c qur   > L> ) and the De Broglie length c  

becomes so large to  overcomes the linear range of interaction (as well as qu too) ,  we might have 

a liquid phase (i.e., 0r L ) showing quantum behaviour.  This can happen when the 
intermolecular interaction is so weak to maintain the liquid phase down to very low temperature 

(e.g., 4 He ) that allows the De Broglie length to grow up to c > L .  In this case the observable of 
fluidity shows the quantum behaviour of superfluidity [10,11].  
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Given the temperature dependence of c and qu , we can have quantum-to-classic phase 

transition in the case 3 and 4, respectively: 

I. when c qu  L and qu  L , by temperature increase, we can have the solid-fluid 

transition with melting of crystalline lattice  
II. when cL <  and c L , by temperature increase, we have the superfluid-fluid transition. 

Case I. 
For a system of Lennard-Jones interacting particles, the quantum potential range of interaction 

reads 
3

4
4

0

1
3

d
c c

qu c
d

dq dq d
dq

  
       

          (5.65) 

where  0 1d r    is the distance up to which the interatomic force is approximately linear (

0r
 
 ) and where 0r  is atomic equilibrium distance. 

An experimental confirmation of the physical relevance of quantum potential length of 
interaction comes from the quantum to classical transition in crystalline solid at melting point when 
the system passes from a quantum lattice to a fluid amorphous classical phase.  

Assuming that, in the quantum lattice, the atomic wave-function (around 0r ) spans itself less 

than the quantum coherence distance, it follows that at the melting point its variance equals 0qu r 
.  

On these assumptions, the Lindemann constant 
0

C

wave function variance
at transit

L
ion

r

 
 
   [10,15] reads 

0

0

qu
C

r
L

r
 

  and it can be theoretically calculated since 

     

3
3

0
0 0

0

1 11 1
3 1 3

c
c

qu
rr r

r


  



                              

    (5.66) 

that, being 0 05 0 1, ,    and 
0

0 8c ,
r


 , leads to 

0

0
0 217 0 267qu

C
r

L , ,
r

 
   .                      (5.67) 

More accurate evaluation, making use of the potential well approximation for the molecular 
interaction [10,11], leads to 01 2357qu ,  r   and to the value of 0 2357CL , for the Lindemann 

constant that well agrees with the measured ones, ranging between 0,2 and 0,25 [15].  
Case II. 

Since the De Broglie distance c  is a function of temperature, the fluid-superfluid transition 

can be described in monomolecular liquids at very low temperature such as for the 4 He . The 

treatment of this case is detailed in ref. [10,11] where, for the 4 He  - 4 He  interaction, the potential 
well is assumed to be 

  0rV                         r             (5.68) 
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  2rV = - 0,82 U              r           (5.69) 

  2rV =0                          r            (5.70) 

where 221 5 10BU=10,9 k ,   J   is the Lennard-Jones potential deepness, where 
101 54 10.,  m   and where 103 7 10.,  m      is the mean 4 He  - 4 He  atomic distance. 

By posing that at superfluid transition the de Broglie length is of order of the 4 He  - 4 He  atoms 
distance so that  

2c      ,         (5.71) 

it follows that for c   is about null the ratio of superfluid/normal 4 He  density, while for 

2c    we have almost 100% of superfluid 4 He . Therefore, at the condition 

1 22c /
c( mkT )

    


,       (5.72) 

when the superfluid/normal 4 He  density ratio is at 50%, it follows that the temperature 50%T , for 

the 4 He  mass of 27
4 6 6 10.

He
m . kg  , reads 

22 68

50 27 23 19
2 1 2 1 113 10 1 1 92

6 6 10 1 38 10 1 3 10

.

% . . .
,T ,  K

mk . , ,



  

                


  (5.73) 

that well agrees with the experimental data in ref. [16] of about 1 95,  K .  

On the other hand, since by (5.71) for 2c     all the couples of 4 He  falls into the 
quantum state, the superfluid ratio of 100% is reached at the temperature 

22

100
2 1 0 92

2%T ,  K
mk 

      


       (5.74) 

well agreeing with the experimental data in ref. [16] of about 1 0,  K . 

Moreover, by utilizing the superfluid ratio of 38% at the  -point of 4 He , the transition 
temperature T  reads 

222 1 2 20
0 76

T ,  K
mk , 

      


       (5.75) 

in good agreement of the measured 4 He  superfluid transition temperature of 2 17,  K . 
It's important to note that the weak nature of Hamiltonian interaction is what paves the way for 

classical behavior to arise. Indeed, when dealing with systems governed by a quadratic or stronger 
Hamiltonian potential, the range of interaction attributed to the quantum potential becomes infinite 
(as seen in equation 5.44), making the attainment of a classical phase unattainable regardless of the 
system's size [5, 10, 11,15,17]. 

In this context, the complete expression of classical behavior is exclusively observed on a 
macroscopic scale within systems that possess sufficiently feeble interactions (weaker than linear and 
thus classically chaotic). This occurs due to the inability of the quantum potential to extend its non-
local influence over vast distances. 

Hence, classical mechanics emerges as a decoherent outcome of quantum mechanics in the 
presence of a fluctuating background metric within the spacetime. 

5.7. Measurement process and the finite range of non-local quantum potential interaction 
Throughout the process of measurement, the segment of the experimental arrangement 

responsible for sensing of the system, might experience quantum mechanical interaction. This 
interaction concludes once the measuring device is moved far away from the system being measured, 
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at a distance significantly greater than c and q . Subsequently, the measuring device handles the 

interpretation and processing of the 'interaction output.' This usually entails a classical and 
irreversible procedure that follows a specific direction of time, resulting in the observable outcome 
of the measurement at a macroscopic scale." 

However, decoherence plays a crucial role in the measurement procedure by facilitating the 
development of a macroscopic classical framework. This framework permits genuine separation 
between the measurement device and the system on a quantum level, both prior to and after the 
measurement event. This quantum-disconnected starting and concluding condition is vital for 
establishing the conclusion of the measurement process and for accumulating a set of statistical data 
derived from multiple independent measurement repetitions. 

It's worth highlighting that, within the framework of the SQHM, simply taking the measured 
system to an infinite distance before and after the measurement isn't enough to ensure the separation 
between the system and the measuring apparatus when c    or q   . 

5.8. Minimum measurements uncertainty in quantum systems submitted to stochastic noise 
Any quantum theory aiming to depict the development of a physical system across a wide range 

of sizes must inherently clarify the process through which quantum mechanical traits transition into 
observable classical conduct on a grander scale. The key differentiating principles between these two 
explanations are quantum mechanics' minimum uncertainty principle and classical relativistic 
mechanics' constraint on the finite speed at which interactions and information propagate locally. 

If, at a specific distance q , which is less than c , a system completely adheres to 

"deterministic" quantum mechanical progression, causing its individual components to lack separate 
identities, then for an observer to acquire data regarding the system, the observer must maintain a 
minimum separation from the observed system (both prior to and subsequent to the procedure) equal 
or bigger, at least, than the distance q . Consequently, due to the finite speed of interaction and 

information propagation, the procedure cannot be executed in a timeframe briefer than   

2 1 2
2

2
q c

min /c c ( mc kT )


   


.       (5.76) 

Moreover, given the Gaussian noise (see 2.20, 5.7 ) (with the diffusion coefficient proportional to 

kT ), we have that the mean value of the energy fluctuation is 
2( T )

kTE   for degree of freedom. 

Thence, a non-relativistic ( 2mc kT )  scalar structureless particle of mass m owns an energy 
variance E   

2 2 2 2 1 2 2 2 2 2 2 1 2

2 1 2 2 1 2

2

2

/ /
( T )

/ /

E ( ( mc E ) ( mc ) ) ( ( mc ) mc E ( mc ) )

         ( mc E ) ( mc kT )

 



          

   
 (5.77) 

from which it follows that  
2 1 2

2
/

c
min

( mc kT )E t E )
c

        ,        (5.78) 

It is worth noting that the product E  is constant since the growing of the energy variance 
with the square root of T  is exactly compensated the equal decrease of the minimum acquisition 
time min  . 

The same result is achieved if we derive the uncertainty relations between the position and 
momentum of a particle of mass m.  

If we acquire information about the spatial position of a particle with a precision  
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qL   .           (5.79) 

the variance p  of its relativistic momentum mc)pp( / 21


  due to the fluctuations reads 

2 2 1 2 2 2 1 2

1 2 1 2

2

2

( T ) / /

/ /

E
p ( ( mc ) ( mc ) ) ( ( mc ) m E ( mc ) )

c
         ( m E ) ( mkT )






          

   

  (5.80) 

and the uncertainty relation reads 
1 2 1 2 2/ /

q cL p ( mkT ) ( mkT ) )                     (5.81) 

Equating (5.81) to the uncertainty value such as 

1 22
2

/
qL p ( mkT )   

         (5.82) 

or  
2 1 22

2

/
q

min
( mc kT )

E t E
c

      


,       (5.83) 

it follows that
2 2

c
q


 , that represents the physical length below which the quantum 

entanglement is fully effective and represents the minimum (initial and final) distance between the 
system and the measuring apparatus. 

As far as it concerns the theoretical minimum uncertainty of quantum mechanics, obtainable from 
the minimum uncertainty (5.78-83) in the limit of zero noise, we observe that the quantum deterministic 
behavior (with c  ) in the low velocity limit (i.e., c  ) leads to the equalities 

   
2 2

c
min c


  undefined          (5.84) 

2 1 2 2/

c

cE ( mc kT )  


  


undefined ,       (5.85) 

2 2
c

q


             (5.86) 

1 2 2 0/

c
p ( mkT )


   


       (5.87) 

but the products  

2c minclm lim E t E        


       (5.88) 

1 2

2
/

c qclm lim L p ( mkT )     
                                  (5.89) 

remain finite and constitutes the minimum uncertainty of the quantum deterministic limit.  
It is interesting to note that in the relativistic limit, due to the finite light speed, the minimum 
acquisition time of information in the quantum limit reads 

q
min c
  


.                                    (5.90) 

The output (5.90) shows that it is not possible to carry out any measurement in the deterministic 
fully quantum mechanical global system since it is endless.  

Moreover, if we want to increase the system spatial precision to qL' L    , we can satisfy 

the condition q( T ')' L'   by increasing the temperature to T ' .  
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In this case it follows that minimum uncertainty 1 2

2
/

q( T ')L p ' ( mkT ')   
  is unchanged 

since the it is independent by the temperature. Therefore, the minimum uncertainty relation (5.89) 
holds whatever the choice of L  .  

Since non-locality is confined in domains of physical length of order of 
2 2

c  and information 

about a quantum system cannot be transferred faster than the light speed (otherwise also the 
uncertainty principle is violated) the local realism is established on macroscopic physics while the 

paradox of  the “spooky action at a distance ” is limited on microscopic distance (smaller than 
2 2

c

) where the quantum mechanics fully realize itself.  
It must be noted that for the low velocity limit of quantum mechanics the conditions c   

and
 c   are implicitly assumed into the theory and leads to (apparent) instantaneous 

transmission of interaction at a distance. 

5.9. The stochastic quantum hydrodynamic model and the decoherence theory  
In the context of the SQHM, in order to perform statistically reproducible measurement 

processes and to warrant that the measuring apparatus is fully independent from the measured 
system (free of quantum potential coupling before and after the measurement), it is necessary to have 
a global system with a finite length of quantum potential interaction.  

In such a case, the SQHM indicates that due to the finite speed of transmission of light and 
information, it is possible to carry out the measurement within a finite time interval. Therefore, a 
finite length of quantum potential interaction, and the resulting decoherence, are necessary 
preconditions for carrying out the measurement process. 

The decoherence theory [18-24] does not attempt to explain the problem of measurement and 
the collapse of the wave function. Instead, it provides an explanation for the transition of the system 
to the statistical mixture of states generated by quantum entanglement leakage with the environment. 
Moreover, while the decoherence process may take a long time d for a microscopic system, the 
decoherence time for macroscopic systems, consisting of n microscopic quantum elements, can be 

very short d

n


 . However, in the context of the decoherence theory, the superposition of states of 

the global universal wave function still exists (and remains globally coherent). 
This puzzle finds its logical solution in the extensive recurrence time, a concept recently 

expanded to encompass quantum systems as well [25]. Even within a universally reversible system, 
certain irreversible phenomena can manifest due to an exceptionally protracted recurrence interval 
(far surpassing the universe's lifespan). On a certain short time scale, global quantum systems can 
imitate classical behaviors so faithfully that distinguishing them from a genuinely classical universe 
becomes impossible. To illustrate, the timespan required, as calculated by Boltzmann, for a mere 
cubic centimeter of gas to revert to its initial state involves a staggering number of digits, reaching 
into the trillions, whereas the age of the universe spans merely thirteen digits. 

In the context of Madelung's approach the Wigner distribution and the quantum hydrodynamic 
theory are closely connected and do not contradict each other [26]. However, the interpretation of the 
global system as classical or quantum in nature is ultimately a matter of interpretation. Essentially, 
we cannot determine whether the noise from the environment is truly random or pseudo-random. In 
computer simulations, it is widely accepted that any algorithm generating noise will actually produce 
pseudo-random outputs, but this distinction is not critical in numerical simulations of irreversible 
phenomena. 

The decoherence theory can account for the macroscopic behavior as the result of dissipative 
quantum dynamics. However, it falls short of specifying the prerequisites essential for establishing a 
genuinely classical global system. In contrast, the approach of Stochastic Quantum Hydrodynamic 
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Model furnishes a yardstick for identifying the shift from quantum dynamics to classical behavior on 
a significant macroscopic level. Moreover, the potential, as revealed by SQHM, of attaining a classical 
global system within a space-time riddled with curvature fluctuations [5] aligns harmoniously with 
the quantum-gravitational portrayal of the universe in which the gravity is seen as the catalyst for 
the universal decoherence [27-28]. 

Furthermore, on a conceptual level, the theory of stochastic quantum Hydrodynamic model 
tackles the challenging quandary of spontaneous entropy diminishment within the global quantum-
reversible system. This entropy reduction is vital for the system to revert to its initial state, as 
stipulated by the recurrence theorem. Moreover, given that the quantum pseudo-diffusion evolution 
[29] highlights the co-occurrence of entropic and anti-entropic processes in disparate domains of a 
quantum system, the puzzle remains unresolved: why haven't we witnessed spontaneous anti-
entropic processes occurring somewhere and sometime within the universe? 

5.10. The stochastic quantum hydrodynamic theory and the Copenhagen interpretation of 
quantum mechanics  

The path-integral solution of the SQHM (5.32-5) is not general but holds in the small noise limit, 
before a large fluctuation occurs. It describes the “microscopic stage” of the decoherence process at 
De Broglie physical length scale. 

Moreover, the SQHM parametrizes the quantum to classical transition by using two physical 
lengths, c  and qu , addressing the quantum mechanics as the asymptotical behavior for 

clim  . Being so, it furnishes additional insight about the measure process.  
Even if the measure process can be treated as a quantum interaction between the system and the 

measure apparatus, marginal decoherence effects exist for its realization due to: 

i. real decoupling at initial and final state of the measure between the system and the measuring 
apparatus,  

ii. utilization of classical equipment for the experimental management, collection and treatment of 
the information.  

The marginal decoherence is ignored or disregarded because the classical equipment is 
mistakenly assumed decoupled at infinity, while the assumption of perfect global quantum system 
(whose interaction extends itself at infinity being clim   and qulim  ) does not allow 

the realization of such condition.  
In order to describe the decoherence during the external interaction extV , the SQHM reads 

 ext qu( n )
j j j( q,t ,T )( t )

j

V V V
p m q m

q
 

  
   


      (5.91) 

where 

0 00extV t t t t        for  

In principle, the marginal decoherence, with characteristic time d , may affect the measurement 

if d  is comparable with the measure duration time   (the absence of marginal effects is 

included in the treatment as the particular case of sufficiently fast measurement with 0
d





 ).  

From the general point of view, the SQHM shows that, the steady state after the relaxation 
depends on its initial configuration  
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0E ( t t )n

( q,t ) n n( q )
n

| a e | 


        (5.92) 

at the moment 0t  , allowing the system to possibly reach whatever eigenstate of the superposition.   
Since the quantum superposition of energy eigenstates possesses a cyclic evolution with 

recurrence time  , the probability of relaxation to the i-th energy eigenstate for the SQHM model 
reads 

i
i N

NP( ) lim
N

            (5.94) 

where N   is the number of time intervals t
N


   centered around the time instants 0 jt  (with  

00 jt   and 1j ,....,N  ) in which the system is submitted to fluctuations, and iN  is the 

number of times the i-th energy eigenstate is reached in the final steady state..   
Moreover, since the eigenstates are stable and stationary (see § 5.1) it also follows that the 

transition probability between the k-th and the i-th ones reads 

i
k i N ki

NP( ) lim
N

            (5.95) 

Since the finite quantum lengths c and qu  , allowing the quantum decoupling between the 

system and the measuring apparatus, necessarily implies the “marginal decoherence”, it follows that 
the output of the measure is produced in a finite time lapse (bigger than min of (5.76)) due to wave 
function decay time.  

As far as it concerns the Copenhagen interpretation of quantum mechanics, the measurement is 
a process that produces the wave function collapse and the outcome (e.g., the energy value nE  for 
the state (5.92)) is described by the transition probability that reads 

2

2

1

i
i jmax

j
j

| a |
P( )

| a |
 



 


 ,        (5.96) 

that for the i-th eigenstate reads 

k i kiP( )    ,         (5.97) 

In order to analyze the interconnetion between the wavefunction decay and the wave function 
collapse, we assume, as starting point, that they are different phenomena and have independent 
realization.  

In first instance, we can assume that the wavefunction decay (with characteristic time d ) 

happens first and then the wave function collapse (with characteristic time c ) during the measure 

process. Without loss of generality we can assume min d c       , and thence, in this case 
it follows that  

0

( tot )
n i i nd

i

i n
N in N

i

lim P ( ) P( )P( )

N N
lim lim

N N




     






 

   

 
  
 







                                  
.   (5.98) 

On the other hand, for the Copenhagen interpretation, the measure on a quantum state with 

c   , by (5.96-7) it follows that 
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n n Nt c
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    






    


   (5.99) 

The outputs (5.98-9) show that the wavefunction collapse, beyond the duration of the 
wavefunction decay, is ineffective in the measure. Furthermore, since after the wavefunction decay 
the system has already reached its final steady eigenstate, the wavefunction collapse does not happen 
since it does not affect the eigenstates.  

Being so, we can think to shorten the measure duration   up to the wavefunction decay time 

d without have a change in the result (5.98) for the measure, leading the relation   
2

2

1

n n
n Nt

k
k

| a | N
P( ) lim

N
| a |

  



  


              (5.100) 

On the other side, by considering in second instance that the wavefunction collapse c  is 

much shorter than the wavefunction decoherence such as min c d        (i.e., d

c




 

), the final output reads 

0
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2 2 2

1 1 1
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 
  



,   (5.101) 

showing that the wave function decay, due to the marginal quantum decoherence, does not affect the 
measure even if it might proceed beyond the wave function collapse. More precisely we can affirm 
that since the wavefunction decay does not affect the eigenstates, it does not happens after he 
wavefunctin collapse.  

Therefore, both the wavefunction collapse as well as the wavefunction decoherence happens 
together only during the time of the measure min    . In the case of (5.101) we might shorten 

the measure duration time   to c  so that, being the wavefunctin decay finished at the end of 
the measure, identity (5.94,5.101) leads to  

2

2

1

( tot ) n n
n Nt

k
k

| a | N
P ( ) lim

N
| a |

  



  


         (5.102) 

The proof of (5.102) can be validated by the solution of the motion equation (5.32-5) of §5.2. 
The SQHM through identity (5.102), furnishes the linkage between the wave function collapse 

and the wave function decay generated by the marginal decoherence possibly showing that they are 
the same phenomenon. 

5.11. Conclusion  

The stochastic quantum hydrodynamic model introduces a method for elucidating the conduct 
of quantum systems amidst noise generated by the fluctuating metric of the physical vacuum. 
According to this model, the noise's spatial spectrum is not white, and its correlation length is 
endowed with a distinct physical extent determined by the De Broglie characteristic length. 
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Consequently, this gives rise to a form of quantum entanglement that remains ingrained in systems 
whose physical dimensions are very small in comparison to this characteristic length. 

The Langevin-Schrodinger equation is derived by considering the effects of fluctuations on 
systems whose physical length is of the order of the De Broglie length. The work elucidates the 
relationship between the Langevin-Schrodinger equation and the physical length of a system.  

However, the range of quantum potential interaction may extend beyond the De Broglie length 
up to a distance that may be finite in non-linear weakly bonded systems. In this case, as the physical 
length of the system increases, classical physics may be achieved when the physical size of the 
problem is much larger than the range of interaction of the quantum potential. Under these 
circumstances, the quantum potential is not able to maintain coherence in the presence of 
fluctuations, but generates a drag force producing a relaxation process leading to the decoherence 
with the decay of the quantum superposition of states, while quantum system's eigenstates are stable 
and practically maintain the configurations of quantum mechanics. The model provides a general 
path-integral solution that can be obtained in recursive form. It also contains reversible quantum 
mechanics as the deterministic limit of the theory. 

This effect can be observed in macroscopic systems, such as those made up of molecules and 
atoms interacting by long-range weak potentials, like in the Lennard-Jones phase. The SQHM 
provides a useful framework for understanding the interplay between quantum mechanics and 

classical behavior well explaining both the fluid-superfluid transition of 4 He  and the Lindeman 
constant at the melting point of crystalline lattice. 

The stochastic quantum hydrodynamic model also shows that the minimum uncertainty during 
the process of measurement asymptotically converges to the quantum uncertainty relations in the 
limit of zero noise. The theory shows that in an open quantum system the principle of minimum 
uncertainty holds only if interactions and information do not travel faster than the speed of light. This 
output makes compatible the relativistic macroscopic locality with the non-local quantum 
interactions at the micro-scale. 

According to the stochastic quantum hydrodynamic model, decoherence is necessary for a 
quantum measurement to occur and that it also contributes to the execution, data collection, and 
management of the measuring apparatus. The model also shows that if reversible quantum 
mechanics is realized in a static vacuum, the measurement process cannot take a finite time to occur. 

The outcomes derived from the stochastic quantum hydrodynamic model align harmoniously 
with the predictions of the decoherence theory, indicating that the interplay between a quantum 
system and its surroundings results in a progressive decline of coherence. The sole distinction lies in 
the perspective on global coherence, which is essentially a matter of interpretation. 

The theory also demonstrates its congruence with the Copenhagen interpretation of quantum 
mechanics, illuminating the intricacies of the wavefunction collapse process and potentially offering 
an explanation for it as a dynamic phenomenon linked to wavefunction decay. 
The portrayal provided by SQHM presents a scenario in which classical mechanics emerges on a 
macroscopic scale within a space-time filled with fluctuations in curvature. This depiction seamlessly 
corresponds with the quantum-gravitational representation of the cosmos, where gravity functions 
as the trigger for universal decoherence. 

Appendix A 

In presence of curvature fluctuations, the mass distribution density (MDD) 2| | n    becomes 
a stochastic function that we can ideally pose n n n   where n  is the fluctuating part and n
is the regular one that obeys to the limit condition 

2
0 0T Tlim n lim n | |   .        (A1) 
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The characteristics of the Madelung quantum potential that, in presence of stochastic noise, 

fluctuates, can be derived by generally posing that is composed by the regular part qu( n )V   (to be 

defined) plus the fluctuating one stV such as 

1 2
1 2

2 2

2

/
/

qu qu( n ) st( n )
nV n V V

m q q 

 
   

  
  .      (A2)

 

where the stochastic part of the quantum potential stV leads to the force noise 

st
( q ,t ,T )

i

V m
q


 


.          (A3) 

where the noise correlation function reads  
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    (A4) 

with 

 0
0  lim     ( q ) ( q ) ( T )T

,
 

 


          (A5)
 

Besides, the regular part qu( n )V  , for microscopic systems ( 1
c
L

), without loss of generality, 

can be rearranged as 

1 2
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2 2 2 2 1 2
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(A6) 

where ( q ,t )  is the probability mass density function (PMD) associated to the stochastic process we 

are going to define that in the deterministic limit obeys to the condition 
2

0 0 0T ( q ,t ) T Tlim lim n lim n | |      . 

Given the quantum hydrodynamic equation of motion (3) for the fluctuating 
MDD n n n  ,  
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we can rearrange it as  
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The term  
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that in the deterministic case is null since 
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generates an additional acceleration in the motion equation (A8), which close to the stationary 
condition (i.e., 0q ), can be developed in the series approximation and reads 
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Moreover, since near the limiting condition (A10) we can pose 
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Moreover, given that at the stationary condition (i.e., 
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and thus 
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the mean 0A  ,  by (A13) reads 
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Therefore, the general form of the stochastic term 0A  as the zero-mean noise, with null 
correlation time (see (A4)), reads 
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( t )A m D  .        (A17) 

Thence, at leading order in q , sufficiently close to the deterministic limit of quantum mechanics 
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The first order approximation (A18) allows to write (A7) as the Marcovian process 
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where  
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where 0P ,z z | t , )(q,q , ,  is the probability transition function of the Smolukowski conservation 
equation [6] 
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of the Marcovian process (A19). 
Moreover, by comparing (A7) in the form 
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with (A19), it follows that 
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and that 
1 2 1 2 1 2/ / /

st ( t )V q q D  
  .       (A25) 

Generally speaking, it must be observed that the validity of (A19) is not general since, as shown 
in ref. [24-25], friction coefficient m   is never constant but only in the case of linear harmonic 
oscillator. Besides, since in order to have the quantum decoupling with the environment, the non-
linear interaction is necessary (see relations (5.43-4), actually, the linear case with   constant cannot 
be rigorously assumed except for the case 0   that corresponds to the deterministic limit of the 
theory, namely, the conventional quantum mechanics.  

Appendix B. The Marcovian noise approximation in presence of the quantum potential 

Once the infinitesimal gravitational dark energy fluctuations have broken the quantum 

coherence on cosmological scale (e.g., for baryonic particles with mass  30 2710 Kg m , it is 

enough 
2

40 100410 10T K
mk

  
   in order to have 2010c m  ) it follows that the resulting 

universe can acquire the classical behaviour and it can be divided in quantum decoupled sub-parts 
(in weak gravity regions with low curvature since the Newtonian gravity is sufficiently feeble  for 
satisfying condition (5.40)). In this context we can postulate the existence of the classical environment.  

Thus, for a mesoscale quantum system in contact with a classical environment, it is possible to 
consider the Markovian process (2.20) 

In presence of the quantum potential, the evolution of the MDD ( q ,t )n , from the initial 

configuration, determined by (5.8) depends by the exact random sequence of the force inputs of the 
Marcovian noise.  

On the other hand, the probabilistic phase space mass density q,p,t )(N  of the Smolukowski 

equation  
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      (B.1) 

for the Marcovian process (2.20) [6] owns particular properties given by the presence of the quantum 
potential. 

By using the method due to Pontryagin [6] the Smolukowski equation can be transformed into 
the differential conservation equation for the PTF P q,z | ,t )(   

0 0 0q,z|t , ) q ,z|t , ) i
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In worth noting that in the stochastic case (B.2) substitutes (2.2) as conservation equation.  
Moreover, in the classical case (i.e., 0qu( )V


 ), the Gaussian character of the PTF is warranted 

by the property that the cumulants higher than two [6] 
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are null in the current  
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This condition is satisfied in classical systems since the continuity of the Hamiltonian potential leads 
to velocities that remain finite as 0   leading to non-zero contribution just for first term 
 i iy q




 in (B.3).  

In the quantum case, since the quantum potential depends by the derivatives of 
2

( q,t ) ( q,t )n n n | | n       that is continuous but not derivable, in the limit of 0   

cumulants higher than two can be different from zero and contribute to the probability transition 
function P y q | ,t )( , . 

Given the conservation equation (B.2) that also holds for the phase space density ,t )N(q, p  
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by integrating it over the momenta, we obtain 
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that, with the condition 0p ,t )lim  (q,pN  and by posing 
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leads to 
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describes the compressibility of the mass density distribution as a consequence of dissipation.  

Appendix C. Harmonic Oscillator Eigenstates in fluctuating spacetime 

In the case of linear systems  
2

2

2( q )
mV q

 ,        (C.1) 

the equilibrium condition, referring to the stationary configuration of the eigenstates, leads to 
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that is satisfied by the solution 
2

0 2
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For the fundamental eigenstate 
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from (C.3), it follows that 
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that close to the quantum mechanical state (i.e., 0D  , 0   with 
m D 
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) leads to 
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and to the distribution 
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From (C.7-8) it can be observed that, within the limit of small fluctuations, the mass density 
distribution of the fundamental eigenstate does not lose its Gaussian form but gains a small increase 
of its variance following the law 

2 2
0 1 2 kTq q 


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
 .           (C.10) 

Moreover, in presence of fluctuation, the energy 0E  of the fundamental stationary state reads 
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showing an energy increases of kT  directly connected to the dissipation parameter  . 
As far as it concerns the energy variance of the fundamental stationary state  
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in presence of fluctuation, it reads 
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that allows to measure the dissipation parameter  by the formula 
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3
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For higher eigenstates the eigenvalues of the Hamiltonian read 
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where 2
jq  is the wave function variance of the j-th eigenstate and 2q  is the variance of the 

fundamental one. 
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It is noteworthy to see that the parameter   can be also experimentally evaluated by the 
measure of the energy gap 1j j jE E E     between eigenstates through the relation 
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Appendix D. Convergence to the deterministic continuous limit 

The condition 0 0 0t Dlim lim      is warranted by the existence of the deterministic 
continuous limit that implies that 
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and that 
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