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Abstract: Covariant integral quantization with rotational symmetry SO(3) is established for the

quantum motion on this group manifold, or, alternatively, for Gabor signal analysis on this group.

We revisit the action of the related (non-unitary) Weyl-Gabor operator on the Hilbert space of square

integrable functions on SO(3) and disclose a set of various properties. By selecting weight functions

on the corresponding discrete-continuous phase space, one derives related coherent states and

Wigner transform.
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1. Introduction

The group SO(3) offers particular interest in physics as it is the configuration space for the motion

of a rigid body fixed in a point. It is also of interest in signal analysis and processing. The rigid

rotor is a classic problem in classical and quantum mechanics, describing the dynamics of a rigid

body with its center of mass held fixed [1–4]. On the quantum level, it allows a consistent description

of the rotational spectra of molecules [5–17]. Moreover, using SO(3) as a configuration manifold

leads to several applications including texture analysis [18–20], protein-protein docking [21,22], air

tempertature control [23], structure of interest rates (in economics) [24], attitude of rigid body [25–30],

quantum information [31] or spherical image analysis [32,33].

This work can be viewed as the direct continuation of a previous ones devoted to the semi-discrete

cylinder [34,35]. We also draw our inspiration from the insightful works by Mukunda et al [36–38].

These authors were concerned by the finding of a consistent Wigner function for compact Lie groups,

and they illustrate their approach with the example of SU(2), the double covering of SO(3). For more

recent related works, see for instance [39,40] and references therein.

Here, we investigate the so-called covariant integral quantization of functions or distributions on

the phase space Γ = SO(3)× ŜO(3), where ŜO(3) is the discrete set {(l, m, n) , l ∈ N , −l ≤ m, n ≤ l}

labelling the matrix elements of the unitary irreducible representations (UIR) of SO(3) with respect

to the spherical harmonic Hilbertian basis of H = L2(S2, dΩ). In Section 2 we briefly introduce

the general concept of covariant integral quantization, and in Section 3 we apply it to the quantum

description of motion of a particle on the SO(3) manifold. In Section 4 we derive the (non-unitary)

Weyl-Gabor operator U acting on the Hilbert space K = L2(SO(3), dx) of square integrable functions

on the manifold SO(3) equipped with its Haar measure. This operator leads to a decomposition of the

identity on space K. In Section 5, we first define our quantization tools, namely a weight function ̟

defined on the phase space and the related integral operator M̟ acting on the representation space.

We then define the quantization map which transforms a function or distribution f on the phase

space Γ into an operator A̟
f acting on K. We compute the quantization of separable functions in

position and momentum, in momentum only, and position only. In Section 6 we compute the so-called

semi-classical portrait (or lower symbol) of the operator A̟
f and study how much they are closed
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to the original f . In Section 7, we give examples of quantum operators obtained through coherent

state quantization. In Section 8 we introduce a Wigner function built from what we define as the

squaring rotation operator. In the concluding section 9, we present some appealing investigations in the

continuation of the present work and we give some insights about the application of our formalism to

the analysis of signals defined on the manifold SO(3). Interesting formulae are given in Appendix A.

2. Resolution of the identity as the common guideline

Here we give an outline of integral quantization. Detailed presentations can be found in [41,42],

and more recently in [43–45] with references therein.

Given a measure space (X, µ) and a (separable) Hilbert space K, an operator-valued function

X ∋ x 7→ M(x) acting in K ,

resolves the identity operator ✶ in K with respect the measure µ if

∫

X
M(x)dµ(x) = ✶ (1)

holds in a weak sense.

In Signal Analysis, analysis and reconstruction are grounded in the application of (1) on a signal,

i.e., a vector in K

K ∋ |s〉
reconstruction

=
∫

X

analysis︷ ︸︸ ︷
M(x)|s〉dµ(x) .

In quantum formalism, integral quantization is grounded in the linear map of a function on X to an

operator in K

f (x) 7→
∫

X
f (x)M(x)dµ(x) = A f , 1 7→ ✶ .

2.1. Probabilistic content of integral quantization: semi-classical portraits

If the operators M(x) in ∫

X
M(x)dµ(x) = ✶ , (2)

are nonnegative, i.e., 〈φ|M(x)|φ〉 ≥ 0 for all x ∈ X, one says that they form a (normalised) positive

operator-valued measure (POVM) on X.

If they are further unit trace-class, i.e. tr(M(x)) = 1 for all x ∈ X, i.e., if the M(x)’s are density

operators, then the map

f (x) 7→ f̌ (x) := tr(M(x)A f ) =
∫

X
f (x′) tr(M(x)M(x′))dµ(x′) (3)

is a local averaging of the original f (x) (which can very singular, like the Dirac defined in (8) below)

with respect to the probability distribution on X,

x′ 7→ tr(M(x)M(x′)) . (4)

This averaging, or semi-classical portrait of the operator A f , is in general a regularisation, depending

of course on the topological nature of the measure space (X, µ) and the functional properties of the

M(x)’s.
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2.2. Classical limit

Consider a set of parameters κ and corresponding families of POVM Mκ(x) solving the identity

∫

X
Mκ(x)dµ(x) = ✶ , (5)

One says that the classical limit f (x) holds at κ0 if

f̌
κ
(x) :=

∫

X
f (x′) tr(Mκ(x)Mκ(x′))dµ(x′) → f (x) as κ → κ0 , (6)

where the convergence f̌ → f is defined in the sense of a certain topology.

Otherwise said, tr(Mκ(x)Mκ(x′)) tends to

tr(Mκ(x)Mκ(x′)) → δx(x′) (7)

where δx is a Dirac measure with respect to µ,

∫

X
f (x′) δx(x′)dµ(x′) = f (x) . (8)

Of course, these definitions should be given a rigorous mathematical sense, and nothing guarantees

the existence of such a limit.

3. Overview: Scalar fields on the rotation group SO(3), Fourier and Gabor transform

3.1. Quantum formalism on SO(3)

An element x of SO(3) can be parametrised in several ways.

a) In the Euler angles parametrization with ZYZ convention, α and γ are rotation angles about the

3rd axis and β is a rotation angle about the 2nd axis, with α ∈ [0, 2π], β ∈ [0, π], and γ ∈ [0, 2π].

The corresponding rotation matrix reads en terms of these one-dimensional matrices as:

R(α, β, γ) = R3(α)R2(β)R3(γ) ≡ x(α, β, γ) . (9)

The related (non normalised) Haar measure is given by

dx = dx(α, β, γ) = sin β dα dβ dγ , (10)

which yields Vol(SO(3)) = 8π2.
b) In the axis-angle parametrization, ω ∈ [0, 2π) is the anticlockwise (or right-hand rule) rotation

angle about the oriented axis n̂ ∈ S2 determined by the usual angular spherical coordinates

(θ, ϕ), θ ∈ [0, π] , ϕ ∈ [0, 2π).

x(ω, θ, ϕ) ≡ x(ω, n̂(θ, ϕ)) , (11)

n̂(θ, φ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ) .

The matrix representation of x(ω, n̂) is given by

x(ω, n̂) = cos ω ✶3 + (1 − cos ω) n̂ tn̂ + sin ω n̂× = exp(ωn̂×) , (12)
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where n̂ tn̂ is the orthogonal projector on n̂, n̂ tn̂ v = n̂ · v and n̂× is linearly acts on R3 as

n̂ × v =




0 −nz ny

nz 0 −nx

−nz nx 0







vx

vy

vz


 . (13)

The related unnormalized Haar measure is:

dx(ω, n̂) = (1 − cos ω)dω dn̂ = (1 − cos ω) sin θ dω dθ dϕ . (14)

We now consider the Hilbert space K = L2(SO(3), dx) of square integrable functions ψ on the

rotation group SO(3), that is, functions satisfying the condition,

〈ψ|ψ〉 ≡
∫

SO(3)
dx |ψ(x)|2 < ∞ . (15)

The group multiplication on the left induces the unitary action of the operator L on K,

SO(3) ∋ q 7→ L(q) , ψ ∈ K , (L(q))ψ) (x) = ψ(q−1x) . (16)

The 3 basic generators (angular momentum components) of this action in the Euler angles

parametrization (9) are given by [46]:

Lx = −i

(
− cos α cot β

∂

∂α
− sin α

∂

∂β
+

cos α

sin β

∂

∂γ

)
, (17)

Ly = −i

(
− sin α cot β

∂

∂α
+ cos α

∂

∂β
+

sin α

sin β

∂

∂γ

)
, (18)

Lz = −i
∂

∂α
. (19)

One can decompose any function ψ ∈ K using the Wigner D-functions Dl
m n, with l ∈ N, and

m, n = −l,−l + 1, ..., 0, ..., l − 1, l. Hence, these functions form an Hilbertian basis of K, and the set of

triplets of integers

{(l, m, n) , l ∈ N , m, n = −l,−l + 1, ..., 0, ..., l − 1, l} ≡ ŜO(3) (20)

form the Fourier dual of SO(3). The Wigner D-functions Dl
m n are matrix elements of the irreducible

unitary representation of SO(3) with respect to the Hilbertian basis of normalised spherical harmonics

Ylm(θ, ϕ) in H = L2(S2, dn̂). Our convention concerning the latter is that one given by Edmonds [46]:

Ylm(θ, ϕ) = (−1)m

[
(2l + 1)(l − m)!

4π(l + m)!

]1/2

Pl
m(cos θ) eimϕ ,

∫

S2
Ylm(θ, ϕ)Yl′m′(θ, ϕ) sin θ dθ dϕ = δll′ δmm′ ,

(21)

where the Pl
m(x) are the associated Legendre functions [47].

In the Euler angle parametrization the Wigner D-functions appear in the expansion [5,46]:

Yln(x
−1(α, β, γ) · (θ, ϕ)) =

l

∑
m=−l

Dl
m n(x(α, β, γ))Ylm(θ, ϕ) (22)
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and are given by

Dl
m n(x(α, β, γ)) =

∫

S2
Ylm(θ, ϕ)Yl′n(x

−1(α, β, γ) · (θ, ϕ)) sin θ dθ dϕ = eimαdl
m n(β)einγ . (23)

In this expression the functions dl
m n are expressed in terms of the Jacobi polynomials for m − n ≥ 0

and m + n ≥ 0 [47]:

dl
m n(β) =

[
(l + m)!(l − m)!

(l + n)!(l − n)!

]1/2 (
cos

β

2

)m+n (
sin

β

2

)m−n

P
(m−n,m+n)
l−m (cos β) . (24)

The other cases give similar expressions after using symmetries of indexes for these polynomials. More

precisely, from the general expression of the Jacobi polynomials

P
(µ,ν)
n (x) = 2−n ∑

r

(
n + µ

r

)(
n + ν

n − r

)
(x + 1)r(x − 1)n−r , (25)

with

P
(µ,ν)
n (−x) = (−1)n P

(ν,µ)
n (x) , P

(−l,ν)
n (x) =

(n+ν
l )

(n
l )

(
x − 1

2

)l

P
(l,ν)
n−l (x) , (26)

one can derive the Fourier series expansion of the Wigner d-functions (not trivial!):

dl
m n(β) = i

n−m
m′=l

∑
m′=−l

∆l
m′m∆l

m′neim′β (27)

where ∆l
m n = dl

m n(π/2) [48,49]. In terms of its matrix elements, the unitarity of the D-matrix at fixed

l read

∑
n

Dl
m n(x)D

l
n m′(x−1) = ∑

n

Dl
m n(x)D

l
m′ n(x) = δmm′ , (28)

and so

∑
n

|Dl
m n(x)|

2 = 1 , (29)

while the orthogonality relations obeyed by these D-matrix elements read

〈
Dl

m n|D
l′

m′ n′

〉
=

∫

SO(3)
dxDl

m n(x)D
l′

m′ n′(x) =
8π2

2l + 1
δl l′δm m′δn n′ , (30)

Let us introduce the Dirac distribution δe(x) on SO(3) as having its support at the group identity

e ≡ ✶3 ∫

SO(3)
dx δe(x) = 1 and

∫

SO(3)
dx δe(x) f (x) = f (e) , (31)

for all test functions in some dense subspace of K, e.g., infinitely differentiable. For any q ∈ SO(3) and

from the SO(3) invariance of the measure, we have

∫

SO(3)
dx δe(x) f (qx) = f (q) =

∫

SO(3)
dx δe(q

−1x) f (x) , (32)

which entails the definition of the Dirac distribution δq with support at any point q ∈ SO(3):

δe(q
−1x) ≡ δq(x) ⇒

∫

SO(3)
dx δq(x) f (x) = f (q) . (33)
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Using Dirac notations, we introduce kets |x〉 and their dual bras 〈x|, both labeled by the points

x ∈ SO(3), as obeying the following orthogonality and normalization (in the distributional sense) and

resolution of the unity in K

〈x|x′〉 = δx′(x) = δx(x
′) ≡ δ(x, x′) , (34)

✶ =
∫

SO(3)
dx |x〉〈x| (35)

From its construction, we derive the invariance property of the Dirac distribution on SO(3):

δ(qx, qx′) = δ(x, x′) ∀x ∈ SO(3) . (36)

With these notations, one can write for any ψ ∈ K (or for suitably defined distributions)

ψ(x) ≡ 〈x|ψ〉 . (37)

With this formalism at hand the completeness of the Hilbertian basis

{
Dl

m n , (l, m, n) ∈ ŜO(3)
}

(38)

in K reads:
2l + 1

8π2

∞

∑
l=0

l

∑
m=−l

l

∑
n=−l

Dl
m n(x)D

l
m n(x

′) = δ(x, x′) , (39)

On the other hand, as matrix elements of the unitary operator L(q) ( irreducibly acting in the (2l +

1)-dimensional subspace Hl of H = ⊕∞
l=0Hl) they are uniformly bounded by

|Dl
m n(x)| ≤ 1 . (40)

We now define the SO(3) Fourier transform of ψ ∈ K as the orthogonal projection of ψ on the basis{
Dl

m n

}
, that is its Fourier coefficient:

ψ̂j m n =

√
2l + 1

8π2
〈Dl

mn|ψ〉 =

√
2l + 1

8π2

∫

SO(3)
dxDl

mn(x)ψ(x) , (41)

and its inverse is consistently the Fourier series expansion:

ψ(x) =

√
2l + 1

8π2

∞

∑
l=0

l

∑
m=−l

l

∑
n=−l

Dl
m n(x)ψ̂l m n . (42)

3.2. Phase space formalism

Inspired by the Mukunda et al’s approach [36,37] we now consider the rotation x as an element of

the configuration space SO(3) and the triple (l, m, n) of its unitary (∼ Fourier) dual ŜO(3) as momentum

or frequency variables. Hence, we denote in the following

p ≡ (l, m, n) ∈ ŜO(3) , 〈p|ψ〉 ≡ ψ̂l m n , (43)

with orthogonality relations and resolution of the identity

〈p|p′〉 = δp p′ , ✶ = ∑
p

|p〉〈p| . (44)
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With these shortened notations, we write the Hilbertian basis as:

ep(x) =

√
2l + 1

8π2
Dl

m n(x) . (45)

The completeness relation (39), Fourier transform (41), and its inverse (42), take the simplest forms:

∑
p

ep(x) ep(x
′) = δ(x, x′) , (46)

ψ̂j m n ≡ ψ̂(p) =
∫

SO(3)
dx ep(x)ψ(x) ≡ F [ψ] (p) , (47)

ψ(x) = ∑
p

ep(x)ψ̂(p) ≡ F
[
ψ̂
]
(x) . (48)

3.3. SO(3)-Weyl-Gabor operator, coherent states and Gabor transform

3.3.1. SO(3)-Weyl-Gabor operator

Besides the unitary representation operator L introduced in (16) we define the non-unitary

modulation operator by the momentum variable p = (l, m, n) as the non-Hermitian bounded

multiplication operator:

(Epψ)(x) = ep(x)ψ(x) =

√
2l + 1

8π2
Dl

m n(x)ψ(x) , ‖Ep‖K =

√
2l + 1

8π2
. (49)

Note that it is the sum of unitary operators due to (23) and (27):

(Epψ)(x) = i
n−m

m′=l

∑
m′=−l

∆l
m′m∆l

m′nei (mα+m′β+nγ) ψ(x(α, β, γ)) . (50)

Its adjoint E† is defined by:

(E†
pψ)(x) = ep(x)ψ(x) ==

√
2l + 1

8π2
Dl

n m(x
−1)ψ(x) = ept(x−1) , (51)

where the transpose pt of p means

pt = (l, m, n)t = (l, n, m) . (52)

Combining these operators leads to the (non-unitary) “SO(3)-Weyl-Gabor” operator

U(q, p) := EpL(q) = ep(·)L(q) =

√
2l + 1

8π2
Dl

m n(·)L(q) , (53)

acting on K as

(U(q, p)ψ)(x) = ep(x)ψ(q
−1x) =

√
2l + 1

8π2
Dl

m n(x)ψ(q
−1x) . (54)

Its adjoint U† = L
†(q)E†

p acts on K as:

(U†(q, p)ψ)(x) = ep(qx)ψ(qx) =

√
2l + 1

8π2
Dl

m n(qx)ψ(qx) . (55)
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We then have the following actions on ψ ∈ K:

(
U

†(q′, p′)U(q, p)ψ
)
(x) = ep′(q′x) ep(q

′x)ψ(q−1q′x) , (56)
(
U(q, p)U(q′, p′)U†(q, p)ψ

)
(x) = ep(x)ep′(q−1x)ep(qq′−1q−1x)ψ(qq′−1q−1x) . (57)

In particular, the lack of unitarity of U and U
† is obvious from the fact that UU

† and U
†
U are nontrivial

bounded multiplication operators:

(
U

†(q, p)U(q, p)ψ
)
(x) = |ep(qx)|2 ψ(x) ,

(
U(q, p)U†(q, p)ψ

)
(x) = |ep(x)|

2 ψ(x) (58)

3.3.2. Coherent states

Let us pick a normalised vector φ in K and consider the family of family of states labelled by the

elements of the phase space Γ = SO(3)× ŜO(3):

|q, p〉φ := U(q, p)φ , 〈x|q, p〉φ = ep(x)φ(q
−1x) . (59)

These states will be named Γ-coherent states with fiducial vector φ for the reason that they solve the

identity in K, as asserted in the following.

Proposition 3.1. Let us equip the phase space Γ with the measure

∫

Γ
dq dp := ∑

p=(lmn)

∫

SO(3)
dq . (60)

Then the states |q, p〉φ resolve the identity ✶ in K with respect to this measure:

✶ =
∫

Γ
dq dp |q, p〉φφ〈q, p| . (61)

Proof. Pick ψ, ψ′ ∈ K and compute

〈ψ|

[∫

Γ
dq dp |q, p〉φφ〈q, p|

]
|ψ′〉 =

∫

Γ
dq dp 〈ψ|q, p〉φφ〈q, p|ψ′〉

= ∑
p

∫

SO(3)
dx ψ(x) ep(x)

∫

SO(3)
dx′ ψ′(x′)ep(x)

∫

SO(3)
dq φ

(
q−1x

)
φ (q−1x′) .

First performing the sum on p = (l, m, n) yields δ(x, x′) by application of (46). By integrating the latter

and using the invariance of the Haar measure dq we end with

∫

SO(3)
dx ψ(x)ψ′(x)

∫

SO(3)
dq φ(q) φ(q)

= 〈ψ|ψ′〉 ‖φ‖2 = 〈ψ|ψ′〉 .

�

3.3.3. Gabor transform

The Gabor transform, denoted by Lφ, maps ψ ∈ K to a function Ψ(q, p) in the Hilbert space

K = L2(Γ, dq dp) of square integrable functions on the phase space Γ equipped with the measure

dq dp:

Lφ : ψ 7→ Ψ , Ψ(q, p) = (Lφψ)(q, p) = φ〈p, q|ψ〉 =
∫

SO(3)
dx ep(x) φ(q−1x)ψ(x) (62)
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Proposition 3.2. The map Lφ satisfies the following properties:

(i) it is an isometry:

||ψ||2 =
∫

SO(3)
dx |ψ(x)|2 =

∫

Γ
dq dp |Ψ(q, p)|2 = ||Ψ||2 , (63)

(ii) it can be inverted on its range:

ψ(x) =
∫

Γ
dq dp Ψ(q, p)〈x|q, p〉φ , (64)

(iii) the closure of the range of Lφ is a reproducing kernel Hilbert space:

(Lφψ)(q, p) = Ψ(q, p) =
∫

Γ
dq′ dp′

φ〈q, p|q′, p′〉φΨ(q′, p′)

≡
∫

Γ
dq′ dp′ Kφ(q, p; q′, p′)Ψ(q′, p′)

(65)

Proof. All statements are straighforward consequence of the resolution of the identity (61). �

Proposition 3.3. We have the following trace formulas for the SO(3)-Weyl-Gabor operator:

Tr[U(q, p)] = δp 0 δe(q) , p = (l, m, n) , 0 = (0, 0, 0) , (66)

Tr
[
U

†(q′, p′)U(q, p)
]
= δpp′δ(q, q′) . (67)

Proof. For (66), using (46) and the orthonormality of the ep’s,

Tr[U(q, p)] = ∑
p′

∫

SO(3)
dx ep′(x) ep(x)ep′(q−1x) = δe(q

−1)δp0 = δe(q)δp0 .

For (67):

Tr[U†(q, p)U(q′, p′)] = ∑
b

∫

SO(3)
dx eb(x)

(
E

†
pL(q

−1q′)Ep′ eb

)
(x)

= ∑
b

∫

SO(3)
dx eb(x) ep(x) ep′(q−1q′x)eb(q

′−1
qx)

=
∫

SO(3)
dx ep(x) ep′(q−1q′x)δ(x−1q′−1

qx) =
∫

SO(3)
dx ep(x) ep′(q−1q′x)δ(q′−1

q)

= δpp′ δ(q, q′) .

�

3.4. Example of fiducial vectors and coherent states

As seen above, for any square integrable function on SO(3), including the completely non

localized function φ = 1 on the manifold SO(3), is a fiducial vector, our coherent states form the family

{〈x|q, p〉φ} of transported φ through the SO(3)-Weyl-Gabor operator. It is, of course, interesting to

consider fiducial vectors that are well “localized” in position and momentum. Although it is not the

main purpose of this paper, we present a few fiducial vectors that can be of interest. Some of these

examples are extracted from signal processing on SO(3) as related to probability densities.
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1. Eigenfunctions of certain operators [50]. The first example is the free rotor fiducial vector which

is the eigenfunction of L2 = L2
x + L2

y + L2
z .

ep(x) =

√
2l + 1

8π2
Dl

m n(x(α, β, γ)) . (68)

The second example is the highest fiducial vector for SO(3) which is cancelled by L+ = Lx + i Ly,

that is:

el l l(x) =

√
2l + 1

8π2
Dl

l l(x(α, β, γ)) . (69)

2. Some radial fiducial vectors. Below, we give examples of fiducial vectors depending only on

|x(α, β, γ)| := arccos

(
Tr[x(α, β, γ)]− 1

2

)
, (70)

which defines a metric on SO(3). Details about this metric can be found in [22],

(a) The κ-dependent von Mises-Fisher Kernel fiducial vectors φ [22], their derivatives with

respect to β and α, and their difference at two different κ:

φ(x(α, β, γ)) =
eκ cos(| x(α,β,γ) |)

I0(κ)− I1(κ)
=

eκ cos(
β
2 ) cos( α+γ

2 )

I0(κ)− I1(κ)
, κ > 0 . (71)

φ
(1)
β (x(α, β, γ)) = −

K

2
sin

β

2
cos

α + γ

2

eκ cos(
β
2 ) cos( α+γ

2 )

I0(κ)− I1(κ)
, κ > 0 . (72)

φ
(1)
α (x(α, β, γ)) = −

K

2
cos

β

2
sin

α + γ

2

eκ cos(
β
2 ) cos( α+γ

2 )

I0(κ)− I1(κ)
, κ > 0 .

φdov(x(α, β, γ)) =
eκ1 cos(

β
2 ) cos( α+γ

2 )

I0(κ1)− I1(κ1)
−

eκ2 cos(
β
2 ) cos( α+γ

2 )

I0(κ2)− I1(κ2)
, κ1, κ2 > 0 . (73)

where In, n ∈ N denotes the modified Bessel functions of first kind.

In Appendix B, we give plots of these fiducial vectors in α and β variables at a fixed γ and

for a few values of κ (Figures B.1 and B.2).
(b) The Abel-Poisson fiducial vector φ [22]:

φ(x(α, β, γ)) =
1

2

[
1 − κ2

1 + 2κ cos(| x(α, β, γ) |) + κ2
−

1 − κ2

1 − 2κ cos(| x(α, β, γ) |) + κ2

]

=
1

2

[
1 − κ2

1 + 2κ cos( β
2 ) cos( α+γ

2 ) |) + κ2
−

1 − κ2

1 − 2κ cos( β
2 ) cos( α+γ

2 ) + κ2

]
, κ > 0 .

(74)

4. Quantization operators and the quantization map

Following previous works [43–45], we pick a function ̟, called weight (but not necessarily

positive), on the phase space Γ. We then define the operator M̟ by

M
̟ = ∑

p

∫

SO(3)
dq ̟(q, p)U(q, p) , (75)
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and we choose the weight such that the operator M̟ is bounded and symmetric, i.e., is self-adjoint on

the Hilbert K = L2(SO(3), dx) of “physical states”.

In what follows, we compute the kernel of this operator and the related trace.

Proposition 4.1. With the assumption that the weight ̟ has been chosen such that the operator M̟,

defined by (75), is bounded:
(i) The operator M̟ is the integral operator:

(M̟ψ)(x) =
∫

SO(3)
dx′ M̟(x, x′)ψ(x′) , (76)

where the kernel M̟(x, x′) is given by:

M̟(x, x′) = ∑
p

̟(xx′−1, p)ep(x) = ˜̟p(xx′−1, x) (77)

Here, ˜̟p is the partial inverse discrete Fourier transform (48) of ̟ with respect to the discrete variables.
(ii) The operator M̟ is symmetric if and only the weight satisfies;

M
̟ = M

̟†
⇔ ˜̟p(xx′

−1
, x) = ̟̂

p(x
′x−1, x′) . (78)

(iii) The trace of M̟ is given by

Tr(M̟) = ̟(e, 0) . (79)

Proof. (i) The action of M̟ on ψ is given by:

(M̟ψ)(x) = ∑
p

∫

SO(3)
dq ̟(q, p)ep(x)ψ(q

−1x) .

Using the change of variable q 7→ x′ = q−1x, the invariance of the Haar measure dq, and the

partial inverse discrete Fourier transform (48), we get the expected kernel (77).
(ii) The action of M̟† on ψ is given by:

(M̟†
ψ)(x) = ∑

p

∫

SO(3)
dq ̟(q, p)ep(qx)ψ(qx) .

Using the change of variable q 7→ x′ = qx, the invariance of the Haar measure dq, and the

partial discrete Fourier transform (47) we formally get (78) by comparison with (77).
(iii) The relation (79) trivially results from (66).

�

In turn,we show in the following proposition that one retrieves the weight ̟ from the quantization

operator M̟ through a tracing operation.

Proposition 4.2. The trace of the operator U†(q, p)M̟ is given by:

Tr[U†(q, p)M̟ ] = ̟(q, p) . (80)

Proof. This relation trivially results from (67). �
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As a first example, let us examine the case ̟(q, p) = ep(q). Then the operator Mep is determined

through its action on basis elements ep′(x):

(
M

ep ep′

)
(x) = ∑

p

∫

SO(3)
dq ep(q) ep(x)ep′(q−1x)

= ∑
l,m,n

∑
m′′

2l + 1

8π2

√
(2l′ + 1

8π2

[∫

SO(3)
dqDl

mn(q)D
l′

m′m′′(q−1)

]
Dl

mn(x)D
l′

m′′n′(x)

= ∑
l,m,n

∑
m′′

2l + 1

8π2

√
(2l′ + 1

8π2

[∫

SO(3)
dqDl

mn(q)D
l′
m′′m′(q)

]
Dl

mn(x)D
l′

m′′n′(x)

= ∑
l,m,n

∑
m′′

√
(2l′ + 1

8π2
δll′ δmm′′ δnm′ Dl

mn(x)D
l′

m′′n′(x)

=
l′

∑
m′′=−l′

Dl′

m′′m′(x) el′m′′n′(x) =
l′

∑
m′′=−l′

Dl′
m′m′′(x−1) el′m′′n′(x) . (81)

Let us introduce the squaring rotation operator Îsq defined by

Îsq : ψ ∈ K 7→ Îsqψ , (Îsqψ)(x) = ψ(x2) . (82)

With this definition we precisely get from (81):

M
ep = Î

t
sq ⇔ M

ept = Îsq , (83)

where Î
t
sq is the transpose of Îsq and we remind that pt = (l, m, n)t = (l, n, m). This operator plays the

central role in our definition of the Wigner-like function within the present context (see Section 8).

Other examples of weights will be considered in the rest of the paper.

5. SO(3)-covariant integral quantization from weight function

5.1. General results

We now establish general formulas for the integral quantization issued from a weight function

̟(q, p) on Γ = SO(3)× ŜO(3) yielding the bounded self-adjoint operator M̟ defined in (75). This

allows us to build a family of operators obtained from SO(3) Weyl-Gabor operator transport of M̟:

M
̟(q, p) = U(q, p)M̟

U
†(q, p) . (84)

Then, the corresponding integral quantization is given by the linear map:

f 7→ A̟
f = ∑

p

∫

SO(3)
dq f (q, p)M̟(q, p) . (85)

We have the following result.

Proposition 5.1. A̟
f is the integral operator on L2(SO(3), dx)

(A̟
f ψ)(x) =

∫

SO(3)
dx′A̟(x, x′)ψ(x′) , (86)

and its kernel is given by

A̟
f (x, x′) =

∫

SO(3)
dq δ f (xq−1; (x, x′)) ˜̟p(qx′

−1
xq−1, q) , (87)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 August 2023                   doi:10.20944/preprints202308.1638.v1

https://doi.org/10.20944/preprints202308.1638.v1


13 of 31

with a weighted version of the completeness relation:

δ f (q; (x, x′)) := ∑
p

f (q, p) ep(x) ep(x′) , δ1(q; (x, x′)) = δ(x, x′) . (88)

The condition that f = 1 be mapped to the unit operator imposes that the follow normalization for ̟ holds:

̟(e, 0) = 1. (89)

Proof. The calculation of the kernel of the integral operator A̟
f goes through the following steps

which follow from the expressions (84) and (57).

(A̟
f )(ψ)(x)

= ∑
p

∫

SO(3)
dq f (q, p)

(
M

̟(q, p)ψ
)
(x)

= ∑
p

∑
p′

∫

SO(3)
dq

∫

SO(3)
dq′ f (q, p)̟(q′, p′)

(
U(q, p)U(q′, p′)U†(q, p)

)
ψ(x)

= ∑
p

∑
p′

∫

SO(3)
dq

∫

SO(3)
dq′ f (q, p)̟(q′, p′)ep(x)ep′(q−1x)ep(qq′−1q−1x)ψ(qq′−1q−1x) .

We then proceed with the change of variable

q′ 7→ x′ = qq′−1
q−1x ,

and use the SO(3) invariance of the measures dq′ to obtain the form

(A̟
f )(ψ)(x) =

∫

SO(3)
dx′ A̟(x, x′)ψ(x′) ,

with

A̟(x, x′) = ∑
p

∑
p′

∫

SO(3)
dq f (q, p) ep(x) ep(x′)̟(q−1xx′

−1
q, p′)ep′(q−1x) .

We then proceed with the change of variables q 7→ z = q−1x to obtain

A̟(x, x′) =
∫

SO(3)
dz

[

∑
p

f (xz−1, p) ep(x) ep(x′)

] [

∑
p′

̟(zx′
−1

xz−1, p′)ep′(z)

]

=
∫

SO(3)
dz δ f (xz−1; (x, x′)) ˜̟p

(
zx′

−1
xz−1, z

)
,

which is (87) with the notation (88).

Putting f = 1 in the above expression and using the completeness relation (46) give

δ1(xz−1; (x, x′) = δ(x, x′) and yield (89).

�

5.2. Particular quantizations

In what follows, we compute the quantized operators of the various simplifications of f (q, p).

Let us first introduce the function:

Ω(x, x′) =
∫

SO(3)
dq ˜̟p(qx′−1xq−1, q) . (90)

It obeys

Ω(x, x) = ̟(e, 0) = 1 . (91)
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We also introduce the notations:

∂j

∂α′ j
(Ω(x, x′)

∣∣∣∣
x′=x

=
∫

SO(3)
dq

∂j

∂α′ j
˜̟p(qx′−1xq−1, q)

∣∣∣∣
x′=x

≡ Ω
(j)
α . (92)

∂j

∂β′ j
(Ω(x, x′)

∣∣∣∣∣
x′=x

≡ Ω
(j)
β , (93)

∂j

∂γ′ j
(Ω(x, x′)

∣∣∣∣∣
x′=x

≡ Ω
(j)
γ . (94)

In Appendix we give examples of such calculations in the case of coherent states.

Of course, ∂
∂α′

˜̟p(qx′−1xq−1, q) or, equivalently, ∂
∂α′ ̟(qx′−1xq−1, p) should be understood as

∂

∂α′
̟(qx′−1xq−1

︸ ︷︷ ︸
z

, p) = ∇z̟ ·




∂α(z)

∂α′
∂β(z)

∂α′
∂γ(z)

∂α′




, ∇z̟ :=




∂̟

∂α(z)
∂̟

∂β(z)
∂̟

∂γ(bz)




, (95)

and α(z) means the Euler angle α of the rotation z, etc. We will also need the integral formulae (with

suitable conditions on functions appearing in the integrand)

∫

SO(3)
dx

(
∂

∂α
f1(x)

)
f2(x) = −

∫

SO(3)
dx f1(x)

(
∂

∂α
f2(x)

)
, (96)

∫

SO(3)
dx

(
∂

∂γ
f1(x)

)
f2(x) = −

∫

SO(3)
dx f1(x)

(
∂

∂γ
f2(x)

)
, (97)

∫

SO(3)
dx

(
∂

∂β
f1(x)

)
f2(x) = −

∫

SO(3)
dx f1(x)

(
∂

∂β
f2(x)

)
−

∫

SO(3)
dx cot β f1(x) f2(x) . (98)

5.2.1. Separable functions f (q, p) = u(q)v(p)

In this case δuv in the integral factorises as

δuv(xq−1; (x, x′)) = u(xq−1) δv(x, x′) , (99)

with the notation

δv(x, x′)) = ∑
p

v(p) ep(x) ep(x′) . (100)

Hence,

A̟
f (x, x′) = δv(x, x′)

∫

SO(3)
dq u(xq−1) ˜̟p(qx′−1xq−1, q) . (101)

5.2.2. Univariate function f (q, p) = u(q)

In this case the above (101) simplifies to:

A̟
u (x, x′) = δ(x, x′)

∫

SO(3)
dq u(xq−1) ˜̟p(qx′−1xq−1, q)

= δ(x, x′)
∫

SO(3)
dq u(xq−1) ˜̟p(e, q)

= δ(x, x′)
∫

SO(3)
dq u(q) ˜̟p(e, q−1x) .

(102)
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Hence, the quantization of u(q) is the multiplication operator.

(
A̟

u(q)ψ
)
(x) =

(
u ∗SO(3) ˜̟p(e, ·)

)
(x)ψ(x) , (103)

where the (noncommutative) convolution ∗SO(3) on the group SO(3) is defined by

(
f1 ∗SO(3) f2

)
(x) =

∫

SO(3)
dq f1(xq−1) f2(q) =

∫

SO(3)
dq f1(q) f2(q

−1x) . (104)

Let us give the quantizations of some basic Fourier or trigonometric functions v(q). In the sequel we

put
(

A̟
u(q)

ψ
)
(x) ≡ B̟

u(q)
(x)ψ(x).

• For u(q) = eiα we get

B̟
eiα
(x) = eiα


 ∑
(l,n)

√
2l + 1

4π
̟(e, (l, 0, n))Dl

1 n(0, β, γ)al


 . (105)

where:

al =
∫ π

0
dβq sin(βq)d

l
10 (106)

• For u(q) = eiγ,

B̟
eiγ
(x) == ∑

(l,n)

√
2l + 1

4π
̟(e, (l, 1, n))Dl

0 n(α, β, γ)bl . (107)

where:

bl =
∫ π

0
dβ sin(β)dl

01(β) (108)

• For u(q) = 1/ sin β,

B̟
1/ sin β(x) = ∑

(l,n)

√
2l + 1

4π
̟(e, (l, 0, n))Dl

0 n(0, β, γ)cl . (109)

where:

cl =
∫ π

0
dβdl

00(β) (110)

• For u(q) = cot β,

B̟
cot β(x) = ∑

(l,n)

√
2l + 1

4π
̟(e, (l, 0, n))Dl

0 n(0, β, γ)dl . (111)

where:

dl =
∫ π

0
dβ cos(β)dl

00(β) (112)

5.2.3. Univariate function f (q, p) = v(p)

The integral kernel reads in this case:

A̟
f (x, x′) = δv(x, x′)

∫

SO(3)
dq ˜̟(qx′−1xq−1, q) (113)

We know that the values of p = (l, m, n) are constrained in a forward rectangular discrete pyramid,

which is the momentum space. We here work with Euler angle parameters: x(α, β, γ), x′(α′, β′, γ′). We

will omit them for simplicity and explicitly put them when needed. Let us present the quantization of

a few elementary functions v(p).
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• v(l, m, n) = m We have:

δv(x, x′) = ∑
p

v(p) ep(x) ep(x
′)

=
∞

∑
l=0

+l

∑
m=−l

n=+l

∑
n=−l

2l + 1

8π2
Dl

m n(x(α, β, γ))m Dl
m n(x

′(α′, β′, γ′))

=
∞

∑
l=0

+l

∑
m=−l

n=+l

∑
n=−l

2l + 1

8π2
Dl

m n(x(α, β, γ)) i
∂

∂α′
Dl

m n(x
′(α′, β′, γ′))

= i
∂

∂α′
δ(x(α, β, γ)), x′−1(α′, β′, γ′) .

The kernel is then given by:

A̟
m(x, x′) =

[
i

∂

∂α′
δ(x, x′)

] ∫

SO(3)
dq ˜̟p(qx′−1xq−1, q) .

The action of the quantum version of m on ψ ∈ K is then obtained through integration by part

and use of (91) and notation (92):

(
A̟

mψ
)
(x) =

∫

SO(3)
dx′ δ(x, x′)

[∫

SO(3)
dq ˜̟p(qx′−1xq−1, q)

]
(−i)

∂

∂α′
ψ(x′)

− i

∫

SO(3)
dx′ δ(x, x′)

[∫

SO(3)
dq

∂

∂α′
˜̟p(qx′−1xq−1, q)

]
ψ(x′)

=

(
−i

∂

∂α
− iΩ

(1)
α

)
ψ(x) =

(
Lz − iΩ

(1)
α

)
ψ(x) . (114)

Under mild conditions on the weight function, we have Ω
(1)
α = 0, and so we recover exactly

the angular momentum operator component Lz. A similar result holds with the quantization of

v(l, m, n) = n:

A̟
m = −i

∂

∂γ
− iΩ

(1)
γ . (115)

• v(l, m, n) = m2

We have:

δv(x, x′) = ∑
p

v(p) ep(x)ep(x′)

=
∞

∑
l=0

+l

∑
m=−l

n=+l

∑
n=−l

2l + 1

8π2
Dl

m n(x(α, β, γ))m2Dl
m n(x

′(α′, β′, γ′))

=
∞

∑
l=0

+l

∑
m=−l

n=+l

∑
n=−l

2l + 1

8π2
Dl

m n(x(α, β, γ))

[
−

∂2

∂α′2
Dl

m n(x
′(α′, β′, γ′))

]

= −
∂2

∂α′2

∞

∑
l=0

+l

∑
m=−l

n=+l

∑
n=−l

2l + 1

8π2
Dl

m n(x
′(α′, β′, γ′))Dl

m n(x(α, β, γ))

= −
∂2

∂α′2
δ(x′−1(α′, β′, γ′)x(α, β, γ)) = −

∂2

∂α′2
δ(x, x′) .

There results for the kernel:

A̟
m2(x, x′) =

[
−

∂2

∂α′2
δ(x, x′)

] ∫

SO(3)
dq ˜̟(qx′−1xq−1, q) , (116)
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and for the quantum operator:

(
A̟

m2 ψ
)
(x) =

∫

SO(3)
dq

[
−

∂2

∂α′2
˜̟(qx′−1xq−1, q)

]

x′=x

ψ(x)

+ 2i
∫

SO(3)
dq

[
∂

∂α′
˜̟(qx′−1xq−1, q)

]

x′=x

(
−i

∂

∂α
ψ(x)

)

+
∫

SO(3)
dq ˜̟(e, q)

(
−

∂2

∂α2
)ψ(x)

)
.

i.e.,

A̟
m2 = L2

z + 2iΩ
(1)
α (e)Lz − Ω

(2)
α (e) . (117)

• v(l, m, n) = l(l + 1). We have just to use the eigenvalue property of the functions

Dl
m n(x(α, β, γ)), or, equivalently, of the functions dl

m n(β) [46]:

l(l + 1) Dl
m n(x(α, β, γ))

=

[
−

∂2

∂β2
− cot β

∂

∂β
+

m2 + n2 − 2mn cos β

sin2 β

]
Dl

m n(x(α, β, γ)) , (118)

and the results given the above examples. The corresponding kernel is given by:

A̟
l(l+1)(x, x′) = L2(δ(x, x′))

∫

SO(3)
dq ω̃p(qx′−1xq−1, q) , (119)

where[46]:

L2 =

[
−

∂2

∂β
′2
− cot β′ ∂

∂β′
−

1

sin2 β′

(
∂2

∂α′2
+

∂′2

∂γ′2
− 2 cos β′ ∂2

∂α′∂γ′

)]
. (120)

6. Semi-classical portrait

Given a function ̟(q, p) on the phase space Γ, normalised at ̟(e, (0, 0, 0)) = 1, and yielding a

non-negative unit trace operator, i.e., a density operator, M̟, the quantum phase space portrait of an

operator A on L2(Γ, dγ) is defined as:

Ǎ(q, p) := Tr
(

A U(q, p)M̟U†(q, p)
)
= Tr

(
AM

̟(q, p)
)

. (121)

The most interesting aspect of this notion in terms of probabilistic interpretation holds when the

operator A is precisely the integral quantized version A̟
f of a classical f (q, p) with the same function

̟ (actually we could define the transform with 2 different ones, one for the “analysis” and the other

for the “reconstruction”). Then, with the use of the composition rule let us compute the transform:

f (q, p) 7→ f̌ (q, p) ≡ Ǎ̟
f (q, p) = Tr

(
A̟

f M
̟(q, p)

)
. (122)
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We successively have:

Tr
(

A̟
f M

̟(q, p)
)
= ∑

p′ ,p′′ ,p′′′

∫∫∫

(SO(3))3
dq′ dq′′ dq′′′ f (q′, p′)̟(q′′, p′′)̟(q′′′, p′′′)×

Tr
(

U(q′, p′)U(q′′, p′′)U†(q′, p′)U(q, p)U(q′′′, p′′′)U†(q, p)
)

= ∑
p′ ,p′′ ,p′′′

∫∫∫

(SO(3))3
dq′ dq′′ dq′′′ f (q′, p′)̟(q′′, p′′)̟(q′′′, p′′′)×

∑
b

〈U(q′, p′)U†(q′′, p′′)U†(q′, p′) eb|U(q, p)U(q′′′, p′′′)U†(q, p)eb〉

= ∑
p′ ,p′′ ,p′′′

∫∫∫

(SO(3))3
dq′ dq′′ dq′′′ f (q′, p′)̟(q′′, p′′)̟(q′′′, p′′′)×

∑
b

∫

SO(3)
dx ep′(x) ep′′(q′′q′−1x)ep′(q′q′′q′−1x)eb(q′q′′q′−1x)×

ep(x) ep′′′(q−1x) ep(qq′′′−1q−1x)eb(qq′′′−1q−1x) .

Using the partial Fourier transform ˜̟p of ̟, we get:

f̌ (q, p) = ∑
p′

∫∫∫

(SO(3))3
dq′ dq′′ dq′′′

∫

SO(3)
dx f (q′, p′) ˜̟p(q

′′, q′′q′−1x) ˜̟p(q
′′′, q−1x)×

∑
b

ep′(x) ep′(q′q′′q′−1x) ep(qq′′′−1q−1x) eb(q′q′′q′−1x) ep(x) eb(qq′′′−1q−1x) .

Summing on b gives:

f̌ (q, p) = ∑
p′

∫∫∫∫

(SO(3))4
dq′ dq′′ dq′′′ dx f (q′, p′) ˜̟p(q

′′, q′′q′−1x) ˜̟p(q
′′′, q−1x)×

ep′(x) ep′(q′q′′q′−1x) ep(x)ep(qq′′′−1q−1x) δ(q′′′−1q−1q′q′′−1q′−1q)

= ∑
p′

∫∫∫

(SO(3))3
dq′ dq′′ dx f (q′, p′) ˜̟p(q

′′, q′′q′−1x) ˜̟p(q
−1q′q′′−1q′−1q, q−1x)×

ep′(x) ep′(q′q′′q′−1x) ep(x)ep(q′q′′q′−1x)

= ∑
p′

∫∫∫

(SO(3))3
dq′ dy dx f (q′, p′) ˜̟p(y, yq′−1x) ˜̟p(q

−1q′y−1q′−1q, q−1x)×

ep′(x) ep′(q′yq′−1x) ep(x)ep(q′yq′−1x) , (x′ = y)

= ∑
p′

∫∫∫

(SO(3))3
dq′ dy′ dx f (q′, p′) ˜̟p(q

′−1y′q, q′−1y′x) ˜̟p(q
−1y′−1q, q−1x)×

ep′(x) ep′(y′x) ep(x)ep(y′x) , (y′ = q′yq′−1)

= ∑
p′

∫∫∫

(SO(3))3
dq′ dx′ dx f (q′, p′) ˜̟p(q

′−1x′x−1q′, q′−1x′) ˜̟p(q
−1xx′

−1
q, q−1x)×

ep′(x) ep′(x′) ep(x)ep(x′) , (x′ = y′x) , (y′ = x′x−1) .

Hence we can write:

f̌ (q, p) = ∑
p′

∫

(SO(3)
dq′ K(q, p; q′, p′) f (q′, p′) ,
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where the kernel is given by

K(q, p; q′, p′)

=
∫∫

(SO(3))2
dx dx′ ˜̟p(q

′−1x′x−1q′, q′−1x′) ˜̟p(q
−1xx′

−1
q, q−1x) ep′(x) ep′(x′) ep(x)ep(x′) .

Using the adjointness condition for M̟, one gets:

K(q, p; q′, p′)

=
∫∫

(SO(3))2
dx , dx′ ˜̟p(q′−1xx′−1q′, q′−1x) ˜̟p(q

−1xx′
−1

q, q−1x) ep′(x) ep′(x′) ep(x)ep(x′) ,

where:

˜̟p(q
′−1x′x−1q′, q′−1x′) = ˜̟p(q

′−1x′(q′−1x)
−1

, q′−1x′) = ˜̟p(q′−1xx′−1q′, q′−1x)

Hence we can conclude with the following result:

Proposition 6.1. The semi-classical portrait of the operator A̟
f : with respect to the weight ̟ is given by:

f → A̟
f → f̌ (q, p) = Tr(A̟

f M
̟(q, p)) = ∑

p′

∫

SO(3)
dq′ f (q′, p′)K(q, p; q′, p′) , (123)

where the kernel is given by:

K(q, p; q′, p′) (124)

=
∫

(SO(3))2
dx dx′ ep′(x) ep(x) ep(x′) ep′(x′) ˜̟(q′−1xx′−1q′, q′−1x) ˜̟(q−1xx′−1q, q−1x).

This kernel satisfies the property:

K(q′, p′; q, p) = K(q, p; q′, p′). (125)

Below we give the kernels and semi-classical portraits for two specific weights.

(i) For the unit weight ̟(q, p) = 1 the kernel reads:

K(q, p; q′, p′) =
∫

(SO(3))2
dx dx′ ep′(x) ep(x) ep(x′) ep′(x′)

×

{

∑
b′

eb′(q′−1x)

} {

∑
b

eb(q
−1x)

}

= δpp′

∫

SO(3)
dx | ep(x)|

2

{

∑
b′

eb′(q′−1x)

} {

∑
b

eb(q
−1x)

}

= δpp′h(q, q′), (126)

where:

h(q, q′) =
∫

SO(3)
dx | ep(x)|

2

{

∑
b′

eb′(q′−1x)

} {

∑
b

eb(q
−1x)

}
. (127)

Finally:

f̌ (q, p) =
∫

SO(3)
dq′ f (q′, p)h(q, q′) . (128)
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(ii) For the squaring rotation map weight ̟(q, p) = ep(q−1) = ept(q),

K(q, p; q′, p′) = δ(q, q′)
∫

G
dx ep′(x)ep(x) ep(xq−1x)ep′(xq−1x) (129)

and:

f̌ (q, p) = ∑
p′

f (q, p′)
{ ∫

G
dx ep(x)ep′(x) ep(xq−1x)ep′(xq−1x)

}
. (130)

For the univariate functions f (q, p) = u(q) and f (q, p) = v(p):

ǔ(q) = u(q) (131)

v̌(p) =
∫

SO(3)
dx ep(x) ep(xq−1x)

{

∑
p′

v(p′)ep′(x)ep′(xq−1x)

}
.

A third example of weight, namely that one corresponding to coherent states, is given in the next

section.

7. Quantization and semi-classical portraits with coherent states with non-unit fiducial states

7.1. CS quantization

In this section, we consider the quantization yielded by the weight ̟φ which corresponds through

Proposition 8.2 to the one-rank density operator |φ〉〈φ| = M
̟φ

, φ ∈ K, ‖φ‖2 = 1.

Proposition 7.1. Given a fiducial vector φ and the projector |φ〉〈φ|, the trace of the operator U†(q, p)|φ〉〈φ|

is given by (with the notations of (59)):

̟φ(q, p) ≡ Tr
[
U

†(q, p)|φ〉〈φ|
]
= φ〈q, p|φ〉 . (132)

In addition, we have:

(i) the partial inverse Fourier transform of ̟φ(q, p) with respect to p is given by:

˜̟φ
p(qx′−1xq−1, q) = φ(qx−1x′)φ(q) , (133)

(ii) the kernel of the related quantum operator is given by:

A̟φ

f (x, x′) =
∫

SO(3)
dq δ f (xq−1; (x, x′) φ(qx−1x′)φ(q) , (134)

with the notations of (88).

In what follows, we compute the kernels A̟φ

f or/and the corresponding operators for various

simple cases of f (q, p).

a) For f (q, p) = u(q)v(p),

f̃ (xq−1, (x, x′)) = u(xq−1) ṽ(x, x′) , ṽ(x, x′) = ∑
p

v(p) ep(x) ep(x′)

A̟φ

f (x, x′) = ṽ(x, x′)
∫

SO(3)
dq u(xq−1)φ(qx−1x′)φ(q) .
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b) For f (q, p) = u(q),

f̃ (xq−1, (x, x′)) = δ(x, x′) u(xq−1)

A̟φ

f (x, x′) = δ(x, x′)
∫

SO(3)
dq u(xq−1)|φ(q)|2 .

Hence, the quantized of u(q) is the multiplication operator.

(
A̟φ

u(q)ψ
)
(x) =

[∫

SO(3)
dq u(xq−1) |φ(q)|2

]
ψ(x) .

c) For f (q, p) = v(p)

f̃ (xq−1, (x, x′)) = ṽ(x, x′) ; ṽ(x, x′) = ∑
p

v(p) ep(x) ep(x′)

A̟
f (x, x′) = ṽ(x, x′)

∫

SO(3)
dq φ(qx−1x′)φ(q) .

7.2. Semi-classical portraits through CS

For the coherent state weight ̟φ(q, p) = φ〈q, p|φ〉 the kernel is the probability distribution on

the phase space:

Kφ(q, p; q′, p′) = |〈φ〈q, p|q′, p′〉φ|
2 . (135)

Hence f̌ (q, p) is the local averaging of the original f (q, p):

f̌ (q, p) =
∫

SO(3)
dq′dp′ f (q′, p′) |〈φ〈q, p|q′, p′〉φ|

2 . (136)

8. Squaring rotation operator for Wigner function

In preamble to this section, let us consider the following phase portrait of a state ψ ∈ K,

WÔ
ψ (q, p) := 〈ψ|U(q, p)ÔU†(q, p)|ψ〉 , (137)

where the operator Ô is requested to yield marginality properties à la Wigner for WÔ
ψ :

∑
p

WÔ
ψ (q, p) = |ψ(q)|2 ,

∫

SO(3)
dq WÔ

ψ (q, p) = |ψ(p)|2 . (138)

Let us assume that Ô acts on K through some differentiable transformation of the group manifold

SO(3) ∋ x 7→ ζ(x) ∈ SO(3), namely

(Ôψ)(x) = m(x)ψ(ζ(x)) , (139)

where the factor m(x) has also to be determined.

With (54), (55), and the above definitions, we have

WÔ
ψ (q, p) =

∫

SO(3)
dx ψ(x)ep(x)

(
Ô U†(q, p)ψ

) (
q−1x

)

=
∫

SO(3)
dx ψ(x)ep(x)m

(
q−1x

) (
U†(q, p)ψ

) (
ζ
(

q−1x
))

=
∫

SO(3)
dx ψ(x)ep(x)m

(
q−1x

)
ep (qζ (q−1x))ψ

(
qζ

(
q−1x

))
.
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The completeness relation (46) combined with the above integral and change of variable x 7→ y = q−1x

allows to write

∑
p

WÔ
ψ (q, p) =

∫

SO(3)
dx |ψ(x)|2 m

(
q−1x

)
δ
(

x, qζ
(

q−1x
))

=
∫

SO(3)
dy |ψ(qy)|2 m (y) δ (qy, qζ (y)) .

The condition for getting marginality with regard to summing on p, namely

∑
p

WÔ
ψ (q, p) = |ψ(q)|2 , (140)

thus imposes on the action ζ and the function m the following conditions

δ (qy, qζ (y)) = δ(y, e) , m(e) = 1 .

Besides the constraint m(e) = 1 possible solutions for ζ are

ζ(y) = yn , n ∈ Z , (141)

since the group structure imposes that qy = qyn ⇒ yn−1 = e, i.e., y should be one of the n − 1 roots

of the unity in SO(3). The most natural choice for n is obviously n = 2:

ζ(y) = y2 , (142)

and we will keep it in the sequel. Let us now examine the condition for getting marginality with regard

to integrating on q, namely ∫

SO(3)
dq WÔ

ψ (q, p) = |ψ̂(p)|2 , (143)

where we remind that ψ̂ is the Fourier transform of ψ:

ψ̂(p) =
∫

SO(3)
dx ep(x)ψ(x) ≡ F [ψ] (p) ,

With the solution (142) at hand, let us evaluate the l.h.s. of (143), assuming that inverting the order of

integrations is legitimate.

∫

SO(3)
dq WÔ

ψ (q, p) =
∫

SO(3)
dx ψ(x)ep(x)

∫

SO(3)
dqm

(
q−1x

)
ep (qζ (q−1x))ψ

(
qζ

(
q−1x

))

=
∫

SO(3)
dx ψ(x)ep(x)

∫

SO(3)
dqm

(
q−1x

)
ep (xq−1x)ψ

(
xq−1x

)
.

Now, after changing the variable in the second integral q 7→ q′ = xq−1x and using the invariance of

the measure dq 7→ dq′, one obtains

∫

SO(3)
dq WÔ

ψ (q, p) =
∫

SO(3)
dx ψ(x) ep(x)

∫

SO(3)
dq′

m

(
x−1q′

)
ep (q′)ψ(q′) .

In order to get marginality with regard to integrating on q the only possibility is that m(x) = 1. Then,

we get (143), and Ô is precisely the squaring rotation operator introduce in (82),

Ô ≡ Îsq . (144)

In summary, and extending the above properties to mixed states in K, we state the following.
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Proposition 8.1. To any density operator ρ̂ in K the squaring rotation operator Îsq associates its Wigner-like

function on the phase space defined by

W
Îsq

ρ̂ (q, p) := Tr
(

ρ̂ U(q, p)ÎsqU†(q, p)
)

. (145)

This function obeys the marginality properties:

(i)

∑
p

W
Îsq

ρ̂ (q, p) = ∑
p′p′′

ρ̂p′p′′ ep′(q) ep′′(q) , (146)

where the ρ̂p′p′′ are the matrix elements of ρ̂ in the basis {ep(q)}.
(ii) ∫

SO(3)
dq W

Îsq

ρ̂ (q, p) = ρ̂pp . (147)

(iii) For a pure state ρ̂ = [ψ〉〈ψ| these formulae simplify to

∑
p

W
Îsq

ψ (q, p) = |ψ(q)|2 ,
∫

SO(3)
dq W

Îsq

ψ (q, p) = |ψ̂(p)|2 . (148)

(iv) It results from these two marginal properties the normalisation of W
Îsq

ψ (q, p) as a complex-valued

quasi-distribution on the phase space:

∑
p

∫

SO(3)
dq W

Îsq

ρ̂ (q, p) = 1 . (149)

Let us tell more about the properties of the squaring rotation operator.

Proposition 8.2. (i) The operator Îsq is unit trace.

Tr(Îsq) = 1

(ii) The weight function ̟sq(q, p) giving rise to Îsq through (75), i.e., M̟sq
= Îsq, is given by the trace of

the operator U†(q, p)Îsq:

̟sq(q, p) = Tr(U†(q, p)Îsq) = ep(q−1) . (150)

(iii) The inverse partial Fourier transform of the weight with respect to the momentum is given by:

˜̟sq
p(q, x) = ∑

p

ep(x)̟sq(q, p) = ∑
p

ep(x) ep(q−1) = δ(q−1, x) . (151)

and:
˜̟sq

p(qx′−1xq−1, q) = δ(x′−1xq) , (152)

and the kernel of the related quantum operator is given by:

A̟φ

f (x, x′) = δ f (x′; (x, x′)) , (153)

with the notations of (88).

Proof. (i)

Tr
(
Îsq

)
= ∑

b

〈 ep| Îsq|ep〉 = ∑
b

∫

SO(3)
dx ep(x) (Îsqep)(x) = ∑

b

∫

SO(3)
dx eb(x) eb(x

2)
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Using the completeness property (46) and (36), we get:

Tr
(
Îsq

)
=

∫

SO(3)
dx δ(x, x2) = 1 .

(ii)

Tr
(
U

†(q, p))Îsq

)
= ∑

b

〈 eb|U
†(q, p) Îsq|eb〉 = ∑

b

∫

SO(3)
dx eb(x)

(
U

†(q, p) Îsq eb

)
(x)

= ∑
b

∫

SO(3)
dx eb(x)

(
U

†(q, p)
(
Îsqeb

))
(x) = ∑

b

∫

SO(3)
dx eb(x) ep(qx)

(
Îsqeb

)
(qx)

= ∑
b

∫

SO(3)
dx eb(x) ep(qx)eb((qx)2) =

∫

SO(3)
dx δ

(
x, (qx)2

)
ep(qx)

=
∫

SO(3)
dy δ

(
q−1y, y2

)
ep(y) = ep(q−1) = ept(q) ,

where we again have used the completeness property (46) and (36) after changing the variable

x 7→ y = qx.
(iii) The proof is direct.

�

In what follows, we compute the kernels A̟sq

f or/and the corresponding operators for various

simple cases of f (q, p).

a) For f (q, p) = u(q)v(p),

f̃ (x′, (x, x′)) = u(x′) ṽ(x, x′) , ṽ(x, x′) = ∑
p

v(p) ep(x) ep(x′)

A̟φ

f (x, x′) = ṽ(x, x′)u(x′).

b) For f (q, p) = u(q),

f̃ (x′, (x, x′)) = δ(x, x′) u(x′) = A̟φ

f (x, x′) .

Hence, the quantized of u(q) is the multiplication operator.

(
A̟φ

u(q)ψ
)
(x) = u(x)ψ(x) .

c) For f (q, p) = v(p)

f̃ (xq−1, (x, x′)) = ṽ(x, x′) ; ṽ(x, x′) = ∑
p

v(p) ep(x) ep(x′)

A̟
f (x, x′) = ṽ(x, x′) .

9. Conclusion

In this paper, we have established a covariant integral quantization for systems whose phase

space is the so-called semi-discrete hypercylinder SO(3)× ŜO(3), i.e., whose configuration space is

SO(3), and where ŜO(3) = {(l, m, n), l ∈ N, m = −l : 1 : l, n = −l : 1 : l}. This extends our previous

work on the discrete cylinder SO(2)×Z for the motion of particle on circle S1 = SO(2). Although the

phase space SO(3)× ŜO(3) is not a coset arising from a group, we have shown that the Weyl-Gabor

formalism applies.

First, we have established the concomitant resolution of the identity and subsequent properties

such as the Gabor transform on SO(3) and its inversion, the reproducing kernel and the fact that any
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square integrable function on the groupe SO(3) is fiducial vector. The decomposition of the identity

allows to define an integral operator M̟ from weight function ̟ defined on the phase space.

There are noticeable results related to the quantization of a point

(q, p) = ((α, β, γ), (l, m, n))

in the phase space according to two standard choices of the weight.

• With the squaring rotation weight which yields the Wigner distribution, the quantization of the

projection of momentum on third axis is the expected angular momentum operator Lz.

m 7→ m̂ = Lz , Lzψ(α, β, γ) = −i
∂

∂α
ψ(α, β, γ) . (154)

while the quantization of the angle yields the multiplication operator by the angle,

θi 7→ θ̂i , θ̂iψ(θ) = θiψ(θ) , θ = (α, β, γ) . (155)

This is of course not acceptable due to the discontinuity of the periodized angle function, since

there is no regularisation of this discontinuity.
• On the other hand, with the squaring rotation weight, we derive a Wigner distribution that is

more tractable than the ones derived in [37][40]. We will show this in future works with concrete

examples.
• With the coherent state weight one obtains the quantization of the momentum as the usual Lz

plus an additional term, i.e., a kind of covariant derivative along the circle S1, in SO(3), whose

topology is now taken into account,

A̟
m = −i

∂

∂α
− iΩ

(1)
α . (156)

whereas the quantization of the periodized function in α variable leads to its smooth

regularisation.

In a follow up studies, we plan to extend the results of this work in several directions.

• Extend the work to all rotation groups SO(n), and also to the related Spheres Sn. Also look into

the quantization of continuation phase space related to the Euclidean groups E(n) = Rn ⋊ SO(n),

≥ 2, [51,52].
• Extend the work to full configuration space of the rigid body that is the Euclidean motion group

in three dimensions E(3) = R3 ⋊ SO(3).
• Extend the formalism to the case where the configuration space is a non-compact group, for

example, SO0(2, 1) ≃ SL(2,R) or SL(2,C).
• Explore the possibility of covariant integral quantization in the situation where the phase space

is T∗SO(3). This phase space is used in the context of quantum loop gravity [53,54].
• Apply to signal analysis on SO(3). We will investigate the robustness of the phase space of

representation (q, p) → S(q, p) of signal x → s(x) in capturing salient futures in the signal.

Various tools will be used. These include: visualization of various partial energy densities of the

Gabor transform, quantum operators related to various fiducial vectors, Husimi distributions,

the Wigner distribution, entropy, and sampling/frames on SO(3) [48,55].

Author Contributions: Conceptualization, J.-P. Gazeau and R. Murenzi; methodology, J.-P. Gazeau and R.
Murenzi; validation, J.-P. Gazeau and R. Murenzi; formal analysis, J.-P. Gazeau and R. Murenzi; investigation,
J.-P. Gazeau and R. Murenzi; writing—original draft preparation, R. Murenzi; writing—review and editing, J.-P.
Gazeau and R. Murenzi. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 August 2023                   doi:10.20944/preprints202308.1638.v1

https://doi.org/10.20944/preprints202308.1638.v1


26 of 31

Acknowledgments: J.-P. Gazeau thanks the ICTP Trieste for financial support and hospitality. We acknowledge
discussions with Mladen Victor Wickerhauser

Conflicts of Interest: The authors declare no conflict of interest. The ideas and opinions expressed in this article
are those of the authors and do not necessary represent the view of UNESCO.

Abbreviations

The following abbreviations are used in this manuscript:

POVM Positive operator-valued measure

UIR Unitary irreducible representation

CS Coherent state

Appendix A. Some formulas for CS quantization

In this appendix, we compute Ω
(j)
α (x, x) = ∂j

∂α′ j
(Ω(x, x′)

∣∣∣
x′=x

, for the coherent state weight

̟(q, p) = 〈U(q, p)φ|φ〉, for j = 1, 2, using the following summation formulae [56],

∑
m′

m′|dl
m′ m(β)|2 = m cos(β); ∑

m′

m′2|dl
m′ m(β)|2 =

1

2

{
l(l + 1) sin2 β − m2(3 cos β − 1)

}
.

Ω(x, x′) =
∫

SO(3)
dq ˜̟p(qx′−1xq−1, q)

=
∫

SO(3)
dq φ(qx−1x′)φ(q) = ∑

(l,m,n)

φ̂(l, m, n)
∫

SO(3)
dq φ(qx−1x′)

√
2l + 1

8π2
Dl

m n(q)

= ∑
(l,m,n)

φ̂(l, m, n)
∫

SO(3)
dz φ(z)

√
2l + 1

8π2
Dl

m n(zx′−1x)

= ∑
(l,m,n)

∑
k

φ̂(l, m, n)Dl
k n(x

′−1x)
∫

SO(3)
dz φ(z)

√
2l + 1

8π2
Dl

m k(z)

= ∑
(l,m,n)

∑
k

φ̂(l, m, n)φ̂(l, m, k)Dl
k n(x

′−1x)

= ∑
(l,m,n)

∑
k

∑
k′

φ̂(l, m, n)φ̂(l, m, k)Dl
k k′(x

′−1)Dl
k′ n(x)

= ∑
(l,m,n)

∑
k

∑
k′

φ̂(l, m, n)φ̂(l, m, k) Dl
k′ k(x

′)Dl
k′ n(x)

We therefore have:

Ω
(j)
α (x, x) = ∑

(l,m,n)
∑
k

∑
k′
(−i)jk′jφ̂(l, m, n)φ̂(l, m, k) Dl

k′ k(x)D
l
k′ n(x). (A.1)

Ω
(j)
γ (x, x) = ∑

(l,m,n)
∑
k

∑
k′
(−i)jkjφ̂(l, m, n)φ̂(l, m, k) Dl

k′ k(x)D
l
k′ n(x). (A.2)

Let us now two types of fiducial vectors.

• Free rotor and highest weight fiducial vectors.
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For the free rotor φ(x) =
√

2l0+1
8π2 Dl0

m0 n0
(x) with momentum (l0, m0, n0), we get: φ̂(l, m, n) =

2l0+1
8π2 δl l0 δm m0 δn n0 , φ̂(l, m, k) = 2l0+1

8π2 δl l0 δm m0 δk n0
, and:

Ω
(j)
α (x, x) = δl0 l0 δm0 m0

2l0 + 1

8π2
(−i)j ∑

k′
k′j|dl0

k′ n0
(β)|2 (A.3)

=
2l0 + 1

8π2
(−i)j ∑

k′
k′j|dl0

k′ n0
(β)|2.

Ω
(j)
γ (x, x) = δl0 l0 δm0 m0

2l0 + 1

8π2
(−i)jn0

j ∑
k′
|dl0

k′ n0
(β)|2 (A.4)

=
2l0 + 1

8π2
(−i)jn0

j ∑
k′
|dl0

k′ n0
(β)|2.

Using summation formula in (A.1) for j=1 and j=2, we get:

Ω
(1)
α (x, x) = −i

2l0 + 1

8π2
n0 cos(β), (A.5)

Ω
(2)
α (x, x) = −

1

2

2l0 + 1

8π2

{
l0(l0 + 1) sin2 β − n2

0(3 cos β − 1)
}

Ω
(1)
γ (x, x) = −i

2l0 + 1

8π2
n0. (A.6)

Ω
(2)
γ (x, x) = −

1

2

2l0 + 1

8π2
n0

2.

For the highest weight state for SO(3), that is, φ(x) =
√

2l+1
8π2 Dl0

l0 l0
(x) with momentum (l0, l0, l0),

we get:

Ω
(1)
α (x, x) = −i

[
2l0 + 1

8π2

]
l0 cos(β), (A.7)

Ω
(2)
α (x, x) =

1

2

2l0 + 1

8π2

{
cos β(cos β + 3)l2

0 − l0 sin2 β)
}

.

Ω
(1)
γ (x, x) = −i

2l0 + 1

8π2
l0. (A.8)

Ω
(2)
γ (x, x) =

1

2

2l0 + 1

8π2
l2
0 .

• Radial fiducial vector

We consider a radial vector φ depending only on the distance |x| to the origin e. We have

φ̂(l, m, n) = f (l)δm n and φ̂(l, m, k) = f (l)δm k [22].

Ω
(j)
α (x, x) = ∑

(l,m,n)
∑
k

∑
k′
(−i)jk′jφ̂(l, m, n)φ̂(l, m, k) Dl

k′ k(x)D
l
k′ n(x). (A.9)
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Ω
(j)
α (x, x) = ∑

(l,m,n)
∑
k

∑
k′
(−i)jk′j| f (l)|2δm nδm k Dl

k′ k(x)D
l
k′ n(x), (A.10)

= ∑
l

(2l + 1)| f (l)|2 ∑
k

∑
k′
(−i)jk′j |dl

k′ k(β)|2.

Finally:

Ω
(1)
α (x, x) =

[
−i∑

l

(2l + 1)| f (l)|2
]
(2l + 1) cos β (A.11)

=

[
−i∑

l

(2l + 1)2| f (l)|2
]

cos β.

Ω
(2)
α (x, x) = −

[
1

2 ∑
l

(2l + 1)2| f (l)|2
] {

cos β(cos β + 3)l2
0 − l0 sin2 β)

}
.

Appendix B. Plot of Von Mise fiducial vector and derivative

Figure B.1. Top left and right: Von Mises Fiducial vector in (α, β) variables at κ = 30, γ = 0; bottom

left and right: derivative with respect to β of the Von Mises Fiducial vector in (α, β) variables at

κ = 30, γ = 0
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Figure B.2. Top left and right: Von Mises Fiducial vector in (α, β) variables at κ = 30, γ = pi; bottom

left and right: derivative with respect to β of the Von Mises Fiducial vector in (α, β) variables at

κ = 30, γ = π
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