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Table S1 The effect of nutrients on plant-herbivore interactions

Element//n- Plant Herbivore interacting with | Effect References

utrients plants

N, S Tomato (Santa Clara) Tuta absoluta Dose-dependent, (Queiroz et al., 2022)

susceptibility

P Arabidopsis thaliana Spodoptera littoralis Dose-dependent, (Khan et al., 2016)
Solanum lycopersicum resistance
Nicotiana benthamiana

K Oryza sativa (Shua-92) Scirpophaga incertulas Resistance (Sarwar, 2012)

Ca Triticum aestivum L. Schizaphis graminum Resistance (Wang et al., 2021)

Rondani
Mg, Ca Vicia fabae L., ssp. maior | Aphis fabae Scop. Resistance (Jaworska and Gospodarek,
2003)
Zn Thlaspi caerulescens J. & | Schistocerca gregaria Resistance (Behmer et al., 2005)
C. Presl

Na grasses, forbs and litter Native herbivores Susceptibility (Welti and Kaspari, 2021)

Al, Cu, Fe, Eremanthus Native herbivores Compensatory/toleranc | (Dueli et al., 2021)

Mn, Zn erythropappus e
(Asteraceae)

Ce Solanum lycopersicum Helicoverpa armigera Resistance (Xiao et al., 2021)

Se Pisum sativum Acyrthosiphon pisum Resistance (Lukaszewicz et al., 2021)
Tetranychus Vigna sinensis Resistance (Xu et al., 2021)
cinnabarinus; Solanum melongena
Tetranychus urticae;

Tetranychus truncatus
Cd Populus yunnanensis Botyodes diniasalis Resistance (Lin et al., 2020)
Spodoptera exigua
Thlaspi caerulescens Frankliniella occidentalis Resistance (Jiang et al., 2005)

B Lycopersicon esculentum | Meloidogyne incognita Resistance (El-Batal et al., 2019)

Ni Streptanthus polygaloides | Spodoptera exigua Resistance (Boyd and Moar, 1999)

Pb Brassica oleracea L., var. | Chewing, sucking, Resistance (Morales-Silva et al., 2022)
acephala parasites




micronutrient

mix; C flux

legumes and forbs

Co, Cu, Ni, Not stated Spodoptera exigua Resistance (Cheruiyot et al., 2013)
Zn
S Brassica oleracea var. Plutella xylostella Susceptibility (Santos et al., 2018)
capitata
Si Glycine max cv FS Spodoptera frugiperda Resistance (Acevedo et al., 2021)
HiSOY® HS33A14-
98SB132B
Zea mays
Mn, Fe Eremanthus
erythropappus;
Eremanthus incanus
Al Lychnophora ericoides Native herbivores Resistance (Ribeiro et al., 2017)
Mn Byrsonima variabilis
N, P, K Citrus aurantium L. Diaprepes abbreviatus L. No effect or (Borowicz et al., 2003)
(Fertilizer: susceptibility
Plantex)
N Festuca ovina Reindeer Tolerance (Barthelemy et al., 2019)
Cc Zea mays Romalea guttata Increased C fluxes (Holland et al., 1996)
N, P, K, C3 grasses, C4 grasses, Arthropod herbivores Susceptibility (Zaret et al., 2023)

Table S2 Nutrients involved in microbe-plant-herbivore interactions

sugars, sugar

Element//nutr- | Microbe Plant Herbivore interacting Effect References

ients with plants

S Bacillus amyloliquefaciens Arabidopsis Spodoptera exigua Resistance (Aziz et al., 2016)

thaliana

Si Glomus etunicatum; G. Saccharum spp. Dermolepida Resistance (Frew et al., 2017)
coronatum; G. hybrid albohirtum
intraradices; G. mosseae;
native AM inoculum

AAs Pepper golden mosaic virus | Capsicum annuum | Trialeurodes “Adaptive (Angeles-Lopez et

vaporariorum host al., 2016)
manipulation”
AAs Nitrogen-fixing bacteria Medicago sativa Acyrthosiphon pisum Susceptibility | (Johnson et al.,
2017)
N, AAs, Melampsora larici-populina | Populus nigra Lymantria dispar Susceptibility | (Eberl et al., 2020)

alcohol, VBs
N Neotyphodium Festuca arizonica rodents and Context- (Faeth and Fagan,
Pinus ponderosa invertebrates dependency 2002)
N Native soil microbes Lolium perenne Native nematodes No increase (Gebremikael et
of plant al., 2014)
biomass
C,N,P Native soil microbes Lolium perenne Native nematodes Increased (Gebremikael et
nutrient al., 2016)
uptake
N Native soil microbes Brassica oleracea Meloidogyne incognita | Tolerance (Waurst et al., 2006)




Potentilla acaulis;

Leymus secalinus

C,N Native soil microbes Festuca Popillia japonica Increased (Gan et al., 2018)
arundinacea Newman; Maladera nutrient
Schreb castanea Arrow cycling
C.N Native soil microbes Trifolium repens Heterodera trifolii Increased N (Ayres et al., 2007)
L.; Lolium perenne | Goggart fluxes
L.
C,N Native soil mycorrhizae Shrubs Reindeer Decreased (Barthelemy et al.,
nutrient 2017)
partitioning
C,N Native soil microbes Quercus rubra Orgyia leucostigma Shifts of C (Frost and Hunter,
and N 2008)
allocation
N, sugars Bradyrhizobium japonicum; | Glycine max L. Aphis glycines Decreased (Katayama et al.,
B. elkani; Rhizobium fredii Matsumura nutrient 2014)
uptake
N, C Native soil microbes Dactylis glomerata | Chorthippus dorsatus Altered C (Potthast et al.,
allocation and | 2021)
N uptake
N, C Native soil microbes Grasslands mammalian herbivores | Increased soil | (Sitters et al., 2020)
Cand N
pools
N (NO* and Native soil microbes Kobresia humilis; | Yak; sheep Tolerance (Liu et al., 2023)
NH*), C, P, Elymus nutans;
K (in soil) Stipa sareptana;

Table S3 Nutrients involved in AM fungi-or rhizobia-plant-herbivore interactions

irregularis;

Funneliformis mosseae;

curassavica;

Asclepias latifolia;

Tetraopes spp.;
Oncopeltus fasciatus;

tolerance

Element//nutr- | Microbe Plant Herbivore interacting | Effect References
ients with plants
C,P Rhizophagus irregularis | Triticum aestivum Rhopalosiphum padi | Asymmetry in (Charters et al.,
(L) nutrient exchange | 2020)
Sugar, starch, | Glomus etunicatum Solanum Mechanical damage Shifts in C-and (Orians et al.,
total N, Glomus mosseae lycopersicon and Manduca sexta N-based 2018)
protein regurgitant/oral resources
secretion
C,N,P Rhizophagus irregularis | Solanum tuberosum Globodera pallida Shifts in nutrient | (Bell et al., 2022)
exchange
C,N,P Rhizophagus irregularis | Medicago truncatula | Spodoptera exigua Tolerance (Zeng et al., 2022)
N, P Funneliformis mosseae Plantago lanceolata Mamestra brassicae Context- (Quetal., 2021)
L. dependency
N, AAs, C, Funneliformis mosseae Zea mays hybrid DK- | Spodoptera exigua Resistance (Ramirez-Serrano
protein Rhizophagus irregularis | 2061) et al., 2022)
C,N Funneliformis mosseae Elymus nutans Locusta migratoria Improved defense | (Yu et al., 2022)
Elymus sibiricus manilensis response
Linn.
N, P Rhizophagus Asclepias Danaus plexippus; Resistance and (Tao et al., 2016)




Glomus aggregatum; Asclepias syriaca; Aphids
Claroideoglomus Asclepias
etunicatum purpurascens;
Asclepias verticillate;
Asclepias incarnata
Cu, Ca, Mg, Trichoderma harzianum | Zea mays L. Phyllophaga vetula Tolerance (Contreras-Cornejo
Na, K et al., 2021)
P Funneliformis mosseae Solanum Spodoptera exigua Resistance (Dejana et al.,
Botrytis cinerea lycopersicum depending on P 2022)
availability
N Frankia Alnus rubra Arion rufus Short-term (Ballhorn et al.,
susceptibility 2017)
C,N Ensifer meliloti Medicago sativa Empoasca fabae N-dependent (Thompson and
allocation Lamp, 2021)
strategy
Sugar, AA Rhizobium fredii; Glycine max Aphis glycines Changes in (Whitaker et al.,
B. japonicum; nutrient cycling | 2014)
Bradyrhizobium elkani
C,N Bradyrhizobium Glycine max L. Tetranycus urticae Susceptibility (Katayama et al.,
japonicu;, B. elkani; 2010)
Rhizobium fredii,

Method S1: Literature search for Figure 3, Figure 4, Table S2 and S3
A literature search in the “Web of Science” database was performed before Oct 16 2022.
Publications were identified by the terms "plant” AND "herbivo*" AND "nutri*" AND

"microb*". As a result, 2292 articles were collected and their abstracts were exported to the

electronic library. On Jul 31 2023, a second search was performed using the same terms from
Oct 16 2022 to Jul 31 2023. There are another 45 studies. After excluding the off-topic
articles by reading the abstracts, a total of 227 full articles were downloaded for further

evaluation. The selected articles needed to meet these criteria: i) a clear statement of soil

microbe(s), plant(s) and herbivore(s) in the bioassays, ii) the microbe(s) interacting with plant

roots/leaves, iii) herbivore(s) feeding on plant tissues, iv) herbivory resulting in the shift of

plant/soil nutrient content. Finally, a total of 31 articles (Table S2 and S3) met the established

criteria.




Method S2: Data analysis
The selected 31 articles were further checked to determine if the data of plant nutrient content
(N and C) are approachable. I also contacted an author for the contribution of published raw
data. The two most common response variables, plant N and C, were used for the meta-
analysis to assess the effects of herbivory on plant nutrient status. The finally selected articles
are listed in Fig. 4. The data of plant total N and C content are prioritized, followed by
percentage/concentration of N and C. The data collected from shoots/leaves are prioritized,
followed by roots or stems. If there are several feeding time points, the data from the latest
feeding time point were chosen. If there are several fertilization conditions, the one with well-
fertilized conditions was chosen to avoid any intentionally imposed stress apart from
herbivory. If there are several species (plants or microbes) in one article and the bioassays of
each species are independent, the bioassays of each species were regarded as independent
studies. Data from figures were extracted using an online tool PlotDigitizer
(https://plotdigitizer.com/). Within a study, the mean, standard deviation (SD) and sample size
(n) can be used to calculate the standardized mean difference (SMD), a powerful effect size
when comparing continuous variable data between the experimental (with herbivory) and
control (without herbivory) groups. If an article provides standard error (SE) rather than SD,
the following equation was used to calculate the SD.

SD = SE*+/n

To measure the effect sizes of herbivory on plant N and C content in the presence of
microbes, the metacont function from R package meta (Schwarzer, 2007; Balduzzi et al.,
2019) was used to calculate the SMD (method: Hedges). Hedges is a good method of
calculating effect size when comparing two groups with a small sample size. The mean effect
size and 95% confidence interval (Cl) for each outcome associated with the herbivory effect
were calculated. A positive Hedges value indicates positive effects of herbivory on their host
performance in microbe-plant-herbivore interactions, while a negative value indicates the
opposite. The mean effect size was considered to be significant when the CI range did not
include zero (Borenstein, 2009).

The heterogeneity of effect sizes was assessed through metacont function which
indicates the presence or absence of heterogeneity across studies (Borenstein, 2009). When
there is high heterogeneity (1% > 50%) of studies, a random effect model (Hedges and Vevea,
1996) was selected to test whether the overall effect of herbivory on plant N and C contents

showed differences across studies.


https://plotdigitizer.com/

Publication bias was assessed graphically with funnel plots by funnel function. In
addition, publication bias was tested statistically using Egger’s test by metabias function. All
the analyses were conducted in an R environment (R Core Team, 2023).
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