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Abstract: For Synthetic Aperture Radar (SAR) image registration, successive processes following

feature extraction are required by both the traditional feature-based method and the deep learning

method. Among these processes, the feature matching process—whose time and space complexity

are related to the number of feature points extracted from sensed and reference images, as well as

the dimension of feature descriptors—proves to be particularly time-consuming. Additionally,

the successive processes introduce data sharing and memory occupancy issues, requiring an

elaborate design to prevent memory leaks. To address these challenges, this paper introduces the

OptionEM-based reinforcement learning framework to achieve end-to-end SAR image registration.

This framework outputs registered images directly without requiring feature matching and calculation

of the transformation matrix, leading to significant processing time savings. The Transformer

architecture is employed to learn image features, while a correlation network is introduced to

learn the correlation and transformation matrix between image pairs. Reinforcement learning, as a

decision process, can dynamically correct errors, making it more efficient and robust compared to

supervised learning mechanisms like deep learning. We present a hierarchical reinforcement learning

framework combined with episodic memory to mitigate the inherent problem of invalid exploration

in generalized reinforcement learning algorithms. This approach effectively combines coarse and

fine registration, further enhancing training efficiency. Experiments conducted on three sets of SAR

images, acquired by TerraSAR-X and Sentinel-1A, demonstrate that the proposed method’s average

runtime is sub-second, achieving subpixel registration accuracy.

Keywords: reinforcement learning; episodic control; synthetic aperture radar; image registration

1. Introduction

SAR images are indispensable in various fields, such as ecological development, environmental

protection, resource exploration, and military reconnaissance. Research involving change detection,

information extraction, and image fusion using multiple SAR images can provide additional

information that a single image cannot convey. This necessitates a more concise and efficient

high-precision image registration process initially.

Existing SAR image registration methods can be categorized into traditional methods and deep

learning-based methods. Traditional methods mainly fall into two categories: grayscale-based methods

and structural feature-based methods. Grayscale registration methods utilize the intensity values of

image pixels. They are computationally intensive and are susceptible to image quality issues, noise,

and geometric distortion. Structural feature-based registration methods, often based on algorithms

like SIFT or SAR-SIFT , typically involve feature extraction, feature matching, fitting transformation

matrices, and interpolation resampling. Feature-based registration methods often extract a significant

number of feature points; for instance, SIFT can extract around 2000 feature points from images of size

500× 500.
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Feature matching involves complex mathematical calculations, and its time and space complexity

depend on the number of feature points extracted, the dimension of feature descriptors, and the

matching algorithm used. This process requires substantial computing resources.

In recent years, deep neural networks have found wide application in SAR image registration.

These networks can flexibly extract multidimensional and deeper features, achieving promising

results in multi-source and multi-modal image registration. The common processing flow for deep

learning-based registration involves applying traditional feature extraction algorithms to obtain image

feature points, extracting image blocks based on these points, using deep learning networks to learn

feature and matching labels of image patch pairs, employing constraint algorithms to eliminate

mismatches, and calculating transformation matrices based on matching point pairs.

While deep learning-based SAR image registration holds promise, the scarcity of open-source

SAR datasets poses challenges, as creating such datasets requires specialized personnel and resources.

A common workaround is to perform self-learning using existing images, involving multiple affine

transformations to generate a large training dataset with known correspondences. Despite this, many

deep learning-based SAR registration studies still rely on traditional methods for matching processing.

These methods have high time and space complexity, often involving iterative computations and

significant computing resource requirements.

Reinforcement learning, a branch of machine learning, has found extensive application in areas

like robot control and intelligent decision-making. Reinforcement learning adjusts model behavior

dynamically according to rewards, offering more flexible error correction compared to supervised

learning. Although reinforcement learning-based computer vision applications have been proposed,

they remain relatively unexplored in the realm of SAR image registration.

It’s worth noting that mainstream reinforcement learning needs to strike a balance between

exploration and exploitation. However, in computer vision application scenarios, extensive exploration

might not be necessary. Therefore, the reinforcement learning framework based on episodic memory

is better suited for computer vision applications. Hierarchical reinforcement learning can further

enhance training efficiency, especially in scenarios with significant state differences. This paper applies

the OptionEM-based reinforcement learning framework to achieve end-to-end SAR image registration.

Feature extraction is accomplished using the Transformer model, while a correlation network is

introduced to learn correlations and transformation matrices between sensed and reference image

pairs.

The contributions of this paper can be summarized as follows: First, it introduces an end-to-end

architecture that directly outputs affine transformation matrices and registered images, significantly

reducing processing time compared to multi-step registration algorithms. Second, reinforcement

learning’s dynamic decision-making with error correction mechanisms enhances efficiency and

robustness when compared to deep learning frameworks. Third, a hierarchical reinforcement learning

framework is introduced, combining with episodic memory to address the inherent invalid exploration

issue in generalized reinforcement learning algorithms, resulting in faster training times. Fourth, the

use of hierarchical reinforcement learning further improves training efficiency and effectively combines

coarse and fine registration.

In the experiments, a self-learning method is employed for dataset generation. In order to compare

with the existing registration methods, this paper proposes re-registration, involving registering the

SAR-RL registered image with the reference image. We adopts the indicators in Goncalves et al. [1]

to quantitatively evaluate image registration. The transformation matrix T of control point pairs is

calculated using the least squares method.

The test dataset comprises three sets of SAR images acquired by TerraSAR-X and Sentinel-1A.

The experimental results demonstrate that our method achieves not only an average running time at

the sub-second level but also a superior registration performance.
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2. Related Work

2.1. Deep Learning

Feature-based image registration centers on image feature extraction, leveraging booming neural

network architectures such as the Transformer. As a supervised learning method, it requires a sufficient

number of samples for parameter learning. Previous research has indicated that applying deep neural

networks to the registration of complex and diverse SAR image pairs can yield more accurate matching

features compared to manually designed feature extraction algorithms, showcasing their promising

performance and applicability [2–4]. However, several challenges remain, including the limited

availability of publicly accessible datasets, scarcity of labeled data, substantial computational and time

costs during the training phase, and the need for high-performance computer hardware. Moreover,

local similarities may lead to mistaken matches. Addressing these challenges represents critical

research areas when applying deep learning to SAR image registration.

Neural network-based SAR image registration [5] falls under the umbrella of feature-based

registration [2], transcending the limitations of manually designed features. It can extract multi-level

features that reflect distributional, structural, and semantic characteristics. Various researchers have

explored this approach, employing methods such as correlating coefficients and neural networks

[6], utilizing deep convolutional networks (CNNs) and conditional generative adversarial networks

(CGANs) to extract geographic features [7], applying pulse-coupled neural networks (PCNNs) [8] for

edge information [9], and combining SIFT algorithms with deep learning [10]. Moreover, advanced

techniques integrate self-learning with SIFT feature points for near-subpixel level registration [2],

employ deep forest models to enhance robustness [3], utilize unsupervised learning frameworks for

multiscale registration [11], and leverage Transformer networks for efficient and accurate registration

[12], among others.

In summary, deep learning-based registration methods for SAR images can leverage multi-level,

latent, and multi-structural features to capture complex data variations. They guide feature extraction

using registration results, eliminating the need for manually set metrics. These methods have

demonstrated favorable accuracy and applicability. However, they require a substantial number

of training samples and high computational power during the training phase.

Regarding registration or matching, it plays a significant role in the entire image registration

process. This process is used to identify misregistrations between two images or two patches, and for

two images, it detects their mapping matrix, ultimately transforming one image to match the other.

When it comes to two patches cropped from key points, matching classification performs well. Quan et

al. [13] focused on the relative feature correlation between matching and nonmatching samples. They

introduced a deep feature correlation learning network (Cnet) along with a novel feature correlation

loss function for multi-modal remote sensing image registration. Experiments demonstrated that

the well-designed loss function improved the stability of network training and decreased the risk

of overfitting. A cross-fusion matching network for multimodal remote sensing image registration

leverages global optimization and the fusion of information from patches cropped from key points to

generate cross-modal feature descriptors [14].

2.2. Reinforcement Learning

Blundell and colleagues introduced the Model Free Episodic Control (MFEC) algorithm [15]

as one of the earliest episodic reinforcement learning algorithms. In comparison to traditional

parameter-based deep reinforcement learning methods, MFEC employs non-parametric episodic

memory for value function estimation, resulting in higher sample efficiency compared to DQN

algorithms. Neural Episodic Control (NEC) [16] introduced a differentiable neural dictionary to store

episodic memories, enabling the estimation of state-action value functions based on the similarity

between stored neighboring states.
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Savinov et al. [17] utilized episodic memory to devise a curiosity-driven exploration strategy.

Episodic Memory DQN (EMDQN) [18] combined parameterized neural networks with non-parametric

episodic memory, enhancing the generalization capabilities of episodic memory. Generalizable Episodic

Memory (GEM) [19] parameterized the memory module using neural networks, further enhancing

the generalization capabilities of episodic memory algorithms. Additionally, GEM extended the

applicability of episodic memory to continuous action spaces.

These algorithms represent significant advancements in the field of episodic reinforcement

learning, offering improved memory and learning strategies that contribute to more effective and

efficient training processes.

3. Deep Reinforcement Learning-Based SAR Image Registration

3.1. SAR-RL

The registration of reference and sensed image pairs is approached as a sequential decision-making

process. In this process, the sensed images undergo a transformation based on an action, referred to as

a time step, which involves adjusting the transformation parameter. The resulting transformed image,

achieved through image resampling, is then registered with the reference image to yield a reward

value. This reward value typically indicates whether the latest image resampling has brought the

sensed image closer to the reference image. If the transformation executed at that particular time step

results in the resampled image being closer to the true value compared to the previous time step, a

positive reward is received. Conversely, if the proximity decreases, a negative reward is obtained.

In this research, the state is the grayscale image of the reference and sensed image pairs. The

sensed image is resampled according to the affine transformation parameters output by the agent,

generating a new sensed image.

The action space consists of the affine transformation parameters of the sensed image, along

with an additional trigger action. The agent executes the chosen action, causing the sensed image

to undergo the corresponding affine transformation and generating a new sensed image. In this

experiment, the discrete action space is defined based on transformation parameters with two scales

of low and high precision. This design aims to avoid both registration failures caused by very low

precision and high interaction costs resulting from very high precision. The latter scenario might

require numerous iterations before achieving a successful registration. The effective action set consists

of 16 elements, each corresponding to a specific affine transformation: translate left 1, 10 pixels,

translate right 1, 10 pixels, translate up 1, 10 pixels, translate down 1, 10 pixels, rotate clockwise 1◦,
10◦, rotate counterclockwise 1◦, 10◦, zoom in scale 0.1, 0.01, zoom out scale 0.1, 0.01 . The trigger action

represents that registration is complete, and further transformations are unnecessary.

The reward function is directly proportional to the enhancement in the alignment of reference

and sensed image pairs achieved by the agent through its actions. Intuitively, this improvement can be

quantified using the Euclidean distance between the current transformation matrix and the ground

truth. However, a challenge arises from differences in parameter units, as the scaling units are smaller

compared to translation and rotation. To address this, salient points in the image—such as corner

points—are employed to formulate the reward function.

Salient points are identified as key points detected by the maximum value of the Difference of

Gaussians (DoG). These key points compose the salient point reference set PG, derived from the ground

truth of the sensed/reference image. In each training episode, the transform set P̃G of salient points is

generated by applying the inverse matrix of the transformation matrix.

Subsequently, for each action, the distorted landmarks are transformed using the given

transformation matrix. The reward for the action is defined based on the Euclidean distance D

between the transformed landmarks and their corresponding landmark references. The entire process

is depicted in Figure 1.
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Figure 1. Image registration based on reinforcement learning.

3.2. Model

The neural network architecture is illustrated in Figure 2. The left side of the network features

a Transformer layer, responsible for conducting feature learning through self-attention on the input

sensed and reference image pairs. Meanwhile, the right side of the network comprises a correlation

layer that captures position-related details between the sensed and reference image pairs. Ultimately,

the network produces the parameters necessary for the affine transformation.

Figure 2. Agent Network Structure.
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3.2.1. Transformer

The core module of the Transformer is the Multi-Head Attention (MHA). The definition of

dot-product attention is as follows:

Attention (Q, K, V) = softmax

(

QKT

√
dk

)

V (1)

Here,Q ∈ R
T×dk is the query matrix, K ∈ R

T×dk is the key matrix, and V ∈ R
T×dk is the value

matrix. T and M represent the sequence lengths of queries and keys,dk is the feature size of queries

and keys, anddv is the feature size of V. In visual tasks, Q and K are typically reshaped query and key

feature maps, where T = M = h× w, with h and w being the height and width of the feature maps.

The definition of Multi-Head Attention is as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)

(2)

MultiHead(Q, K, V) = Concat (head1, . . . , headH)WO (3)

where WQ
i ∈ R

d×dk , WK
i ∈ R

d×dk , WV
i ∈ R

d×dv , and WO ∈ R
hdv×d are parameter matrices, and H is

the number of heads. In the case of the Multi-Head Self-Attention (MHSA) in the encoder, Q = K = V.

The architecture of the Transformer encoder, which excludes positional encoding, is illustrated on

the left side of Figure 2. This encoder includes Multi-Head Self-Attention (MHSA) and a feed-forward

layer. The feed-forward layer initially increases the feature dimension from d to D and subsequently

reduces it back to d. For added depth, the encoder can be stacked a total of N times, where N represents

the number of encoder layers. Notably, in this study, a configuration akin to ViT is adopted, employing

solely the Transformer encoder and incorporating additional positional encoding.

In the original Transformer design, a decoder with Multi-Head Cross-Attention (MHCA) is

employed. Initially, the query consists of a learnable query embedding, which is then replaced by the

output of the preceding decoder layer. The key and value components are derived from the outputs of

the encoder layers. Similar to the encoder, the decoder can also be stacked N times.

3.2.2. Correlation Layer

The architecture of the correlation layer draws inspiration from the research conducted by Rocco

et al. [20]. The objective is to effectively capture both positional and spatial correlation details within

image features. The configuration of the correlation layer is depicted on the right side of Figure 2.

The feature maps fA and fB are in R
h×w×d, the correlation map cAB is in R

h×w×d, and the output

of the correlation layer consists of scalar products of individual descriptors at each position:

cAB(i, j, s) = fB(i, j)TfA (is, js) (4)

(i, j) and (is, js) represent individual feature positions in the h × w dense feature map, and

s = h(js − 1) + is is an auxiliary index variable for (is, js).

The architecture of the correlation layer is illustrated in Figure 3. The right side of the illustration

represents the correlation feature cAB, which quantifies the similarity between features in fB and fA at

a specific position (i, j). It’s important to emphasize that cAB is distinct from cBA. The computation

of similarity through the correlation feature addresses the challenge of ambiguous matches and

necessitates further processing.
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Figure 3. Architecture of the correlation layer.

To enhance the correlation feature, channel-wise normalization is applied to the correlation feature

at each position, yielding a normalized feature fAB in the form of a correlation map. Subsequently,

Softmax and L2 normalization are employed on the correlation map fAB. This normalization approach

emphasizes the scores of favorable matches. For instance, when only one feature in fB exhibits

strong correlation with fA, this method resembles nearest-neighbor matching in classical geometry

computation [20]. Additionally, in scenarios where descriptors in fB match with multiple features in

fA, resulting from noise or repetitive patterns, the matching scores are down-weighted—a concept

similar to the second nearest-neighbor test.

Both the correlation and normalization operations are differentiable in relation to the input

features, enabling effective backpropagation for end-to-end learning. Notably, this study employs the

self-attention mechanism of the Transformer within the correlation layer to facilitate extensive feature

matching across longer ranges.

3.3. Option Episodic Memory

The Option Episodic Memory framework (OptionEM) introduced by Zhou et al. [21] is a

comprehensive hierarchical episodic control framework that, to a certain extent, tackles the challenge

of extensive sample requirements that posed difficulties for initial generations of deep reinforcement

learning models. This framework employs hierarchical episodic memory, updated via implicit memory

planning, to estimate the optimal rollout value for each state-action pair.

At each step, the cumulative reward along the trajectory up to that point is compared with

the value derived from the memory module. The greater value between these two is chosen. The

memory module affiliated with an option encompasses both an option value memory module and

an option-internal memory module. The decision regarding which to choose is determined by the

termination equation. The notations Mθ and MΩ,α arise from analogous experiences and represent

value estimations for counterfactual trajectories linked to options. This process recursively establishes

an implicit planning scheme within the episodic memory, aggregating experience longitudinally and

across trajectories.

The complete backpropagation process can be formulated using Equation 5.

Rt =











rt + γ max (Rt+1, Mθ (st+1, ωt+1, at+1)) if t < T, βω,η (st+1) = 0

rt + γ max (Rt+1, MΩ,α (st+1, ω)) if t < T, βω,η (st+1) = 1

rt if t = T

(5)
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where t denotes the step along the trajectory, and T represents the episode length. The backpropagation

process in Equation 5 can be expanded and rewritten as Equation 6.

Vt,h =











rt + γVt+1,h−1 if h > 0

MΩ,α (st+1, ω) if h = 0, β = 1

Mθ (st, ωt, at) if h = 0, β = 0

Rt = Vt,h∗

(6)

where h∗ = arg max
h>0

Vt,h.

Algorithm 1 Update Memory

for stored trajectories τ do

for one of the trajectory τ : t = T → 1 do

according current chosen Option ω,executing ãt+1 ∼ πω,θ(a | s)
if β = 0 then

computing M
(1,2)
θ (st+1, ω, at+1)

else

computing M
(1,2)
Ω,α (st+1, ω)

end if
for h = 0 : T − t computing V

(1,2)
t,h,ω according (5)

computing R
(1,2)
t,h,ω according (6)

saved into the memory
end for

end for

The parameterized neural network Mθ is introduced to represent the parameterized

option-internal memory, while the parameterized neural network Mα serves as the parameterized

option memory. Both networks are learned from a tabular memory M. In order to harness the

generalization capability of Mθ and Mα, an augmented reward is propagated along trajectories using

value estimates from Mθ and Mα, along with the actual rewards from M. This approach aims to

determine the optimal value across all potential rollouts. During training, the improved target is

regressed to train the versatile memories Mθ and Mα, with the chosen value guided by the termination

equation. This refined target then guides policy learning and establishes fresh learning objectives for

OptionEM.

A key challenge within this learning process is the potential overestimation stemming from

identifying the best value along a trajectory. During the backpropagation process, overestimated

values can persist and hinder efficient learning. To mitigate this challenge, a Siamese Network, akin

to the concept of Double Q-learning, is employed to refine the backpropagation of value estimates.

Traditional reinforcement learning algorithms with function approximation are prone to overestimating

values, which makes addressing this tendency critical. The Siamese Network structure is leveraged to

render value estimates from Mθ more conservative. Training involves updating the memory network,

the termination function, and the option policy using three distinct timescales.
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Algorithm 2 Option Episodic Memory(OptionEM)

Initializes the episodic memory network and option network
Initializes the target network parameters θ′(1) ← θ(1), θ′(2) ← θ(2), α′(1) ← α(1), α′(2) ← α(2), φ′ ←
φ, ζ ′ ← ζ, η′ ← η
Initializes the episodic memory M

for t = 1, ..., T do

Choose Option ω,execute action a
receive reward r and next state s′
store tuple (s, ω, a, r, s′, ω′, β) in memory M

for i in{1, 2} do

sample N tuples (s, a, r, s′, β, Ri
t) from memory M

if β = 0 then

update θ(i) ← minθ(i) ∑

(

R
(i)
t −Mi

θ(s, ω, a)
)2

else

update α(i) ← minα(i) ∑

(

R
(i)
t −Mi

α(s, ω)
)2

end if
end for
if t mod u = 0 then

θ′(i) ← τθ(i) + (1− τ)θ′(i)
α′(i) ← τα(i) + (1− τ)α′(i)
η′(i) ← τη(i) + (1− τ)η′(i)
φ′(i) ← τφ(i) + (1− τ)φ′(i)
update Episodic Memory according Algorithm 1

end if
if t mod p = 0 then

update φ ,∇φ J(φ) = ∇a Mθ1
(s, ω, a)

∣

∣

ω=πω ,a=πφ(s)
∇φπφ(s) according policy gradient

update ζ ,∇ζ J(ζ) = ∇ω Mα1
(s, ω)|ω=πω

∇ζ πζ(s) according policy gradient
end if
if t mod q = 0 then

update η ,
∂Mα(ω0,s1)

∂η = −∑s′ ,ω µΩ (s′, ω | s1, ω0)
∂βω,η(s′)

∂η AΩ (s′, ω) according policy gradient
end if

end for

3.4. Self-Learning

Compared to RGB image datasets, SAR image datasets are relatively limited in availability, and

acquiring labeled datasets can be expensive. To tackle this challenge, this study employs a self-learning

strategy. The core concept is to apply various transformation matrices—like translation, scaling,

rotation, etc.—to images. Consequently, a substantial number of corresponding sensed and reference

image pairs are generated from the original images and their transformed versions. In the context of

SAR image registration, the training dataset can be produced by applying affine transformations to

one of the image pairs.

In this scenario, the initial large-scale image undergoes an affine transformation. A 240× 240 pixel

image patch is selected from the original image as the reference image. Utilizing the coordinates of the

reference image’s center point within the original image, the coordinates for this point are calculated

within the transformed large-scale image using the transformation matrix. Subsequently, a 240× 240

pixel image patch is cropped to serve as the sensed image, with its center point determined by the

computed coordinate values. This self-learning approach eliminates image patches that might exhibit

black boundaries after the image patch’s affine transformation, ensuring dataset quality. The process

of self-learning is visually represented in Figure 4.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1865.v1

https://doi.org/10.20944/preprints202308.1865.v1


10 of 26

Figure 4. Self-learning.

This self-learning strategy proves effective in alleviating the need for extensive sample data.

Shuang Wang et al.’s work has already illustrated the method’s success in SAR image registration

through a deep learning framework [2]. However, their primary objective was to acquire localized

feature information and details about feature point neighborhoods. To achieve this, they harnessed

self-learning to generate a significant quantity of sample data, focusing on feature points and their

surrounding localized information.

In contrast, this current study employs self-learning to create an extensive amount of global

sample data. The self-learning samples are designed to construct new sensed-reference image pairs on

a larger scale, rather than primarily concentrating on localized feature points.

4. Experiments

4.1. Dataset

The training image dataset for this experiment was generated using the right-looking descending

image from the TerraSAR-X satellite over Napa, USA.1. These images were captured on September

8 and September 30, 2014, respectively, as depicted in Figure 5. By observing the images, evident

changes in grayscale and coverage can be noticed, particularly over the water bodies. It’s essential to

recognize that the presented images are quick-look previews, which are scaled-down versions of the

original full-scene images. The resolution of these previews is approximately ten times smaller than

that of the actual data.

In comparison to the SAR image taken on September 30, the SAR image captured on September 8

exhibits an offset of approximately 60 pixels in the range direction. The SAR reference image utilized

during the network training phase is derived from a pre-processed version of the original image taken

on September 30, 2014.

Due to the substantial size of SAR images and their inherent characteristics, including speckle

noise and geometric distortions, a series of preprocessing steps are applied to the original images.

These steps encompass block division, multilook, filtering, downsampling, and differencing.

1 The original images were downloaded from: https://download.geoservice.dlr.de/supersites/files/
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Acquiring a significant volume of annotated remote sensing images, as opposed to optical image

datasets, poses challenges due to the specialized domain knowledge required and the associated costs.

To address this challenge, a self-learning strategy is employed. Given that SAR images can be captured

under diverse conditions—such as varying incidence angles, distinct orbital directions, and diverse

azimuth angles—various fundamental transformation types are employed for the affine transformation

of the reference image. These fundamental transformations include translation, scaling, rotation, and

flipping. This approach aims to examine the resilience of image features to these core transformation

types. The parameters for these transformations are uniformly sampled within predefined ranges, and

each affine transformation is created by combining these fundamental transformations.

2014/9/8 2014/9/30

Figure 5. Quick-look of the descending orbit right-looking SAR images acquired by TerraSAR-X

satellite’s at diffrent periods in the Napa region, USA.

Once the training dataset comprising sensed and reference image pairs is generated, SAR images

undergo standardization and normalization. Image standardization, a widely used preprocessing

technique, involves centering the data by subtracting the mean. This alignment with convex

optimization theory and knowledge about data probability distribution enhances the suitability of

the centered data distribution for generalization after training. Standardization results in a zero-mean

centered data distribution, enhancing the effectiveness of gradient descent algorithms. Furthermore, it

eliminates common image characteristics while accentuating individual differences. As a result, neural

networks can learn more distinctive features, thereby fostering rapid learning, iteration, optimization,

and improved learning efficiency. In this experiment, standardization parameters mean and standard

deviation are set to mean = 0.485 and std = 0.229.

For generating training data, 60 small images of size 240× 240 pixels are cropped from the larger

source image. Each of these small images undergoes 700 affine transformations. The scaling factor

ranges from 0.71 to 1.5 (uniformly sampled), and the rotation angle spans from −180 to 180 degrees

with a precision of 1 degree (uniformly sampled). No flipping transformations are applied.

In this paper, we utilize three distinct datasets for testing:

1. TerraSAR-X Napa 2014 Dataset: Already introduced in the training dataset section, consisting

of 110 pairs of 240× 240 pixel image blocks.

2. Sentinel-1A Napa 2014 Dataset: Source images are obtained from Sentinel-1A SAR satellite

images of the Napa region in the western United States on October 30th and October 6th, 2014. A total

of 18 pairs of 240× 240 pixel image blocks were cropped.
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3. TerraSAR-X Zhuhai 2016 Dataset: Source images are obtained from TerraSAR-X satellite images

of the Zhuhai region in southern China, captured on November 3rd, 2016. A total of 62 pairs of

240× 240 pixel image blocks were cropped.

2014/10/6

2014/10/30

Figure 6. Descending pass right-looking SAR images from different periods of the Sentinel-1A satellite

over the Napa region, USA.

2016/11/3

2016/11/3

Figure 7. Right-looking SAR images from the TerraSAR-X satellite over Zhuhai region, China. (a)

Descending pass (b) Ascending pass.

The initial test dataset employs original images that align with the training dataset. Given

the relative consistency in the imaging geometry of SAR sensed and reference images—featuring

minor variations in geometric structural characteristics—the evaluation of the proposed registration
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method’s resilience to translation, scale, rotation, and other geometric transformations necessitates the

application of random affine transformations to the SAR sensed images. The types of transformations

and the parameter ranges used for preprocessing remain consistent with those applied to the training

dataset. Notably, the preprocessing methods employed across all three sets of test data are identical.

It is evident that the Sentinel-1A Napa 2014 image dataset contains more noise and pronounced

dissimilarities in image features—such as water bodies and ridges—when contrasted with the training

dataset derived from TerraSAR-X Napa 2014. Furthermore, the brightness distribution of images

demonstrates considerable variations. Conversely, the TerraSAR-X Zhuhai 2016 dataset displays a

greater presence of linear features, and its overall brightness distribution closely resembles that of the

TerraSAR-X Napa 2014 dataset.

4.2. Option Analysis

Table 1 illustrates the correlation between Normalized Root Mean Square Error (RMSE) and

Options. An option is displayed when the occurrence probability surpasses 75% within the RMSE

range of statistically distinct score intervals across the three test datasets. Conversely, it is denoted

as ’-’ when the option’s proportion falls within the range of 25%− 75%. For instance, consider the

TerraSAR-X Zhuhai 2016 dataset, which consists of 62 pairs of test sets. In the testing process, among

238 instances of image pairs with normalized RMSE in the range [0, 0.2), the agent chose option 0 a

total of 223 times, resulting in a proportion of 193/238 = 93%. Therefore, in the table, it appears as

option 0. On the other hand, for 502 image pairs with normalized RMSE in the range [0.4, 0.6), the

agent selected option 0 in 337 cases, accounting for a proportion of 337/502 = 67%. Consequently, this

is indicated as ’-’ in the table.

The data implies that across the three test datasets, the agent is more inclined to opt for fine

registration when the option is 0, while it tends to select coarse registration when the option is

1. Notably, the complexity of the data in the Sentinel-1A Napa 2014 dataset results in unstable

performance. Subsequent experimental results demonstrate that this dataset yields poorer registration

outcomes relative to the other two test datasets.

It’s important to highlight that there exist numerous metrics for measuring image pair similarity,

with Root Mean Square Error (RMSE) being a straightforward indicator. However, RMSE’s emphasis

on pixel-level discrepancies can lead to challenges when assessing SAR image pairs, which may exhibit

significant differences in scale, noise, grayscale, structural features, and more, thereby substantially

influencing the accuracy of RMSE.

Indeed, there are instances where image pairs might share similar grayscale values but fail to

match in other aspects [2]. Moreover, the root mean square error can also be influenced by factors

like the quantity, distribution, and precision of the feature point pairs. The examples provided in this

section serve the purpose of illustrating the general connection between image disparities and options.

However, it’s crucial to note that these examples do not constitute quantitative analyses.

Table 1. Relationship between Normalized Root Mean Square Error and Options.

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1) [1, )

TerraSAR-X Napa 2014 Option 0 Option 0 Option 0 - Option 1 Option 1
Sentinel-1A Napa 2014 Option 0 - - - Option 0 Option 1

TerraSAR-X Zhuhai 2016 Option 0 Option 0 - Option 1 Option 1 Option 1

Figure 8 visually portrays the registration process of three image pairs, offering a comprehensive

view of the reinforcement learning-based registration method’s entire path and more intuitively

showcasing the option strategy employed throughout the registration process.
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Figure 8. Options and Actions in testing process.

An observation can be made that even in cases where a large difference exists between the sensed

image and the reference image—such as the T = 0 timestep in the second image pair—the occurrence

of option 0 does not adversely impact the subsequent registration process. Across the first and
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second image pairs, the agent tends to favor the selection of the coarse registration option, involving

significant rotation (e.g., the T = 0 timestep in the first image pair and the T = 1 timestep in the second

image pair). Subsequently, the agent executes scaling and rotation to achieve fine registration (e.g.,

T = 1, 2, 3, 4, 5 timesteps for the first image pair and T = 2, 3, 4, 5 timesteps for the second image pair).

In the case of the third image pair, the agent’s decision-making process appears to exhibit some

instability (e.g., the T = 5 timestep). However, it’s worth noting that the outputs for the T = 1, 2, 3

timesteps align with expectations, indicating a certain level of consistency.

4.3. SAR Image Registration Results Analysis

4.3.1. Once-Registration and Re-registration

In this study, we introduced a comprehensive image registration approach that delivers the

affine transformation matrix and registered images directly from input sensed and reference images.

Unlike methods with distinct stages like feature point extraction, direction assignment, and descriptor

construction, our algorithm doesn’t offer a direct calculation of quantitative measures relying on

feature points.

To enable a meaningful comparison with conventional registration techniques, we devised an

indirect strategy. This approach involves two steps: first, the initial registration of sensed and reference

images; and second, a subsequent re-registration wherein the sensed image is registered with the

SAR-RL (Reinforcement Learning) registered image. Quantitative metrics are then computed for both

scenarios. The underlying assumption is that if the re-registration outcome exhibits a smaller Root

Mean Square Error (RMSE) value and elements of the affine transformation matrix that are closer to

zero, it implies an improved SAR-RL registration result, in line with expectations.

4.3.2. Qualitative Evaluation Results

The qualitative assessment primarily involves visually inspecting the spatial geometric

registration results of the registered images [2]. This can be achieved by overlaying the registered

reference image onto the sensed image using distinct colors to gauge the extent of overlap and

differences in content. Another technique involves dividing the images into smaller blocks and

overlapping them in a checkerboard pattern to create a mosaic map. By examining the continuity of

structural features (such as stitching boundaries, rivers, bridges, roads, ridges, etc.) and assessing the

overlap of common areas, the effectiveness of registration can be assessed. While this approach is

straightforward and effective, it might not be suitable for large-scale automated applications.

Figure 9 provides examples of checkerboard-mosaicked images for the three test datasets. Due to

space limitations, one example is selected from each dataset: a land-water interface area containing

man-made structures and mountains, a mountainous region, and an airport area. As evident from

column d in the figure, the sensed images and reference images from the three scene sets demonstrate

successful registration. Most regions of the images overlap well, and the stitching boundaries are

consistent.

Furthermore, it’s noticeable from columns d and c that the sensed images produced by the SAR-RL

technique exhibit a high visual similarity to the reference images in terms of geometric structural

features. This aspect lays the groundwork for achieving effective registration.
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Figure 9. The checkerboard mosaicked image examples of registered images from test datasets.

4.3.3. Quantitative Evaluation Results

Quantitative evaluation involves expressing registration outcomes in numerical terms. Commonly

employed metrics for quantitative assessment encompass the count of control point pairs (Nred), the

Root Mean Square Error (RMSE) of all control point residuals (RMSEall), and RMSE calculated using

the leave-one-out method (RMSELoo). These metrics are frequently normalized to the pixel size to

facilitate comparisons [22].

The transformation matrix (T) for control point pairs is determined through the least squares

method, and based on this matrix, the residuals of control point pairs are computed, giving rise to

RMSEall and RMSELoo. The presence of more accurately matched point pairs translates to a better

determination of the parameters in the geometric transformation model, thereby yielding enhanced

performance [12]. However, it’s important to note that an increase in the number of correctly matched

point pairs acquired through a registration method doesn’t necessarily guarantee a decrease in the

Root Mean Square Error. This is because errors can still persist in the point pairs matched by the

algorithm.

Gonçalves et al. took into account the distribution of control points and residuals and put forward

various evaluation metrics, which include the quadrant residual distribution (Pquard), the proportion of

poorly matched points with residuals (norm) exceeding 1.0 (Bad Point Proportion, BPP) denoted as

BPP(1.0), the detection of a preferred axis in the residual scatter plot (Skew), the statistical attributes of

control point distribution in the image (Scat), all of which were considered in conjunction with Nred,

RMSEall , and RMSELoo. Among these metrics, except for Nred, smaller values in the other evaluation

metrics signify improved registration performance [2].

These seven metrics are not completely independent of one another. For instance, a higher value

of Nred along with a lower value of RMSEall indicates greater accuracy in point matching. Conversely,

if both metrics are either high or low, it suggests lower accuracy.

In order to compare our method with traditional and deep learning-based approaches, we have

selected SAR-SIFT and Wang Shuang’s research (referred to as DL-WangS) [2] as benchmarks. Figures

10–12 illustrate the interval statistical results of Root Mean Square Error (RMSE) values for SAR-SIFT,

DL-WangS [2], and our re-registration results for the three datasets.
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The intervals depicted in these figures are [0, 0.01), [0.01, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4),

[0.4, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), [0.9, 1), and [1, ∞).

These can be seen in the figures , the re-registration results after the initial registration of sensed

and reference image pairs used for testing are significantly better. Results from the TerraSAR-X Napa

2014 dataset and TerraSAR-X Zhuhai 2016 dataset outperform those from the Sentinel-1A Napa 2014

dataset. About 24% of re-registrations in the TerraSAR-X Napa 2014 dataset achieved RMSE values

below 0.01, while only 5% in the Sentinel-1A Napa 2014 dataset achieved this. Similarly, 24% of

re-registrations in the TerraSAR-X Zhuhai 2016 dataset achieved RMSE values below 0.01. The RMSEs

obtained by SAR-SIFT are concentrated around 1 pixel, with a small portion larger than 1 pixel. The

RMSEs obtained by DL-WangS are mostly smaller than 0.6 pixel, but for the Napa region images, some

are close to 1 pixel. The RMSEs obtained by our proposed re-registration method are all less than

1 pixel and are concentrated near 0. This suggests that our re-registration achieves sub-pixel level

accuracy and outperforms SAR-SIFT, while being comparable or even slightly better than DL-WangS.

Figure 10. Statistical analysis of RMSE values for 110 pairs of TerraSAR-X Napa 2014 images using

SAR-SIFT.

Figure 11. Statistical analysis of RMSE values for 18 pairs of Sentinel-1A Napa 2014 images using

SAR-SIFT.

Figure 12. Statistical analysis of RMSE values for 62 pairs of TerraSAR-X Zhuhai 2016 images using

SAR-SIFT.

Tables 2 and 3 present the median and mean values of the quantitative analysis results for

SAR-SIFT, DL-WangS [2], and our SAR-RL model after re-registration applied to the three datasets. The

analysis is conducted using the seven metrics introduced by Gonçalves et al. (2009) to quantitatively

evaluate the registration results for all image pairs in the test datasets.
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Table 2. Quantitative analysis of median results of metrics for re-registration , SAR-SIFT and DL-WangS.

TerraSAR-X Napa 2014 dataset

Nred RMSEall RMSELoo Pquard BPP(1.0) Skew Scat running time

SAR-SIFT 12 0.7170 0.9021 0.0000 0.5000 0.4843 1.0000 28.4611 s
DL-WangS 22 0.3290 0.3977 0.0000 0.0498 0.3012 1.0000 9.5026 s

Re-registration 7 0.3257 0.4331 0.0000 0.0317 0.2943 0.9999 -
Sentinel-1A Napa 2014 dataset

Nred RMSEall RMSELoo Pquard BPP(1.0) Skew Scat running time

SAR-SIFT 6 0.8263 1.0324 0.6340 0.5000 0.0143 1.0000 17.3443 s
DL-WangS 20 0.3310 0.3449 0.1182 0.0023 0.1293 1.0000 9.2473 s

Re-registration 4 0.3714 0.4064 0.0931 0.0317 0.1169 0.9999 -
TerraSAR-X Zhuhai 2016 dataset

Nred RMSEall RMSELoo Pquard BPP(1.0) Skew Scat running time

SAR-SIFT 23 0.7669 0.8945 0.4045 0.7011 0.2349 0.9000 32.8332 s
DL-WangS 30 0.3591 0.4156 0.2812 0.0101 0.1058 0.9999 10.2314 s

Re-registration 26 0.3402 0.4911 0.1298 0.0061 0.011 1.0000 -

Table 3. Quantitative analysis of mean results of metrics for re-registration , SAR-SIFT and DL-WangS.

TerraSAR-X Napa 2014 dataset

Nred RMSEall RMSELoo Pquard BPP(1.0) Skew Scat running time

SAR-SIFT 13 0.8007 0.9451 0.0001 0.4201 0.3801 0.9997 32.1185 s
DL-WangS 20 0.2912 0.3071 0.0000 0.0032 0.2189 0.9999 9.8215 s

Re-registration 10 0.3092 0.3471 0.0000 0.0712 0.1324 0.9995 -
Sentinel-1A Napa 2014 dataset

Nred RMSEall RMSELoo Pquard BPP(1.0) Skew Scat running time

SAR-SIFT 6 0.8019 0.9733 0.5215 0.5991 0.1021 0.9999 22.4352 s
DL-WangS 18 0.2431 0.3130 0.1572 0.0169 0.0035 0.9999 9.0089 s

Re-registration 6 0.3119 0.4204 0.1874 0.0245 0.0097 0.9999 -
TerraSAR-X Zhuhai 2016 dataset

Nred RMSEall RMSELoo Pquard BPP(1.0) Skew Scat running time

SAR-SIFT 20 0.7395 0.862 0.4121 0.2422 0.2911 0.9333 30.9462 s
DL-WangS 30 0.3292 0.2213 0.3119 0.0102 0.051 1.0000 10.1931 s

Re-registration 25 0.3371 0.24324 0.2454 0.0014 0.068 1.0000 -

Comparing and analyzing the quantitative results in these tables, several observations can be

made: The Nred value obtained by re-registration is comparable to that of SAR-SIFT, indicating that a

similar number of control point pairs are correctly matched. However, our re-registration achieves

more accurate registration results. The Nred value obtained by re-registration is lower than that of

DL-WangS, but the accuracy achieved is comparable. The Scat value obtained by re-registration is

comparable to that of both SAR-SIFT and DL-WangS, suggesting that the distribution of matched

feature point pairs obtained by the three methods is similar. It can also be observed that the running

time of SAR-SIFT is in the order of tens of seconds, while DL-WangS takes seconds to run. In contrast,

our re-registration method has a significantly faster registration speed, with running times in the

sub-second range.

These tables provide a comprehensive overview of the quantitative evaluation results and

highlight the strengths of our re-registration method in terms of accuracy and efficiency compared to

the other methods.

It should be emphasized that the re-registration approach does not directly measure the

performance of the SAR-RL method. The calculation of metrics still relies on the SIFT and SAR-SIFT

algorithms. However, the metrics indicate that SAR-RL registration is significantly more accurate than

these two traditional methods.
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The visual comparisons we’ve provided through Figures 13–15 effectively illustrate the differences

between matched feature point pairs obtained by the Re-registration and Once-registration methods

using SIFT extracted feature points for the three sets of test data samples. These comparisons highlight

the strengths of the Re-registration approach.

Figure 13. Examples of matching results based SIFT by re-registration and once-registration in

TerraSAR-X Napa 2014 Dataset

Figure 14. Examples of matching results based SIFT by re-registration and once-registration in

Sentinel-1A Napa 2014 Dataset

In the examples shown, it’s evident that the matched point pairs obtained by Re-registration

are more accurate and less cluttered compared to Once-registration. The Re-registration approach

manages to find correct matching point pairs even in image regions with significant differences, such

as varying grayscale, structural features, and challenging image content. This is a strong indication of

the effectiveness of the SAR-RL method in obtaining accurate and robust registrations, even under

challenging conditions.

However, it’s also important to note that even the Re-registration approach might have some

incorrectly matched point pairs, as seen in Figure 15. This can be attributed to factors such as

differences in satellite orbital directions and potential blurring in SAR images. Despite these

challenges, the Re-registration approach consistently demonstrates superior performance compared to
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the Once-registration method, as evidenced by the overall accuracy and quality of matched feature

point pairs.

Figure 15. Examples of matching results based SIFT by re-registration and once-registration in

TerraSAR-X Zhuhai 2016

Figures 16–18 demonstrate samples of matched feature point pairs obtained through

re-registration and one-time registration of feature points extracted using SAR-SIFT for the three

sets of test data samples. In comparison with the results from the previous set of experiments, it is

evident that the feature point pairs acquired through SAR-SIFT are fewer than those obtained using

SIFT.

Figure 16. Examples of matching results based SAR-SIFT by re-registration and once-registration in

TerraSAR-X Napa 2014 Dataset

In Figure 16, the connecting lines of the matching point pairs obtained from the once registration

of sample 1 appear more cluttered, and all of them are incorrectly matched, resulting in a failed image

registration. The outcome of the fusion processing displays only the sensed image. The fusion process

merely presents the information from one of the images. Conversely, the corresponding matching

point pairs acquired through re-registration align with the correct positions. The fusion image exhibits

continuous splicing boundaries, a substantial overlap of most image regions, and the visibility of
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splicing boundaries between the two images. For sample 2, the positions of matched point pairs

obtained from once-registration are accurate, resulting in successful image registration. However, the

overlapping area of the fused image is blurred, which hinders the acquisition of image information.

Re-registration, on the other hand, yields more correct matching point pairs, evenly distributed, with

the fusion image displaying continuous splicing boundaries, extensive region overlap, and visible

splicing boundaries and geometric structural features.

Figure 17. Examples of matching results based SAR-SIFT by re-registration and once-registration in

Sentinel-1A Napa 2014 Dataset

Figure 18. Examples of matching results based SAR-SIFT by re-registration and once-registration in

TerraSAR-X Zhuhai 2016

In Figure 17, feature point pairs derived from the once-registration of sample 1 are concentrated

and inaccurately matched, and the image registration is failure. The fusion image primarily shows

the sensed image. In contrast, feature point pairs acquired through re-registration for sample 1

correspond to the accurate location, with a relatively scattered distribution. The fusion image

exhibits continuous splicing boundaries and substantial overlap in most image regions. For sample

2, both re-registration and once-registration yield accurately corresponding feature point pairs. The
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fusion images demonstrate extensive region overlap, with no noticeable misalignment in the splicing

boundary.

The two samples in Figure 18 display evident linear structural features and grayscale similarity. In

both cases, re-registration and once-registration yield correctly corresponding feature point pairs. The

fusion images reveal significant overlap in most image regions, with continuous splicing boundaries,

indicating a favorable registration outcome.

It’s crucial to note that in the context of SAR images, SIFT and SAR-SIFT can sometimes extract

incorrect feature points or produce mismatched feature point pairs. As a result, the comparison between

once-registration and re-registration, as presented above, serves as a reference. A comprehensive

evaluation should encompass various indicators discussed in the preceding sections, along with other

methodologies such as mosaicked images.

4.3.4. Data Visualization

The visualization results of the test dataset samples are presented in Figure 19. These figures

showcase the outcomes of attention maps, wherein each spatial location within the connectivity map

encompasses all similarity scores between a feature in the reference image and all features within

the sensed image. To illustrate, if a filter’s central patch comprises predominantly zeros except for

a peak located at the top-left corner, the filter responds positively to features within the reference

image that correspond to the top-left corner of the sensed image. Likewise, when numerous spatial

locations of a filter yield similar visual responses, the filter demonstrates heightened sensitivity to

spatially co-located features within the reference image that align with the corresponding positions in

the sensed image.

Figure 19. Visualization results of dataset test samples

The figures exhibit several attention maps that validate the presumption that the layer has

acquired the ability to replicate local neighborhood consensus. This is evident as certain filters exhibit
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strong responsiveness to spatially co-located features within the reference image that match consistent

spatial positions in the sensed image.

4.3.5. Analysis of Failed Cases

Figure 20 illustrates instances of failed registration. In the third column, the sensed image

generated by the reinforcement learning framework of this paper is based on the reference image, i.e.,

the sensed image to be registered. The fourth column displays the outcomes of the registration using

the method proposed in this paper. Variations in terrain features and imaging viewpoints between

the sensed images obtained at different sampling times and the reference image pairs can lead to

significant grayscale differences, as observed in failed sample 4, and different structural features,

such as failed sample 3 and failed sample 6. In some cases, SAR images obtained from the same

ground scene region may not appear intuitively identical, as demonstrated in rows 2 and 4 of the

figure. While the reinforcement learning in this paper generates sensed images that partially reduce

structural differences between them and the original reference images, it does not perform grayscale

transformations on the sensed images.

The mosaic image of the sensed image and the reference image after the registration can exhibit

pronounced grayscale misregistration at the splicing location, as seen in failed sample 5, or show

insufficient smoothness in the splicing of line features and region features, as seen in failed sample 4.

The registration scheme based on the entire image requires a certain level of grayscale and structural

similarity between the sensed image and the reference image pairs to be registered. However, the

reinforcement learning approach in this paper does not perform grayscale transformations on the SAR

image during the transformation of the sensed image. Consequently, its applicability and scalability

for registering SAR image pairs with substantial grayscale differences need to be enhanced.

Since this paper employs a self-learning method to generate training samples by applying various

affine transformations to the training data, the feature differences between the sensed image and

the reference image pairs that cannot be reflected by the affine transformations include significant

geometric distortions, e.g., failed sample 3 and failed sample 6, and grayscale changes, e.g., failed

sample 4. Such differences impact the correlation between image pairs, potentially leading to

suboptimal performance of the registration method based on the correlation matching network

presented in this paper. To address this challenge, a potential solution involves manually labeled

matching labels and a machine learning network that performs grayscale transformations, image

matching, and evaluation.

Furthermore, failed sample 1 highlights the significant challenge of dealing with complex and

variable ground topographic features. In this scenario, the feature point pairs obtained by SAR-RL

are sparse and unevenly distributed in the images to be registered, affecting the global registration

performance of the image pairs. Some of the failure cases involve images with densely distributed

point features and line features. This can be attributed to the fact that the SAR-RL in this paper is a

global registration method, and the uniform distribution of weights for the globally densely distributed

point features and line features can easily result in the failure of the registration.
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failed sample 1

failed sample 2

failed sample 3

failed sample 4

failed sample 5

failed sample 6

Figure 20. failed registration samples

5. Discussion

Registering SAR images of terrain undulating regions acquired under different imaging

geometries presents a significant challenge due to inherent noise and geometric distortion in SAR

images. The SAR-RL method presented in this paper adopts a global registration approach, but

there are instances where registering SAR images of complex terrain regions encounters difficulties,

particularly when the training dataset is generated through a self-learning scheme.

Future research endeavors will be directed towards enhancing the SAR-RL method. This will

involve incorporating a priori knowledge of dataset distribution and optimizing training datasets

by introducing diverse distribution patterns and supervision information. These efforts aim to
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enhance the accuracy and efficiency of the method across various datasets. Simultaneously, there is

a consideration for adapting and deploying the trained neural networks to portable devices using

TensorFlow Lite. Such an advancement would enable real-time applications by researchers and

potentially even non-specialists.
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