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Abstract: Maxwell equations governing electromagnetic effects are being shown to be equivalent to
the compressible inviscid Navier-Stokes equations applicable in fluid dynamics and representing
conservation of mass and linear momentum. The latter applies subject to a generalized Beltrami
condition to be satisfied by the magnetic field. This equivalence indicates that the compressible
inviscid Navier-Stokes equations are Lorentz invariant as they derive directly from the Lorentz
invariant Maxwell equations subject to the same Beltrami condition. In addition, the derivation and
results provide support for the claim that electromagnetic potentials have physical significance as
demonstrated by Aharonov-Bohm effect, and are not only a convenient mathematical formulation.
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1. Introduction

Electromagnetic effects are related to fluid dynamics via applications of Magneto-Hydro-
Dynamics (MHD) to a variety of fields, such as liquid metals [1-4], nanofluids [5,6], non-Newtonian
fluids [7], and many others.

Electromagnetic phenomena, such as electromagnetic waves propagate in space following the
solution of Maxwell equations. The latter are a set of four partial differential equations for the
unknown variables of the electric field, magnetic field, charge density, and current density (charge
flux). The solution to these set of equations is typically obtained via a gauge theory, i.e. introducing
a scalar and a vector potential related to the electric and magnetic fields and solving the resulting
wave equations for these potentials. Once the solution for the potentials is obtained a reverse
transformation leads to the solution to the electric and magnetic fields. This procedure is similar to
introducing scalar and vector potentials in attempting to solve fluid dynamics problems, although
the latter are typically much more difficult. Also the introduction of a stream function for solving
two-dimensional fluid dynamics flows is also a similar procedure, although in this case much simpler
than the electromagnetic one. In all these cases the introduced potentials are defined up to an
integrating constant or for a vector potential, up to a gradient of an arbitrary function. The latter has
no significance as long as the physically significant variables are the electromagnetic fields and not
the potentials. Therefore, the introduction of the potentials was seen as a convenient mathematical
solution method and the potentials themselves were not given any physical interpretation.
Aharonov-Bohm effect (Aharonov and Bohm [8, 9]) which was confirmed both theoretically as well
as experimentally suggested the opposite, i.e. that the potentials do have physical significance,
although no explanation for the latter nor the precise physical meaning of these potentials was
provided.

Vadasz [10] showed that a continuous mass distribution for a general variable gravitational field

g(l‘ ,x) is equivalent to a form identical to Maxwell equations from electromagnetism, subject to a
modified Beltrami condition. Attempts at deriving equations thar are identical to Maxwell equations

for continuous media have been presented particularly with application to fluid dynamics. For
example, Marmanis [11] uses an equation derived by Lamb [12] from the incompressible Navier-
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Stokes equations and uses it in deriving a new theory of turbulence. A similar approach was used by
Sridhar [13] in order to “formulate the problem of advection and diffusion of a passive tracer by an
arbitrary, incompressible velocity field”, to find that the “problem is identical to the diffusive
dynamics of a charged particle in electromagnetic fields constructed from the velocity field.”
Rousseaux et al. [14] tested experimentally and theoretically the concept of “hydrodynamic charge”
in the case of a “coherent structure such as the Burgers vortex”. These attempts apply to the
incompressible fluid Navier-Stokes equations without the gravitational field and result in a form
identical to Maxwell equations having the following correspondence: electromagnetic vector
potential converts into velocity, magnetic field converts into vorticity, electric field converts into

Lamb vector (I = —v XV Xv), where v (t ,x) is the velocity, and the electric charge converts into a
“hydrodynamic charge” ¢,, identical to the divergence of the Lamb vector, i.e. g, =V *I.

The present paper shows that Maxwell equations in free space governing electromagnetic
phenomena are equivalent to the compressible inviscid Navier-Stokes equations subject to a
generalized Beltrami condition. Consequently, a clear explanation of what physical meaning could
be associated with these potentials is provided at the end of the paper.

2. Governing Equations

The following derivations use the definition of the mass to charge density ratio, assumed
constant and assumed to take a linear form such as

P m
B =—=—L=const. |kg/C 1
4 | Pq| q [ ] )
where p is the mass density I:kg/ m3:|related to the total mass m,, and p, I:C/ m3] is the

electric charge density related to the electric charge ¢ .

Then the definition of the electromagnetic momentum density (i.e. electromagnetic momentum

per unit volume) is introduced in the form qu / ,Bq carrying units of [C/ mzs:l, and where the
vector A [N/ A] is related to the magnetic field B [T] by the relationship

B=-VxA4 )

The electromagnetic momentum density will be shown to be identical to the current density

(charge flux) J, =Py A/ B ; [C/ mzs:l. Equation (1) produces the Gauss law for the magnetic field
expressed in the form

VeB=0 (3)

because the curl of the divergence of any vector is always zero.
Then, by using the Coulomb law in field form together with the Ampere law as follows

1

VOE:g_Dp" (4)
1 A4 OE
VXB=—p —+—
C Eopqﬂq 37 (5)

where E is the electric field in units of [N/ C] , €, is the permittivity of vacuum in units of

[F/ m], t is time in units of [S], and ¢, is the speed of light in free space. The Faraday law of

induction is presented in the form
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Equations (3), (4), (5), and (6) form the Maxwell equations governing electromagnetic
phenomena in free space.

3. Converting the Governing Equations into a Maxwell form

By applying the divergence operator on equation (5) yields

1o 4) 9
0=—Vo p —|+—(VeE
c V’Qﬂq)+at( ) )
Substituting (4) into (7) leads to
ap, [ 4)
+Vel p—1=0 (8)
TR Y'Y

Equation (8) represents the conservation of electric charge, or the electric charge continuity
equation while A4 / ﬂq represents the electric charge velocity.

Also, the following equation for the conservation of the electromagnetic momentum leads
directly to Faraday law of induction (6), as follows

0A
pq[¥+(AOV)A}=—cfﬂquq +p,E )

Dividing equation (9) by p, produces

9
a_‘;l+(AoV)A:—V[sqc§ﬂq In|p,| |+ E (10)

where 5, =¢ /lg|=+1if ¢ >0 & —1if g < 0. By using the following identity

(AOV)A:%V(AOA)—AX(VXA) a
into equation (10) yields

94
ot

o

:—V{sq&ﬁq ln‘pq‘+%(A0A)}+Ax(V><A)+E (12)

Taking the curl (V X) of equation (12) and using equation (2) leads to

_aa_’::vXE_vX[AxB] (13)

Subject to satisfying the following generalized Beltrami condition (Rousseaux ef al. [12], Yoshida
et al.[13], Mahajan and Yoshida [14], Gerner [15], Amari et al. [16], Bhattacharjee [17], Lakhatakia [18])

Vx[AxB]=0 (14)

equation (13) converts into the Faraday law of induction in the form
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4
- aa—l: =VxE (15)
The generalized Beltrami condition (in fluid dynamics) is satisfied when one of the following
occurs
(@ B=-VxA4=0 (16)
then the flow is irrotational, and in electromagnetism it implies no magnetic field.
(b) AXB=0 (17)

i.e. the electromagnetic vector potential A4 and the magnetic field B are parallel (Beltrami
condition). In this case A4 cannot be two-dimensional.

© Vx[4AxB]=0 (14)
which is the generalized Beltrami condition implying the existence of a scalar potential {/ such that
AxB=Vy (18)
satisfying identically the generalized Beltrami condition (14). This scalar potential can be in particular
(not necessarily)
1
w=——A°A (19)
2
in which case (18) converts by using (1) and (19) into

Ax(VxA):VGAoA] (20)

In all these cases the term (A C*V)A in equations (9) and (10) vanishes.

Equations (8) and (9) that emerged directly from the Maxwell equations have a form identical to
the compressible inviscid Navier-Stokes equations from fluid dynamics with following equivalence
PP, ’U%A/ﬁq , v, >c., 8 FE, E=-Vxv—>B=-VXA, where v is the

velocity vector, 6 is the vorticity vector, g is the variable gravitational field, and v, is the speed
of propagation of the pressure wave p , i.e. by using a linear constitutive relationship between

pressure and mass density

2
p=p,+v,(p=p,) @)
Therefore if the vector-potential A is linearly related to the electric charge velocity in the form
A
V=0 (22)

B,
identifying the electromagnetic momentum qu to the electric current density (charge flux) J q
[A/ m> :I, ie.
B A
Jq—pqv_pqﬁ_ (23)
q

and assuming a linear relationship between the mass density and the charge density, such as the one
presented in equation (3), and if the generalized Beltrami condition (14) is satisfied, then by using
(21), equations (8) and (9) become
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5
0
a—’:+V-(pv)=0 (24)
v
p $+(v-V)v =-Vp+p,E (25)

Equations (24) and (25) are the compressible inviscid Navier-Stokes equations for a charged
continuum identical to a fluid. They were derived directly from the Maxwell equations subject to the
generalized Beltrami condition and assuming linear relationships between the electromagnetic vector
potential A and charge velocity ¥, and between the mass density p and charge density P,

This result may be linked to the Aharonov-Bohm effect (Aharonov and Bohm [8, 9]), which
conceptually challenges the view that expressing the Maxwell equations in terms of potentials and
hence converting them into a gauge theory is only a mathematical reformulation with no physical
consequences because the scalar and vector potentials have no apparent physical significance. The
result presented in the present paper supports Aharonov and Bohm [8, 9] claim of the physicality of

1
electromagnetic potentials @ = s qcf B, ln‘ pq‘ + E(A ©A) and A by illustrating that the former is

related to a reduced pressure, while the latter is related to the electric charge velocity, as shown above.

4. Conclusions

The Maxwell equations were shown to convert into the compressible inviscid Navier-Stokes
equations subject to the magnetic field satisfying a generalized Beltrami condition. Since Maxwell
equations are Lorentz invariant, the latter suggests that subject to the same condition the
compressible inviscid Navier-Stokes equations are Lorentz invariant too. Finally, the results also
support the claim that electromagnetic potentials have physical significance as demonstrated by
Aharonov-Bohm effect, and are not only a convenient mathematical formulation.
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