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Abstract: A land cover map of two arctic catchments, nearby the Abisko Scientific Research Station, was 
obtained from a classification of a Sentinel-2 satellite image and a ground survey performed in July 2022. The 
two contiguous catchments, Miellajokka and Stordalen, are covered by various ecotypes, from boreal forest to 
alpine tundra and peatland. Two classification algorithms, support vector machine and random forest, were 
tested and gave very similar results. The percentage of correctly classified pixels was over 88% in both cases. 
The developed workflow relies solely on open source software and acquired ground observations. Space 
organization was directed by the altitude as demonstrated by the intersection of the land cover with the 
topography. Comparison between this new land cover map and previous ones based on data acquired between 
2008 and 2011 shows some trends of vegetation cover evolution in response to climate change in the considered 
area. This land cover map is key input data for permafrost modeling, and hence for the quantification of climate 
change impacts in the studied area.  

Keywords: land cover; sentinel-2 images; support vector machine; random forests; boreal forest; 
alpine tundra 

 

1. Introduction 

The nature of the land cover, including vegetation covers, bare rock outcrops and surface water 
bodies are of major importance to understand hydrological and biogeochemical fluxes on continental 
surfaces [1,2,3]. It is especially true in the Arctic, where permafrost conditions exert controls on the 
present ecotypes and their distributions [4,5,6,7], while vegetation cover variability may in turn 
strongly impact thermo-hydrological conditions [8,9]. In permafrost-affected soils, strong coupling 
between water and heat transfer occurs, and thus the thermal buffering of the vegetation cover is a 
key determinant of permafrost dynamics [10,11,12,13,14]. Evapotranspiration fluxes may also be a 
dominant term of the water budget in permafrost regions [15,16]. For all these reasons, permafrost 
modeling requires detailed knowledge of up to date land cover distribution. 

The vast extension and the remoteness of the Arctic regions make the establishment of field 
survey – based land cover maps difficult. Moreover, fine resolutions and open data maps are needed 
for many applications [17], including permafrost modeling. Thus there is a growing interest in 
airborne [18,19] and remote sensing [20,21,22] observations capable of producing fine resolution 
vegetation maps in the Arctics. These regions are experiencing intensive climate change [23]. 
Permafrost thawing results in methane and carbon dioxide emissions [24] which contribute to the 
greenhouse effect. These modifications induce changes in ecotypes [25] that are visible at the 
landscape level. Thus, there is a need for not only fine spatial resolution maps, but also for fine 
temporal resolution survey. In order to produce regularly updated land cover maps for large areas, 
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the use of remote sensing data from long term satellite missions combined with in-situ information 
is required [21]. 

Here we present a workflow for creating fine resolution vegetation map using only open data 
and open source software along with dedicated field data. The workflow is applied to two 
watersheds in the Swedish Arctic, for parts of which previous vegetation maps at coarser resolutions 
and/or in past climatic conditions were already available [18,26,27]. The obtained map is used for 
investigating a link between topography and vegetation distribution, and assessing the temporal 
evolution of the vegetation cover during a 14 years period (2008-2022). This information is crucially 
important for future permafrost modeling works of the studied sites to be done with the 
cryohydrogeological simulator permaFoam [16,28], and it will also provide new insights on 
contemporary landscape evolution in this type of environment.  

2. Materials and Methods 

2.1. General geographic information about the study area 

Two watersheds close to Abisko Scientific Research Station (INTERACT Network) were studied 
(Figure 1). The first one, from West to East, is Miellajokka, a sub-alpine catchment which includes the 
iconic mounts of Tjuonavagge. This 51.5 km² catchment presents altitudes ranging from 383 to 1731 
m above sea level [29]. The most eastern watershed is Stordalen, a 16 km² catchment with a lake-rich, 
peat-rich Northern part, and a sub-alpine Southern part, with elevation between 350 and 770 m above 
sea level [30,31,32,33]. In Stordalen vegetation maps of the Northern, low elevation part has been 
already produced based on airborne data of 2000 [26]. Later on, another vegetation map for the whole 
watershed has been produced using airborne data of 2008 [27]. Both Stordalen and Miellajokka are 
encompassed in the area studied by Reese et al. [18], with a vegetation map established on the basis 
of 2010 satellite images, using also data acquired by a lidar survey. 

 

Figure 1. Location of the study zone on the articDEM map. 

2.2. Satellite image and digital elevation model 

Obtaining images in the Arctic zone to study vegetation cover is difficult. These geographical 
areas are covered with snow for a large part of the year, which prevents any satellite study of the 
vegetation cover. In addition, frequent clouds hinder the acquisition of optical images. A single 
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Sentinel-2 image acquired on 25 August 2022 was downloaded from https://peps.cnes.fr. Ten bands 
were selected for land cover classification (B02 – blue, B03 – green, B04 – red, B05 – red-edge 1, B06 – 
red-edge 2, B07 - red-edge 3, B08 – NIR, B08A – narrow NIR, B11 – SWIR 1, B12 – SWIR 2). The image 
is not corrected for atmospheric effects (Level-1C). The images are stored in the UTM34N reference 
coordinate system and all calculations are performed in this system to avoid altering the radiometry 
by re-projection. 

On the basis of four (B03, B04, B08, B11) out of the 10 acquired channels, four derived indicators 
were calculated: Bright, NDVI, NDWI, NDII (Table 1). The bright index is very sensitive to albedo. It 
distinguishes between light and dark soils. The NDWI (Normalized Difference Water Index) was 
used to detect water areas. The NDVI expressed the photosynthesis of the vegetation cover. The use 
of NDII [34,35] did not improve the results and was not retained for the final classification. 

Table 1. Vegetation indicators. Band notation correspond to MSI sensor of sentinel-2 satellite. 

Index Formula 
Bright ඥሺ𝐵04 ∗ 𝐵04ሻ ሺ𝐵08 ∗ 𝐵08ሻ⁄  
NDVI ሺ𝐵08− 𝐵04ሻ ሺ𝐵08+ 𝐵04ሻ⁄  
NDWI ሺ𝐵03− 𝐵08ሻ ሺ𝐵03+ 𝐵08ሻ⁄  
NDII ሺ𝐵08− 𝐵11ሻ ሺ𝐵08+ 𝐵11ሻ⁄  

Since vegetation in mountainous areas is related to altitude, the digital terrain model is a very 
useful data source. ArcticDEM is an NGA-NSF public-private initiative to automatically produce a 
fine-resolution digital surface model of the Arctic using optical stereo imagery. The majority of 
ArcticDEM data was generated from the panchromatic bands of the WorldView-1, WorldView-2, and 
WorldView-3 satellites and, for a small percentage of data, from the GeoEye-1 satellite. For this study, 
ArticDEM Release 7 "mosaic" format files with a spatial resolution of 2 m were downloaded at 
https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/. 

2.3. Field survey 

The ground-truth survey took place from 21 July 2022 to 24 July 2022 in the Miellajokka and 
Stordalen watersheds, northern Sweden. We geolocalized areas of the different land cover types in 
field using a GPS, GLONASS, Beidou and Galileo navigation systems supported Samsung Galaxy 
Tab S6 Lite tablet. The Qfield software was used for data entry in the field. Its compatibility with 
QGIS simplifies data collection and subsequent analysis [36].  
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Figure 2. Field surveys drawn on color composite of Sentinel-2 images channels B08,B04,B03. 

Prior to the field survey, a database including a color composite of Sentinel-2 image channels 
B08/B04/B03, the Open Street Map data and a vector layer with no record was prepared in QGIS then 
transferred to Qfield. 

Areas of observed and land cover types were highlighted as polygons on Figure 2. Each polygon 
served a ground truth location established by direct observation during the field survey of an area 
covered by a clearly identified land cover class. As a complement, a photo of the most characteristic 
observations was taken with the tablet camera.  

The 270 observations conducted during the field survey only identified seven out of the 12 
classes by Reese et al. [18]. “Alpine meadow” was not encountered enough to constitute an individual 
class. Likewise, the “Mountain birch - meadow” class was only observed in six ground truth polygons 
and was grouped with the “Mountain birch - moss” class to form a single “Mountain birch” class. 
Snow-beds were poorly represented and are not included. “Grass heaths” were not encountered. 
Further, “Rock” class mainly represents bedrock outcrops but may also include thin organic soil and 
sediment. “Human infrastructure” was added as a new class, mainly representing the road and the 
railway passing through the mapped area. Shadows in the steep areas to the south of the study area 
hinder recognition of the landscape they cover. To avoid confusion, especially with water, a 
“Shadow” class was created, summarizing the total number of classes to nine (Table 2). 

Table 2. Land cover classes. 

Class Number of polygons Number of pixels 
Rock 25 361 
Dry heath 35 889 
Mesic heath 21 801 
Wetland 29 1614 
Alpine willow 19 402 
Mountain birch 105 4587 
Water 30 8568 
Human infrastructure 13 312 
Shadow 18 7026 
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As far as possible, the number of survey polygons were balanced between the representative 
classes. Poor accessibility due to difficult terrain limited the choices of locations (Figure 2). Thus, a 
randomized field survey design was not possible in this natural environment.The transition from one 
land-use class to another is sometimes gradual, making it difficult to assign an area to a specific class. 
For this reason, surveys were only carried out in areas that are homogeneous in terms of the 
characteristics of the land cover classes. 

2.4. Classification 

There are multiple machine learning algorithms used to create land cover classification maps 
from satellite images. Two supervised learning algorithms, support vector machine (SVM) and 
random forest (RF), have become prominent in the last years [37]. SVM achieves a higher level of 
classification accuracy and can be used with small training data sets and high-dimensional data 
[38,39]. Its principle is based on the creation of hyperplanes to separate objects according to their 
class. RF is widely used in image classification studies [40,41]. It uses decision trees and random 
draws of samples and variables to classify the Sentinel-2 image. The data is analyzed successively 
with SVM and RF. Within each class, 30% of the surveyed polygons were randomly drawn and 
reserved for classification quality assessment. The classification was trained with the remaining 70%. 
GRASS software was used for the calculations [42]. The extension r.learn.ml2 interfaces with the 
Scikit-learn library written in python to perform classifications.  

3. Results 

3.1. Vegetation map in current climatic conditions 

The statistics computed from surveyed polygons reserved for classification quality assessment 
confirm the quality of the classifications. The percentage of pixels correctly classified by SVM is 92%, 
while it is 88% by RF. The confusion matrices (Tables 3, 4) provide an analysis of the accuracy of the 
classification used for building our map at the class level. The two classifications are very close. If the 
shadow class is not taken into account, the percentages of pixels correctly classified become 89% for 
SVM and 88% for RF. SVM is chosen for further analysis because confusion between “Alpine willow” 
and “Moutain birsh” is less important for this algorithm. 

The confusion between “Dry heath” and “Mesic heath” is understandable because these two 
formations are differentiated primarily by canopy height, a feature not accessible from the images 
used in our study. Likewise, the confusion between “Alpine willow” and “Wetland” is due to the 
difficulty of recognizing spaces occupied by a few willow plants. Besides, with such a pixel 
classification approach, places that are temporarily flooded at the moment of the satellite image 
acquisition are difficult to distinguish from true wetlands, i.e. places that are under water almost all 
along the active season. This could lead to overestimation of the wetland area, sinceplaces with other 
vegetation types such as meadow may be temporarily flooded by ground water discharge or snow 
melt water. Another important point is the detection of temporary high elevation open water bodies 
in several places around the Tjuonavagge lake, according to both this classification and the two 
indicators NDII, NDVI values of the pixels. These ones may be generated by late snow melt in the 
highest places of the landscape. Finally, the confusion between “Dry heath”, “Mesic heath” and 
“Mountain birch” may be related to the fact that these classes can be contiguous and even associated 
in some places. It describes mixed spaces where several classes coexist, i.e. ecotone between these 
classes. 
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Table 3. Confusion matrix of the support vector machine classification. The asterisks highlight in confusion matrix indicate the most important confusions. The columns show the field 
surveys and the rows show the classification results. For instance, the number 130 corresponds at the cross of the “Mountain birch” line and the “Mesic heath” column means that 130 
pixels that have been classified as “Mountain birch” belong to “Mesic heath” according to the field survey. 
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Table 4. Confusion matrix of the random forests classification. The asterisks highlight in confusion matrix indicate the most important confusions. The columns show the field surveys 
and the rows show the classification results. For instance, the number 117 corresponds at the cross of the “Mountain birch” line and the “Mesic heath” column means that 117 pixels 
that have been classified as “Mountain birch” belong to “Mesic heath” according to the field survey. 
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All the pixels classified as "Alpine willow" belong to this class. An area classified as “Alpine 
willow” therefore corresponds to this class. However, an area covered by this class is not always 
assigned to it. Thus, the area classified to “Alpine willow” is underestimated. Furthermore, 22% of 
the pixels in the confusion matrix classified as "Mountain birch" do not belong to this class. And an 
area covered by this class is always assigned to this class. The area classified as "Mountain birch", 
which occupies more than 40% of the space, is therefore overestimated. (Table 5). The “Rock” class 
and the wetlands (“Wetland” and “Alpine willow”) share 40% of the spaces. The other classes are 
much smaller. 

Table 5. Distribution of land cover classes of our classification. The shadow class is not taken in 
account. 

Class Percentage 
Rock 38 

Dry heath 12 
Mesic heath 4 

Wetland 16 
Alpine willow 7 

Mountain birch 14 
Water 6 

Human infrastructure 1 
The classified image (Figure 3) shows patterns consistent with the knowledge of the terrain. The 

transport infrastructures are described with precision in their continuity. The lake Torneträsk at the 
North is homogeneously identified. 

 

Figure 3. Image classified by support vector machine from the July 2022 field survey. 

3.2. Influence of altitude on land cover 
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Land cover appears to be strongly conditioned by altitude. Altitudinal zonation of land cover is 
encountered in various arctic contexts [43,44,45], including in the Abisko region [46,47]. In 
Miellajokka catchment, the seasonal variability of the hydrogeochemistry of the stream indicates a 
strong altitudinal control on hydrological processes, especially during the spring freshet [48], while 
hydrological conditions strongly interact with vegetation and carbon dioxyde fluxes [49]. Table 6, 
constructed by cross-referencing the land cover map with the ArticDEM, illustrates this phenomenon 
in the studied watersheds. 

Table 6. Percentage of land cover classes according to altitudinal levels. The “Water”, “Human 
infrastructure” and “Shadow” classes are not taken in account. 

Land cover Level class (m) 

 
Subalpine 

< 600 
Low alpine 
 [600,800[ 

High alpine 
[800,1100[ 

Nival 
> 1100 

Rock 2 5 42 84 
Dry heath 3 28 21 1 

Mesic heath 3 6 2 10 
Wetland 10 16 17 5 

Alpine willow 1 7 16 0 
Mountain birch 81 38 2 0 

The subalpine level at altitudes below 600 m is mainly occupied by the “Mountain birch” class. 
The Alpine stage includes the “Dry heath”, “Mesic heath”, “Wetland” and “Alpine willow” 
formations. It is divided into two sub-stages: Between 600 and 800 m of altitude, the “Mountain birch” 
class is still very present. Above 800 m, this class gives way to the rock. The nival stage is composed 
only of rock, probably because it depends on harsher life conditions and more intense erosive 
processes at higher elevations. 

3.3. Comparison between past and present vegetation maps 

Three maps of parts of our study area have been produced by different authors. A map was 
constructed from aerial images of 8 August 1970 and 29 July 2000 [26], but the area covered is too 
small to allow comparison with our data. Another map of the Stordalen watershed by Lundin et al. 
[31] was obtained from images obtained from a helicopter flight on 1 August 2008. The most recent 
map of the Miellajokka watershed was produced by Reese et al. [18,50] from SPOT5 images of 28 July 
2011 and laser data acquired under leaf-on conditions from two scanning dates (20 August 2010 and 
9 September 2010). As the semantics of these maps are not identical to ours, an analysis of the variable 
typologies is necessary prior to the study of the landscape evolution. In order to overlay the maps 
and then calculate statistics, the Lundin and Reese maps extracted from the publications were 
georeferenced from control points identified in the landscape. 

Comparison with the map of Reese et al. (based on data acquired in 2010) 

Reese et al. [18,50] produced a land cover map with a larger number of classes. In order to 
compare the Reese map with our data, some classes of the Reese map are merged. “Snow ice” and 
“Snow bed” classes are grouped together. “Dry heath”, “Extremely dry heath”, “Grass heath” are 
also grouped together. The “Human infrastructure” class is not considered because it does not exist 
in Reese's work. "Alpine meadow” and “Tall Alpine meadow" were not confirmed by ground 
observations during our field trip. 

The spatial distribution of the classes is slightly different (Table 7). The “Rock” class accounts 
for 36% for our classification and only 14% for the Reese map. 

Table 7. Percentage of land cover classes of Reese [18] and our classification in the Miellajokka 
watershed. The asterisks indicate classes which were not observed during our field trip. 
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Class Reese (2010) Our classification 
Rock 14 39 

Dry heath / Extremely dry heath / Grass heath 26 12 
Mesic heath 4 4 

Wetland 4 17 
Alpine willow 19 7 

Mountain birch 13 15 
Water 4 6 

Snow Ice, Snow bed 5 * 
Alpine meadow / Tall alpine meadow 11 * 

The change matrix shown in table 8 encompasses the differences in semantics of classes and the 
changes in the landscape between the dates of the two maps (i.e.: 2014 and 2022), and may be also 
discrepancies due to the use of different methodologies. Three elements can explain these differences. 
1) The landscape is natural. There are no parcels to structure it. Between areas occupied by two 
vegetation classes there is often a transition zone which is difficult to assign to a class. 2) The class 
definition of Reese [18] takes into account the height of the stratum using metrics derived from laser 
acquisitions, a technology we did not employ. 3) The landscape has evolved between 2010 and 2022. 

Table 8 and Figure 3 show that some “Rock” areas in the middle our map are covered by “Grass 
heath”, “Dry heath” and “Alpine willow” on the Reese map. The forest is also growing slightly to the 
south in sparse patches. On the other hand, “Alpine willow” is also more represented on Reese map 
without any conclusion being drawn because this class is misclassified by Reese [18]: the confusion 
matrix indicates 20 of 44 pixels misclassified.  
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Table 8. Change matrix comparing our classification to the map of Reese [18]. Each column corresponds to the percentage of pixels of a class obtained by our classification in function 
of the Reese map classes. The “Shadow” class is not taken in account. 
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In addition, “Alpine meadow” which we have not taken into account, is identified as “Wetland” 
on our map (Figure 4), maybe because most of “Alpine meadow” places were temporarily flooded at 
the time of observation(see also section 3.1.). This class “Wetland” exists on the map published by 
Borgelt [509] but it is not present in the confusion matrix published by Reese [18]. The other classes 
do not show clear differences in their proportion and spatial distribution. 

 

Figure 4. Land cover map by Reese (2010) [18] (a) and our reclassified map (2022) (b) in the 
Miellajokka watershed. 

Comparison with the map of Lundin et al. (based on data acquired in 2008) 

The definition of classes in Lundin et al. [31] is different from the one presented in this work, 
with a smaller number of classes in the map of Lundin. So the classes we used have to be modified 
to achieve a consistency between two maps. Grouping “Dry heath”, “Mesic heath”, “Alpine willow” 
classes of our classification allows them to be compared to the “Alpine tundra” class of the map of 
Lundin. Similarly, our “Wetland” class is compared to the “Peatland” class of the map of Lundin. 
The classes “Human infrastructure” and “Non vegetated” correspond to road, railway and building. 
The latter class is much more represented on the map of Lundin (Table 9). The differences are related 
to a larger road and railway footprint, which does not affect the landscape dynamics. This 
observation shows the satisfactory overlay of the two maps. 

Table 9. Percentage of land cover classes of the map of Lundin [31] in the Stordalen watershed. In our 
classification, the “Alpine tundra” class corresponds to the grouping of classes “Dry heath”, “Mesic 
heath”, “Alpine willow”. The class “Peatland” corresponds to “Wetland”. The class “Non vegetated” 
corresponds to “Human infrastructure”. 

Class Lundin (2008) Our classification (2022) 
Rock 9 5 

Alpine tundra 13 12 
Peatland 11 15 

Forest 51 54 
Water 7 12 

Non vegetated 9 2 
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The change matrix (Table 10) shows that the "Rock" class is also more represented on the map of 
Lundin, which covers twice as much space. The areas of this class that are not classified as “Rock” for 
our map are located in the south of the map (Figure 5). They are contiguous to the “Rock” areas of 
our map. It is also possible that there has been a forest expansion between 2008 and 2002 in this area. 
Indeed, the forest has grown between 2008 and 2022. It has gained some space in all land cover 
categories. Furthermore, some areas of “Peatland” appear to be transformed into “Wetland” but 
Lundin et al. [31] indicate "Peatlands were subdivided into wet areas (fen) and dry areas (bog) 
proportionally to what was found by Malmer et al. (2005)". It is therefore not possible to draw a 
conclusion from this observation. In summary, it is possible to compare our map with the map of 
Lundin after a semantic analysis of the categories. The main differences between the two maps 
concerns the south of the Stordalen watershed where Alpine toundra and forest are intermixed. The 
forest seems to have taken over areas previously occupied by tundra. 

Table 10. Change matrix comparing our classification (2022) to the map of Lundin (2008).[31]. Each 
column corresponds to the percentage of pixels of a class obtained by our classification in function of 
the classes of the Lundin map. The shadow class is not taken in account. 
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Rock 41 30 5 3 5 4 
Alpine tundra 27 27 9 10 10 7 

Peatland 3 6 40 6 5 6 
Forest 15 24 33 69 45 27 
Water 4 3 7 4 26 4 

Non vegetated 10 10 6 8 9 52 
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Figure 5. Land cover map by Lundin (2008) [31] (a) and our reclassified map (2022) (b) in the Stordalen 
watershed. 

4. Discussion 

The methodology implemented in this study requires little sampling effort to quickly obtain a 
land cover map. This operation is feasible every year to monitor the evolution of land cover. These 
results are particularly important in a region subject to climate change which is currently undergoing 
major upheaval. 

The results of the Sentinel-2 image classification show a structuring of the landscape as a 
function of elevation, with different vegetation level along with altitude [51]. In the Miellajokka and 
Stordalen catchments, three levels are present. The sub-alpine level (< 600 m) is mainly occupied by 
birch forest. The alpine level [600 m , 1100 m] is characterized by heath and willow. This level could 
be split into two sub-levels according to the respective abundance of birch forest at lower altitude 
and outcrops at upper altitude. The upper level, the nival level (> 1100 m), is only composed of rock. 
Some temporary open water bodies were localized at high altitude, which is a surprising feature, may 
be linked to late melt of high elevation snow bodies.  

Comparison between past and present vegetation maps is not straightforward due to a lack of a 
common typology field survey protocols. Nevertheless, it was possible to identify a change in the 
landscape between 2008 and 2022. Comparative analysis of the maps of Lundin [31] and Reese [18] 
with the one presented in this work demonstrated an extension of the forest on the tundra towards 
the south (i.e., toward higher elevations) during the 2008-2022 period. This finding is in agreement 
with Rundqvist's work [52] which shows an upward movement of species observed over a study 
period between 1976 and 2010. Nevertheless one should be careful with this possible interpretation 
because of the statistical uncertainty of the different classifications. This trend could be a consequence 
of the on-going climate warming, demonstrated across the Arctic [53,54]. 

5. Conclusion 

In this work we provided a new land cover map for two watersheds located nearby the Abisko 
Scientific Research Station, to be used in future permafrost modeling work in the framework of the 
HiPerBorea project (hiperborea.omp.eu) using the permaFoam cryohydrogeological simulator 
[16,28]. This new map also provides some insights on recent land cover changes in the studied area, 
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by comparison with previous maps based on data acquired in 2008 [31] and 2010 [18]. High elevation 
temporary water bodies have been detected, which requires further investigation in the future. 

The proximity of the Abisko observation station makes the Miellajokka and Stordalen 
watersheds a privileged study area for the evolution of landscapes in the Arctic zone, in particular, 
where thawing of the permafrost at high altitudes is attested. This monitoring requires annual 
surveys according to a unified protocol in terms of sampling, definition of classes and method of 
recording in order to monitor the evolution of this region under on-going climate change. The present 
study presents a protocol that would be suitable for such purpose. 

At the same time, the study of land cover in the Arctic zone poses a number of difficulties. The 
areas are covered by snow for a large part of the year, which limits observations to a few months of 
summer. Acquisition by passive optical satellites can only be made during the period with daylight. 
Fortunately, this period includes the summer months when snow cover is at its minimum extension. 
Cloud cover frequently hampers optical acquisitions. For the year 2022, only one Sentinel-2 image 
could be used, which illustrates the problems to rely on optical images only in such environments. 
Future work could involve radar images whose acquisition is not affected by clouds and polar night. 
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