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Abstract: Natural killer cells are associated with the pathogenesis of ulcerative colitis (UC), but their 
precise contributions remain unclear. The present study sought to investigate the diagnostic value 
of activated NK-associated genes (ANAGs) in UC. Bulk RNA-seq and scRNA-seq datasets were 
obtained from the Gene Expression Omnibus (GEO) and Single Cell Portal (SCP) databases. In the 
bulk RNA-seq, 92 differentially expressed genes (DEGs) were screened out by the “Batch correction” 
and “Robust rank aggregation” (RRA) methods. The immune infiltration landscape was estimated 
by single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT, which revealed a higher 
abundance of activated NK cells in noninflamed UC tissues. 54 DEGs correlated with activated NK 
cells were identified as ANAGs. Protein-protein interaction (PPI) analysis and least absolute 
shrinkage and selection operator (LASSO) regression were utilized to screen out 4 key ANAGs 
(SELP, TIMP1, MMP7, and ABCG2) and establish an activated NK-associated gene score (ANAG 
score). The ANAG score demonstrated excellent diagnostic value and was validated in three 
external datasets. The expression of the 4 key ANAGs was validated in UC patients and healthy 
controls (HC) samples. Through scRNA-seq data analysis, higher expression levels of SELP, TIMP1, 
MMP7, and ABCG2 were observed in post-capillary venules, inflammatory fibroblasts, enterocytes, 
and immature enterocytes. The cell scores based on the ANAGs showed enrichment in endothelial 
cells and fibroblasts. In conclusion, we established and validated an ANAG score with the ability to 
precisely diagnose UC. The 4 key ANAGs have the potential to serve as therapeutic targets in UC. 

Keywords: ulcerative colitis; immune infiltration; activated NK-associated genes; diagnostic 
signature; bulk RNA-seq; scRNA-seq 

 

1. Introduction 

Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that causes inflammation 
and ulcers in the colon and rectum, most commonly afflicting adults aged 30–40 years [1]. Although 
the incidence and prevalence of UC are higher in Western countries, the burden of UC has been 
increasing over time worldwide. The exact cause of UC remains unknown, but several factors have 
been implicated, including an abnormal immune response, changes in gut microbiota composition, 
genetic susceptibility, and environmental triggers [2]. Among them, the dysregulated immune 
response is considered to be the core of the pathogenesis. Hence, it is extremely valuable to 
investigate immune cell infiltration in UC. 
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UC is characterized by inflammation of the mucosal lining of the colon, initiating in the rectum 
and extending proximally towards the cecum in a continuous pattern. A feature of UC is a clear 
demarcation line visible endoscopically between inflamed and noninflamed areas of the colon. The 
Montreal classification categorizes UC based on the anatomical location and extent of inflammation: 
proctitis (E1) is limited to the rectum, left-sided colitis (E2) extends up to the splenic flexure, and 
pancolitis (E3) affects the entire colon [1]. However, UC exhibits dynamic progression, with the 
extension of inflammation occurring in approximately 30% of patients initially presenting with E1 or 
E2 [3]. Given the distinct demarcation between inflamed and noninflamed UC mucosa, we analyzed 
the transcriptional differences between inflamed and noninflamed tissues to molecularly characterize 
UC. 

Increasing evidence has indicated that natural killer (NK) cells are involved in UC pathogenesis. 
Previous studies have revealed that UC patients with active disease have a significantly higher 
proportion of colonic mucosal NK cells than those with inactive disease [4,5]. In a mouse model, a 
subset of NK cells can amplify intestinal inflammation via the recruitment of inflammatory 
monocytes [6]. These results suggest that NK cells promote the progression of intestinal 
inflammation. In contrast, another study reported decreased populations of CD161+ NK cells in the 
inflamed UC mucosa [7]. Moreover, NK cells were found to protect mice from DSS-induced colitis 
by suppressing neutrophil function via the Natural Killer Group 2 Member A (NKG2A) receptor [8]. 
These data indicate that NK cells may exert anti-inflammatory effects in UC. Furthermore, abnormal 
expression of activating and inhibitory NK cell receptors has been observed in UC patients [9]. 
Therefore, while NK cells appear to play important roles in UC immunopathology, their precise 
contributions remain unclear. 

In the present study, we utilized single-sample gene set enrichment analysis (ssGSEA) and 
CIBERSORT to estimate the immune infiltration landscape in UC. Activated NK-associated genes 
(ANAGs) and activated NK-associated gene score (ANAG score) were established using protein-
protein interaction (PPI) network analysis and least absolute shrinkage and selection operator 
(LASSO) regression. The potential biological significance underlying the ANAG score was explored 
and validated. ANAGs were also validated in human samples by real-time quantitative polymerase 
chain reaction (RT-qPCR). Subsequently, using the scRNA-seq dataset, we identified specific cell 
clusters highly expressing the 4 key ANAGs and calculated cell scores based on their expression. This 
multigene signature provides a reference for NK-associated molecular mechanisms in UC 
development and facilitates our knowledge of potential therapeutic targets for UC patients. 

2. Results 

2.1. Identification and Functional Annotation of DEGs 

The overall workflow of the analysis steps is outlined in Figure 1. The analysis selected 3 raw 
microarray datasets including 172 inflamed and 99 noninflamed UC tissues. The results of batch 
correction were presented in Figure 2A-D, which showed that the batch effect was removed 
effectively. To robustly identify DEGs, two approaches were used. “Batch correction” analysis 
identified 474 DEGs, with 328 upregulated and 146 downregulated. “Robust rank aggregation” 
(RRA) analysis identified 101 DEGs, including 77 upregulated and 24 downregulated. By intersecting 
the DEGs from two methods, a final signature of 92 DEGs (71 upregulated, 21 downregulated) was 
obtained (Figure 2F) and visualized in a heatmap (Figure 2H). 
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Gene Set Enrichment Analysis (GSEA) of DEGs revealed the upregulation of immune-related 
signaling pathways in inflamed tissues, including the IL-17 signaling pathway, inflammatory bowel 
disease, and tumor necrosis factor (TNF) signaling pathway (Figure 2G). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO) analyses indicated that DEGs upregulated in 
inflamed tissues were mainly enriched in immune-related signaling such as IL-17 signaling 
pathways, TNF signaling pathways, humoral immune response, and leukocyte migration (Figure 
3A,B). DEGs downregulated in inflamed tissues were mainly enriched in transportation-related 
pathways, such as bile secretion, ATP-binding cassette (ABC) transporters, export across plasma 
membrane, and xenobiotic transport (Figure 3C,D). 

 

Figure 1. The overall workflow of the analysis steps. 
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Figure 2. Elimination of batch effect, identification of DEGs, and functional annotation. (A, B) Box 
plot and principal component analysis (PCA) plot before batch correction. (C, D) Box plot and PCA 
plot after batch correction. (E) Volcano plots highlight the DEGs from the combined dataset and three 
individual datasets. (F) Venn diagrams show the overlap between DEGs screened by the two 
approaches, left: upregulated genes, right: downregulated genes. (G) GSEA reveals enrichment 
pathway of DEGs, pathways up-regulated in inflamed tissues were colored red. (H) Heatmap 
provides the expression patterns for the 92 DEGs across all samples. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1902.v1

https://doi.org/10.20944/preprints202308.1902.v1


 5 

 

 
Figure 3. Functional Annotation of DEGs. (A, B, C, D) Treemaps visualize the results of KEGG and 
GO enrichment analysis on the upregulated (A and B) and downregulated (C and D) DEGs in 
inflamed tissues. The size and color of each rectangle represent the gene counts and adjusted p-value 
of the enriched pathway. 

2.2. Immune Cell Infiltration in UC Tissues and Identification of ANAGs 

Given the critical involvement of immune cells in UC pathogenesis suggested by the above 
functional enrichment analyses, we next evaluated immune cell infiltration profiles between 
inflamed and noninflamed UC tissues using two computational approaches. First, ssGSEA revealed 
the landscape of 28 immune cell types (Figure 4A). The statistical results indicated that most immune 
cell types were increased in inflamed versus noninflamed tissues, except for CD56dim natural killer 
cell (Figure 4B), which was a kind of activated NK cell [10]. Consistent with this, CIBERSORT immune 
deconvolution showed a higher percentage of activated NK cells in noninflamed tissues (Figure 5A-
B). Together, these results indicated that activated NK cells were closely associated with UC 
pathogenesis. Hence, we sought to find ANAGs and examine the diagnostic value of ANAGs in UC. 

We conducted a correlation analysis of DEGs with ssGSEA results and CIBERSORT results 
(Supplementary Figure S1A,B). Ninety-two DEGs were correlated with CD56dim natural killer cell 
in ssGSEA and 54 DEGs were correlated with activated NK cells in CIBERSORT (p-value < 0.05). The 
top 5 positively correlated DEGs with CD56dim NK cells were DHRS11 (R=0.54), AQP8 (R=0.58), 
KCNK5 (R=0.54), SLC23A1 (R=0.60) and PHLPP2 (R=0.57). The top 5 negatively correlated DEGs with 
CD56dim NK cells were FUT8 (R=-0.56), GABRP (R=-0.53), SRGN (R=-0.50), CTLA4 (R=-0.51), and 
FAP (R=-0.47) (Figure 4C). Through the intersection, 54 DEGs were selected and were identified as 
ANAGs (Supplementary Figure S1C). 

2.3. Identification of Hub ANAGs and Generation of ANAG Score 

A PPI network was constructed for the 54 ANAGs using the STRING database (Figure 6A). 
Applying the Molecular Complex Detection (MCODE) plugin in Cytoscape software to this network 
identified 12 hub ANAGs, organized into 2 interconnected clusters (Figure 6B). The first cluster 
contained 9 upregulated hub ANAGs that were higher in inflamed tissues. The second cluster had 3 
downregulated hub ANAGs that were decreased in inflamed tissues.  

Then we used these 12 hub ANAGs for LASSO regression modeling. Optimal model 
performance was achieved with 4 key ANAGs at a lambda.1se value of 0.046 (Figure 6C,D). These 4 
genes - SELP, TIMP1, MMP7, and ABCG2 - were used to calculate a risk score for each patient with 
the following formula: ANAG score = 0.628 * SELP + 1.574 * TIMP1 + 0.740 * MMP7 - 0.361 * ABCG2 
– 18.940. 
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Figure 4. The landscape of immune cell infiltration analyzed by ssGSEA and CD56dim natural killer 
cell related DEGs. (A, B) Heatmap (A) and comparison boxplot (B) of 28-immune-cell infiltration 
between inflamed and noninflamed tissues. (C) Top 5 DEGs positively and negatively correlated with 
CD56dim natural killer cell. 
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Figure 5. The landscape of immune cell infiltration analyzed by CIBERSORT and NK cell activated 
related DEGs. (A, B) Stacked barplot (A) and comparison boxplot (B) of 22 immune-cell infiltration 
between inflamed and noninflamed tissues. (C) Top 5 DEGs positively and negatively correlated with 
NK cell activated. 
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Figure 6. Construction of the PPI network and identification of key ANAGs. (A, B) The PPI network 
(A) was constructed based on 92 DEGs by the STRING database. Upregulated DEGs are shown in red 
and downregulated in blue. Hub genes were identified (B) using the MCODE plugin in Cytoscape. 
Clusters on the left contain upregulated hub genes while clusters on the right have downregulated 
hubs. (C, D) LASSO coefficient profile of the 12 hub ANAGs (C). In the binomial deviance plot (D), 
the optimal lambda was determined when the partial likelihood of deviance reached the minimum 
value. (E) Expression of the four key ANAGs between inflamed and noninflamed tissues in combined 
datasets. (F) ROC analysis of the four key ANAGs for UC diagnosis. 

2.4. Diagnostic Value of the ANAG Score 

The expression levels of these 4 ANAGs were significantly different between inflamed and 
noninflamed tissues (Figure 6E). Receiver operating characteristic (ROC) curve analysis indicated 
these genes have high diagnostic utility as individual biomarkers, with area under the curve (AUC) 
values of 0.953, 0.968, 0.963, and 0.931 for SELP, TIMP1, MMP7, and ABCG2, respectively (Figure 6F). 
Furthermore, in the training cohort, the ANAG score was higher in inflamed tissues, and the AUC of 
the ANAG score was 0.979, suggesting an excellent discriminatory ability (Figure 7A,B).  
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To enable quantitative prediction of UC risk, we constructed a nomogram according to the 
relative expression of ANAGs (Figure 7C). Each gene was assigned a score on a points scale according 
to its expression level. The total score was calculated by summing the individual gene score. This 
total score was then projected onto the UC risk scale axis to estimate the risk probability for a given 
sample. 

 

Figure 7. Diagnostic value of ANAG score. (A) The distribution of ANAG score between inflamed 
and noninflamed tissues in combined datasets. (B) ROC analysis of ANAG score for UC diagnosis in 
combined datasets. (C) Nomogram for risk of UC according to the relative expression of 4 key 
ANAGs. 

2.5. Validation of ANAGs, ANAG Score, and Prediction of Drugs 

For the validation of the ANAG score, 3 independent UC datasets were retrieved. Dataset 
GSE11223 contained 63 inflamed and 66 noninflamed UC samples, dataset GSE92415 contained 162 
UC and 21 healthy samples, and dataset GSE87466 contained 87 UC and 21 healthy samples. In the 3 
validation datasets, these 4 ANAGs showed the same expression pattern compared with those in 
training datasets (Supplementary Figure S2). The ANAG score was still higher in inflamed or UC 
tissues and the diagnostic AUCs were 0.989, 0.981, and 0.797, demonstrating the great accuracy and 
stability of the ANAG score for UC diagnosis (Figure 8A-C).  

The expression levels of the 4 ANAGs were validated in 25 UC patients and 25 healthy controls 
(HC) by RT-qPCR (Figure 8D). ABCG2, TIMP1, and MMP7 showed the maximum differential 
expression between UC and HC, consistent with the results of the bioinformatics analysis given 
above. TIMP1 and MMP7 were significantly upregulated and ABCG2 was significantly 
downregulated in the UC patients. However, SELP expression showed no difference between UC 
and HC.  
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In addition, we utilized the Enrichr platform to predict candidate drugs for UC. From the 
DSigDB database, the top 10 potential compounds sorted by the combined score that could influence 
the expression of 4 key ANAGs were shown in Figure 8E. Among them, quercetin and retinoic acid 
had higher scores. 

 
Figure 8. Validation of ANAGs, ANAG score, and prediction of drugs. (A, B, C) The distribution of 
ANAG score, ROC analysis of ANAG score, and ROC analysis of each ANAG in GSE87466 (A), 
GSE92415 (B), and GSE11223 (C). (D) The mRNA levels of the 4 key ANAGs between healthy control 
and UC patients. (E) Potential drugs for UC predicted by DSigDB database. 
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2.6. ScRNA-Seq Analysis Evaluated Gene Expression and Cell Scores Based on the ANAGs 

After quality control filtering and integration of the epithelial, fibroblast, and immune cell 
groups, a total of 281,707 cells were retained for downstream analysis. Fifty-one cell clusters were 
identified based on the annotation file presented on the Single Cell Portal (SCP) website and 
visualized as shown in Figure 9A. 

 
Figure 9. Distribution of ANAGs in UC based on scRNA-seq analysis. (A) The scRNA-seq data 
analysis identified 51 distinct cell clusters, visualized on the Uniform Manifold Approximation and 
Projection (UMAP) plot. (B) Feature plots display the distribution of 9 cell-specific marker genes 
across different cell clusters. (C) Violin plots show the distribution of 4 key ANAGs across different 
cell clusters. (D) Violin plots show the relative expression of 4 key ANAGs across different tissues. 
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Figure 9B showed the expression of known marker genes: immune cells (PTPRC, SELL), T cells 
(CD3E), B cells (CD79A), myeloid cells (LYZ), epithelial cells (EPCAM, KRT19), fibroblasts (FGF7), 
and endothelial cells (VWF). The expression of 4 key ANAGs was shown in Figure 9C. We found that 
SELP, TIMP1, MMP7, and ABCG2 were highly expressed in post-capillary venules, inflammatory 
fibroblasts, enterocytes, and immature enterocytes, respectively. The difference in the expression of 
ANAGs between healthy, inflamed, and noninflamed tissues was consistent with the bulk RNA-seq 
data (Figure 9D). 

The scores of ANAGs in each cell were calculated using the “AddModuleScore” function and 
the “AUCell” package. The distribution and level of score generated by these two methods were 
similar, among which endothelial cells and fibroblasts scored the highest, such as post-capillary 
venules, pericytes, inflammatory fibroblasts, myofibroblasts, RSPO3+ fibroblasts, WNT2B+Foshi 
fibroblasts, WNT2B+Foslo fibroblasts 1, WNT2B+Foslo fibroblasts 2, WNT2B+ fibroblasts 1 and 
WNT2B+ fibroblasts 2 (Figure 10A, B). The scores of ANAGs were higher in inflamed tissues than in 
noninflamed tissues and healthy tissues (Figure 10C). Moreover, the GSEA enrichment analysis was 
performed of the DEGs between AUC score-high and low groups. We found that GO pathways 
related to extracellular matrix organization and vasculature development were upregulated in the 
AUC score-high group, while GO pathways related to the biosynthetic process were downregulated 
in the AUC score-high group (Figure 10D). 
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Figure 10. Cell score of ANAGs based on scRNA-seq analysis. (A, B) The score of ANAGs was 
calculated for each cell using two methods: “AddModuleScore” (A) and “AUCell” (B). Feature plots 
and violin plots display the distribution and relative expression level. (C) Violin plots show the score 
of ANAGs across different tissues. (D) GSEA reveals enrichment pathway of the DEGs between AUC 
score-high and low groups, pathways up-regulated in AUC score-high group were colored red. 

3. Discussion 

UC is characterized by uncontrolled intestinal immune responses and inflammation. Both innate 
and adaptive immunity play critical roles in driving UC pathogenesis, and current therapies aim to 
dampen immune activation and proinflammatory signaling [1]. In this study, we first utilized two 
bioinformatic approaches to map immune cell infiltration patterns in UC, finding an increased 
abundance of most immune cells except for activated NK cells in inflamed tissues. Therefore, we 
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screened out 54 ANAGs and identified 4 key ANAGs through comprehensive bioinformatics 
methods. An ANAG risk score based on these 4 genes showed accurate diagnostic performance, 
validated in independent datasets. We also clinically confirmed the expression changes of the 4 key 
ANAGs in human colon samples by RT-qPCR. Furthermore, by analyzing scRNA-seq data, we 
identified cell clusters where these 4 key ANAGs were located and calculated the cell scores based 
on 4 key ANAGs. 

Natural killer cells are an essential component of the immune system and have the ability to 
secrete inflammatory cytokines like TNF-α and IFN-γ that polarize and activate other immune cells 
during inflammation [11]. While NK cells have been implicated in UC pathogenesis, their exact role 
remains undefined. Some studies show increased mucosal NK cells in active UC patients versus 
inactive disease [4,5]. However, others report decreased CD161+ NK cells in inflamed UC mucosa [7]. 
NK cell function is regulated by killer immunoglobulin-like receptor (KIR) that bind major 
histocompatibility complex (MHC) class I. KIR polymorphism and positive associations between KIR 
and UC risk have been reported [9,12]. In active UC, peripheral NK cells are decreased compared to 
inactive disease, and anti-TNF treatment restores peripheral NK cells in responsive patients [13]. The 
UC drug 6-mercaptopurine induces NK cell apoptosis, possibly limiting inflammation [14]. Despite 
evidence that NK cells contribute to UC immunopathology, effective biomarkers, especially NK-
related biomarkers have not been established. 

In our study, we utilized ssGSEA and CIBERSORT to describe the immune infiltration landscape 
in UC. These two methods both revealed that noninflamed tissues showed a higher percentage of 
activated NK cells. To identify NK-associated pathogenic genes, we performed a Pearson correlation 
analysis for DEGs and activated NK cells, resulting in 54 ANAGs, which may be vital factors of NK 
cells in UC. Using PPI analysis and LASSO regression, SELP, TIMP1, MMP7, and ABCG2 were 
identified as key ANAGs. This combined approach synergizes biological network analysis with 
mathematical feature selection to derive an optimal gene signature with biological relevance and 
diagnostic utility. The integrated PPI-LASSO method provides a robust strategy to identify key genes 
with meaningful roles in NK biology and UC immunopathogenesis as well as potential biomarkers. 

SELP encodes a protein called P-selectin, which is synthesized in megakaryocytes/platelets and 
endothelial cells [15]. P-selectin's primary ligand is P-selectin glycoprotein ligand-1 (PSGL-1) on 
leukocytes, mediating endothelial-leukocyte interactions [16]. During inflammation, activators like 
histamine or thrombin trigger P-selectin translocation from intracellular stores to the endothelial 
surface, initiating leukocyte recruitment [17]. Two mechanisms regulate the inducible P-selectin 
expression. First, P-selectin was mobilized from granules to the membrane by thrombin, histamine, 
or other secretagogues. Second, P-selectin mRNA/protein synthesis was upregulated by TNF, IL-1β, 
or lipopolysaccharide (LPS) [15,18–20]. Consequently, we hypothesized SELP may propagate UC 
inflammation through these pro-inflammatory effects and that inflammation status induces SELP 
expression in turn. 

MMP7 encodes matrix metalloproteinase-7, a member of the zinc-dependent endopeptidase 
family that degrades extracellular matrix [21]. MMPs are involved in normal tissue turnover but are 
overproduced in IBD, contributing to excessive mucosal damage. [22]. As the smallest MMP, MMP7 
has broad proteolytic activity against various matrix components including collagens, elastin, 
proteoglycans, laminin, fibronectin, and casein [23,24]. The elevated MMP7 levels have been found 
in the inflamed IBD tissues [25,26], implicating its role in intestinal injury. 

TIMP1 belongs to the tissue inhibitor of the metalloproteinases (TIMP) gene family, which 
naturally inhibits active MMPs in a 1:1 ratio to control collagenolytic activity [27]. In IBD inflamed 
mucosa, TIMP expression correlates with the proinflammatory cytokines and inflammation severity 
[26,28–32]. Proinflammatory cytokines can induce both MMPs and TIMPs [33–36], suggesting TIMP1 
is involved in tissues remodeling and inflammation processes. 

ABCG2 encodes ATP Binding Cassette Subfamily G Member 2, which is expressed on the apical 
surface of intestinal epithelial cells, mediating transportation of toxins [37,38], carcinogens [39–42], 
and clinically used drugs [43–46]. ABCG2 has been implicated in the absorption of the IBD drug 
sulfasalazine [46]. As a membrane protein, ABCG2 translation occurs in the endoplasmic reticulum 
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(ER). Inflammatory triggers like cytokines and nitric oxide can impair ER protein folding, causing the 
accumulation of unfolded proteins and ER stress. This disturbs ABCG2 function and localization [47]. 
Furthermore, several studies show reduced ABCG2 expression in inflamed IBD tissues [48–53], 
suggesting that ABCG2 may be involved in UC pathogenesis. 

Based on the expression of the 4 ANAGs, we constructed an ANAG score demonstrating high 
diagnostic accuracy and stability in training and validation cohorts, which implied the great potential 
for clinical translation of the ANAG score. Noteworthily, the superior performance of the ANAG 
score over individual genes highlights the complex molecular underpinnings of UC. 

Although our ANAG score demonstrated accurate diagnostic ability and was validated across 
multiple datasets, some limitations remain to be addressed. First, clinical details including disease 
severity and medication use are lacking. Therefore, the associations between immune cells, related 
genes, disease severity, and medication use, need to be further estimated. Second, the ANAG score 
derivation utilized public data with small sample sizes. Validation in larger prospective cohorts is 
warranted before clinical implementation. Third, the design of the datasets makes it difficult to infer 
causality between the ANAGs and activated NK cells abundance. Future mechanistic studies are 
needed to determine the functional relationships and interactions. 

4. Materials and Methods 

4.1. Public Data Collection 

The microarray gene expression datasets for UC tissues were obtained from the GEO 
(http://www.ncbi.nlm.nih.gov/geo/) database. The training datasets included GSE107499, 
GSE179285, and GSE59071. The validation datasets included GSE11223, GSE87466, and GSE92415. 
These datasets comprised inflamed UC tissues, noninflamed UC tissues, and normal tissues. Details 
for each dataset are provided in Table 1. The bulk RNA-seq data were preprocessed by quantile 
normalization and log2 transformation using the R package “limma”. The scRNA-seq data (accession: 
SCP259) was obtained from the Single Cell Portal (https://singlecell.broadinstitute.org/single_cell). 

Table 1. Basic information of GEO datasets included in this study. 

Accession Platform Organism Sample Type & Number Attribute 

GSE107499 GPL15207 Array Homo sapiens 75 UC inflamed colon Training 
   44 UC noninflamed colon  

GSE179285 GPL6480 Array Homo sapiens 23 UC inflamed colon Training 
   32 UC noninflamed colon  

   168 CD  

   31 Healthy control  

GSE59071 GPL6244 Array Homo sapiens 74 UC inflamed colon Training 
   23 UC noninflamed colon  

   8 CD  

   11 Healthy control  

GSE11223 GPL1708 Array Homo sapiens 63 UC inflamed colon Validation 
   66 UC noninflamed colon  

GSE87466 GPL13158 Array Homo sapiens 87 UC Validation 
   21 Healthy control  

GSE92415 GPL13158 Array Homo sapiens 162 UC Validation 
   21 Healthy control  
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4.2. Screening of DEGs 

Two approaches were used to identify robust DEGs across the multiple microarray datasets. The 
first approach “Batch correction” combined the 3 raw expression data into a single expression matrix. 
Batch effects were removed and DEGs were analyzed using the R package “limma”. The effect of 
batch correction is visualized by box plot and PCA. The second method, “RRA”, analyzed the DEGs 
of the 3 expression matrices respectively. Three groups of DEGs were integrated via the R package 
“RobustRankAggreg”. The final DEGs were generated by intersecting the results from these two 
approaches, providing robust DEGs across multiple datasets. Screening criteria: adj.P.Val < 0.05 and 
|log fold change (FC)| > 1. 

4.3. Immune Infiltration Analysis 

Two methods were used to estimate the immune infiltration landscape in each sample. The first 
method, “ssGSEA”, used the expression levels of immune cell-specific marker genes to infer immune 
cell infiltration within individual samples [54]. Marker gene sets for 28 immune cell types were 
obtained from a published article [55]. The second method, “CIBERSORT”, converted the normalized 
gene expression matrix into estimates of the composition of infiltrating immune cells for each sample 
[56]. These two methods were performed and visualized using the R language. 

4.4. Screening of Activated NK-Associated Genes (ANAGs) 

The relationships of all DEGs with the results of ssGSEA and CIBERSORT were examined using 
Pearson correlation analysis. DEGs with p-value < 0.05 were considered significantly correlated. 
Through the intersection of the DEGs associated with ssGSEA results and CIBERSORT results, 54 
DEGs were selected and identified as ANAGs. 

4.5. Functional Enrichment Analysis 

To gain functional insights into the DEGs, GO and KEGG pathway enrichment analyses were 
performed using the R package “clusterProfiler” [57]. GO analysis identified overrepresented 
biological processes, molecular functions, and cellular components. KEGG analysis revealed enriched 
signaling pathways. For both GO and KEGG analyses, terms with p-values <0.05 were considered 
statistically significant. 

4.6. Identification of Hub ANAGs 

To identify hub genes, a PPI network was constructed for the ANAGs using the STRING 
database. STRING integrates known and predicted protein interactions from varied sources to 
generate a comprehensive interaction network [58] (https://string-db.org). The ANAGs PPI network 
was visualized using Cytoscape [59]. The Molecular Complex Detection (MCODE) plugin in 
Cytoscape was then applied to the PPI network to identify highly interconnected subclusters. Core 
genes within each subcluster were selected as hub ANAGs, representing key nodes in the PPI 
network with potentially important biological functions. 

4.7. Generation and Validation of the ANAG Score 

The hub ANAGs identified from the PPI network were used to develop an ANAG score via 
LASSO regression. This machine-learning technique selected key genes to generate an optimal model 
for predicting disease status. The diagnostic utility of the ANAG score and model genes was 
evaluated by ROC curve analysis. The predictive capacity and robustness of the ANAG score were 
further validated through 3 external datasets. 

4.8. Clinical Specimens 

The expression of ANAGs was clinically validated in 25 UC patients and 25 healthy individuals. 
The study was approved by the Medical Ethics Committee of Sir Run Run Shaw Hospital (SRRSH) 
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(ID: 20211103-34). Written informed consent was obtained from all participants. UC patients were 
aged 18-65 years and diagnosed based on endoscopic, radiologic, and histopathological findings. UC 
tissues was collected from inflamed regions of the colon during endoscopy. Matched normal colon 
tissues was obtained from healthy controls. Tissues were immediately placed in cold TRIzol reagent 
and processed in the laboratory. 

4.9. RNA Isolation and RT-qPCR 

To validate gene expression changes, total RNA was extracted from colon tissues using TRIzol 
reagent (Molecular Research Center, Inc.) and reverse transcribed into cDNA using RNase H-reverse 
transcriptase (Invitrogen) with oligo (dT) primers. qPCR was performed in triplicates using iCycler 
Sequence Detection System (Bio-Rad) and iQTM SYBR Green Supermix (Bio-Rad). Relative 
expression of each gene was calculated by the 2-△△CT method using ACTB as the reference gene for 
normalization. PCR primers used for each gene are listed in Table 2. 

Table 2. The primers for Real-Time Quantitative PCR. 

Gene Sequences 

ACTB ACAGAGCCTCGCCTTTGCC (Forward) 
 GATATCATCATCCATGGTGAGCTGG (Reverse) 

SELP ACTGCCAGAATCGCTACACAG (Forward) 

 CACCCATGTCCATGTCTTATTGT (Reverse) 

TIMP1 CTTCTGCAATTCCGACCTCGT (Forward) 

 ACGCTGGTATAAGGTGGTCTG (Reverse) 

MMP7 GAGTGAGCTACAGTGGGAACA (Forward) 

 CTATGACGCGGGAGTTTAACAT (Reverse) 

ABCG2 ACGAACGGATTAACAGGGTCA (Forward) 

 CTCCAGACACACCACGGAT (Reverse) 

4.10. Potential Therapeutic Drug Prediction 

To identify potential future drug therapies for ulcerative colitis, the key ANAGs were analyzed 
using the DsigDB database (http://dsigdb.tanlab.org/DSigDBv1.0/) via the Enrichr platform 
(https://maayanlab.cloud/Enrichr/). 

4.11. ScRNA-Seq Data Processing 

The scRNA-seq data was analyzed using the R package “Seurat”. Low quality cells expressing 
<200 genes, with >15% mitochondrial counts, and genes expressed in <3 cells were filtered out. Data 
was normalized using the “NormalizeData” function. 2000 highly variable genes were identified 
using the “FindVariableFeatures”, and principal component analysis was performed. To acquire the 
unsupervised cell cluster result, “FindNeighbors” and “FindClusters” functions were applied. 
UMAP dimensionality reduction was used for data visualization. Differentially expressed marker 
genes for each cluster were identified using “FindMarkers” with criteria: 1) |logFC| > 0.25; 2) p-value 
< 0.05; 3) min.pct > 0.1. Thereafter, cell types were annotated according to the file presented on the 
SCP website. “DimPlot” visualized the cell clustering, while “FeaturePlot” and “VlnPlot” generated 
expression plots. 
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To elucidate the signature-specific score of each cell based on the ANAGs, we utilized the 
“AddModuleScore” function and the “AUCell” package. We explored the distribution of scores 
across different cell types. Moreover, we performed GSEA to evaluate potential biometric differences 
between the AUC score-high and low groups. 

4.12. Statistical Analysis 

Data processing, statistical analysis, and figure generation were performed using R 4.1.2 
software. Differences between the two groups were assessed by the Student's t-test or the Wilcoxon 
rank-sum test. The Kruskal-Wallis test was used for comparisons of three or more groups. Pearson 
correlation tested associations between continuous variables. LASSO regression was implemented 
using the “glmnet” R package. ROC curve analysis was done with the “pROC” R package. PCA was 
performed via the “FactoMineR” R package and the “RunPCA” function in the “Seurat” R package. 
All statistical tests were two-tailed with p<0.05 considered statistically significant. 

5. Conclusions 

In conclusion, this study established and validated a novel activated NK-associated gene 
signature and score with accurate diagnostic performance for UC. This signature, comprised of SELP, 
TIMP1, MMP7, and ABCG2, may represent promising biomarker targets and therapeutic entry points 
for modulating UC. By highlighting the involvement of NK cell biology and associated genes in UC 
immunopathology, this work provides new perspectives into UC mechanisms. 
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