
Technical Note

Not peer-reviewed version

Controls-kt, a Next Generation

Control System

Alexander Nozik 

*

Posted Date: 29 August 2023

doi: 10.20944/preprints202308.1746.v2

Keywords: SCADA; scientific software; Kotlin language

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2770053
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Controls-kt, a Next Generation Control System

Alexander Nozik

Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian

Federation; nozik.aa@mipt.ru

Abstract: In this article, we discuss problems that exist in modern SCADA systems and present a

Controls-kt (formerly DataForge-controls) software development kit, that allows both to create a

control system from scratch and provide integration with existing systems via Magix specification

and connector.
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1. Introduction

Supervisory control and data acquisition (SCADA) systems are a necessary part of any scientific

experiment or industrial factory. Half of the century of development produced a lot of different

SCADA systems with different organization logic and different technologies. Sadly, this abundance

stalls the development of a new generation of those tools. Modern SCADA is required to be scaleable

both up (with more devices and a more robust distributed communication structure) and down (using

the same systems for small setups and laboratory prototypes). Modern information technology gives a

lot of tools to work with data: communication, storage, analysis, visualization, etc., but most current

SCADA systems use outdated communication protocols and system design, which do not allow to use

modern tools to the full extent.

Another problem is that existing systems are not designed to work with each other. If two parts

of a system are implemented using different SCADA systems, it is usually impossible to make them

seamlessly work together

In this article, we discuss the design principles of modern SCADA systems and present

the Controls-kt software development kit, designed to provide solutions to both scalability and

interoperability issues. The system consists of two parts:

• Controls-kt [1] core and modules, that allows creating device servers (software modules that

provide communication with a physical device) with minimal effort.
• An implementation of Magix specification [2] discussed in [3].

Those two parts together allow the creation of both compact centralized systems for small

experiments and large distributed control systems. One of the key points of the design is that both

Controls-kt and its Magix implementation rely on existing industrial technologies and are easily

adaptable to other technologies as well. For example, Magix could be used to bring together different

systems by creating a simple event loop adapter for each of them.

The crucial feature of both Controls-kt and Magix in comparison with widely used systems is

that they utilize an asynchronous communication approach that is used in most modern web services

instead of a synchronous approach used in device communication.

2. SCADA systems by scale and application

SCADA systems are used at different levels of measuring, technological and production processes.

As a result, they differ in the principle of their operation, as well as in scale and structure. SCADA can

be divided according to the organization of device connection into:

• Centralized.
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• Distributed.

Centralized systems use one central control unit, often integrated with the database and the

operator’s workstation. This central node directly manages all processes. Distributed systems consist

of several interacting nodes. In such systems, operator workstations are one of the possible nodes.

Centralized systems are easier to set up and maintain and are used in small measuring systems as well

as in compact productions. Centralized control systems are also used as on-board control systems for

autonomous hardware systems (such as complex medical equipment).

Distributed systems are essential to keep large systems and processes running. The use of

centralized systems at such facilities is impossible due to the limitations of the communicative and

computational capabilities of individual nodes, as well as due to the need to ensure the modularity of

systems.

One can also classify SCADA by the type of message delivery as either synchronous or

asynchronous. Synchronous systems are based on client-server architecture. A client forms a request

and sends it to a server. The client waits (blocks an execution thread) until the response is received.

Modern technologies like coroutines allow to do waiting without blocking actual physical OS thread

([4]), but the important part is that a client could get the value only by requesting it first. Synchronous

systems usually use peer-to-peer communication, meaning that one client communicates only with one

server at a time. It means that to collect data from several servers, one needs to call them sequentially.

Asynchronous communication implies that the device independently sends messages about

changes in its properties to the control unit or other devices and receives similar messages. At the

same time, messages from different devices can come to the control node in any order. Asynchronous

systems are characterized by the concept of a subscription rather than a request. A subscription

happens when one participant in the communication subscribes to changes in a particular parameter

and receives all messages about changes in this parameter without additional requests.

Synchronous systems are less demanding in terms of software design and are more common.

In addition, synchronous communication is convenient for identifying breakdowns in the message

delivery system (if the answer does not arrive within the timeout, then the communication is broken

or the device is out of order). However, synchronous systems have some limitations. For example,

they have a scaling limit. When a single node (for example, a user’s workstation) works with a large

number of nodes synchronously, one must wait for the results of all requests on all properties before

repeating the polling cycle. Also, the use of more complex communication schemes (for example,

when one device accesses another device bypassing the central node) can lead to the "locking" of the

system, when several requests are waiting for each other to be executed so none of them could move

forward.

One should notice that there may be different combinations of these variants. For example,

centralized synchronous systems are used in small setups, centralized asynchronous systems are used

in smart homes and onboard vehicle systems, and distributed synchronous systems are used in the

control of large industries. Distributed asynchronous systems are widely used in web technologies

and data processing, but so far they are rarely found in SCADA.

3. SCADA architecture

SCADA communication with a device could be done in two ways:

• Communicate with devices directly (using the protocol provided by the device).
• Interact with devices through an intermediate hardware link in the face of a programmable logic

controller (or PLC).

Most of the systems support both modes. They could communicate with PLC with PLC-specific

protocols and with devices using device-specific protocols. Each device or PLC type requires a specific

software module, which is used for communication. Those modules are frequently called Device

Servers.
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A PLC is a hardware solution that allows you to connect to devices that read information and

control the process (so-called I/O modules) and to a higher-level process control system on the one

hand. PLCs solve two key tasks:

• Standardization and unification of communication with I/O modules. This feature is important

because device manufacturers use different specifications and communication protocols. Being

able to simply plug these devices into a PLC without having to create additional device drivers is

important for the industry.
• The PLC can be set up with simple process control instructions that can operate autonomously

even in the event of an accident in the control system ([5]).

The use of PLCs is justified in systems that control hazardous production, as well as in systems

where control is carried out in real-time and it is important to accurately observe the time of

technological processes (with an accuracy of 50 ms or better).

The use of PLCs is not justified in laboratory setups, as well as in systems where complex

instruments with integrated controllers are used.

One of the major problems of SCADA systems is the complexity of device server development.

This is the reason, SCADA engineers tend to replace software solutions with much more expensive

hardware.

4. Device server design

The device server is the primary abstraction used in defining the interaction between software

and hardware. All modern open systems (TANGO, DOOCS, etc) define it in more or less the same

terms:

• Device contains some properties (called attributes in TANGO).
• Properties have fixed types: numbers, strings, booleans, and lists of all of the above. Usually, there

is also an option to define custom types as combinations of basic types.
• Properties could be writeable or read-only.
• Some systems ([6]) also allow to subscribe on properties changes. In this case, the device reports

updates at fixed intervals or following device logic.
• In some systems it is also possible to define actions (or commands), which have an argument and

a result (both use types that are available for properties).

The important difference between the subscription model compared to property model is that

in the property model client decides at which rate to read the property. In a subscription model, the

decision about the rate lies with the device server itself. The device server also does not report values

if they have not changed, which could limit the total number of messages.

4.1. Device property design

Let’s look into device property in more detail. To properly understand its dynamics we must

separate three different facets of a property (see Figure 1:

• Remote state. The value that is sent via network and which is observed in monitor software and

database.
• Logical state. The actual value is passed to a property setter or read from the property getter.
• Physical state. The state of a physical device that corresponds to a given property value.
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Figure 1. Levels of property definition: remote, logical and physical, and typical communication

procedures.

All those states could diverge. For example, let’s assume that we have a motor with a PID

regulator. A remote user sends a target value to the device. The value could be outside of the possible

range. In this case, either the logical value will be set to the appropriate threshold or the set will fail. In

both cases, remote value will have a state, different from logical value. Even if the event is propagated

back to the caller, there will be differences during that process. Now, logical value could diverge from

physical value either because of limited precision or because of physical device inertia. Also, it is

possible that physical value changes in time so the value that is "remembered" by the device server is

different from the actual value.

The general way to treat the divergence problem is to make all calls synchronous. It means that

when a remote process calls the device server, it waits for the device server’s confirmation before

confirming the change. The device server in turn waits for the device’s physical value to stabilize

before confirming the change to the remote caller. This approach imposes a lot of limitations. The

main one is that remote must wait for the whole process to finish and change states sequentially for

all devices and all properties. Another limitation is that the remote caller must know all properties it

wants to request in advance. It is a serious limiting factor for database connections and visualization.

A solution to the problem that does not rely on synchronization is to allow different states to

diverge and turn the control system into a fully-fledged distributed system. Such systems are studied

in computer science ([7]). Terms of eventual consistency could not be fully applied to devices because

the device’s state changes on its own in time. Even if the user stops sending signals, the physical state

will change over time. Still, one can ensure that all changes in the logical state are eventually sent to

remote listeners.
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To make the model more transparent, it is better to discuss changes in terms of events rather than

the state (asynchronous communication). Each state change event contains the following fields:

• the name of the property,
• the time of the change,
• the value of the property after the change.

It is also possible to store the value before the change to establish proper history, but it significantly

increases the volume of communication.

The external read or write operation also could be executed by receiving appropriate events.

The difference between asynchronous request-response communication and event-based requests is

that event is always sent in fire-and-forget mode, meaning that the caller does not expect immediate

response, it triggers the generation of an opposing event, that could or could not happen.

Subscription capabilities ([8]) are available in most modern SCADA systems ([9,10]), but they do

not embrace the event-based model fully.

4.2. Conversion between asynchronous and synchronous modes

Asynchronous communication does not cover all possible usage scenarios. One important case is

synchronous communication between the device server and the device. Many devices do not support

asynchronous messaging, so they need to be queried synchronously. In this case, the device server

generates or receives a message to read or write the state, then creates a waiting task that blocks

a thread and waits for the device response. The task then sends a message with the result of the

measurement. It usually suffices to have only one thread per synchronous device (separate requests

are processed synchronously) so the blocking is occurring only once in the whole system.

Another case is when a remote user or service wants to read or write state synchronously. In

this case, the service sends a request to read or write a state and creates a thread that suspends until

the client receives a message with a specific property value. One must note that a message with a

property value is not a necessary response to the request message, it could be a part of a regular update.

Additional limitations could be imposed to avoid using stale property value updates. Using coroutines

([4,11]) in this scenario could significantly limit the resource requirements because coroutines do not

need to block a thread.

Figure 2 shows the scheme for converting asynchronous events to synchronous calls and back.

Figure 2. Conversion of synchronous request to an asynchronous one.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1746.v2

https://doi.org/10.20944/preprints202308.1746.v2


6 of 18

4.3. Property value types and communication

One of the major problems in SCADA system design is defining a way to propagate custom

property values between remote nodes (this problem is not relevant for fully centralized systems).

Most known systems use schema-based communication protocols:

• TANGO-controls uses CORBA industrial standard [12].
• DOOCS uses Sun ONC protocol [13].
• EPICS uses its unique protocol.
• Simatic WinCC primarily uses different versions of the OPC ecosystem, which also has an option

of defining custom schemas.

The schema-based protocol assumes that both communication participants have access to a

message schema. The message is serialized and deserialized according to this schema. Schema allows

the production of a more compact binary representation (because it does not require field names, only

their index), it also allows to validate input and work with objects in remote procedure call (RPC) mode.

This idea was especially appealing in the 2000s when it allowed to apply general OOP techniques to

remote objects.

Schema-based protocol has a lot of problems though. Especially when used in SCADA systems.

Most of the schema-based approach benefits could be realized if all communication participants

have access to all schemas in compile-time. This is not the case for distributed SCADA, where new

devices could be added after some parts of the systems are up and running. The second problem is

that schema negotiations require a central schema repository (so all participants have access to all

schemas). Negotiating schema synchronization adds a lot of complexity to the system (it could be

seen in TANGO-controls and DOOCS). In the end even after schema negotiation, one needs to access

resulting deserialized objects via field names because objects are not accessible in compile-time.

An alternative is a tree-based property representation, where an object is represented as a tree of

basic value types (like numbers, strings, booleans, and arrays).

The common argument that binary schema-based protocols are much faster and more compact

than schema-less protocols is not quite correct. The direct measurement shows that there is no clear

advantage of schema-based protocols in this regard: [14]. Using schema-less binary protocol also does

not improve performance much over string-based formats (but impacts readability): [15].

Unlike regular in-memory structures, value trees could be traversed and compared without the

use of reflection. It is also possible to compute a difference between two value-tree structures.

5. Controls-kt framework

Controls-kt framework ([1]) is designed to simplify the creation of devices servers and to provide

ways to implement event-based (asynchronous) communicate between devices and with services like

visualization and data storage.

The initial prototype was developed for Troitsk nu-mass experiment ([16]). The industrial systems

could not be used in the experiment because it involved unique device and workflow. Controls-kt

(called DataForge-control at that moment) was planned to be used in Baby-IAXO experiment to

integrate custom devices with DOOCS system ([17]).

Controls-kt is written in Kotlin language ([18]). It allows to use modern language, build tools

and libraries to easily create and maintain device servers. A unique advantage of Kotlin language

is the Kotlin-multiplatform technology, that allows creating JVM, JS, Wasm distributions as well as

platfrom-specific native binaries. So different parts of the SCADA system could be integrated with

different platforms, using the same language. Kotlin is used a lot in the web backend development, so

there are a lot of industrial tools for working with events and data streams available.

5.1. Device API overview

The simplified version of device API used in Controls-kt showed in the following code:
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public interface Device{

/**

* Read the physical state of property and

* update/push notifications if needed.

*/

public suspend fun readProperty(propertyName: String): Meta

/**

* Get the logical state of property or return null if it is invalid

*/

public fun getProperty(propertyName: String): Meta?

/**

* Invalidate property (set logical state to invalid)

*/

public suspend fun invalidate(propertyName: String)

/**

* Set property [value] for a property with name [propertyName].

*/

public suspend fun writeProperty(propertyName: String, value: Meta)

/**

* A subscription-based [Flow] of [DeviceMessage] provided by device.

* The flow is guaranteed to be readable multiple times.

*/

public val messageFlow: Flow<DeviceMessage>

/**

* Send an action request and suspend caller

* while request is being processed.

* Could return null if request does not return a meaningful answer.

*/

public suspend fun execute(

actionName: String,

argument: Meta? = null

): Meta?

}

Meta is a read-only value tree (see [19] and [20]) that allows representing single values (numbers,

strings, booleans), arrays, and composite structures. Meta objects could be serialized to JSON, XML, or

CBOR (other tree-like schema-less formats are also possible). Meta could be accessed as a dynamic

tree. DataForge also has tools to provide soft schema object, that allows to read and write Meta in a

type-safe way. Soft schema is not required for serialization so it is not necessary to synchronize across

nodes.

The difference between readProperty and getProperty is that read forces the device to

synchronize the physical state (and update the logical state if synchronization was successful), whereas

get returns the current logical value and null if it is not yet computed. invalidate method discards

previously computed logical state so the next call to getProperty returns null, which forces to use

readProperty to perform synchronization.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2023                   doi:10.20944/preprints202308.1746.v2

https://doi.org/10.20944/preprints202308.1746.v2


8 of 18

The messageFlow property returns a reactive stream ([21]) that in general contains not only

property change events but also other device messages like lifecycle events (if they are defined). The

device server could emit new events according to its internal logic. Unlike property-based subscriptions

in TANGO-controls, Controls-kt shares all events in a single Flow with multiple subscriptions. A

consumer could then filter and transform events using a filter-map-reduce methodology ([22]).

5.2. Device server implementation

One of the hardest things in mastering the SCADA system is to create a device server. For example,

the TANGO server requires extensive infrastructure (configuration database, history database) as well

as extensive study of its concepts ([23]). Currently, its generation is simplified via the POGO tool ([24]).

Examples of device servers could be found in [25].

In Controls-kt, one can directly implement and interface mentioned above, or use a helper device

definition via specification. The specification is a singleton template that defines properties and actions

without storing resources associated with the physical device like connection details. It allows to

implement several devices with the same external API but different connection details.

/**

* An connection-agnostic interface to access the physical state

*/

interface IDemoDevice: Device {

var timeScaleState: Double

var sinScaleState: Double

var cosScaleState: Double

fun time(): Instant = Instant.now()

fun sinValue(): Double

fun cosValue(): Double

}

/**

* A specification that defines properties

*/

object DemoDeviceSpec : DeviceSpec<IDemoDevice>() {

val timeScale by mutableProperty(

MetaConverter.double,

IDemoDevice::timeScaleState

)

val sinScale by mutableProperty(

MetaConverter.double,

IDemoDevice::sinScaleState

)

val cosScale by mutableProperty(

MetaConverter.double,

IDemoDevice::cosScaleState

)

val sin by doubleProperty(read = IDemoDevice::sinValue)

val cos by doubleProperty(read = IDemoDevice::cosValue)

val resetScale by unitAction {
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write(timeScale, 5000.0)

write(sinScale, 1.0)

write(cosScale, 1.0)

}

override suspend fun DemoDevice.onOpen() {

doRecurring(50.milliseconds) {

read(sin)

read(cos)

}

}

}

/**

* An implementation of device for specific connection (or virtual)

*/

class DemoDevice(context: Context, meta: Meta) :

DeviceBySpec<IDemoDevice>(Companion, context, meta), IDemoDevice {

override fun sinValue(): Double = sin(

time().toEpochMilli().toDouble() / timeScaleState

) * sinScaleState

override fun cosValue(): Double = cos(

time().toEpochMilli().toDouble() / timeScaleState

) * cosScaleState

/*...*/

}

DemoDeviceSpec is a singleton object, that defines the following specifications:

• Three mutable properties: timeScale, sinScale and cosScale. Mutable properties could be read

and written. Meta converter ensures that one could use a type-safe way to access them.
• Two mutable properties: sin and cos that could not be written, but could only be read.
• An action resetScale that has no arguments or outputs and just resets the scale.

It also defines an initialization logic that forces re-read of sin and cos values each 50 ms. This

behavior does not depend on a specific implementation of sinValue and cosValue readers. The

DemoDevice class implements those properties (in the current implementation, it just computes the

sine and cosine of current time in milliseconds, adjusted by scale). Another implementation could do

the same by requesting values from a device.

The reading and writing of properties could be done like:

demoDevice.read(sin)

demoDevice.write(sinScale, 2.0)

5.3. Implementation of device communication protocols in Controls-kt

One of the most complicated tasks in developing a device server is to support a communication

protocol provided by a device. In Controls-kt it is supported by dedicated modules to support the

most frequently used protocols:

• Direct serial interface. The Controls-serial module provides synchronous and asynchronous

phrase-based communication with a device.
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• Network interfaces. Controls-kt supports synchronous and asynchronous communication with

raw TCP and UDP protocols. There are two implementations of such communication: one uses

JVM internal implementations and is available only on JVM. Another one uses the Ktor-network

module ([26]) and will be available also for native compilation in the future.
• Modbus. Controls-Modbus module supports Modbus-RTU and Modbus-TCP protocols via j2mod

library ([27]). Modbus is the most used protocol for low-level communication. The Controls-kt

device could be used both as a Modbus-master (client) and Modbus-slave (server). The interaction

is based on a type-safe registry mapping.
• OPC-UA. Controls-kt supports OPC-UA client and server modes with Eclipse Milo ([28]). In a

server mode Controls-kt devices server connects to a device and translated OPC-UA properties to

DataForge Meta objects. In server mode, it exposes the Controls-kt device server as an OPC-UA

device.

5.4. A real-life example of stand-alone device server

One of the current industrial applications of the Controls-kt framework is the software for the

adjustment of civil ship-based satellite antennas. The purpose of the software is to perform automatic

adjustment of an antenna to compensate for the ship movement and automatically search for the

proper satellite (the work is performed in MIPT under the research center for telecommunication).

The antenna control structure is the following (see Figure 3):

• Antenna motors are controlled directly with a PCB based on an STM32 processor ([29]). The

embedded software is written in C++ and performs basic movement and gyro-stabilization tasks.
• STM32 board is connected via 2-wire RS485 interface to Raspberry Pi 4 microcomputer ([30]). The

communication is done with Modbus-RTU protocol.
• The Controls-kt software runs on Raspberry Pi JVM and consists of several modules:

– A Modbus registry that allows to access Modbus properties by name instead of register

number and allows storing complex objects in Modbus registers.
– A device server that wraps the registry (the tools for creating this server are already included

in Controls-kt SDK).
– A tuner controller that allows measuring the level of the signal for automatic antenna position

adjustment.
– Visualization server based on VisionForge framework ([31]).

Figure 3. The architecture of two-part communication with ship-based satellite antenna. Fast

operation is programmed on an STM32 processor with a FreeRTOS operation system. The user

logic is implemented in several Controls-kt devices that communicate with each other.
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Figure Figure 4 shows a visualization dashboard for antenna tuning. The plot shows the signal

versus time. The 3D visualization shows the antenna direction. Controls allow to direct the antenna

manually.

Figure 4. The dashboard for the antenna controls program. It shows the 3D model of the antenna, the

plot of signal strength versus time, and simple manual controls for antenna position.

6. Distributed system implementation with Magix

In the previous section, we discussed the design for a Device server and the separation between

device specification and its implementation on specific hardware. But the device server alone does not

allow to create a distributed control system (DCS). The distribution is done via Magix specification

([2]), its design and applications are discussed in [3]. The Magix specification is based on reactive

streams principles and consists of an interface for the so-called endpoint:

public interface MagixEndpoint {

public fun subscribe(filter: MagixMessageFilter): Flow<MagixMessage>

public suspend fun broadcast(message: MagixMessage)

}

The subscribe method allows to subscribe receive all messages from all sources that correspond

to the given filter criterion. The broadcast method allows sending a message to all devices and

services, attached to the event loop. The MagixMessage is generally represented by JSON string (see

[2] for details).

{

"id":"string|number[optional, but desired]",

"parentId": "string|number[optional]",

"sourceEndpoint":"string[required]",

"format":"string[optional, but desired]",

"targetEndpoint":"string[optional]",

"user":"object[optional]",

"payload":"object[optional]"

}
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The message format does not specify the data that should be transmitted. The data is stored in the

payload field and could have different structures for different endpoint types. The only mandatory

field is the sourceEndpoint field that shows the origin endpoint of the message.

It is important to note that the communication with Magix does not follow client-server

conventions. Endpoints do not connect directly. Instead, they utilize a publish-subscribe pattern

([8]). In this architecture, each endpoint communicates only with a central bus/event loop and can

both asynchronously send and receive data. There is several advantages to this approach:

• Network discovery, which is one of the most complicated parts of traditional SCADA systems is

not required. The endpoint needs only the event loop connection address to run.
• The event loop is highly scalable. One can use modern industrial message brokers like Apache

Kafka ([32]), RabbitMQ ([33]), or ZMQ ([34]) to handle any amount of workload.
• A subscriber does not have to know all properties and devices it listens to. For example, the

database can record all events from all sources without the discovery of all of the devices.
• Asynchronous communication allows to avoid deadlocks and other synchronization issues ([35]).

In the case of Controls-kt, the Magix message payload is a JSON representation of DeviceMessage

mentioned above.

Asynchronous communication has two major deficiencies:

• Lack of delivery guarantees. Since messages are sent in asynchronous mode, the sender does

not receive a notification if the message is not delivered. The communication protocol usually

guarantees that the message is delivered to the event loop, but there are no simple ways to

determine if the message is received by the specific subscriber.
• Multiple replications of messages. The message is delivered to all subscribers, who have filters

that accept the message.

To provide delivery guarantees, one needs to employ additional services like heartbeat monitor

([36]) and watchdog([37]). Those services are currently not the part of official Magix specification, but

it is under development.

The replication could be limited by using proper filters. Another way is to segment the loop by

separating different parts of the loop with so-called portals, which are made of two Magix endpoints

connected to different loops with a filter between them

public fun CoroutineScope.launchMagixPortal(

firstEndpoint: MagixEndpoint,

secondEndpoint: MagixEndpoint,

forwardFilter: MagixMessageFilter = MagixMessageFilter.ALL,

backwardFilter: MagixMessageFilter = MagixMessageFilter.ALL,

): Job = launch {

firstEndpoint.subscribe(forwardFilter).onEach {

secondEndpoint.broadcast(it)

}.launchIn(this)

secondEndpoint.subscribe(backwardFilter).onEach {

firstEndpoint.broadcast(it)

}.launchIn(this)

}

6.1. Magix loop connections implementations

Magix loop is not limited by the specification to use specific protocols. Moreover, the default

Magix loop implementation provided with Controls-kt (which is not intended to be used for
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large-scale applications) uses several protocols. Currently, there are the following Magix loop client

implementations:

• RSocket ([38]). There are both endpoint and loop-side connections for RSocket. The protocol is

recommended for small and medium systems.
• ZMQ ([34,39]). The ZMQ protocol is much harder to handle, but it is optimized for

maximum performance and zero-copy communication. There are both endpoint and loop-side

implementations.
• HTTP/2 connection (using SSE for backward communication). This mode is implemented in [3],

but is not recommended for larger systems.
• RabbitMQ (AMQP protocol). Controls-kt supports only endpoints-side integration. The loop is

the RabbitMQ itself.
• MQTT. Controls-kt supports only endpoints-side integration.

It is also planned to add Apache Kafka ([32]) integration for large-scale industrial applications.

The principal scheme of Magix loop plugin connections is presented at Figure 5.

Figure 5. The principal scheme of Magix loop design and plugins.

6.2. Inter-system connections with Magix

One of the primary features of Magix specification is that it allows interconnecting different

systems. An example of such interconnection is shown in [3]. A system has an adapter to connect to a

Magix endpoint and the target system. Magix does not discriminate between clients and servers, but

target systems usually do. So one needs to implement a client-side connector (Magix connects to a

system as a client) and a much harder server-side connection (Magix loop-based device is connected to

a system as a device server). Currently, there are implementations for Controls-kt, TANGO-controls,

and DOOCS. It is planned to add client-side support for EPICS and Symatic WinCC in the future.

The adapter transforms system-specific message protocols into JSON and vice versa. To connect two

systems one needs only to implement a conversion tool that changes the payload to be compatible with

a target system. The tool could be implemented on the endpoint side (transform it in place, after the

message is received), or as a service that transforms all messages with a given format to a new format

and sends them back into the loop. The service is less reliable but allows one to connect different

systems to a single loop without knowing about each other.
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7. Visualization tools

Visualization tools are considered an important part of the SCADA system. Visualization systems

could be divided into two groups:

• No-code or low-code tools to design connections and system interactions. This kind of system is

frequently incorrectly called HMI (human-machine interface).
• Dashboards for monitoring and controlling specific devices and their measurements.

Neither Controls-kt nor Magix has a dedicated no-code system for the graphical design of

connections at the moment. Designing such a system is greatly time-consuming and requires tuning to

work with a specific set of devices. Instead, the ideology recommended to be used with Controls-kt

and Magix is to utilize modules’ flexibility to easily create custom solutions for specific cases. Some

examples could be found in the Controls-kt repository ([1]).

For dashboards, there are several different solutions:

• Waltz-controls framework ([40]) was specifically designed to work with Magix. It allows to design

of client-side dashboards using a variety of widgets.
• Plotly-kt framework ([41]) that allows both client-side and server-side dashboard management.
• VisionForge framework ([31]) that includes Plotly alongside tables, 3D rendering and other

capabilities (Figure 4 is created using VisionForge framework).
• Any other framework used for dashboards like Plotly-dash, Grafana, etc.

8. Performance tests for Magix and Controls-kt

One of the important requirements for the SCADA system is the ability to support many

connections with a high event rate. Performance usually could not be estimated from the software

code, so to measure performance we created a stand-alone demonstration module (the code for the

testing module could be found at [42]). The testing module consists of the following components:

• A virtual device specification with a single floating point value property, which gives a random

value on each read. A random value is used because the algorithm does not send an event if the

new value is the same as the one before read. The device is configured to re-read the value each 10

ms, which is considered a very good time sensitivity for DCS (the usual requirements start from

50 ms).
• A bootstrap procedure to load 100 such devices simultaneously.
• A Magix event loop, supports RSocket-TCP, RSocket-WS, and ZMQ protocols. The connection

with devices is done via RSocket-TCP protocol.
• A visualization service based on Plotly-kt, which is connected to the Magix loop with RSocket-WS.

The Plotly-kt uses WebSocket inside to communicate between the backend and frontend. The

visualization service receives all events from all devices, computes the difference between the

event origin time and the time it has been received (latency), then shows the maximum difference

accumulated in 200 ms time for each device.

All modules run inside the same JVM instance.

Figure 6 shows the typical latency for all devices which is about 3-4 ms. The latency occasionally

rises to 15 ms, which is still very good for DCS communication rates.
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Figure 6. The maximum latency for 100 devices simultaneously connected to a local event loop with a

100 Hz event rate each.

Figure 7 shows the CPU load for the whole setup (AMD Ryzen 5 3600 processor) in time. The CPU

load does not exceed 10% at each moment and is much lower on average. The memory consumption

does not exceed 300 Mb (even with JVM overhead) and could be improved further. Such low resource

requirements allow running the framework on microcomputers. We tested the same demonstrator

on Raspberry Pi 4. The relative CPU consumption is much higher and has risen to 50-70%, but is still

within the capabilities of the device.

Figure 7. The CPU load in time for a system of 100 devices with a 100 Hz event rate, loop service with

plugins, and visualization service

9. Conclusion

Controls-kt and Magix provide building blocks to create a SCADA system for both small-scale

experiments with custom hardware, and industrial setup. For smaller experiments, Controls-kt device

servers could be used in a stand-alone mode with local data storage (some data storage integrations

are already provided in the Controls-kt repository. For distributed systems, the Magix event loop

could be used both to connect separate Controls-kt nodes and to integrate it with different systems.
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On the one hand, current integrations allow us to communicate with existing SCADA systems, on

the other - asynchronous event-based communication requires a change of system design paradigm.

It forces the designer to think more about delivery guarantees and the ordering of messaging in

time-critical cases but allows much more flexibility, including online data processing and visualization

services and integration with cloud platforms.

Right now different parts of the Controls-kt framework are being tested in the industrial

environment. Research projects could benefit from it much more because research frequently requires

much more flexibility and custom devices and visualization tools. What is more important is that

open standards and cross-language and cross-platform support allow to significantly increase the

effectiveness of SCADA system developers and lower the requirements for dedicated engineers.

One of the more frequent arguments for using schema-based binary protocols like CORBA is

the performance limitations. Simple tests we performed show that there is no significant impact on

performance when using JSON-based protocol for communication, yet it increases readability and

more importantly, an ability to log and debug the communication. One could even use well-developed

industrial tools for that.

This development of the framework received no external funding. Some development tools was

provided free of charge by the JetBrains company. The development of antenna controller in section

5.4 was supported by the Federal Academic Leadership Program Priority 2030.

I would like to thank Igor Khokhriakov for his role in the development of the Magix standard,

Olga Merkulova for pushing the work forward; Peter Klimai and Victor Samoilov for contributing

directly to Controls-kt; all other kscience project contributors for their work.

I would also like to thank JetBrains Research organization for supporting kscience open-source

projects from 2019 to 2022.
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