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Abstract: For Synthetic Aperture Radar (SAR) image registration, successive processes following
feature extraction are required by both the traditional feature-based method and the deep learning
method. Among these processes, the feature matching process—whose time and space complexity
are related to the number of feature points extracted from sensed and reference images, as well as
the dimension of feature descriptors—proves to be particularly time-consuming. Additionally,
the successive processes introduce data sharing and memory occupancy issues, requiring an
elaborate design to prevent memory leaks. To address these challenges, this paper introduces the
OptionEM-based reinforcement learning framework to achieve end-to-end SAR image registration.
This framework outputs registered images directly without requiring feature matching and calculation
of the transformation matrix, leading to significant processing time savings. The Transformer
architecture is employed to learn image features, while a correlation network is introduced to
learn the correlation and transformation matrix between image pairs. Reinforcement learning, as a
decision process, can dynamically correct errors, making it more efficient and robust compared to
supervised learning mechanisms like deep learning. We present a hierarchical reinforcement learning
framework combined with episodic memory to mitigate the inherent problem of invalid exploration
in generalized reinforcement learning algorithms. This approach effectively combines coarse and
fine registration, further enhancing training efficiency. Experiments conducted on three sets of SAR
images, acquired by TerraSAR-X and Sentinel-1A, demonstrate that the proposed method’s average
runtime is sub-second, achieving subpixel registration accuracy.

Keywords: reinforcement learning; episodic control; synthetic aperture radar; image registration

1. Introduction

SAR images are indispensable in various fields, such as ecological development, environmental
protection, resource exploration, and military reconnaissance. Research involving change detection,
information extraction, and image fusion using multiple SAR images can provide additional
information that a single image cannot convey. This necessitates a more concise and efficient
high-precision image registration process initially.

Existing SAR image registration methods can be categorized into traditional methods and deep
learning-based methods. Traditional methods mainly fall into two categories: grayscale-based methods
and structural feature-based methods. Grayscale registration methods utilize the intensity values of
image pixels. They are computationally intensive and are susceptible to image quality issues, noise,
and geometric distortion. Structural feature-based registration methods, often based on algorithms
like SIFT or SAR-SIFT , typically involve feature extraction, feature matching, fitting transformation
matrices, and interpolation resampling. Feature-based registration methods often extract a significant
number of feature points; for instance, SIFT can extract around 2000 feature points from images of size
500 x 500.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Feature matching involves complex mathematical calculations, and its time and space complexity
depend on the number of feature points extracted, the dimension of feature descriptors, and the
matching algorithm used. This process requires substantial computing resources.

In recent years, deep neural networks have found wide application in SAR image registration.
These networks can flexibly extract multidimensional and deeper features, achieving promising
results in multi-source and multi-modal image registration. The common processing flow for deep
learning-based registration involves applying traditional feature extraction algorithms to obtain image
feature points, extracting image blocks based on these points, using deep learning networks to learn
feature and matching labels of image patch pairs, employing constraint algorithms to eliminate
mismatches, and calculating transformation matrices based on matching point pairs.

While deep learning-based SAR image registration holds promise, the scarcity of open-source
SAR datasets poses challenges, as creating such datasets requires specialized personnel and resources.
A common workaround is to perform self-learning using existing images, involving multiple affine
transformations to generate a large training dataset with known correspondences. Despite this, many
deep learning-based SAR registration studies still rely on traditional methods for matching processing.
These methods have high time and space complexity, often involving iterative computations and
significant computing resource requirements.

Reinforcement learning, a branch of machine learning, has found extensive application in areas
like robot control and intelligent decision-making. Reinforcement learning adjusts model behavior
dynamically according to rewards, offering more flexible error correction compared to supervised
learning. Although reinforcement learning-based computer vision applications have been proposed,
they remain relatively unexplored in the realm of SAR image registration.

It's worth noting that mainstream reinforcement learning needs to strike a balance between
exploration and exploitation. However, in computer vision application scenarios, extensive exploration
might not be necessary. Therefore, the reinforcement learning framework based on episodic memory
is better suited for computer vision applications. Hierarchical reinforcement learning can further
enhance training efficiency, especially in scenarios with significant state differences. This paper applies
the OptionEM-based reinforcement learning framework to achieve end-to-end SAR image registration.
Feature extraction is accomplished using the Transformer model, while a correlation network is
introduced to learn correlations and transformation matrices between sensed and reference image
pairs.

The contributions of this paper can be summarized as follows: First, it introduces an end-to-end
architecture that directly outputs affine transformation matrices and registered images, significantly
reducing processing time compared to multi-step registration algorithms. Second, reinforcement
learning’s dynamic decision-making with error correction mechanisms enhances efficiency and
robustness when compared to deep learning frameworks. Third, a hierarchical reinforcement learning
framework is introduced, combining with episodic memory to address the inherent invalid exploration
issue in generalized reinforcement learning algorithms, resulting in faster training times. Fourth, the
use of hierarchical reinforcement learning further improves training efficiency and effectively combines
coarse and fine registration.

In the experiments, a self-learning method is employed for dataset generation. In order to compare
with the existing registration methods, this paper proposes re-registration, involving registering the
SAR-RL registered image with the reference image. We adopts the indicators in Goncalves et al. [1]
to quantitatively evaluate image registration. The transformation matrix T of control point pairs is
calculated using the least squares method.

The test dataset comprises three sets of SAR images acquired by TerraSAR-X and Sentinel-1A.
The experimental results demonstrate that our method achieves not only an average running time at
the sub-second level but also a superior registration performance.
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2. Related Work

2.1. Deep Learning

Feature-based image registration centers on image feature extraction, leveraging booming neural
network architectures such as the Transformer. As a supervised learning method, it requires a sufficient
number of samples for parameter learning. Previous research has indicated that applying deep neural
networks to the registration of complex and diverse SAR image pairs can yield more accurate matching
features compared to manually designed feature extraction algorithms, showcasing their promising
performance and applicability [2-4]. However, several challenges remain, including the limited
availability of publicly accessible datasets, scarcity of labeled data, substantial computational and time
costs during the training phase, and the need for high-performance computer hardware. Moreover,
local similarities may lead to mistaken matches. Addressing these challenges represents critical
research areas when applying deep learning to SAR image registration.

Neural network-based SAR image registration [5] falls under the umbrella of feature-based
registration [2], transcending the limitations of manually designed features. It can extract multi-level
features that reflect distributional, structural, and semantic characteristics. Various researchers have
explored this approach, employing methods such as correlating coefficients and neural networks
[6], utilizing deep convolutional networks (CNNs) and conditional generative adversarial networks
(CGANs) to extract geographic features [7], applying pulse-coupled neural networks (PCNNSs) [8] for
edge information [9], and combining SIFT algorithms with deep learning [10]. Moreover, advanced
techniques integrate self-learning with SIFT feature points for near-subpixel level registration [2],
employ deep forest models to enhance robustness [3], utilize unsupervised learning frameworks for
multiscale registration [11], and leverage Transformer networks for efficient and accurate registration
[12], among others.

In summary, deep learning-based registration methods for SAR images can leverage multi-level,
latent, and multi-structural features to capture complex data variations. They guide feature extraction
using registration results, eliminating the need for manually set metrics. These methods have
demonstrated favorable accuracy and applicability. However, they require a substantial number
of training samples and high computational power during the training phase.

Regarding registration or matching, it plays a significant role in the entire image registration
process. This process is used to identify misregistrations between two images or two patches, and for
two images, it detects their mapping matrix, ultimately transforming one image to match the other.
When it comes to two patches cropped from key points, matching classification performs well. Quan et
al. [13] focused on the relative feature correlation between matching and nonmatching samples. They
introduced a deep feature correlation learning network (Cnet) along with a novel feature correlation
loss function for multi-modal remote sensing image registration. Experiments demonstrated that
the well-designed loss function improved the stability of network training and decreased the risk
of overfitting. A cross-fusion matching network for multimodal remote sensing image registration
leverages global optimization and the fusion of information from patches cropped from key points to
generate cross-modal feature descriptors [14].

2.2. Reinforcement Learning

Blundell and colleagues introduced the Model Free Episodic Control (MFEC) algorithm [15]
as one of the earliest episodic reinforcement learning algorithms. In comparison to traditional
parameter-based deep reinforcement learning methods, MFEC employs non-parametric episodic
memory for value function estimation, resulting in higher sample efficiency compared to DQN
algorithms. Neural Episodic Control (NEC) [16] introduced a differentiable neural dictionary to store
episodic memories, enabling the estimation of state-action value functions based on the similarity
between stored neighboring states.
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Savinov et al. [17] utilized episodic memory to devise a curiosity-driven exploration strategy.
Episodic Memory DON (EMDQN) [18] combined parameterized neural networks with non-parametric
episodic memory, enhancing the generalization capabilities of episodic memory. Generalizable Episodic
Memory (GEM) [19] parameterized the memory module using neural networks, further enhancing
the generalization capabilities of episodic memory algorithms. Additionally, GEM extended the
applicability of episodic memory to continuous action spaces.

These algorithms represent significant advancements in the field of episodic reinforcement
learning, offering improved memory and learning strategies that contribute to more effective and
efficient training processes.

3. Deep Reinforcement Learning-Based SAR Image Registration

3.1. SAR-RL

The registration of reference and sensed image pairs is approached as a sequential decision-making
process. In this process, the sensed images undergo a transformation based on an action, referred to as
a time step, which involves adjusting the transformation parameter. The resulting transformed image,
achieved through image resampling, is then registered with the reference image to yield a reward
value. This reward value typically indicates whether the latest image resampling has brought the
sensed image closer to the reference image. If the transformation executed at that particular time step
results in the resampled image being closer to the true value compared to the previous time step, a
positive reward is received. Conversely, if the proximity decreases, a negative reward is obtained.

In this research, the state is the grayscale image of the reference and sensed image pairs. The
sensed image is resampled according to the affine transformation parameters output by the agent,
generating a new sensed image.

The action space consists of the affine transformation parameters of the sensed image, along
with an additional trigger action. The agent executes the chosen action, causing the sensed image
to undergo the corresponding affine transformation and generating a new sensed image. In this
experiment, the discrete action space is defined based on transformation parameters with two scales
of low and high precision. This design aims to avoid both registration failures caused by very low
precision and high interaction costs resulting from very high precision. The latter scenario might
require numerous iterations before achieving a successful registration. The effective action set consists
of 16 elements, each corresponding to a specific affine transformation: translate left 1, 10 pixels,
translate right 1, 10 pixels, translate up 1, 10 pixels, translate down 1, 10 pixels, rotate clockwise 1°,
10°, rotate counterclockwise 1°, 10°, zoom in scale 0.1, 0.01, zoom out scale 0.1, 0.01 . The trigger action
represents that registration is complete, and further transformations are unnecessary.

The reward function is directly proportional to the enhancement in the alignment of reference
and sensed image pairs achieved by the agent through its actions. Intuitively, this improvement can be
quantified using the Euclidean distance between the current transformation matrix and the ground
truth. However, a challenge arises from differences in parameter units, as the scaling units are smaller
compared to translation and rotation. To address this, salient points in the image—such as corner
points—are employed to formulate the reward function.

Salient points are identified as key points detected by the maximum value of the Difference of
Gaussians (DoG). These key points compose the salient point reference set P, derived from the ground
truth of the sensed /reference image. In each training episode, the transform set P of salient points is
generated by applying the inverse matrix of the transformation matrix.

Subsequently, for each action, the distorted landmarks are transformed using the given
transformation matrix. The reward for the action is defined based on the Euclidean distance D
between the transformed landmarks and their corresponding landmark references. The entire process
is depicted in Figure 1.
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Figure 1. Image registration based on reinforcement learning.

3.2. Model

The neural network architecture is illustrated in Figure 2. The left side of the network features
a Transformer layer, responsible for conducting feature learning through self-attention on the input
sensed and reference image pairs. Meanwhile, the right side of the network comprises a correlation
layer that captures position-related details between the sensed and reference image pairs. Ultimately,
the network produces the parameters necessary for the affine transformation.
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Figure 2. Agent Network Structure.
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3.2.1. Transformer
The core module of the Transformer is the Multi-Head Attention (MHA). The definition of
dot-product attention is as follows:

. QKT
Attention (Q, K, V) = softmax [ == | V (1)

Vg
Here,Q € RT*% is the query matrix, K € RT*% is the key matrix, and V € RT*% is the value
matrix. T and M represent the sequence lengths of queries and keys,dy is the feature size of queries
and keys, andd, is the feature size of V. In visual tasks, Q and K are typically reshaped query and key
feature maps, where T = M = h x w, with h and w being the height and width of the feature maps.
The definition of Multi-Head Attention is as follows:

head; = Attention (QWiQ, KWK, VWZ-V> @)

MultiHead(Q, K, V) = Concat (heady, ..., heady) W° (3)

where Wl-Q € RAxdx, WZ-K € RAxdx, WiV € R?%do and WO e RMoxd are parameter matrices, and H is
the number of heads. In the case of the Multi-Head Self-Attention (MHSA) in the encoder, Q = K = V.

The architecture of the Transformer encoder, which excludes positional encoding, is illustrated on
the left side of Figure 2. This encoder includes Multi-Head Self-Attention (MHSA) and a feed-forward
layer. The feed-forward layer initially increases the feature dimension from d to D and subsequently
reduces it back to d. For added depth, the encoder can be stacked a total of N times, where N represents
the number of encoder layers. Notably, in this study, a configuration akin to ViT is adopted, employing
solely the Transformer encoder and incorporating additional positional encoding.

In the original Transformer design, a decoder with Multi-Head Cross-Attention (MHCA) is
employed. Initially, the query consists of a learnable query embedding, which is then replaced by the
output of the preceding decoder layer. The key and value components are derived from the outputs of
the encoder layers. Similar to the encoder, the decoder can also be stacked N times.

3.2.2. Correlation Layer

The architecture of the correlation layer draws inspiration from the research conducted by Rocco
et al. [20]. The objective is to effectively capture both positional and spatial correlation details within
image features. The configuration of the correlation layer is depicted on the right side of Figure 2.

The feature maps f4 and fg are in R"*®*4 the correlation map c4p is in R"*®“*4, and the output
of the correlation layer consists of scalar products of individual descriptors at each position:

cap(i,j,s) = £5(i, 1) £4 (is, js) )

(i,j) and (is, js) represent individual feature positions in the i x w dense feature map, and
s = h(js — 1) + i, is an auxiliary index variable for (is, js).

The architecture of the correlation layer is illustrated in Figure 3. The right side of the illustration
represents the correlation feature c 4, which quantifies the similarity between features in fg and f4 at
a specific position (i, j). It’s important to emphasize that c 45 is distinct from cp4. The computation
of similarity through the correlation feature addresses the challenge of ambiguous matches and
necessitates further processing.
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Figure 3. Architecture of the correlation layer.

To enhance the correlation feature, channel-wise normalization is applied to the correlation feature
at each position, yielding a normalized feature f4p in the form of a correlation map. Subsequently,
Softmax and L2 normalization are employed on the correlation map f4p. This normalization approach
emphasizes the scores of favorable matches. For instance, when only one feature in fp exhibits
strong correlation with f4, this method resembles nearest-neighbor matching in classical geometry
computation [20]. Additionally, in scenarios where descriptors in fz match with multiple features in
fa, resulting from noise or repetitive patterns, the matching scores are down-weighted—a concept
similar to the second nearest-neighbor test.

Both the correlation and normalization operations are differentiable in relation to the input
features, enabling effective backpropagation for end-to-end learning. Notably, this study employs the
self-attention mechanism of the Transformer within the correlation layer to facilitate extensive feature
matching across longer ranges.

3.3. Option Episodic Memory

The Option Episodic Memory framework (OptionEM) introduced by Zhou et al. [21] is a
comprehensive hierarchical episodic control framework that, to a certain extent, tackles the challenge
of extensive sample requirements that posed difficulties for initial generations of deep reinforcement
learning models. This framework employs hierarchical episodic memory, updated via implicit memory
planning, to estimate the optimal rollout value for each state-action pair.

At each step, the cumulative reward along the trajectory up to that point is compared with
the value derived from the memory module. The greater value between these two is chosen. The
memory module affiliated with an option encompasses both an option value memory module and
an option-internal memory module. The decision regarding which to choose is determined by the
termination equation. The notations My and Mg, , arise from analogous experiences and represent
value estimations for counterfactual trajectories linked to options. This process recursively establishes
an implicit planning scheme within the episodic memory, aggregating experience longitudinally and
across trajectories.

The complete backpropagation process can be formulated using Equation 5.

re+ymax (Rep1, Mg (st41, wir1,a141))  ift < T, Buwy (si41) =0
Rt = ¢ 1+ ymax (Ryp1, Moy (Si41,w)) ift <T,Buwy (5t41) =1 ®)
Tt ift=T
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where t denotes the step along the trajectory, and T represents the episode length. The backpropagation
process in Equation 5 can be expanded and rewritten as Equation 6.

re + ’)’VtJr],h,l ifh >0

Vih =4 Mok (s41,w0) ifh=0p=1 .
Mg (st,wy,ar)  ifh=0,=0 (6)
Rt - Vt,h*

where h* = argmaxVj j,.
h>0

Algorithm 1 Update Memory

for stored trajectories T do
for one of the trajectory t: t =T — 1 do

according current chosen Option w,executing ;1 ~ 7, 9(a | s)

if B =0 then
computing Mél’z) (St+1, @, a41)
else

computing Mgi) (st11,w)

end if 15
forh =0:T — t computing V(h’ )
. (1,2) . thycw
computing R; ;" according (6)
saved into the memory
end for
end for

according (5)

The parameterized neural network M, is introduced to represent the parameterized
option-internal memory, while the parameterized neural network M, serves as the parameterized
option memory. Both networks are learned from a tabular memory M. In order to harness the
generalization capability of My and M,, an augmented reward is propagated along trajectories using
value estimates from My and M,, along with the actual rewards from M. This approach aims to
determine the optimal value across all potential rollouts. During training, the improved target is
regressed to train the versatile memories My and M,, with the chosen value guided by the termination
equation. This refined target then guides policy learning and establishes fresh learning objectives for
OptionEM.

A key challenge within this learning process is the potential overestimation stemming from
identifying the best value along a trajectory. During the backpropagation process, overestimated
values can persist and hinder efficient learning. To mitigate this challenge, a Siamese Network, akin
to the concept of Double Q-learning, is employed to refine the backpropagation of value estimates.
Traditional reinforcement learning algorithms with function approximation are prone to overestimating
values, which makes addressing this tendency critical. The Siamese Network structure is leveraged to
render value estimates from My more conservative. Training involves updating the memory network,
the termination function, and the option policy using three distinct timescales.


https://doi.org/10.20944/preprints202308.1865.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 August 2023 d0i:10.20944/preprints202308.1865.v1

9 of 26

Algorithm 2 Option Episodic Memory(OptionEM)

Initializes the episodic memory network and option network
Initializes the target network parameters 921) +— 9(1),9E2) — 9(2),0/(1) — 0‘(1)/0‘/(2) — )9

¢.0 =Ly
Initializes the episodic memory M
for t=1,..,Tdo

Choose Option w,execute action a

receive reward 7 and next state s’

store tuple (s, w,a,r,s',w’, B) in memory M
for iin{1,2} do

sample N tuples (s, a,7,s, B, R}) from memory M
if f = 0then

update 6;) <= ming Y (Rgi) — Mi(s,w, a))

else
() _ pgi 2

update a;) < ming, Y (Rt - Mlx(s,w))

end if

end for

if t mod u = 0 then

Q) 104 + (1—1’)9})
) — Tag) +(1- T)Dc;l
1 )<—T17()—}—(1—T)17Q
Py < TP + (1 )‘P( )
update Eplsodlc Memory according Algorithm 1
end if
if t mod p = 0 then

update ¢ ,Vy](¢) = VoM, (s, w, a)] _ »(6) V¢n¢( ) according policy gradient
update ¢,V J({) = VMy, (s,0)|,,_ Vg ng according policy gradient

end if

if t mod g = 0 then

aMlX(wO/Sl)

2

)

/‘\s{'\

==Yy wha (s wlsy,wp) aﬁ“’a"zl(s,)AQ (s/,w) according policy gradient

update 77,
end if
end for

3.4. Self-Learning

Compared to RGB image datasets, SAR image datasets are relatively limited in availability, and
acquiring labeled datasets can be expensive. To tackle this challenge, this study employs a self-learning
strategy. The core concept is to apply various transformation matrices—like translation, scaling,
rotation, etc.—to images. Consequently, a substantial number of corresponding sensed and reference
image pairs are generated from the original images and their transformed versions. In the context of
SAR image registration, the training dataset can be produced by applying affine transformations to
one of the image pairs.

In this scenario, the initial large-scale image undergoes an affine transformation. A 240 x 240 pixel
image patch is selected from the original image as the reference image. Utilizing the coordinates of the
reference image’s center point within the original image, the coordinates for this point are calculated
within the transformed large-scale image using the transformation matrix. Subsequently, a 240 x 240
pixel image patch is cropped to serve as the sensed image, with its center point determined by the
computed coordinate values. This self-learning approach eliminates image patches that might exhibit
black boundaries after the image patch’s affine transformation, ensuring dataset quality. The process
of self-learning is visually represented in Figure 4.
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Figure 4. Self-learning.

This self-learning strategy proves effective in alleviating the need for extensive sample data.
Shuang Wang et al.’s work has already illustrated the method’s success in SAR image registration
through a deep learning framework [2]. However, their primary objective was to acquire localized
feature information and details about feature point neighborhoods. To achieve this, they harnessed
self-learning to generate a significant quantity of sample data, focusing on feature points and their
surrounding localized information.

In contrast, this current study employs self-learning to create an extensive amount of global
sample data. The self-learning samples are designed to construct new sensed-reference image pairs on
a larger scale, rather than primarily concentrating on localized feature points.

4. Experiments

4.1. Dataset

The training image dataset for this experiment was generated using the right-looking descending
image from the TerraSAR-X satellite over Napa, USA.!. These images were captured on September
8 and September 30, 2014, respectively, as depicted in Figure 5. By observing the images, evident
changes in grayscale and coverage can be noticed, particularly over the water bodies. It’s essential to
recognize that the presented images are quick-look previews, which are scaled-down versions of the
original full-scene images. The resolution of these previews is approximately ten times smaller than
that of the actual data.

In comparison to the SAR image taken on September 30, the SAR image captured on September 8
exhibits an offset of approximately 60 pixels in the range direction. The SAR reference image utilized
during the network training phase is derived from a pre-processed version of the original image taken
on September 30, 2014.

Due to the substantial size of SAR images and their inherent characteristics, including speckle
noise and geometric distortions, a series of preprocessing steps are applied to the original images.
These steps encompass block division, multilook, filtering, downsampling, and differencing.

1 The original images were downloaded from: https://download.geoservice.dlr.de/supersites/files/
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Acquiring a significant volume of annotated remote sensing images, as opposed to optical image
datasets, poses challenges due to the specialized domain knowledge required and the associated costs.
To address this challenge, a self-learning strategy is employed. Given that SAR images can be captured
under diverse conditions—such as varying incidence angles, distinct orbital directions, and diverse
azimuth angles—various fundamental transformation types are employed for the affine transformation
of the reference image. These fundamental transformations include translation, scaling, rotation, and
flipping. This approach aims to examine the resilience of image features to these core transformation
types. The parameters for these transformations are uniformly sampled within predefined ranges, and
each affine transformation is created by combining these fundamental transformations.

2014/9/8 2014/9/30

Figure 5. Quick-look of the descending orbit right-looking SAR images acquired by TerraSAR-X
satellite’s at diffrent periods in the Napa region, USA.

Once the training dataset comprising sensed and reference image pairs is generated, SAR images
undergo standardization and normalization. Image standardization, a widely used preprocessing
technique, involves centering the data by subtracting the mean. This alighment with convex
optimization theory and knowledge about data probability distribution enhances the suitability of
the centered data distribution for generalization after training. Standardization results in a zero-mean
centered data distribution, enhancing the effectiveness of gradient descent algorithms. Furthermore, it
eliminates common image characteristics while accentuating individual differences. As a result, neural
networks can learn more distinctive features, thereby fostering rapid learning, iteration, optimization,
and improved learning efficiency. In this experiment, standardization parameters mean and standard
deviation are set to mean = 0.485 and std = 0.229.

For generating training data, 60 small images of size 240 x 240 pixels are cropped from the larger
source image. Each of these small images undergoes 700 affine transformations. The scaling factor
ranges from 0.71 to 1.5 (uniformly sampled), and the rotation angle spans from —180 to 180 degrees
with a precision of 1 degree (uniformly sampled). No flipping transformations are applied.

In this paper, we utilize three distinct datasets for testing:

1. TerraSAR-X Napa 2014 Dataset: Already introduced in the training dataset section, consisting
of 110 pairs of 240 x 240 pixel image blocks.

2. Sentinel-1A Napa 2014 Dataset: Source images are obtained from Sentinel-1A SAR satellite
images of the Napa region in the western United States on October 30th and October 6th, 2014. A total
of 18 pairs of 240 x 240 pixel image blocks were cropped.
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3. TerraSAR-X Zhuhai 2016 Dataset: Source images are obtained from TerraSAR-X satellite images
of the Zhuhai region in southern China, captured on November 3rd, 2016. A total of 62 pairs of
240 x 240 pixel image blocks were cropped.

2014/10/30

Figure 6. Descending pass right-looking SAR images from different periods of the Sentinel-1A satellite
over the Napa region, USA.

2016/11/3

2016/11/3

Figure 7. Right-looking SAR images from the TerraSAR-X satellite over Zhuhai region, China. (a)
Descending pass (b) Ascending pass.

The initial test dataset employs original images that align with the training dataset. Given
the relative consistency in the imaging geometry of SAR sensed and reference images—featuring
minor variations in geometric structural characteristics—the evaluation of the proposed registration
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method’s resilience to translation, scale, rotation, and other geometric transformations necessitates the
application of random affine transformations to the SAR sensed images. The types of transformations
and the parameter ranges used for preprocessing remain consistent with those applied to the training
dataset. Notably, the preprocessing methods employed across all three sets of test data are identical.

It is evident that the Sentinel-1A Napa 2014 image dataset contains more noise and pronounced
dissimilarities in image features—such as water bodies and ridges—when contrasted with the training
dataset derived from TerraSAR-X Napa 2014. Furthermore, the brightness distribution of images
demonstrates considerable variations. Conversely, the TerraSAR-X Zhuhai 2016 dataset displays a
greater presence of linear features, and its overall brightness distribution closely resembles that of the
TerraSAR-X Napa 2014 dataset.

4.2. Option Analysis

Table 1 illustrates the correlation between Normalized Root Mean Square Error (RMSE) and
Options. An option is displayed when the occurrence probability surpasses 75% within the RMSE
range of statistically distinct score intervals across the three test datasets. Conversely, it is denoted
as - when the option’s proportion falls within the range of 25% — 75%. For instance, consider the
TerraSAR-X Zhuhai 2016 dataset, which consists of 62 pairs of test sets. In the testing process, among
238 instances of image pairs with normalized RMSE in the range [0,0.2), the agent chose option 0 a
total of 223 times, resulting in a proportion of 193/238 = 93%. Therefore, in the table, it appears as
option 0. On the other hand, for 502 image pairs with normalized RMSE in the range [0.4,0.6), the
agent selected option 0 in 337 cases, accounting for a proportion of 337 /502 = 67%. Consequently, this
is indicated as ’-” in the table.

The data implies that across the three test datasets, the agent is more inclined to opt for fine
registration when the option is 0, while it tends to select coarse registration when the option is
1. Notably, the complexity of the data in the Sentinel-1A Napa 2014 dataset results in unstable
performance. Subsequent experimental results demonstrate that this dataset yields poorer registration
outcomes relative to the other two test datasets.

It’s important to highlight that there exist numerous metrics for measuring image pair similarity,
with Root Mean Square Error (RMSE) being a straightforward indicator. However, RMSE’s emphasis
on pixel-level discrepancies can lead to challenges when assessing SAR image pairs, which may exhibit
significant differences in scale, noise, grayscale, structural features, and more, thereby substantially
influencing the accuracy of RMSE.

Indeed, there are instances where image pairs might share similar grayscale values but fail to
match in other aspects [2]. Moreover, the root mean square error can also be influenced by factors
like the quantity, distribution, and precision of the feature point pairs. The examples provided in this
section serve the purpose of illustrating the general connection between image disparities and options.
However, it’s crucial to note that these examples do not constitute quantitative analyses.

Table 1. Relationship between Normalized Root Mean Square Error and Options.

[0,0.2) [02,04) [04,06) [0.6,0.8) [0.8,1) [1,)
TerraSAR-X Napa 2014  Option0 Option0 Option 0 - Option1  Option 1
Sentinel-1A Napa 2014  Option 0 - - - Option0  Option 1
TerraSAR-X Zhuhai 2016  Option0  Option 0 - Option1 Option1 Option1

Figure 8 visually portrays the registration process of three image pairs, offering a comprehensive
view of the reinforcement learning-based registration method’s entire path and more intuitively
showcasing the option strategy employed throughout the registration process.
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] T=1
Sensed image Option 1 Option 0
Action 12 Action 8

4 )

T=2 T=4 T=5

Option 0 Option 0 Option 0 Option 0
Action 9 Action 9 Action 10 Action 8

] T=0 T=1
Sensed image Option 0 Option 1
Action 9 Action 11

T=2 T=3 T=5
Option 0 Option 0 Option 0 Option 0
Action 8 Action 9 Action 10 Action 8

Reference image Sensed image T=0 =1
Option 1 Option 1
Action 11 Action 13

Option 0 Option 0 Option 1
Action 9 Action 9 Action 8

Figure 8. Options and Actions in testing process.

An observation can be made that even in cases where a large difference exists between the sensed
image and the reference image—such as the T = 0 timestep in the second image pair—the occurrence
of option 0 does not adversely impact the subsequent registration process. Across the first and
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second image pairs, the agent tends to favor the selection of the coarse registration option, involving
significant rotation (e.g., the T = 0 timestep in the first image pair and the T = 1 timestep in the second
image pair). Subsequently, the agent executes scaling and rotation to achieve fine registration (e.g.,
T =1,2,3,4,5 timesteps for the first image pair and T = 2, 3,4, 5 timesteps for the second image pair).

In the case of the third image pair, the agent’s decision-making process appears to exhibit some
instability (e.g., the T = 5 timestep). However, it’s worth noting that the outputs for the T = 1,2,3
timesteps align with expectations, indicating a certain level of consistency.

4.3. SAR Image Registration Results Analysis

4.3.1. Once-Registration and Re-registration

In this study, we introduced a comprehensive image registration approach that delivers the
affine transformation matrix and registered images directly from input sensed and reference images.
Unlike methods with distinct stages like feature point extraction, direction assignment, and descriptor
construction, our algorithm doesn’t offer a direct calculation of quantitative measures relying on
feature points.

To enable a meaningful comparison with conventional registration techniques, we devised an
indirect strategy. This approach involves two steps: first, the initial registration of sensed and reference
images; and second, a subsequent re-registration wherein the sensed image is registered with the
SAR-RL (Reinforcement Learning) registered image. Quantitative metrics are then computed for both
scenarios. The underlying assumption is that if the re-registration outcome exhibits a smaller Root
Mean Square Error (RMSE) value and elements of the affine transformation matrix that are closer to
zero, it implies an improved SAR-RL registration result, in line with expectations.

4.3.2. Qualitative Evaluation Results

The qualitative assessment primarily involves visually inspecting the spatial geometric
registration results of the registered images [2]. This can be achieved by overlaying the registered
reference image onto the sensed image using distinct colors to gauge the extent of overlap and
differences in content. Another technique involves dividing the images into smaller blocks and
overlapping them in a checkerboard pattern to create a mosaic map. By examining the continuity of
structural features (such as stitching boundaries, rivers, bridges, roads, ridges, etc.) and assessing the
overlap of common areas, the effectiveness of registration can be assessed. While this approach is
straightforward and effective, it might not be suitable for large-scale automated applications.

Figure 9 provides examples of checkerboard-mosaicked images for the three test datasets. Due to
space limitations, one example is selected from each dataset: a land-water interface area containing
man-made structures and mountains, a mountainous region, and an airport area. As evident from
column d in the figure, the sensed images and reference images from the three scene sets demonstrate
successful registration. Most regions of the images overlap well, and the stitching boundaries are
consistent.

Furthermore, it’s noticeable from columns 4 and c that the sensed images produced by the SAR-RL
technique exhibit a high visual similarity to the reference images in terms of geometric structural
features. This aspect lays the groundwork for achieving effective registration.
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(b

(a) (b) ] (d)

Figure 9. The checkerboard mosaicked image examples of registered images from test datasets.
4.3.3. Quantitative Evaluation Results

Quantitative evaluation involves expressing registration outcomes in numerical terms. Commonly
employed metrics for quantitative assessment encompass the count of control point pairs (N,.y), the
Root Mean Square Error (RMSE) of all control point residuals (RMSEj;), and RMSE calculated using
the leave-one-out method (RMSE},,). These metrics are frequently normalized to the pixel size to
facilitate comparisons [22].

The transformation matrix (T) for control point pairs is determined through the least squares
method, and based on this matrix, the residuals of control point pairs are computed, giving rise to
RMSE,;; and RMSE,,. The presence of more accurately matched point pairs translates to a better
determination of the parameters in the geometric transformation model, thereby yielding enhanced
performance [12]. However, it’s important to note that an increase in the number of correctly matched
point pairs acquired through a registration method doesn’t necessarily guarantee a decrease in the
Root Mean Square Error. This is because errors can still persist in the point pairs matched by the
algorithm.

Gongalves et al. took into account the distribution of control points and residuals and put forward
various evaluation metrics, which include the quadrant residual distribution (Py,4q), the proportion of
poorly matched points with residuals (norm) exceeding 1.0 (Bad Point Proportion, BPP) denoted as
BPP(1.0), the detection of a preferred axis in the residual scatter plot (S,), the statistical attributes of
control point distribution in the image (Sc4¢), all of which were considered in conjunction with N4,
RMSE,);, and RMSE},,. Among these metrics, except for N,,4, smaller values in the other evaluation
metrics signify improved registration performance [2].

These seven metrics are not completely independent of one another. For instance, a higher value
of N,,; along with a lower value of RMSE; indicates greater accuracy in point matching. Conversely,
if both metrics are either high or low, it suggests lower accuracy.

In order to compare our method with traditional and deep learning-based approaches, we have
selected SAR-SIFT and Wang Shuang’s research (referred to as DL-WangS) [2] as benchmarks. Figures
10-12 illustrate the interval statistical results of Root Mean Square Error (RMSE) values for SAR-SIFT,
DL-WangS [2], and our re-registration results for the three datasets.
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The intervals depicted in these figures are [0,0.01), [0.01,0.1), [0.1,0.2), [0.2,0.3), [0.3,0.4),
[0.4,0.5), [0.5,0.6), [0.6,0.7), [0.7,0.8), [0.8,0.9), [0.9,1), and [1, c0).

These can be seen in the figures , the re-registration results after the initial registration of sensed
and reference image pairs used for testing are significantly better. Results from the TerraSAR-X Napa
2014 dataset and TerraSAR-X Zhuhai 2016 dataset outperform those from the Sentinel-1A Napa 2014
dataset. About 24% of re-registrations in the TerraSAR-X Napa 2014 dataset achieved RMSE values
below 0.01, while only 5% in the Sentinel-1A Napa 2014 dataset achieved this. Similarly, 24% of
re-registrations in the TerraSAR-X Zhuhai 2016 dataset achieved RMSE values below 0.01. The RMSEs
obtained by SAR-SIFT are concentrated around 1 pixel, with a small portion larger than 1 pixel. The
RMSEs obtained by DL-WangS are mostly smaller than 0.6 pixel, but for the Napa region images, some
are close to 1 pixel. The RMSEs obtained by our proposed re-registration method are all less than
1 pixel and are concentrated near 0. This suggests that our re-registration achieves sub-pixel level
accuracy and outperforms SAR-SIFT, while being comparable or even slightly better than DL-WangS.

<0.01 0.01-0.1 0.1-02 02-03 0.3-0.4 0.4-05 0.5-06 0.6-0.7 0.7-08 08-09 09-1.0 >1.0

Figure 10. Statistical analysis of RMSE values for 110 pairs of TerraSSAR-X Napa 2014 images using
SAR-SIFT.

<001 0.01-0.1 0.1-02 02-03 03-04 0.4-05 05-06 06-0.7 07-08 0.8-09 0.9-1.0 >1.0

Figure 11. Statistical analysis of RMSE values for 18 pairs of Sentinel-1A Napa 2014 images using
SAR-SIFT.

0.01-0.1 0.1-02 02-03 0.3-0.4 0.4-05 05-06 06-0.7 0.7-08 0.8-09 0.9-1.0 >1.0

Figure 12. Statistical analysis of RMSE values for 62 pairs of TerraSAR-X Zhuhai 2016 images using
SAR-SIFT.

Tables 2 and 3 present the median and mean values of the quantitative analysis results for
SAR-SIFT, DL-WangS [2], and our SAR-RL model after re-registration applied to the three datasets. The
analysis is conducted using the seven metrics introduced by Gongalves et al. (2009) to quantitatively
evaluate the registration results for all image pairs in the test datasets.
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Table 2. Quantitative analysis of median results of metrics for re-registration , SAR-SIFT and DL-WangS.

TerraSAR-X Napa 2014 dataset

Nyeg RMSEg;  RMSEj,, Pquard BPP(1.0) Skew Scat running time
SAR-SIFT 12 0.7170 0.9021 0.0000 0.5000 0.4843  1.0000 28.4611's
DL-WangS 22 0.3290 0.3977 0.0000 0.0498 0.3012  1.0000 9.5026 s
Re-registration 7 0.3257 0.4331 0.0000 0.0317 0.2943  0.9999 -
Sentinel-1A Napa 2014 dataset
Nyeg RMSEg;  RMSEj,, Pquard BPP(1.0) Skew Scat running time
SAR-SIFT 6 0.8263 1.0324 0.6340 0.5000 0.0143  1.0000 17.3443 s
DL-WangS 20 0.3310 0.3449 0.1182 0.0023 0.1293  1.0000 9.2473 s
Re-registration 4 0.3714 0.4064 0.0931 0.0317 0.1169  0.9999 -
TerraSAR-X Zhuhai 2016 dataset
Nyea RMSEg;  RMSEj,, Pquard BPP(1~0) Skew Scat running time
SAR-SIFT 23 0.7669 0.8945 0.4045 0.7011 0.2349  0.9000 32.8332 s
DL-WangS 30 0.3591 0.4156 0.2812 0.0101 0.1058  0.9999 10.2314 s
Re-registration 26 0.3402 0.4911 0.1298 0.0061 0.011  1.0000 -

Table 3. Quantitative analysis of mean results of metrics for re-registration , SAR-SIFT and DL-WangS.

TerraSAR-X Napa 2014 dataset

Nyg  RMSE;;  RMSEre  Ppuara BPP(1.0)  Skew Scat  running time
SAR-SIFT 13 0.8007 0.9451 0.0001 0.4201 0.3801  0.9997 32.1185s
DL-WangS 20 0.2912 0.3071 0.0000 0.0032 0.2189  0.9999 9.8215s
Re-registration 10 0.3092 0.3471 0.0000 0.0712 0.1324  0.9995 -
Sentinel-1A Napa 2014 dataset
Nyg  RMSE;;  RMSEre  Ppugra BPP(1.0)  Skew Scat  running time
SAR-SIFT 6 0.8019 0.9733 0.5215 0.5991 0.1021  0.9999 224352 s
DL-WangS 18 0.2431 0.3130 0.1572 0.0169 0.0035 0.9999 9.0089 s
Re-registration 6 0.3119 0.4204 0.1874 0.0245 0.0097  0.9999 -
TerraSAR-X Zhuhai 2016 dataset
Nyg  RMSE;;  RMSEre  Ppugra  BPP(1.0)  Skew Seat running time
SAR-SIFT 20 0.7395 0.862 0.4121 0.2422 0.2911 0.9333 30.9462 s
DL-WangS 30 0.3292 0.2213 0.3119 0.0102 0.051  1.0000 10.1931 s
Re-registration 25 0.3371 0.24324 0.2454 0.0014 0.068  1.0000 -

Comparing and analyzing the quantitative results in these tables, several observations can be
made: The N,,; value obtained by re-registration is comparable to that of SAR-SIFT, indicating that a
similar number of control point pairs are correctly matched. However, our re-registration achieves
more accurate registration results. The N,,; value obtained by re-registration is lower than that of
DL-WangS, but the accuracy achieved is comparable. The S.4; value obtained by re-registration is
comparable to that of both SAR-SIFT and DL-Wang$, suggesting that the distribution of matched
feature point pairs obtained by the three methods is similar. It can also be observed that the running
time of SAR-SIFT is in the order of tens of seconds, while DL-WangS takes seconds to run. In contrast,
our re-registration method has a significantly faster registration speed, with running times in the
sub-second range.

These tables provide a comprehensive overview of the quantitative evaluation results and
highlight the strengths of our re-registration method in terms of accuracy and efficiency compared to
the other methods.

It should be emphasized that the re-registration approach does not directly measure the
performance of the SAR-RL method. The calculation of metrics still relies on the SIFT and SAR-SIFT
algorithms. However, the metrics indicate that SAR-RL registration is significantly more accurate than
these two traditional methods.
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The visual comparisons we’ve provided through Figures 13-15 effectively illustrate the differences
between matched feature point pairs obtained by the Re-registration and Once-registration methods
using SIFT extracted feature points for the three sets of test data samples. These comparisons highlight
the strengths of the Re-registration approach.

Figure 13. Examples of matching results based SIFT by re-registration and once-registration in
TerraSAR-X Napa 2014 Dataset

Figure 14. Examples of matching results based SIFT by re-registration and once-registration in
Sentinel-1A Napa 2014 Dataset

In the examples shown, it’s evident that the matched point pairs obtained by Re-registration
are more accurate and less cluttered compared to Once-registration. The Re-registration approach
manages to find correct matching point pairs even in image regions with significant differences, such
as varying grayscale, structural features, and challenging image content. This is a strong indication of
the effectiveness of the SAR-RL method in obtaining accurate and robust registrations, even under
challenging conditions.

However, it’s also important to note that even the Re-registration approach might have some
incorrectly matched point pairs, as seen in Figure 15. This can be attributed to factors such as
differences in satellite orbital directions and potential blurring in SAR images. Despite these
challenges, the Re-registration approach consistently demonstrates superior performance compared to
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the Once-registration method, as evidenced by the overall accuracy and quality of matched feature
point pairs.

Figure 15. Examples of matching results based SIFT by re-registration and once-registration in
TerraSAR-X Zhuhai 2016

Figures 16-18 demonstrate samples of matched feature point pairs obtained through
re-registration and one-time registration of feature points extracted using SAR-SIFT for the three
sets of test data samples. In comparison with the results from the previous set of experiments, it is
evident that the feature point pairs acquired through SAR-SIFT are fewer than those obtained using

SIFT.

Figure 16. Examples of matching results based SAR-SIFT by re-registration and once-registration in
TerraSAR-X Napa 2014 Dataset

In Figure 16, the connecting lines of the matching point pairs obtained from the once registration
of sample 1 appear more cluttered, and all of them are incorrectly matched, resulting in a failed image
registration. The outcome of the fusion processing displays only the sensed image. The fusion process
merely presents the information from one of the images. Conversely, the corresponding matching
point pairs acquired through re-registration align with the correct positions. The fusion image exhibits
continuous splicing boundaries, a substantial overlap of most image regions, and the visibility of
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splicing boundaries between the two images. For sample 2, the positions of matched point pairs
obtained from once-registration are accurate, resulting in successful image registration. However, the
overlapping area of the fused image is blurred, which hinders the acquisition of image information.
Re-registration, on the other hand, yields more correct matching point pairs, evenly distributed, with
the fusion image displaying continuous splicing boundaries, extensive region overlap, and visible
splicing boundaries and geometric structural features.

Figure 17. Examples of matching results based SAR-SIFT by re-registration and once-registration in
Sentinel-1A Napa 2014 Dataset

Figure 18. Examples of matching results based SAR-SIFT by re-registration and once-registration in
TerraSAR-X Zhuhai 2016

In Figure 17, feature point pairs derived from the once-registration of sample 1 are concentrated
and inaccurately matched, and the image registration is failure. The fusion image primarily shows
the sensed image. In contrast, feature point pairs acquired through re-registration for sample 1
correspond to the accurate location, with a relatively scattered distribution. The fusion image
exhibits continuous splicing boundaries and substantial overlap in most image regions. For sample
2, both re-registration and once-registration yield accurately corresponding feature point pairs. The
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fusion images demonstrate extensive region overlap, with no noticeable misalignment in the splicing
boundary.

The two samples in Figure 18 display evident linear structural features and grayscale similarity. In
both cases, re-registration and once-registration yield correctly corresponding feature point pairs. The
fusion images reveal significant overlap in most image regions, with continuous splicing boundaries,
indicating a favorable registration outcome.

It’s crucial to note that in the context of SAR images, SIFT and SAR-SIFT can sometimes extract
incorrect feature points or produce mismatched feature point pairs. As a result, the comparison between
once-registration and re-registration, as presented above, serves as a reference. A comprehensive
evaluation should encompass various indicators discussed in the preceding sections, along with other
methodologies such as mosaicked images.

4.3.4. Data Visualization

The visualization results of the test dataset samples are presented in Figure 19. These figures
showcase the outcomes of attention maps, wherein each spatial location within the connectivity map
encompasses all similarity scores between a feature in the reference image and all features within
the sensed image. To illustrate, if a filter’s central patch comprises predominantly zeros except for
a peak located at the top-left corner, the filter responds positively to features within the reference
image that correspond to the top-left corner of the sensed image. Likewise, when numerous spatial
locations of a filter yield similar visual responses, the filter demonstrates heightened sensitivity to
spatially co-located features within the reference image that align with the corresponding positions in
the sensed image.

Figure 19. Visualization results of dataset test samples

The figures exhibit several attention maps that validate the presumption that the layer has
acquired the ability to replicate local neighborhood consensus. This is evident as certain filters exhibit
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strong responsiveness to spatially co-located features within the reference image that match consistent
spatial positions in the sensed image.

4.3.5. Analysis of Failed Cases

Figure 20 illustrates instances of failed registration. In the third column, the sensed image
generated by the reinforcement learning framework of this paper is based on the reference image, i.e.,
the sensed image to be registered. The fourth column displays the outcomes of the registration using
the method proposed in this paper. Variations in terrain features and imaging viewpoints between
the sensed images obtained at different sampling times and the reference image pairs can lead to
significant grayscale differences, as observed in failed sample 4, and different structural features,
such as failed sample 3 and failed sample 6. In some cases, SAR images obtained from the same
ground scene region may not appear intuitively identical, as demonstrated in rows 2 and 4 of the
figure. While the reinforcement learning in this paper generates sensed images that partially reduce
structural differences between them and the original reference images, it does not perform grayscale
transformations on the sensed images.

The mosaic image of the sensed image and the reference image after the registration can exhibit
pronounced grayscale misregistration at the splicing location, as seen in failed sample 5, or show
insufficient smoothness in the splicing of line features and region features, as seen in failed sample 4.
The registration scheme based on the entire image requires a certain level of grayscale and structural
similarity between the sensed image and the reference image pairs to be registered. However, the
reinforcement learning approach in this paper does not perform grayscale transformations on the SAR
image during the transformation of the sensed image. Consequently, its applicability and scalability
for registering SAR image pairs with substantial grayscale differences need to be enhanced.

Since this paper employs a self-learning method to generate training samples by applying various
affine transformations to the training data, the feature differences between the sensed image and
the reference image pairs that cannot be reflected by the affine transformations include significant
geometric distortions, e.g., failed sample 3 and failed sample 6, and grayscale changes, e.g., failed
sample 4. Such differences impact the correlation between image pairs, potentially leading to
suboptimal performance of the registration method based on the correlation matching network
presented in this paper. To address this challenge, a potential solution involves manually labeled
matching labels and a machine learning network that performs grayscale transformations, image
matching, and evaluation.

Furthermore, failed sample 1 highlights the significant challenge of dealing with complex and
variable ground topographic features. In this scenario, the feature point pairs obtained by SAR-RL
are sparse and unevenly distributed in the images to be registered, affecting the global registration
performance of the image pairs. Some of the failure cases involve images with densely distributed
point features and line features. This can be attributed to the fact that the SAR-RL in this paper is a
global registration method, and the uniform distribution of weights for the globally densely distributed
point features and line features can easily result in the failure of the registration.
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Figure 20. failed registration samples

5. Discussion

Registering SAR images of terrain undulating regions acquired under different imaging
geometries presents a significant challenge due to inherent noise and geometric distortion in SAR
images. The SAR-RL method presented in this paper adopts a global registration approach, but
there are instances where registering SAR images of complex terrain regions encounters difficulties,
particularly when the training dataset is generated through a self-learning scheme.

Future research endeavors will be directed towards enhancing the SAR-RL method. This will
involve incorporating a priori knowledge of dataset distribution and optimizing training datasets
by introducing diverse distribution patterns and supervision information. These efforts aim to
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enhance the accuracy and efficiency of the method across various datasets. Simultaneously, there is
a consideration for adapting and deploying the trained neural networks to portable devices using
TensorFlow Lite. Such an advancement would enable real-time applications by researchers and
potentially even non-specialists.
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