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Abstract: The Earth’s synthetic gravitational and density models can be used to validate numerical
procedures applied for a global (or large-scale regional) gravimetric forward and inverse modelling.
Since the Earth’s lithospheric structure is better constrained by tomographic surveys than a deep
mantle, most of existing 3-D density models describe only a lithospheric density structure, while 1-
D density models are typically used to describe a deep mantle density structure below the
lithosphere-asthenosphere boundary. The accuracy of currently available lithospheric density
models is examined in this study. The error analysis is established to assess the accuracy of
modelling the sub-lithospheric mantle geoid, while focusing on the largest errors (according to our
estimates) that are attributed to lithospheric thickness and lithospheric mantle density uncertainties.
Since a forward modelling of the sub-lithospheric mantle geoid comprises also numerical
procedures of adding and subtracting gravitational contributions of similar density structures, the
error propagation is derived for actual rather than random errors (that are described by the Gauss’
error propagation law). Possible systematic errors then either lessen or sum up after applying
particular corrections to a geoidal geometry that are attributed to individual lithospheric density
structures (such as sediments) or density interfaces (such as a Moho density contrast). The analysis
indicates that errors in modelling of the sub-lithospheric mantle geoid attributed to lithospheric
thickness and lithospheric mantle density uncertainties could reach several hundreds of meters,
particularly at locations with the largest lithospheric thickness under cratonic formations. This
numerical finding is important for a calibration and further development of synthetic density
models of which mass equals the Earth’s total mass (excluding the atmosphere). Consequently, the
(long-to-medium wavelength) gravitational field generated by a synthetic density model should
closely agree with the Earth’s gravitational field.

Keywords: error analysis; forward modelling; geoid; lithosphere; Earth’s synthetic models

1. Introduction

Gravimetric forward and inverse modelling techniques are essential numerical tools applied in
physical geodesy and gravimetric geophysics. In physical geodesy applications, these methods are
used to compute topographic and terrain gravity corrections in a gravimetric geoid modelling—e.g.,
[1-11] and compile isostatic gravity maps—e.g., [12]. In gravimetric geophysics, these methods are
used to compile Bouguer and mantle gravity maps—e.g., [13-18]. Furthermore, numerous techniques
have been developed and applied for a gravimetric interpretation of the Earth’s inner structure—e.g.,
[19-21].

Whereas the gravimetric inverse modelling is applied to determine an unknown density
structure or density interface from observed gravity data, the gravimetric forward modelling is used
to compute gravitational field quantities generated by a known density structure or density interface.
Several different methods have been developed for a local and regional gravimetric forward
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modelling based on solving the Newton’s volume integral in the spatial domain by applying
numerical, semi-analytical, and analytical methods—e.g., [2,[22-32]]. In global (and large-scale
regional) applications, methods of solving the Newton’s volume integral in the spectral domain
utilize a spherical harmonic analysis and synthesis of gravity and density structure models—e.g.,
[33-42].

The validation of accuracy and numerical efficiency of newly developed methods for a
gravimetric forward and inverse modelling is often done by comparing results with solutions
obtained from existing (and typically well-established) numerical methods and procedures.
Alternatively, simple or more refined synthetic density models (designed for various configurations
of different geometrical density bodies) have been more recently used for testing and validation of
spatial methods developed for a local and regional gravimetric forward modelling and inversion by
adopting a planar approximation. For global (or large-scale regional) applications, synthetic density
models should mimic more realistically the Earth’s actual shape and inner density structure. Such
synthetic density models have already been used to validate numerical techniques involved in a
gravimetric geoid modelling—e.g., [43-45]. Other examples of possible applications could be given
in studies of the sediment bedrock morphology—e.g., [46], the lithospheric and mantle density
structure—e.g., [16,47], the crustal thickness—e.g., [16,18,[47-52], the dynamic and residual
topography —e.g., [53-55], or the oceanic lithosphere thermal contraction and its isostatic rebalance —
e.g., [56]. To construct a global synthetic density model that closely resembles the Earth’s shape and
inner structure, available global topographic and density structure models could be used for this
purpose together with additional models that provide information about the Earth’s inner structure
(such as crust and lithospheric thickness models). Moreover, constraints have to be applied so that
the mass of Earth’s synthetic model is equal to the Earth’s total mass (excluding the atmosphere), and
the gravitational field generated by the Earth’s synthetic model closely agrees with the Earth’s
gravitational field (in terms of a geoidal geometry, gravity, and gravity gradient).

A number of seismic velocities and mass density models have been developed based on the
analysis of tomographic data, while incorporating geophysical, geochemical, and geothermal
constraints—e.g., [57-64]; for an overview of these models see also Trabant [65]. A practical
application of global 1-D density models, such as the PREM [58] or AK135-F [60], is limited by the
absence of a lateral density information. To address this issue, 1-D reference density models could be
refined by incorporating 2-D or 3-D global lithospheric and mantle density models to achieve a more
realistic representation of the Earth’s inner density structure. Whereas reliable 3-D mantle density
models are rare, a number of 3-D crustal and lithospheric density models have been developed and
published. Nataf and Ricard [66] derived the crustal and upper-mantle density model based on the
analysis of seismic data and additional constrains such as heat flow and chemical composition.
Mooney et al. [67] compiled the CRUST5.0 global crustal model with a 5°x5° spatial resolution. Later,
the updated global crustal model CRUST2.0 was compiled with a 2°x2° resolution by Bassin et al.
[68]. The CRUST1.0 is the most recent version, complied globally with a 1°x1° resolution—e.g., [69].
The CRUST2.0 and CRUST1.0 incorporate also a lateral density structure within the uppermost
mantle. Pasyanos et al. [70] compiled the LITHO1.0 global lithospheric model (including the
asthenosphere). This model was prepared to fit the high-resolution (Love and Rayleigh) surface wave
dispersion maps by using the CRUST1.0 crust data and the LLNL-G3D upper mantle model [71] as
the a priori information. Compared to similar 3-D density and velocity models, this model provides
also information on the lithosphere-asthenosphere boundary (LAB). Hirt and Rexer [72] constructed
the Earth2014 global model consisting of topographic, bathymetric, inland bathymetric, and polar
glacier bedrock relief datasets. Chen and Tenzer [73] compiled the Earth’s Spectral Crustal Model 180
(ESCM180) by augmenting the Earth2014 and CRUST1.0 models.

Since many parts of the world are not yet sufficiently covered by tomographic surveys, the
refinement of 1-D reference density models by incorporating 2-D or 3-D global lithospheric and
mantle density models is not simple. Moreover, the direct relation between seismic velocities and
mass densities does not exist because a density distribution depends on many other factors (such us
temperature, mineral composition, and pressure). In spite of these practical and theoretical
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limitations, the development of synthetic density models that more or less realistically approximate
the Earth’s shape and inner density structure is essential for a more comprehensive assessment of
gravimetric forward and inverse modelling techniques (then that based on using simplistic, typically
geometric density models). Moreover, input data uncertainties should be known in order to
realistically assess the accuracy of synthetic density models.

To inspect possibilities of refining the Earth’s synthetic density model, the accuracy of published
lithospheric density models is assessed based on a novel approach presented in this study. This novel
approach allows to formulate the error propagation and consequently provide rough error estimates
in a gravimetric forward modelling that are attributed to lithospheric density and geometry
uncertainties. A gravimetric forward modelling is applied to determine a long-wavelength geoidal
geometry that is corrected for gravitational contributions of lithospheric density and thickness
variations. Expressions for a gravimetric forward modelling are presented in Section 2, and then used
to derive the error analysis in Section 3. Numerical results are briefly presented in Section 4, and the
accuracy of results is discussed in Section 5. Major findings are concluded in Section 6.

2. Numerical model

We applied methods for a spherical harmonic analysis and synthesis of gravitational and
lithospheric density models to compute the sub-lithospheric mantle geoid. Details on theoretical
aspects are given below.
2.1. Geoid

The geoid height N is defined by—e.g., [74]

T(r, , Q
N(Q) :—( )
% (9) , (1)

where the disturbing potential 7 (i.e., the difference between values of the actual and normal
gravity potential W and U respectively; 7 =W —U )is stipulated at the geoid surface (r g’Q) . The

normal gravity % in Eq. (1) is computed at the ellipsoid surface according to Somigliana-Pizzetti’s
theory [75,76] for the GRS80 [77] parameters. The 3-D position in Eq. (1) and thereafter is defined in

the spherical coordinate system (r. Q) , where 7 is the radius and Q=(p.2) denotes the spherical
direction with the spherical latitude # and longitude 4 . In the context of interpreting long-
wavelength features in the geoidal geometry attributed to a sub-lithospheric mantle density
structure, the disturbing potential 7' in Eq. (1) can approximately (cf. Wieczorek [19,78]; Tenzer et
al., [79]) be computed by using the following expression—e.g., [74]

n=0 m=—n | ’ , (2)
where GM =3986005x10" m® s2 is the geocentric gravitational constant, R =6371x10° m is the

Earth’s mean radius, T are the (fully-normalized) disturbing potential coefficients, Yin are the
(fully-normalized) surface spherical functions of degree n and order m, and 7 is the upper
summation index of spherical harmonics.

2.2. Sub-lithospheric mantle geoid

In the forward modelling scheme, the gravitational contribution of lithospheric density
heterogeneities is subtracted from a geoidal geometry in order to enhance a gravitational signature
of density structures within the mantle below the lithosphere (i.e., within the sub-lithospheric
mantle). This procedure yields the sub-lithospheric mantle geoid N ** , defined by
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TSM (Vg,Q)
%(9) 3)

The computation of the sub-lithospheric mantle disturbing potential 7" in Eq. (3) is realized
in numerical steps explained next.

N™M(Q)=N(Q)+

2.2.1. Bouguer disturbing potential

The Bouguer disturbing potential 7° is obtained from the disturbing potential 7 after
subtracting the gravitational potentials of topography V7 , bathymetry ¥ ? , and polar glaciers V.
We then write (cf. Tenzer et al., [48,50])

r®=1r-v"-v*-y', 4)

The gravitational potentials of atmosphere [80] and lakes [81] are completely negligible when
compared to values of the gravitational potentials ¥, ¥ * ,and V'.
The topographic potential in Eq. (4) is often computed individually for a uniform and anomalous

topographic density. The topographic potential e for a uniform topographic density reads [12]

(. 0)- RSV

720 men : ©)

The potential coefficients Van in Eq. (5) are given by

n (k+1)
VT,pT _ 3 pT - [I’l + 2} 1 Hn,m
k+1
k Jk+1 R , (6)

M 2n+l pPt &

" =5500 ; , : b
where P kg.m? is the Earth’s mean mass density, and P is the average (constant)

topographic density. The Laplace harmonics H

following integral convolution

n of topographic heights / are defined by the

2n+1

. jq;[ p"H'P, (1) dQ = mZHm Y, (Q)

H,(Q)=
, )

where Ham are the topographic coefficients, P s the Legendre polynomial for the argument ¢

(r.Q) (’/’Q,); ie, 1=cos¥  The

A =cos g df d il

of cosine of the spherical angle ¥ between two points and

infinitesimal surface element on the unit sphere is denoted as

*={ O

, and

A —n/2,n/2|AX €| 0,2n)
(¢ ) (pe[ nem A E[ 7t J is the full spatial angle. The corresponding higher-

(k) . _
order terms {Hn,m rk=2.3,.. } read

n

HY (Q) = 2n+1”H”‘P )d'= 3 HY Y
5 " 8)

The topographic potential 72" for an anomalous lateral topographic density is computed
from

v (n.0) =SS 5 sy

n=0 m=-n

, )

where
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T,éor m2ip4? 1 6p ng;l
Vn,m —Earth Z k +1 Rk+1 ‘

The topographic density-heights coefficients {SPTKS() tk=123,..1in Eq. (10) are given by

5Tk (@) = 21¥) o (@ ()K" P, (1) = 3 5K, Y, (@)
RENETY

The height K in Eq. (11) equals the topographic height H except for areas covered by polar
glaciers. In this case, the height K is defined as the topographic height minus the ice thickness. The

T
anomalous lateral topographic density ¥ in Eq. (11) is taken with respect to the average

T T _ T T
topographic density P, so that P (Q)=p"-p"(Q) .
The bathymetric potential ¥ * in Eq. (4) is defined by [82,83]

GM & ¢
B
(7:2)= Z(;mz o Yo . (12)

b
The bathymetric coefficients Vi read

Vo= 3 _Aﬁ Fxl:,m af RFbl az,fRsz]
T 2n+lp Apy Ap ) (13)

where % is the nominal value of the surface seawater density contrast; and A, %, and %
denote parameters of the depth-dependent seawater density developed by Gladkikh and Tenzer [84].

i . Fb Fbl Fb2 .
The numerical coefficients "nm , "nm  and “nm in Eq. (13) are computed from
D, Do Do
F. = 2 —(n+2) e +(n+2)(n+1) R
D(4) D(5)
—(n+2)(n+1)n +(n+2)(n+1)n(n-1) 12(;"1';5
+§2: n+2)(-1)" DY
=5 k k+1 R*! , (14)
oy ol Dl
F = e —(n+2) IR +(n+2)(n+1) =

D(S) a2 2\ (=1 k D(k+2)
~(n+2)(n+1)n 30mm5+z[”2 ](H)Z e
.

k=4

+§(n+2j(_l)k D

k k+3 Rk+3 ) (16)

k=3

The coefficients Pnm of global bathymetric model are defined by

2n+l”D ' (cosy)dQ’ = ZD Y. (Q)
o , (17)
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{DV:i=234]
and their higher-order terms ! I read (ibid.)

D(l _ 2+l J‘J.Dk ' (cosy)dQ' = Z D
s ,(18)

where D denotes the bathymetric depth.
The ice potential ¥’ in Eq. (4) is computed from (cf. Foroughi and Tenzer [85])

V() =5 ZZ

n=0 m=-n . (19)
VI
The ice coefficients "»m in Eq. (19) read
I
b= 5oy (PPl
" 2n+1p ’ . (20)
where the numerical coefficients Flnn and FUnmare given by
n+2 n+2 1 ﬂk+1)
Fl,=>|" |t
vk Jk+1R
n+2 n+2 1 H(k+1)
FuILm :Z( k J_ l’<+1
= k+1 R*" (21)

The coefficients Flun utilize the spherical lower-bound functions Ly of a volumetric mass
density contrast layer and their higher-order terms [82,83]

n n,m nm

L(k+1 27’! +1 k+1 dQ L (k+1)
g mz . (22)

Since the upper-bound of glaciers is identical with the topographic surface, the numerical

Fu

.. . . . . (). g — .
coefficients ©Unm are generated directly from the height coefficients { . : k=12, ..}, The ice

1 T
density contrast %P in Eq. (20) is taken with respect to a uniform topographic density P, i.e.

_ 11 1
O =p =P where P denotes the density of polar glaciers.

2.2.2. Crust-stripped disturbing potential

The gravitational potential of consolidated-crust density contrast ¥ © and the gravitational
potential of sediment density contrast ¥ * are subtracted from the Bouguer disturbing potential 7°
in order to remove the gravitational contribution of density heterogeneities within the whole crust.
This procedure yields the crust-stripped disturbing potential 7 (cf. Tenzer et al. [48])

TS =7 -y5-y°, (23)

The potentials ¥ * and ¥ © in Eq. (23) are computed according to a method developed by
Tenzer et al. [82] that utilizes the expression for a gravitational potential ¥ generated by an arbitrary
volumetric mass layer with a variable depth and thickness while having laterally distributed vertical
mass density variations. It reads

V(rg,Q) :G_ i i Vn,m Yn,m (Q)
R n=0 m=—n . (24)

The potential coefficients Vi in Eq. (24) are defined by
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7
Fl(i) —F @
n,m 2l’l+1 Earth Z ( n,m un,m), (25)
0] o .
where the coefficients {Fln o Pl 11=0,1 7 } are computed from
k (k+1+i)
L2 (n+2) (-1) L
LY e P
"=k Jk+1+i RY
et k (k+1+i)
F (@ 222(”-’-2] (_1) Un,m
o =0 k Jk+1+i RkJrl . (26)
Ln,m Yn,m Z U Yn,m
The terms m=n and m=n in Eq. (26) define the spherical lower-bound and

upper-bound laterally distributed radial density variation functions L and Un of degree 7 .
These numerical coefficients combine information on the geometry and mass density (or density
contrast) distribution within a volumetric layer. The computation of these coefficients is realized to a
certain degree of spherical harmonics from discrete data of the spatial mass density distribution
(typically provided by means of density, depth and thickness data) of a particular structural
component of the Earth’s interior.

The spherical functions L ana Us including their higher-order terms |{
L U™ k=0,1,..50 =12, .1 } in Eq. (26) are defined by

2”“j (D, . Q) D ()P, (1) dY
= Z Ly, i=0
L(k+1+i)(Q)=
2n+l”‘ﬁ Dk+l+z (Q,)Pn (l) aQ’
D
=y Uy, i=12,...,1
Z () (27)
and
2n+1 , . p ,
" [[p (D, 2) DL ()P, (1) d2
D
= Z Uy i=0
U(k+1+i) (Q) —
ntl LT B() @ (@) D (@), (1) d
[
= Z ulty, (Q) i=12,..1

(28)
For a specific volumetric layer, the mass density £ is either constant P , laterally-varying

P() or - in the most general case - approximated by the laterally distributed radial density
variation model by using the following polynomial function (for each lateral column)


https://doi.org/10.20944/preprints202308.1507.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2023 d0i:10.20944/preprints202308.1507.v1

I

p(r Q)= p(D,. Q)+ B(Q) Yo () (R-r)

i=1

for R-D, (Q’)2r'>R—DL (Q’)‘ 29)

The nominal value of lateral density (D) is stipulated at the depth Dy | This density

distribution describes a radial density variation (in terms of coefficients (& i=12,..1 }and #)
within a volumetric mass layer at a location &'. Alternatively, when modeling a gravitational field
of anomalous density structures (in this case, the density contrast of sediments and consolidated

C
crust), the density contrast A2 of volumetric mass layer relative to the reference density P is

defined by
Ap(”", Q’) — pC —p(r”Q’)
I .
=4p(Dy, )= f(Q) 2o () (R=r)’,
i=1
for R-D,(Q)2r">R-D,(Q) (30)
where 4P (Dy, &) is the nominal value of lateral density contrast stipulated at the depth Dy Here

C
the reference density P of homogenous crust is used.

2.2.3. Mantle disturbing potential

To reveal a gravitational signature attributed to a mantle density structure, the Moho geometry
signature has to be subtracted from the crust-stripped disturbing potential. This procedure yields the
mantle disturbing potential. According to Tenzer et al. [50], the mantle disturbing potential 7" is
obtained from the crust-stripped disturbing potential 7 after subtracting the gravitational

c/m

potential of Moho geometry VY5 We then write
T =TS -y (31)
. M. ape™ . A" . . .
The potential V’ (for the average Moho density contrast ) is defined in the following
form
P (1, @) =3 3 3 R, (@)
Rp™™ S ’ , (32)
ApM
where the numerical coefficients Tnm  are given by
R "*3("! +3) (1) g
i (2n+1)(l’l+3) k=1 k Rk o . (33)

A

The Moho depth spherical functions M, and their higher-order terms {Mgk) tk=2.3, ..y read

MY = ZZ:HW (Q) P, () dQ’
D

=Y N0y, (@
m; ’ ( ) (34)
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) g =
As seen in Eq. (34), the coefficients (M 1 k=12, .} are generated from values of the Moho
depth M . The Moho density contrast in Eq. (33) is defined as the average lithospheric mantle

M c
density P from which the (constant) reference crustal density P is subtracted. Hence
c/m __ IM c
Ap™=pT —p, (35)

2.2.4. Lithosphere-stripped disturbing potential

The lithosphere-stripped disturbing potential 7" is obtained from the mantle disturbing
potential 7" by subtracting the lithospheric-mantle gravitational potential ¥*", so that

TCL=TM_VLM . (36)

For a lateral density distribution function within the lithospheric mantle, the lithospheric-mantle
gravitational potential ¥*" is defined by

GM & 1

v (. 0)=3 RpE™ =25 41

w242 (—l)k D) )
E ; — L '-M Y (Q
Xk:O( k )Rk+l(k+l)m;,( nm o ) () )

7

(k+1)
where the Moho coefficients Mun ' describe the geometry and lateral density (contrast) distribution

(k+1)
at the Moho interface, and the LAB coefficients Lnm describe the geometry and lateral density
(contrast) distribution at the LAB.

(k+1)
The Moho coefficients M o in Eq. (37) are defined in the following form

3 MY, (@)= 2] ot ()M (), (1)
m=-n T [

, (38)
where M denotes the Moho depth (see Eq. 34). The (lateral) lithospheric mantle density contrast
LM
P in Eq. (38) is computed as the difference between the adopted (lithospheric mantle) reference
LM IM (Y _ M IM [ ('
density P and the lithospheric mantle density P ;ie, P () =p™ =™ () .
The LAB coefficients L(xi;l) in Eq. (37) read
u (k) _ 2” + l M , k , ,
2 Lo Yo (@) == [[ 0™ (@) ' () P, (1) d2
m=n dn G . (39)

where L isthe LAB depth. If we consider a current resolution of global lithospheric density models
(1x1 arc-deg or lower) that corresponds (by means of a half wavelength) to a spectral resolution up
to the degree 180 of spherical harmonics, the lithospheric-mantle gravitational potential can
sufficiently be computed by using binomial series in Eq. (37) up to only the third-order term.

2.2.5. Sub-lithospheric mantle disturbing potential

The computation of the lithosphere-stripped disturbing potential 7" in Eq. (36) enhanced a
signature of the LAB geometry that has to be removed in order to enhance a gravitational signature
of the sub-lithospheric mantle density structure. This procedure is realized by stripping the
lithosphere with respect to the density contrast between the reference (lithospheric mantle) density
and the asthenosphere density in order to obtain the sub-lithospheric mantle disturbing potential.
The sub-lithospheric mantle disturbing potential 7%" is then computed as

TSM :TCL_VLAB, (40)

where the potential ¥ *** of LAB geometry is defined by
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GM & 1
VR (r Q) =3— Y ——
(rg ) Rp™™ & 2n+1
2 (p 42 (—l)k )
X _ LY (Q
A emm L i v @
The coefficients I:(nk,:nl) in Eq. (41) read
i ﬂ:zﬂ Y, (Q) _ 2}2:1 APL/A_U I (Q') P, (t) o’
m=-n @ , (42)

) ) ApYA = pA —pM
where L is the LAB depth (see also Eq. 39), and the LAB density contrast ~P p =P

L
defined as the difference between the lithospheric mantle density P and the asthenospheric density

A
P". We note that the computation of ¥ “**  can again be restricted up to the third-order terms of a

binomial series (as in the case of computing V" in Eq. 37).

3. Model uncertainties

The numerical model presented in Section 2 was used in this section to derive the error
propagation in modelling of the sub-lithospheric mantle geoid. According to results presented in
Section 4 (see Table 1), the gravitational contributions of lithospheric mantle and LAB are one order
of magnitude larger than the corresponding contributions of topographic and crustal density
structures. We, therefore, focused only on the estimation of errors due to lithospheric mantle density
and lithospheric thickness uncertainties, while disregarding much smaller (in absolute sense)
modelling errors due to crustal density uncertainties.

3.1. Errors due to lithospheric thickness uncertainties

In the sub-lithospheric mantle geoid modelling, the lithospheric thickness information is used
to compute the lithospheric-mantle gravitational potential ¥* (in Eq. 39) and the LAB potential
v % (in Eq. 41). We then established a relation between the error of sub-lithospheric mantle geoid
E s &

NS L

and the error of lithospheric thickness in the following form

Lot oyt
oL ng

__ 3 GM E '”2 (L(k+1)+]:(k+1))Y (Q)
% Rp RpF - 02n+1k s RkJrl k+1 = wmj o,

3 oM &@(n+2) (<)
Ty 4n R & kz;‘( JR““(kH)
x[[ [dp™ (Q')+2p"* [(k+1) L (Q)e, (') P, (1) dQ’
C : (43)

After disregarding terms k 21 , the expression in Eq. (43) simplifies to

G =T 7041: RZ_E‘"‘“h ” [ (@) a0 Jeu ’)gp“(t)dg (44)

For n=0, we have
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When assuming that the largest contribution to the error €\ comes from lithospheric thickness
uncertainties in the vicinity of computation point (for which the error is estimated), the global
integration domain in Eq. (45) could be disregarded. Instead, we reduce a functional relation only for
a position of computation point. We then write

3 GM
£y ~m—m 2 (5, IM L ASUA) g
R (e . (46)

2
Inserting for %o = GMR™ 4y Eq. (46), we arrive at

& NSM =

3 (W+MUA ]g
4t prm - 47)

3.2. Errors due to lithospheric mantle density uncertainties

c/m

The lithospheric mantle density information is used to compute the Moho density contrast Ap
LM
(Eq. 35), the lithospheric mantle density variations P (Eq. 38), and the LAB density contrast

/A c/m
Ap (Eq. 42). This involves the computation of the Moho potential e (in Eq. 32), the
lithospheric-mantle gravitational potential ¥** (in Eq. 39), and the LAB potential ¥ “** (in Eq. 41).

The error propagation for the lithospheric mantle density uncertainties is then established in the
following form

8NSM =

L[ r L
-— + £+ £
e

p) Apc/m gApC/m ) é‘pLM oM p) ApL/A ApHA

3 GM "g:(nn] (-1)'

% A4n Rp™™ i3 k)R (k+1)

X g { M)+ £ (Q) L7 (Q) =, ()M (Q) [, 1 L (g’)} P, (f) d o

E um £ £ . . . c/m
where "4, “®"™ and “#" denote, respectively, the errors in the Moho density contrast Ap

&LM /A
, the anomalous lithospheric mantle density , and the LAB density contrast Ap
After disregarding terms k >1 in Eq. (48), we arrive at

Eym =7 7, 471: Rz Earth _U{ /kaH )+€5 M (Q,)Lk+1 (Q,)
0

—e (VM (Q)+e I () P (1) dY
o (Q)MH(Q) +e, ( )J_g 2 (1) ' )

2
Considering that 7=0and 7 ~ GM/R , we get

3 + ’ ’ ’ ’ ’ 7 ’
ey == [ {E0, e M5 (Q) + £, () L(Q) = £, ()M (Q) 42, 1, L(Q)} dQ2
4np T g . (50)

By analogy with Eq. (46), the expression in Eq. (50) is further simplified to
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3
£ o = _W[%” Mg, (L-M)+e, ., LJ

P 1)

As seen in Eq. (51), the sub-lithospheric mantle geoid error £ in this case depends on the
LM
accuracy of anomalous lithospheric mantle density P addition, the errors €ap and Eapr

A ¢/m
in adopted values of the LAB density contrast Ap™" and the Moho density contrast Ap™ affect the
accuracy.

4. Results

Tenzer and Chen [81] applied numerical procedures (described in Section 2) to compute the
global sub-lithospheric mantle geoid globally with a spectral resolution up to degree 180 of spherical
harmonics. They used the EIGEN-6C4 [86] global gravitational model, the Earth2014 topographic,
bathymetric, and glacial bedrock relief datasets [72], the UNB_TopoDens global lateral topographic
density model [87], the total sediment thickness data for the world's oceans and marginal seas [88],
the CRUST1.0 [69] global seismic crustal model updated for the sediment and crustal layers of the
Antarctic lithosphere by Baranov et al. [89], and the LITHO1.0 [70] global seismic lithospheric model.
They adopted the reference density values 2670 kg.m? (cf. Hinze [90]; Artemjev et al. [91)) for the
crust above the geoid, 2900 kg.m? for the crust below the geoid, and 3300 kg.m= for the lithospheric
mantle. To further improve the accuracy of forward modelling, they defined the ocean density
contrast for a depth-dependent seawater density function [47,84], and applied a density model of
marine sediments [92] under marginal seas and oceans.

The gravitational contributions of individual lithospheric density structures are plotted in Figure
1, with the statistical summary of results in Table 1. Modifications of the geoidal geometry after
subtracting gravitational contributions of individual lithospheric density structures are presented in
Figure 2, with the statistical summary in Table 2.

Table 1. Statistics of gravitational potentials used to compute the sub-lithospheric mantle gravity
disturbances. For notation used, see legend in Figure 1.

Grav1tat1.onal Min [m2.s2] Max [m2.s2] Mean [m2.s2] STD [m2.s2]
potential
4 2226 8494 3589 1114
V! -3472 -312 -731 729
%44 -28533 -16402 -22386 3185
Vs -3862 -1937 -2719 444
ve 11529 25075 15661 2741
A -69885 -46423 -55734 5832
LM -262661 -174276 -213366 17795
yLAB 168987 244558 203311 16194

B0
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Figure 1. Global maps of the gravitational potentials of: (a) topography V7, (b)ice V/, (c) bathymetry
V5, (d) sediments V¥, (e) consolidated crust V¢, (f) Moho geometry VM4¢“™  (g) lithospheric mantle

VM and (h) LAB geometry V145,

Table 2. Statistics of geoid models. For notation used, see legend in Figure 2.

Refined geoid Min [m] Max [m] Mean [m] STD [m]
N -106 85 -1 29
NB 1198 2946 2269 356
N¢S -1358 1743 671 630
NM 5772 6617 6358 128
NCE 24009 33222 28130 1835
NSM 6445 8388 7384 372

" b
1000 1200 1400 1600 1800 2000 2200 2400 2600
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Figure 2. Global maps of: (a) the geoid N, (b) the Bouguer geoid NZ, (c) the crust-stripped geoid
NS, (d) the mantle geoid N", (e) the lithosphere-stripped geoid N, and (f) the sub-lithospheric
mantle geoid NSM.

A long-wavelength geoidal geometry (Figure 2a) reflects mainly a mantle density structure—
e.g., [93,94], while a signature of crustal density and geometry variations (including a topographic
surplus of large orogenic formations) is less prominent. After removing the gravitational
contributions topography and lithospheric density and geometry (i.e., LAB) variations, the resulting
(sub-lithospheric mantle) geoidal geometry (see Figure 2f) should (optimally) enhance the
gravitational signature of sub-lithospheric mantle.

It is well known fact that a spatial pattern in dynamic topography models—e.g., [54,55],[95-98]
mainly reflects a mantle convection flow, with maxima marking locations of the African and South
Pacific superplumes that represent large-scale regions characterized by an elevated topography and
shallow ocean-floor depts caused by a low-density upwelling mantle material from the core-mantle
boundary. The corresponding minima are explained by a high-density mantle downwelling flow.
Tomographic studies—e.g., [99] indicate that superplumes coincide with locations of large low-shear-
velocity provinces (LLSVPs) beneath Africa (called Tuzo) and the South Pacific (called Jason). Since
the gravitational contributions of lithospheric density and thickness variations have been modelled
and consequently removed in our forward modelling procedure, the sub-lithospheric mantle geoid
should mainly reflect deep mantle density anomalies. Consequently, the spatial pattern of sub-
lithospheric mantle geoid (especially its long-wavelength spectrum up to degree 5 of spherical
harmonics; see Figure 3) does not closely agree with a spatial pattern of dynamic topography models
(cf. Tenzer and Chen [81]). A comparative study of spatial patterns in the sub-lithospheric mantle
geoid and dynamic topography models is thus not meaningful for the assessment of errors in our
gravimetric forward modelling.
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Figure 3. The sub-lithospheric mantle geoid computed up to degree 5 of spherical harmonics (and
calibrated so its mean value equals zero).

As seen in Figure 3, the long-wavelength pattern in the sub-lithospheric mantle geoid is
characterized by a large positive anomaly in the Central Pacific and a less pronounced anomaly in
the Central Atlantic with a prolonged shape across the Atlantic Ocean and further extending across
the South Indian Ocean towards West Australia. These two positive anomalies are coupled by
negative anomalies in the Equatorial East Pacific and across South and East Eurasia. An additional
negative anomaly is detected in Antarctica. If we consider that a spatial pattern of the sub-lithospheric
mantle geoid should mainly manifest sub-lithospheric mantle density heterogeneities, it becomes
clear that a long-wavelength pattern in Figure 3 might be affected by large errors especially at
locations with a maximum lithospheric thickness. This becomes even more evident when inspecting
the sub-lithospheric mantle geoid in Figure 2f, where a maximum lithospheric deepening is clearly
manifested in the geoidal geometry. This indicates a possible presence of large errors attributed to
lithospheric model uncertainties used in the gravimetric forward modelling. These errors are
estimated in the next section.

5. Error analysis

Large errors are expected in the CRUST1.0 and LITHO1.0 models used for a gravimetric forward
modelling in this study. As already mentioned in the preceding section, this is particularly evident
from pronounced positive sub-lithospheric mantle geoid anomalies (Figure 2f) that are also still
partially exhibited in its long-wavelength pattern (Figure 3). These positive anomalies correspond
with the largest cratonic lithospheric thickness (the Laurentian Shield in North America, the
Amazonian Shield and Sdo Francisco Craton in South America, the West African Craton, the East
European and Siberian Cratons and the Baltic Shield in Eurasia, and the West Australian Craton).

As seen in Eq. (47), the lithospheric thickness uncertainties propagate almost linearly to the sub-
lithospheric mantle geoid uncertainties. We can, therefore, readily estimate the geoid errors for
particular lithospheric thickness uncertainties. According to the LITHO1.0 model, the lithospheric
mantle density varies roughly from 3000 to 3450 kg.m. From these density variations we can assume

that ™ is mostly within +200 kg.m-. The boundary between the lowermost lithosphere and the
uppermost asthenosphere (i.e., the LAB) is rheological, conventionally taken at the 1300°C isotherm,
above which the mantle behaves in a rigid fashion and below which behaves in a ductile fashion
[100]. Studies suggest the existence of a compositional or chemical density contrast 0-20 kg.m-3 [101],
except probably the cratonic mantle. In addition to a possibly chemical density contrast, a strong
thermal density contrast 30-60 kg.m* occurs when the asthenosphere is locally uplifted by rifting.

UA

We, therefore, assume that the density variations A7 atthe boundary between the lithosphere and
. P + A"t =4230 :

the asthenosphere are mostly within +30 kg.m-=. For p kg.m?3, the errors in the

lithospheric thickness estimates of € =10 1 cause errors in the sub-lithospheric mantle geoid

roughly Eyon =301 km.
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The lithospheric thickness models vary significantly. Pasyanos et al. [70], for instance, found
large differences between their LITHO1.0 model and that prepared by Conrad and Lithgow-
Bertelloni [102]. They also provided explanation that these large differences are due to applying
different methods, assumptions, and input data. To get a rough idea about a magnitude of these
errors, we compared the lithospheric thickness models SLNAAFSA [103], SL2013sv [104], LITHO1.0
[70], CAM2016 [105-106], and 3D2015-07Sv [107], and used their differences to estimate (sub-
lithospheric mantle) geoid errors. We note here that the SLNAAFSA model was prepared by
Hoggard et al. [103] by merging regional updates from North America [108], Africa [109], and South
America [110] into the global SL2013sv model. The lithospheric thickness models are shown in Figure
4, with their statistical summary given in Table 3. The statistics of differences between individual

lithospheric thickness models are summarized in Table 4.

Table 3. Statistics of the lithospheric thickness models SLNAAFSA, SL2013sv, LITHO1.0, CAM2016,

and 3D2015-07Sv.

doi:10.20944/preprints202308.1507.v1

Lithospheric thickness

Min [km] Max [km] Mean [km] STD [km]
model
SLNAAFSA 38 364 115 57
SL2013sv 40 350 112 52
LITHO1.0 7 271 114 55
CAM2016 38 241 111 46
3D2015-075v 36 703 110 51
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Figure 4. Lithospheric thickness models: (a) SLNAAFSA, (b) SL2013sv, (¢) LITHO1.0, and (d)
CAM2016, and (e) 3D2015-07Sv.

Table 4. Statistics of differences between the lithospheric thickness models SLNAAFSA, SL2013sv,
LITHO1.0, CAM2016, and 3D2015-07Sv.

Lithospheric thickness

] Min [km] Max [km] Mean [km] RMS [km]
model differences

SLNAAFSA - SL2013sv -237 303 3 11
SLNAAFSA - LITHO1.0 -196 289 1 77
SLNAAFSA - CAM2016 -160 307 4 26
SLNAAFSA - 3D2015-075v -638 309 5 26
SL2013sv - LITHO1.0 -195 298 -1 74
SL2013sv - CAM2016 -160 306 1 22
SL2013sv - 3D2015-07Sv -637 303 3 24
LITHOL1.0 - CAM2016 -184 206 2 71
LITHOL1.0 - 3D2015-075v -603 206 4 74
CAM2016 - 3D2015-07Sv -561 195 2 18

As seen in Table 4, differences between lithospheric thickness models exceed several hundreds

of meters. If we consider that average uncertainties in the lithospheric thickness €. are about +40

km (the average of the Root-Mean-Square (RMS) of differences in Table 4), the sub-lithospheric

mantle geoid errors €t could reach or even exceed +0.4 km.

Tomographic images of the lithosphere have a limited accuracy and resolution. Moreover, the
conversion between seismic wave velocities and rock densities is not unique—e.g., [58,111]. Hager
and Richards [112], for instance, mentioned that a lithospheric mantle composition and seismic
anisotropy is more complex than a deep mantle structure, making it harder to convert seismic
anomalies to density anomalies or buoyancy (cf. also Simmons et al., [113]). We, therefore, expect also
large (sub-lithospheric mantle) geoid modelling errors due to lithospheric mantle density
uncertainties.

According to Eq. (51), the sub-lithospheric mantle geoid error Ey depends on the accuracy of
LM
anomalous lithospheric mantle density Y , and additional errors “»" and ‘s in adopted

values of the LAB density contrast Ap™ and the Moho density contrast Apdm. Large density
variations occur within the lithospheric mantle, although in comparison to the crust, fewer
constraints exist on the composition of the lithospheric mantle. Petrological models for the origin of
basalt are used to compile models of the oceanic lithospheric mantle. An undepleted peridotitic
source that partially melts to produce the mid-ocean ridge basalt, leaves behind a depleted residue
(a harzburgite), the thickness of which depends on the degree of a partial melt. As the oceanic
lithosphere cools, the undepleted mantle becomes part of the lithospheric column and its thickness
increases with the ocean-floor age. The composition of the continental lithospheric mantle depends
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on a tectonic province and its age. Jordan [114] proposed that the lithospheric mantle might be cold
and buoyant in the thickest cratonic portions of very fast seismic velocity (see also Gung et al., [115]).
These conditions require the presence of a depleted layer overlying an undepleted upper mantle
layer. Based on the LITHO1.0 lithospheric mantle density variations (roughly within 200 kg.m?) and
the previously summarized studies, we can anticipate that lithospheric mantle density uncertainties

o are mostly within £100 kg.m3. We further assume that uncertainties in the average LAB density

L/A

contrast ‘' are roughly +15 kg.m?.

Results from seismic and gravimetric studies revealed that the Moho density contrast varies
substantially. Artemieva [116] demonstrated that the in situ density contrast between the crystalline
crust and the lithospheric upper mantle differs substantially between the Cratonic and the
Phanerozoic crust within the European part of the Eurasian tectonic plate, approximately 500 kg.m3
for the crust beneath Western Europe, between 300 and 350 kg.m3 for most of the Precambrian crust,
and by as little as 150-250 kg.m?3 for some parts of the Baltic and the Ukrainian Shields. Sjoberg and
Bagherbandi [117] provided the average values 678+78 and 334+108 kg.m? of the Moho density

contrast for the continental and oceanic areas respectively. According to these studies, we speculate

that the errors of Moho density contrast s could be roughly +50 kg.m-. Adopting the above error

estimates of o ~F100 kg.m3, Eypn =EI5 kg.m3, and Eppen =150 kg.m3 and considering the

lithospheric thickness L ~100 km and the Moho depth M of ~30 km, the geoid modelling error

v could, according to Eq. (61), reach or even exceed +0.5 km.
To confirm the above theoretical estimates, we rearranged the error propagation in Eq. (51) into
the form that directly incorporates density uncertainties within the uppermost asthenosphere and

c/m M C LM M LM /A A M
the lowermost crust. Inserting for A =pT —p, P =p =P and T =p"-p

in Eq.
(51), we get
3
e —4n§Emh [(epm —£, )M+(EPLM =€ )(L—M)+(epA —&u )L}
:—%[e WM = M+ L= M=£ (L-M)+&, L=2,,L]
4np A P P p P P P P
3
e [gpc M+, (L-M)+e, L] .

A

£, £ . © oot .
where % and “»* are errors in the average crustal P and asthenospheric P densities

respectively. As seen in Eq. (52), the modelling error Ey depends on the accuracy of lithospheric
mantle density distribution as well as adopted average densities of the crust and the asthenosphere,

while errors in adopted value of the average lithospheric mantle density p™ cancel.

Christensen and Mooney [111] reported the average value 2835 kg.m-3 for the continental
crustal density. Tenzer et al. [50] provided a very similar value 2790 kg.m-3. The oceanic crust,
composed primarily of mafic rocks, is typically heavier than the continental crust—e.g., [118]. Tenzer
et al. [50] estimated that the average density of the oceanic crust (without marine sediments) is
2860 kg.m-3. Carlson and Raskin [119] provided the estimate of 2890 kg.m-3. Tenzer and Gladkikh
[92] confirmed a similar value (when disregarding marine sediments) of 2900 kg.m-3 based on the
analysis of global samples of marine bedrock densities. If we focus only on the lowermost crustal
density uncertainties, the density according to the CRUST1.0 varies from 2850 kg.m-3 under
Himalayas to 3050 kg.m-3 under oceans with a standard deviation ~70 kg.m-3. Christensen and
Mooney [111] provided the uncertainty of +50 kg.m-3 for the crystalline crust that could be reduced

&
to ~+30 kg.m-3 when considering only the lowermost crust. The error * of +50 kg.m-3 could then
be a realistic expectation for an average density within the lowermost crust.
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Density variations within the asthenosphere are probably controlled by a mantle flow pattern.
Large density variations attributed to mantle plumes, for instance, were detected under Iceland,
Hawaii, Azores, and elsewhere—e.g., [120]. Seismic tomography results indicate also relatively
large density heterogeneities and density discontinuities in the mantle transition zone at depths
approximately between 410 to 660 km—e.g., [121,122]. Based on petrological evidences, Griffin et
al. [123] reported density variations 3300-3400 kg.m= in the asthenosphere. From these estimates, we

A

could assume that the error ©»* in the average asthenosphere density is roughly +30 kg.m=.

Assigning these density uncertainties to Eq. (52), the geoid modelling errors €@ within 0.6 km
closely corresponds with the estimated value of +0.5 km according to Eq. (51).
To check the correctness of our initial assumption that the lithospheric mantle density

LM

uncertainties %" are mostly within +100 kg.m?, we used differences between the lithospheric
thickness models (in Table 4) to reversely estimate errors of lithospheric mantle density. The
computation was done approximately by using a simple relation for the gravitational potential V'
of an infinite planar plate that is computed from the density £ and thickness $ values as follows

V=2nGRps (53)
The error propagation model for Eq. (53) reads

£, =21GR (s, +pe,) (54)

where &% isa density uncertainty, and & is a thickness uncertainty.

LM

Since we here inspect the propagation only between errors €™ and & (or equivalently &

), the error € in Eq. (54) is disregarded. We then write

g =2nGRse, (55)

Defining the potential errors &, in Eq. (55) in terms of geoid uncertainties &, , we arrive at

£ 2 GR R’
£y =_VgV z_nGR SE, zZﬂ:—Z sE, = 2m— SE,

7, 7, GM/R M , (56)

where M = 5.9722 x 10* kg is the Earth’s total mass.

According to Table 4, the RMS of differences between the lithospheric thickness models is on
average roughly +0.4 km. This RMS corresponds to the density error & of ~ +160 kg.m?. As seen,
this error estimate agrees quite closely with the error analysis according to Eq. (51), where we

assumed density errors within a similar range (i.e., € = E100 kg.m=, Eppn =ELS kg.m?, and
:+
Epgon 50 kg.m?3).

As confirmed in this study, the sub-lithospheric mantle geoid modelling is affected mainly by
errors in lithospheric thickness and lithospheric mantle density. Since we disregarded density
variations within the asthenosphere, additional errors in our result are possibly attributed to
temperature anomalies and small-scale convection patterns within the asthenosphere. It is also clear
from Eq. (52) that the geoid modelling errors due to lithospheric mantle density uncertainties increase
almost linearly with the increasing lithospheric thickness. Consequently, both uncertainties likely
propagate into maximum geoid errors at locations characterized by the largest continental
lithospheric deepening under cratonic formations that are manifested by large positive anomalies of
the sub-lithospheric mantle geoid model (Figure 2e). At these locations, errors could according to our
estimates reach (or even exceed) +0.5 km.

These theoretical findings indicate that the sub-lithospheric mantle geoid presented in Figure 2f
(or Figure 3) might be very inaccurate, especially at locations with a maximum lithospheric
deepening where these errors reach maxima. In reality, modifications of the geoidal geometry by sub-
lithospheric mantle density heterogeneities are probably much smaller than those seen in Figure 2f.
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This is due to the fact that relative lateral density variations within the mantle are up to only a few
percent—e.g., [124-129].

6. Summary and concluding remarks

We have analyzed errors of computing the sub-lithospheric mantle geoid based on applying a
gravimetric forward modelling and by using lithospheric density and thickness models as input data.
The principle of this method is to model and subsequently remove the gravitational contributions of
topography and lithospheric density and geometry variations in order to enhance a gravitational
signature of the sub-lithospheric mantle density structure in the geoidal geometry. The expressions
in the spectral domain, that utilize methods for a spherical harmonic analysis and synthesis of
gravitational and lithospheric density structure models, were then used to establish the error
propagation between geoid modelling errors and lithospheric mantle and lithospheric thickness
uncertainties.

According to our analysis, errors in modelling of sub-lithospheric mantle geoid due to
lithospheric thickness and lithospheric mantle density uncertainties could reach or even exceed +0.5
km, particularly at locations with a maximum lithospheric thickness under cratons where both errors
could magnify significantly. Theoretical error analysis and numerical results, therefore, suggest that
actual modifications of the geoidal geometry by lateral mantle density variations below the
lithosphere-asthenosphere boundary are much smaller than those computed and presented in Figure
2f (or in Figure 3).

This finding is indicative for a possible improvement of the Earth’s synthetic density and
gravitational models based on a density calibration within individual lithospheric and underlying
deeper mantle layers so that a sum of volumetric mass densities within the Earth’s synthetic model
provides the value that closely agrees with the Earth’s total mass (excluding the atmosphere).
Equivalently, the Earth’s synthetic density model should generate the gravitational field that closely
agree with the Earth’s gravitational field. This issue will be addressed in the forthcoming study,
where we will compile a synthetic model that closely fulfills both requirements.
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