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Abstract: Maxwell equations governing electromagnetic effects are being shown to be equivalent to 

the compressible inviscid Navier-Stokes equations applicable in fluid dynamics and representing 

conservation of mass and linear momentum. The latter applies subject to a generalized Beltrami 

condition to be satisfied by the magnetic field. This equivalence indicates that the compressible 

inviscid Navier-Stokes equations are Lorentz invariant as they derive directly from the Lorentz 

invariant Maxwell equations subject to the same Beltrami condition. In addition, the derivation and 

results provide support for the claim that electromagnetic potentials have physical significance as 

demonstrated by Aharonov-Bohm effect, and are not only a convenient mathematical formulation. 
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1. Introduction 

Electromagnetic effects are related to fluid dynamics via applications of Magneto-Hydro-

Dynamics (MHD) to a variety of fields, such as liquid metals [1-4], nanofluids [5,6], non-Newtonian 

fluids [7], and many others. 

Electromagnetic phenomena, such as electromagnetic waves propagate in space following the 

solution of Maxwell equations. The latter are a set of four partial differential equations for the 

unknown variables of the electric field, magnetic field, charge density, and current density (charge 

flux). The solution to these set of equations is typically obtained via a gauge theory, i.e. introducing 

a scalar and a vector potential related to the electric and magnetic fields and solving the resulting 

wave equations for these potentials. Once the solution for the potentials is obtained a reverse 

transformation leads to the solution to the electric and magnetic fields. This procedure is similar to 

introducing scalar and vector potentials in attempting to solve fluid dynamics problems, although 

the latter are typically much more difficult. Also the introduction of a stream function for solving 

two-dimensional fluid dynamics flows is also a similar procedure, although in this case much simpler 

than the electromagnetic one. In all these cases the introduced potentials are defined up to an 

integrating constant or for a vector potential, up to a gradient of an arbitrary function. The latter has 

no significance as long as the physically significant variables are the electromagnetic fields and not 

the potentials. Therefore, the introduction of the potentials was seen as a convenient mathematical 

solution method and the potentials themselves were not given any physical interpretation. 

Aharonov-Bohm effect (Aharonov and Bohm [8, 9]) which was confirmed both theoretically as well 

as experimentally suggested the opposite, i.e. that the potentials do have physical significance, 

although no explanation for the latter nor the precise physical meaning of these potentials was 

provided. 

Vadasz [10] showed that a continuous mass distribution for a general variable gravitational field 

g t,x( ) is equivalent to a form identical to Maxwell equations from electromagnetism, subject to a 

modified Beltrami condition. Attempts at deriving equations thar are identical to Maxwell equations 

for continuous media have been presented particularly with application to fluid dynamics. For 

example, Marmanis [11] uses an equation derived by Lamb [12] from the incompressible Navier-
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Stokes equations and uses it in deriving a new theory of turbulence. A similar approach was used by 

Sridhar [13] in order to “formulate the problem of advection and diffusion of a passive tracer by an 

arbitrary, incompressible velocity field”, to find that the “problem is identical to the diffusive 

dynamics of a charged particle in electromagnetic fields constructed from the velocity field.” 

Rousseaux et al. [14] tested experimentally and theoretically the concept of “hydrodynamic charge” 

in the case of a “coherent structure such as the Burgers vortex”. These attempts apply to the 

incompressible fluid Navier-Stokes equations without the gravitational field and result in a form 

identical to Maxwell equations having the following correspondence: electromagnetic vector 

potential converts into velocity, magnetic field converts into vorticity, electric field converts into 

Lamb vector ( ), where  is the velocity, and the electric charge converts into a 

“hydrodynamic charge” qH  identical to the divergence of the Lamb vector, i.e. qH = ∇⋅l .  

The present paper shows that Maxwell equations in free space governing electromagnetic 

phenomena are equivalent to the compressible inviscid Navier-Stokes equations subject to a 

generalized Beltrami condition. Consequently, a clear explanation of what physical meaning could 

be associated with these potentials is provided at the end of the paper.  

2. Governing Equations 

The following derivations use the definition of the mass to charge density ratio, assumed 

constant and assumed to take a linear form such as 

βq =
ρ

ρq
=
mq

q
= const.   kg C[ ]  (1) 

where ρ  is the mass density kg m3  related to the total mass , and ρq  C m3   is the 

electric charge density related to the electric charge q . 

Then the definition of the electromagnetic momentum density (i.e. electromagnetic momentum 

per unit volume) is introduced in the form  carrying units of , and where the 

vector A N A[ ] is related to the magnetic field B T[ ] by the relationship 

B = −∇ × A  (2) 

The electromagnetic momentum density will be shown to be identical to the current density 

(charge flux) Jq = ρq A βq  C m2s  . Equation (1) produces the Gauss law for the magnetic field 

expressed in the form 

∇ B = 0  (3) 

because the curl of the divergence of any vector is always zero. 

Then, by using the Coulomb law in field form together with the Ampere law as follows 

∇ E =
1
εo

ρq  (4) 

co
2∇ × B =

1
εo

ρq
A

βq
+

∂E

∂t
 (5) 

where E  is the electric field in units of N C[ ]  , εo  is the permittivity of vacuum in units of 

F m[ ], t  is time in units of s[ ], and co  is the speed of light in free space. The Faraday law of 

induction is presented in the form 

mq

ρqA βq C m2s 
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 (6) 

Equations (3), (4), (5), and (6) form the Maxwell equations governing electromagnetic 

phenomena in free space. 

3. Converting the Governing Equations into a Maxwell form 

By applying the divergence operator on equation (5) yields 

0 =
1
εo

∇  ρq
A

βq







+

∂

∂t
∇ E( ) (7) 

Substituting (4) into (7) leads to 

∂ ρq
∂t

+ ∇  ρq
A

βq







= 0  (8) 

Equation (8) represents the conservation of electric charge, or the electric charge continuity 

equation while A βq  represents the electric charge velocity.  

Also, the following equation for the conservation of the electromagnetic momentum leads 

directly to Faraday law of induction (6), as follows 

ρq
∂A

∂ t
+ A ∇( )A









 = −co

2βq∇ρq + ρqE  (9) 

Dividing equation (9) by ρq  produces 

∂A

∂ t
+ A ∇( )A = −∇ sqco

2βq ln ρq  + E  (10) 

where sq = q q = +1 if q > 0 & −1 if q < 0 . By using the following identity 

A ∇( )A =
1
2

∇ A A( ) − A× ∇ × A( ) (11) 

into equation (10) yields 

∂A

∂ t
= −∇ sqco

2βq ln ρq +
1
2
A A( )





+ A× ∇ × A( ) + E (12) 

Taking the curl ( ∇ × ) of equation (12) and using equation (2) leads to 

−
∂B

∂t
= ∇ × E − ∇ × A× B[ ]  (13) 

Subject to satisfying the following generalized Beltrami condition (Rousseaux et al. [12], Yoshida 

et al.[13], Mahajan and Yoshida [14], Gerner [15], Amari et al. [16], Bhattacharjee [17], Lakhatakia [18]) 

∇ × A× B[ ] = 0  (14) 

equation (13) converts into the Faraday law of induction in the form 

∇ × E = −
∂B

∂t
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−
∂B

∂t
= ∇ × E  (15) 

The generalized Beltrami condition (in fluid dynamics) is satisfied when one of the following 

occurs 

(a) B = −∇ × A = 0  (16) 

then the flow is irrotational, and in electromagnetism it implies no magnetic field. 

(b) A× B = 0  (17) 

i.e. the electromagnetic vector potential A  and the magnetic field B  are parallel (Beltrami 

condition). In this case A cannot be two-dimensional. 

(c) ∇ × A× B[ ] = 0   (14) 

which is the generalized Beltrami condition implying the existence of a scalar potential ψ  such that 

A× B = ∇ψ  (18)

satisfying identically the generalized Beltrami condition (14). This scalar potential can be in particular 

(not necessarily) 

ψ = −
1
2
A A (19)

in which case (18) converts by using (1) and (19) into 

A× ∇ × A( ) = ∇
1
2
A A





 (20)

In all these cases the term A ∇( )A  in equations (9) and (10) vanishes. 

Equations (8) and (9) that emerged directly from the Maxwell equations have a form identical to 

the compressible inviscid Navier-Stokes equations from fluid dynamics with following equivalence 

ρ → ρq , , , g→ E , , where  is the 

velocity vector,  is the vorticity vector, g  is the variable gravitational field, and  is the speed 

of propagation of the pressure wave p  , i.e. by using a linear constitutive relationship between 

pressure and mass density 

 (21)

Therefore if the vector-potential A is linearly related to the electric charge velocity in the form 

 (22)

identifying the electromagnetic momentum ρqA  to the electric current density (charge flux) Jq  

A m2  , i.e.  

 (23)

and assuming a linear relationship between the mass density and the charge density, such as the one 

presented in equation (3), and if the generalized Beltrami condition (14) is satisfied, then by using 

(21), equations (8) and (9) become 
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 (24)

 (25)

Equations (24) and (25) are the compressible inviscid Navier-Stokes equations for a charged 

continuum identical to a fluid. They were derived directly from the Maxwell equations subject to the 

generalized Beltrami condition and assuming linear relationships between the electromagnetic vector 

potential A and charge velocity , and between the mass density ρ  and charge density ρq . 

This result may be linked to the Aharonov-Bohm effect (Aharonov and Bohm [8, 9]), which 

conceptually challenges the view that expressing the Maxwell equations in terms of potentials and 

hence converting them into a gauge theory is only a mathematical reformulation with no physical 

consequences because the scalar and vector potentials have no apparent physical significance. The 

result presented in the present paper supports Aharonov and Bohm [8, 9] claim of the physicality of 

electromagnetic potentials Φ = sqco
2βq ln ρq +

1
2
A A( )  and A by illustrating that the former is 

related to a reduced pressure, while the latter is related to the electric charge velocity, as shown above. 

4. Conclusions 

The Maxwell equations were shown to convert into the compressible inviscid Navier-Stokes 

equations subject to the magnetic field satisfying a generalized Beltrami condition. Since Maxwell 

equations are Lorentz invariant, the latter suggests that subject to the same condition the 

compressible inviscid Navier-Stokes equations are Lorentz invariant too. Finally, the results also 

support the claim that electromagnetic potentials have physical significance as demonstrated by 

Aharonov-Bohm effect, and are not only a convenient mathematical formulation.  
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