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Abstract: The Earth’s synthetic gravitational and density models can be used to validate numerical 
procedures applied for a global (or large-scale regional) gravimetric forward and inverse modelling. 
Since the Earth’s lithospheric structure is better constrained by tomographic surveys than a deep 
mantle, most of existing 3-D density models describe only a lithospheric density structure, while 1-
D density models are typically used to describe a deep mantle density structure below the 
lithosphere-asthenosphere boundary. The accuracy of currently available lithospheric density 
models is examined in this study. The error analysis is established to assess the accuracy of 
modelling the sub-lithospheric mantle geoid, while focusing on the largest errors (according to our 
estimates) that are attributed to lithospheric thickness and lithospheric mantle density uncertainties. 
Since a forward modelling of the sub-lithospheric mantle geoid comprises also numerical 
procedures of adding and subtracting gravitational contributions of similar density structures, the 
error propagation is derived for actual rather than random errors (that are described by the Gauss’ 
error propagation law). Possible systematic errors then either lessen or sum up after applying 
particular corrections to a geoidal geometry that are attributed to individual lithospheric density 
structures (such as sediments) or density interfaces (such as a Moho density contrast). The analysis 
indicates that errors in modelling of the sub-lithospheric mantle geoid attributed to lithospheric 
thickness and lithospheric mantle density uncertainties could reach several hundreds of meters, 
particularly at locations with the largest lithospheric thickness under cratonic formations. This 
numerical finding is important for a calibration and further development of synthetic density 
models of which mass equals the Earth’s total mass (excluding the atmosphere). Consequently, the 
(long-to-medium wavelength) gravitational field generated by a synthetic density model should 
closely agree with the Earth’s gravitational field. 

Keywords: error analysis; forward modelling; geoid; lithosphere; Earth’s synthetic models 
 

1. Introduction 

Gravimetric forward and inverse modelling techniques are essential numerical tools applied in 
physical geodesy and gravimetric geophysics. In physical geodesy applications, these methods are 
used to compute topographic and terrain gravity corrections in a gravimetric geoid modelling—e.g., 
[1–11] and compile isostatic gravity maps—e.g., [12]. In gravimetric geophysics, these methods are 
used to compile Bouguer and mantle gravity maps—e.g., [13–18]. Furthermore, numerous techniques 
have been developed and applied for a gravimetric interpretation of the Earth’s inner structure—e.g., 
[19–21]. 

Whereas the gravimetric inverse modelling is applied to determine an unknown density 
structure or density interface from observed gravity data, the gravimetric forward modelling is used 
to compute gravitational field quantities generated by a known density structure or density interface. 
Several different methods have been developed for a local and regional gravimetric forward 
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modelling based on solving the Newton’s volume integral in the spatial domain by applying 
numerical, semi-analytical, and analytical methods—e.g., [2,[22–32]]. In global (and large-scale 
regional) applications, methods of solving the Newton’s volume integral in the spectral domain 
utilize a spherical harmonic analysis and synthesis of gravity and density structure models—e.g., 
[33–42]. 

The validation of accuracy and numerical efficiency of newly developed methods for a 
gravimetric forward and inverse modelling is often done by comparing results with solutions 
obtained from existing (and typically well-established) numerical methods and procedures. 
Alternatively, simple or more refined synthetic density models (designed for various configurations 
of different geometrical density bodies) have been more recently used for testing and validation of 
spatial methods developed for a local and regional gravimetric forward modelling and inversion by 
adopting a planar approximation. For global (or large-scale regional) applications, synthetic density 
models should mimic more realistically the Earth’s actual shape and inner density structure. Such 
synthetic density models have already been used to validate numerical techniques involved in a 
gravimetric geoid modelling—e.g., [43–45]. Other examples of possible applications could be given 
in studies of the sediment bedrock morphology—e.g., [46], the lithospheric and mantle density 
structure—e.g., [16,47], the crustal thickness—e.g., [16,18,[47–52], the dynamic and residual 
topography—e.g., [53–55], or the oceanic lithosphere thermal contraction and its isostatic rebalance—
e.g., [56]. To construct a global synthetic density model that closely resembles the Earth’s shape and 
inner structure, available global topographic and density structure models could be used for this 
purpose together with additional models that provide information about the Earth’s inner structure 
(such as crust and lithospheric thickness models). Moreover, constraints have to be applied so that 
the mass of Earth’s synthetic model is equal to the Earth’s total mass (excluding the atmosphere), and 
the gravitational field generated by the Earth’s synthetic model closely agrees with the Earth’s 
gravitational field (in terms of a geoidal geometry, gravity, and gravity gradient). 

A number of seismic velocities and mass density models have been developed based on the 
analysis of tomographic data, while incorporating geophysical, geochemical, and geothermal 
constraints—e.g., [57–64]; for an overview of these models see also Trabant [65]. A practical 
application of global 1-D density models, such as the PREM [58] or AK135-F [60], is limited by the 
absence of a lateral density information. To address this issue, 1-D reference density models could be 
refined by incorporating 2-D or 3-D global lithospheric and mantle density models to achieve a more 
realistic representation of the Earth’s inner density structure. Whereas reliable 3-D mantle density 
models are rare, a number of 3-D crustal and lithospheric density models have been developed and 
published. Nataf and Ricard [66] derived the crustal and upper-mantle density model based on the 
analysis of seismic data and additional constrains such as heat flow and chemical composition. 
Mooney et al. [67] compiled the CRUST5.0 global crustal model with a 5°×5° spatial resolution. Later, 
the updated global crustal model CRUST2.0 was compiled with a 2°×2° resolution by Bassin et al. 
[68]. The CRUST1.0 is the most recent version, complied globally with a 1°×1° resolution—e.g., [69]. 
The CRUST2.0 and CRUST1.0 incorporate also a lateral density structure within the uppermost 
mantle. Pasyanos et al. [70] compiled the LITHO1.0 global lithospheric model (including the 
asthenosphere). This model was prepared to fit the high-resolution (Love and Rayleigh) surface wave 
dispersion maps by using the CRUST1.0 crust data and the LLNL-G3D upper mantle model [71] as 
the a priori information. Compared to similar 3-D density and velocity models, this model provides 
also information on the lithosphere-asthenosphere boundary (LAB). Hirt and Rexer [72] constructed 
the Earth2014 global model consisting of topographic, bathymetric, inland bathymetric, and polar 
glacier bedrock relief datasets. Chen and Tenzer [73] compiled the Earth’s Spectral Crustal Model 180 
(ESCM180) by augmenting the Earth2014 and CRUST1.0 models. 

Since many parts of the world are not yet sufficiently covered by tomographic surveys, the 
refinement of 1-D reference density models by incorporating 2-D or 3-D global lithospheric and 
mantle density models is not simple. Moreover, the direct relation between seismic velocities and 
mass densities does not exist because a density distribution depends on many other factors (such us 
temperature, mineral composition, and pressure). In spite of these practical and theoretical 
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limitations, the development of synthetic density models that more or less realistically approximate 
the Earth’s shape and inner density structure is essential for a more comprehensive assessment of 
gravimetric forward and inverse modelling techniques (then that based on using simplistic, typically 
geometric density models). Moreover, input data uncertainties should be known in order to 
realistically assess the accuracy of synthetic density models. 

To inspect possibilities of refining the Earth’s synthetic density model, the accuracy of published 
lithospheric density models is assessed based on a novel approach presented in this study. This novel 
approach allows to formulate the error propagation and consequently provide rough error estimates 
in a gravimetric forward modelling that are attributed to lithospheric density and geometry 
uncertainties. A gravimetric forward modelling is applied to determine a long-wavelength geoidal 
geometry that is corrected for gravitational contributions of lithospheric density and thickness 
variations. Expressions for a gravimetric forward modelling are presented in Section 2, and then used 
to derive the error analysis in Section 3. Numerical results are briefly presented in Section 4, and the 
accuracy of results is discussed in Section 5. Major findings are concluded in Section 6. 

2. Numerical model 

We applied methods for a spherical harmonic analysis and synthesis of gravitational and 
lithospheric density models to compute the sub-lithospheric mantle geoid. Details on theoretical 
aspects are given below. 

2.1. Geoid 

The geoid height N  is defined by—e.g., [74] 

       
( )

( )
( )0

,gT r
N

γ ϕ

Ω
Ω =

,      (1) 

where the disturbing potential T  (i.e., the difference between values of the actual and normal 

gravity potential W  and U  respectively; T W U= − ) is stipulated at the geoid surface ( ),gr Ω . The 

normal gravity 0γ  in Eq. (1) is computed at the ellipsoid surface according to Somigliana-Pizzetti’s 
theory [75,76] for the GRS80 [77] parameters. The 3-D position in Eq. (1) and thereafter is defined in 

the spherical coordinate system ( ),r Ω , where r is the radius and ( ),ϕ λΩ =  denotes the spherical 
direction with the spherical latitude ϕ  and longitude λ . In the context of interpreting long-
wavelength features in the geoidal geometry attributed to a sub-lithospheric mantle density 
structure, the disturbing potential T  in Eq. (1) can approximately (cf. Wieczorek [19,78]; Tenzer et 
al., [79]) be computed by using the following expression—e.g., [74] 

                        
( ) ( )n,m n,m

0

GM, T Y
R

n n

g

n m n

T r
= =−

Ω ≅ Ω
,          (2) 

where 8GM 3986005 10= × m3 s-2 is the geocentric gravitational constant, 3R 6371 10= ×  m is the 

Earth’s mean radius, n,mT  are the (fully-normalized) disturbing potential coefficients, n,mY  are the 
(fully-normalized) surface spherical functions of degree n and order m, and n  is the upper 
summation index of spherical harmonics. 

2.2. Sub-lithospheric mantle geoid 

In the forward modelling scheme, the gravitational contribution of lithospheric density 
heterogeneities is subtracted from a geoidal geometry in order to enhance a gravitational signature 
of density structures within the mantle below the lithosphere (i.e., within the sub-lithospheric 
mantle). This procedure yields the sub-lithospheric mantle geoid S MN , defined by 
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( ) ( )

( )
( )

SM
SM

0

,gT r
N N

γ φ

Ω
Ω = Ω +

.       (3) 

The computation of the sub-lithospheric mantle disturbing potential SMT  in Eq. (3) is realized 
in numerical steps explained next. 

2.2.1. Bouguer disturbing potential 

The Bouguer disturbing potential BT  is obtained from the disturbing potential T  after 
subtracting the gravitational potentials of topography TV , bathymetry BV , and polar glaciers IV . 
We then write (cf. Tenzer et al., [48,50]) 

                     B T B IT T V V V= − − − .     (4) 

The gravitational potentials of atmosphere [80] and lakes [81] are completely negligible when 
compared to values of the gravitational potentials T

V , B
V , and I

V . 
The topographic potential in Eq. (4) is often computed individually for a uniform and anomalous 

topographic density. The topographic potential 
, TTV ρ

 for a uniform topographic density reads [12] 

                    
( ) ( )

T T, T,ρ
n,m n,m

0

GM, V Y
R

n n
T ρ

g

n m n

V r
= =−

Ω = Ω
.      (5) 

The potential coefficients 
TT,ρ

n,mV  in Eq. (5) are given by  

                      

( )
T

k 1T 2
n,mT,ρ

n,m Earth 1
0

H23 ρ 1V
2 1 1ρ R

n

k
k

n

kn k

++

+
=

+ 
=  

+ + 


,     (6) 

where 
Earthρ 5500=  kg.m-3 is the Earth’s mean mass density, and 

Tρ  is the average (constant) 

topographic density. The Laplace harmonics nH  of topographic heights H  are defined by the 
following integral convolution 

( ) ( )n
0
H

n

H
∞

=

Ω = Ω
 , 

   
( ) ( )T

n n
2 1H ρ P

4π
n

H t d
Φ

+
′ ′Ω = Ω ( )n,m n,mH Y

n

m n=−

= Ω
,     (7) 

where n,mH  are the topographic coefficients, nP   is the Legendre polynomial for the argument t  

of cosine of the spherical angle ψ  between two points ( ),r Ω and ( ),r′ ′Ω ; i.e., cost ψ= . The 

infinitesimal surface element on the unit sphere is denoted as cosd d dϕ ϕ λ′ ′ ′ ′Ω = , and 

( ) [ ] ){ }, : π / 2,π / 2 0,2πϕ λ ϕ λ′ ′ ′ ′ ′ Φ = Ω = ∈ − ∧ ∈  is the full spatial angle. The corresponding higher-

order terms {
( )k
n,mH : 2,3, ...k = } read 

                        

( ) ( ) ( ) ( ) ( )k k
n n n,m n,m

2 1H P H Y
4π

n
k

m n

n
H t d

=−Φ

+
′ ′Ω = Ω = Ω

.   (8) 

The topographic potential 
, TT

gV
δρ

 for an anomalous lateral topographic density is computed 
from 

                    
( ) ( ), ,

n,m n,m
0

GM, V Y
R

T T
n n

T T

g

n m n

V rδρ δρ

= =−

Ω = Ω 
 ,     (9) 

where 
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( )k 1T2
n,m,

n,m Earth k 1
0

δρ K23 1 1V
2 1 1ρ R

T
n

T

k

n

kn k

δρ

++

+
=

+ 
=  

+ + 


.      (10) 

The topographic density-heights coefficients {
( )kT
nδρ K : 1, 2,3,...k = } in Eq. (10) are given by 

              

( ) ( ) ( ) ( ) ( ) ( )k kT T
n n n,m n,m

2 1δρ K P δρ K Y
4π

n
T k

m n

n
K t dδρ

=−Φ

+
′ ′ ′Ω = Ω Ω = Ω

.  (11) 

The height K  in Eq. (11) equals the topographic height H  except for areas covered by polar 
glaciers. In this case, the height K  is defined as the topographic height minus the ice thickness. The 

anomalous lateral topographic density 
Tδρ  in Eq. (11) is taken with respect to the average 

topographic density 
Tρ , so that ( ) ( )TρT Tδρ ρΩ = − Ω . 

The bathymetric potential B
V  in Eq. (4) is defined by [82,83] 

                  
( ) ( )b

n,m n,m
0

GM, V Y
R

n n
B

g

n m n

V r
= =−

Ω = Ω
.      (12) 

The bathymetric coefficients 
b
n,mV  read  

               

w
b b b1 2 b20 1 2
n,m n,m n,m n,mEarth w w

0 0

Δρ3V F RF R F
2 1 ρ Δρ Δρ

a a

n

β β 
= − − 

+   ,     (13) 

where 
w
0Δρ  is the nominal value of the surface seawater density contrast; and β , 1a , and 2a  

denote parameters of the depth-dependent seawater density developed by Gladkikh and Tenzer [84]. 

The numerical coefficients 
b
n,mF  , 

b1
n,mF  , and 

b2
n,mF  in Eq. (13) are computed from 

( )
( )

( )( )
( )2 3

n,m n,m n,mb
n,m 2 3

D D D
F 2 2 1

R 2R 6R
n n n≅ − + + + +  

( )( )
( )

( )( ) ( )
( )4 5

n,m n,m
4 5

D D
2 1 2 1 1

24R 120R
n n n n n n n− + + + + + −  

           

( ) ( )12
n,m
k 1

5

1 D2
 

1 R

k kn

k

n

k k

++

+
=

−+ 
+  

+ 


,                       (14) 

( )

( )
( )

( )( )
( )2 3 4

n,m n,m n,mb1
n,m 2 3 4

D D D
F 2 2 1

2R 3R 8R
n n n≅ − + + + +  

                               
( )( )

( ) ( ) ( )5 22
n,m n,m

5 k 2
4

1D D2
2 1

230R R

k kn

k

n
n n n

k k

++

+
=

−+ 
− + + +  

+ 


,     (15) 

                                

( ) ( )32
n,m
k 3

3

1 D2
3 R

k kn

k

n

k k

++

+
=

−+ 
+  

+ 


.                       (16) 

The coefficients n,mD  of global bathymetric model are defined by 

              
( ) ( ) ( ) ( )

n

n n n,m n,m
m n

2 1D P cos D Y
4π
n

D dψ
=−Φ

+
′ ′Ω = Ω Ω = Ω

,   (17) 
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and their higher-order terms 
( ){ }i
nD : 2,3,4i =

 read (ibid.)      

                     

( ) ( ) ( ) ( ) ( ) ( )
n

i i
n n n,m n,m

m n

2 1D P cos D Y
4π

kn
D dψ

=−Φ

+
′ ′Ω = Ω Ω = Ω

,  (18) 

where D  denotes the bathymetric depth.  
The ice potential I

V  in Eq. (4) is computed from (cf. Foroughi and Tenzer [85]) 

                       
( ) ( )I

n,m n,m
0

GM, V Y
R

n n
I

g

n m n

V r
= =−

Ω = Ω 
.      (19) 

The ice coefficients 
I
n,mV  in Eq. (19) read 

        
( )

I
I
n,m n,m n,mEarth

3 δρV Fu Fl
2 1 ρn

= −
+ ,      (20) 

where the numerical coefficients n,mFl  and n,mFu are given by 

( )12
n,m

n,m k 1
0

L2 1Fl
1 R

kn

k

n

k k

++

+
=

+ 
=  

+ 
 , 

         

( )12
n,m

n,m k 1
0

H2 1Fu
1 R

kn

k

n

k k

++

+
=

+ 
=  

+ 


.      (21) 

The coefficients n,mFl  utilize the spherical lower-bound functions nL  of a volumetric mass 
density contrast layer and their higher-order terms [82,83] 

                        

( ) ( ) ( ) ( ) ( ) ( )1 11
n n n,m n,m

2 1L P L Y
4π

n
k kk

L

m n

n
H t d

+ ++

=−Φ

+
′ ′Ω = Ω Ω = Ω

.  (22) 

Since the upper-bound of glaciers is identical with the topographic surface, the numerical 

coefficients n,mFu  are generated directly from the height coefficients {
( )k
nH : 1,2, ...k = }. The ice 

density contrast 
Iδρ  in Eq. (20) is taken with respect to a uniform topographic density 

Tρ , i.e. 
I T Iδρ ρ ρ= − , where 

Iρ  denotes the density of polar glaciers. 

2.2.2. Crust-stripped disturbing potential 

The gravitational potential of consolidated-crust density contrast CV  and the gravitational 
potential of sediment density contrast SV  are subtracted from the Bouguer disturbing potential BT  
in order to remove the gravitational contribution of density heterogeneities within the whole crust. 
This procedure yields the crust-stripped disturbing potential CST  (cf. Tenzer et al. [48]) 

                          C S B S CT T V V= − − .              (23) 

The potentials SV  and CV  in Eq. (23) are computed according to a method developed by 
Tenzer et al. [82] that utilizes the expression for a gravitational potential V  generated by an arbitrary 
volumetric mass layer with a variable depth and thickness while having laterally distributed vertical 
mass density variations. It reads 

                   
( ) ( )n,m n,m

0

GM, V Y
R

n n

g

n m n

V r
= =−

Ω = Ω
.      (24) 

The potential coefficients n,mV  in Eq. (24) are defined by 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2023                   doi:10.20944/preprints202308.1507.v1

https://doi.org/10.20944/preprints202308.1507.v1


 7 

 

                             
( )(i) (i)

n,m n,m n,mEarth
0

3 1V Fl Fu
2 1 ρ

I

in =

= −
+


,     (25) 

where the coefficients {
(i) (i)
n,m n,mFl ,Fu : 0,1, ...,i I= } are computed from 

( ) ( )12
n,m(i)

n,m k 1
0

1 L2
Fl

1 R

k k in

k

n

k k i

+ ++

+
=

−+ 
=  

+ + 
 , 

         

( ) ( )12
n,m(i)

n,m k 1
0

1 U2
Fu

1 R

k k in

k

n

k k i

+ ++

+
=

−+ 
=  

+ + 


.   (26) 

The terms 

n

n,m n,m
m n

L Y
=−


 and 

n

n,m n,m
m n

U Y
=−


 in Eq. (26) define the spherical lower-bound and 

upper-bound laterally distributed radial density variation functions nL  and nU  of degree n . 
These numerical coefficients combine information on the geometry and mass density (or density 
contrast) distribution within a volumetric layer. The computation of these coefficients is realized to a 
certain degree of spherical harmonics from discrete data of the spatial mass density distribution 
(typically provided by means of density, depth and thickness data) of a particular structural 
component of the Earth’s interior. 

The spherical functions nL  and nU  including their higher-order terms {
( ) ( )k 1 i k 1 i
n nL , U : 0,1,... ; 1, 2, ...,k i I

+ + + +
= = } in Eq. (26) are defined by 

                     

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
n

n
1

n,m n,m
m n

1
n

1
n

n
1

n,m n,m
m n

2 1 , P
4π

L Y 0

L

2 1 P
4π

L Y 1,2,...,

k

U L

k

k i

k i

i L

k i

n
D D t d

i

n
D t d

i I

ρ

β α

+

Φ

+

=−

+ +

+ +

Φ

+ +

=−

+
′ ′ ′Ω Ω Ω




= Ω =



Ω = 

 +

′ ′ ′ ′Ω Ω Ω Ω


= Ω =









  (27) 

and 

                    

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
n

n
1

n,m n,m
m n

1
n

1
n

n
1

n,m n,m
m n

2 1 , P
4π

U Y 0

U

2 1 P
4π

U Y 1,2,...,

k

U U

k

k i

k i

i U

k i

n
D D t d

i

n
D t d

i I

ρ

β α

+

Φ

+

=−

+ +

+ +

Φ

+ +

=−

+
′ ′ ′Ω Ω Ω




= Ω =



Ω = 

 +

′ ′ ′ ′Ω Ω Ω Ω


= Ω =









  (28) 

For a specific volumetric layer, the mass density ρ  is either constant ρ , laterally-varying 

( )ρ ′Ω  or - in the most general case - approximated by the laterally distributed radial density 
variation model by using the following polynomial function (for each lateral column) 
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( ) ( ) ( ) ( ) ( )
1

, , R ,
I

i

U i

i

r D rρ ρ β α
=

′ ′ ′ ′ ′ ′Ω = Ω + Ω Ω −  

                    ( ) ( )R RU Lfor D r D′ ′ ′− Ω ≥ > − Ω .      (29) 

The nominal value of lateral density ( ),UDρ ′Ω  is stipulated at the depth UD . This density 

distribution describes a radial density variation (in terms of coefficients { : 1,2, ...,i i Iα = } and β ) 
within a volumetric mass layer at a location ′Ω . Alternatively, when modeling a gravitational field 
of anomalous density structures (in this case, the density contrast of sediments and consolidated 

crust), the density contrast ρΔ  of volumetric mass layer relative to the reference density 
cρ  is 

defined by 

( ) ( )c, ρ ,r rρ ρ′ ′ ′ ′Δ Ω = − Ω  

( ) ( ) ( ) ( )
1

, R ,
I

i

U i

i

D rρ β α
=

′ ′ ′ ′= Δ Ω − Ω Ω −  

                       ( ) ( )R RU Lfor D r D′ ′ ′− Ω ≥ > − Ω ,      (30) 

where ( ),UDρ ′Δ Ω  is the nominal value of lateral density contrast stipulated at the depth UD . Here 

the reference density 
cρ  of homogenous crust is used. 

2.2.3. Mantle disturbing potential 

To reveal a gravitational signature attributed to a mantle density structure, the Moho geometry 
signature has to be subtracted from the crust-stripped disturbing potential. This procedure yields the 
mantle disturbing potential. According to Tenzer et al. [50], the mantle disturbing potential MT  is 
obtained from the crust-stripped disturbing potential CST  after subtracting the gravitational 

potential of Moho geometry 
c/m, ρMV Δ

. We then write 

                         
c/mM CS , ρMT T V Δ= − .        (31) 

The potential 
c/m, ρMV Δ

 (for the average Moho density contrast 
c/mρΔ ) is defined in the following 

form 

                  
( ) ( )

c/m
n

, ρ ρM
n,m n,mEarth

0 m n

GM, 3 F Y
Rρ

n
M

g

n

V rΔ Δ

= =−

Ω = Ω 
,     (32) 

where the numerical coefficients 
ρM

n,mFΔ

 are given by 

                      ( )( )
( ) ( )

c/m 3
ρM

n,m n,m
1

13Δρ ˆF M
2 1 3 R

k
n

k

k
k

n

kn n

+
Δ

=

−+ 
= −  

+ +  


.    (33) 

The Moho depth spherical functions nM̂  and their higher-order terms {
( )
nM̂ : 2,3, ...k

k = } read 

( ) ( ) ( )n n
2 1M̂ P

4π
k kn

M t d
Φ

+
′ ′= Ω Ω  

                            
( ) ( )

n

n,m n,m
m n

M̂ Yk

=−

= Ω
 .       (34) 
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As seen in Eq. (34), the coefficients {
( )
n,mM : 1, 2, ...k

k = } are generated from values of the Moho 
depth M  . The Moho density contrast in Eq. (33) is defined as the average lithospheric mantle 

density 
LMρ  from which the (constant) reference crustal density 

cρ  is subtracted. Hence  

                              
c/m LM cρ ρ ρΔ = − .        (35) 

2.2.4. Lithosphere-stripped disturbing potential 

The lithosphere-stripped disturbing potential CLT   is obtained from the mantle disturbing 
potential MT  by subtracting the lithospheric-mantle gravitational potential LM

V , so that 

                                  CL M LM
T T V= − .       (36) 

For a lateral density distribution function within the lithospheric mantle, the lithospheric-mantle 
gravitational potential LM

V  is defined by 

( ) Earth
0

GM 1, 3
2 1Rρ

n
LM

g

n

V r
n=

Ω =
+

  

                          

( )
( )

( ) ( )( ) ( )
2

1 1
n,m n,m n,mk 1

0

12
L M Y

R 1

k
n n

k k

k m n

n

k k

+
+ +

+
= =−

−+ 
× − Ω 

+ 
 

,   (37) 

where the Moho coefficients 
( )1
n,mM k +

 describe the geometry and lateral density (contrast) distribution 

at the Moho interface, and the LAB coefficients 
( )1
n,mL k +

 describe the geometry and lateral density 
(contrast) distribution at the LAB. 

The Moho coefficients 
( )1
n,mM k +

 in Eq. (37) are defined in the following form 

                      

( ) ( ) ( ) ( ) ( )
n

k
n,m n,m n

m n

2 1M Y P
4π

LM kn
M t dδρ

=− Φ

+
′ ′ ′Ω = Ω Ω Ω 

,   (38) 

where M  denotes the Moho depth (see Eq. 34). The (lateral) lithospheric mantle density contrast 
LMδρ  in Eq. (38) is computed as the difference between the adopted (lithospheric mantle) reference 

density 
LMρ and the lithospheric mantle density 

LMρ ; i.e., ( ) ( )LMρLM LMδρ ρ′ ′Ω = − Ω . 

The LAB coefficients 
( )1
n,mL k +

  in Eq. (37) read 

                        

( ) ( ) ( ) ( ) ( )
n

k
n,m n,m n

m n

2 1L Y P
4π

LM kn
L t dδρ

=− Φ

+
′ ′ ′Ω = Ω Ω Ω 

,  (39) 

where L  is the LAB depth. If we consider a current resolution of global lithospheric density models 
(1×1 arc-deg or lower) that corresponds (by means of a half wavelength) to a spectral resolution up 
to the degree 180 of spherical harmonics, the lithospheric-mantle gravitational potential can 
sufficiently be computed by using binomial series in Eq. (37) up to only the third-order term. 

2.2.5. Sub-lithospheric mantle disturbing potential 

The computation of the lithosphere-stripped disturbing potential CLT  in Eq. (36) enhanced a 
signature of the LAB geometry that has to be removed in order to enhance a gravitational signature 
of the sub-lithospheric mantle density structure. This procedure is realized by stripping the 
lithosphere with respect to the density contrast between the reference (lithospheric mantle) density 
and the asthenosphere density in order to obtain the sub-lithospheric mantle disturbing potential. 
The sub-lithospheric mantle disturbing potential SMT  is then computed as 

                            SM CL LAB
T T V= − ,        (40) 

where the potential L AB
V  of LAB geometry is defined by 
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( ) Earth
0

GM 1, 3
2 1Rρ

n
LAB

g

n

V r
n=

Ω =
+

  

                         

( )
( )

( ) ( )
2

1
n,m n,mk 1

0

12
L̂ Y

R 1

k
n n

k

k m n

n

k k

+
+

+
= =−

−+ 
× Ω 

+ 
 

.     (41) 

The coefficients 
( )1
n,mL̂ k +

  in Eq. (41) read 

                 

( ) ( ) ( ) ( )
n

k L/A
n,m n,m n

m n

2 1L̂ Y ρ P
4π

kn
L t d

=− Φ

+
′ ′Ω = Δ Ω Ω 

,    (42) 

where L  is the LAB depth (see also Eq. 39), and the LAB density contrast 
L/A A LMρ ρ ρΔ = −  is 

defined as the difference between the lithospheric mantle density 
Lρ  and the asthenospheric density 

Aρ . We note that the computation of LABV   can again be restricted up to the third-order terms of a 
binomial series (as in the case of computing LMV  in Eq. 37). 

3. Model uncertainties 

The numerical model presented in Section 2 was used in this section to derive the error 
propagation in modelling of the sub-lithospheric mantle geoid. According to results presented in 
Section 4 (see Table 1), the gravitational contributions of lithospheric mantle and LAB are one order 
of magnitude larger than the corresponding contributions of topographic and crustal density 
structures. We, therefore, focused only on the estimation of errors due to lithospheric mantle density 
and lithospheric thickness uncertainties, while disregarding much smaller (in absolute sense) 
modelling errors due to crustal density uncertainties. 

3.1. Errors due to lithospheric thickness uncertainties 

In the sub-lithospheric mantle geoid modelling, the lithospheric thickness information is used 
to compute the lithospheric-mantle gravitational potential LM

V  (in Eq. 39) and the LAB potential 
LAB

V (in Eq. 41). We then established a relation between the error of sub-lithospheric mantle geoid 
SMN

ε  and the error of lithospheric thickness Lε   in the following form 

SM

0

1 LM LAB

LN

V V

L L
ε ε

γ

 ∂ ∂
= − + 

∂ ∂ 
 

( )
( )

( ) ( )( ) ( )
2

1 1
n,m n,m n,mEarth k 1

0 00

123 GM 1 ˆL L Y
2 1Rρ R 1

k
n n n

k k

n k m n

n

kn kγ

+
+ +

+
= = =−

−+ 
= − + Ω 

+ + 
    

( )
( )

2

Earth k 1
0 00

123 GM
4π Rρ R 1

k
n n

n k

n

k kγ

+

+
= =

−+ 
= −  

+ 
  

           
( ) ( ) ( ) ( ) ( )L/A

nρ 1 PLM k

Lk L t dδρ ε
Φ

 ′ ′ ′ ′× Ω + Δ + Ω Ω Ω 
.     (43) 

After disregarding terms 1k ≥  , the expression in Eq. (43) simplifies to   

    
( ) ( ) ( )SM

L/A
n2 Earth

00

3 GM Δρ P
4π R ρ

n
LM

LN
n

t dε δρ ε
γ =Φ

 ′ ′ ′≅ − Ω + Ω Ω  
.     (44) 

For n = 0, we have 
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( ) ( )SM

L/A
2 Earth

0

3 GM ρ
4π R ρ

LM

LN
dε δρ ε

γ Φ

 ′ ′ ′≅ − Ω + Δ Ω Ω 
.    (45) 

When assuming that the largest contribution to the error SMN
ε comes from lithospheric thickness 

uncertainties in the vicinity of computation point (for which the error is estimated), the global 
integration domain in Eq. (45) could be disregarded. Instead, we reduce a functional relation only for 
a position of computation point. We then write 

     
( )SM

L/A
2 Earth

0

3 GM ρ
4π R ρ

LM

LN
ε δρ ε

γ
≈ − + Δ

 .    (46) 

Inserting for 
2

0 GM/Rγ ≈  in Eq. (46), we arrive at         

       
SM

L/A

Earth

3
4π ρ

LM

LN

δρ ρ
ε ε

 +Δ
≈ −  

   .    (47) 

3.2. Errors due to lithospheric mantle density uncertainties 

The lithospheric mantle density information is used to compute the Moho density contrast 
c/mρΔ  

(Eq. 35), the lithospheric mantle density variations 
LMδρ  (Eq. 38), and the LAB density contrast 

L/AρΔ  (Eq. 42). This involves the computation of the Moho potential 
/, ρc mMV Δ

 (in Eq. 32), the 
lithospheric-mantle gravitational potential LM

V  (in Eq. 39), and the LAB potential LAB
V (in Eq. 41). 

The error propagation for the lithospheric mantle density uncertainties is then established in the 
following form 

/

SM c/m L/A

,

c/m L/Aρ ρ
0

1
ρ ρ

c m

LM

M LM LAB

LMN

V V Vρ

δρ
ε ε ε ε

γ δρ

Δ

Δ Δ

 ∂ ∂ ∂
= − + +  ∂Δ ∂ ∂Δ 

 

( )
( )

2

Earth k 1
0 00

123 GM
4π Rρ R 1

k
n n

n k

n

k kγ

+

+
= =

−+ 
= −  

+ 
  

   
( ) ( ) ( ) ( ) ( ) ( ){ } ( )c/m L/A

1 1 1 1
nρ ρ

PLM LM

k k k kM L M L t d
δρ δρ

ε ε ε ε+ + + +

Δ Δ
Φ

 ′ ′ ′ ′ ′ ′ ′× Ω + Ω Ω − Ω Ω Ω Ω 
,(48) 

where c/mρ
ε

Δ , LMδρ
ε   and L/Aρ

ε
Δ  denote, respectively, the errors in the Moho density contrast 

c/mρΔ

, the anomalous lithospheric mantle density 
LMδρ , and the LAB density contrast 

L/AρΔ . 
After disregarding terms 1k ≥   in Eq. (48), we arrive at 

( ){ ( ) ( )SM c/m
1 1

2 Earth ρ
0

3 GM
4π R ρ LM

k k

N
M L

δρ
ε ε ε

γ
+ +

Δ
Φ

′ ′ ′≅ − Ω + Ω Ω  

            
( ) ( ) ( )} ( )L/A

1 1
nρ

0
PLM

n
k k

n

M L t d
δρ

ε ε+ +

Δ
=Φ

′ ′ ′ ′− Ω Ω + Ω Ω
.   (49) 

Considering that n = 0 and 
2

0 GM/Rγ ≈ , we get 

  
( ) ( ) ( ) ( ) ( ) ( ){ }SM c/m L/A

1
Earth ρ ρ

3
4πρ LM LM

k

N
M L M L d

δρ δρ
ε ε ε ε ε+

Δ Δ
Φ

′ ′ ′ ′ ′ ′ ′≅ − Ω + Ω Ω − Ω Ω + Ω Ω
. (50) 

By analogy with Eq. (46), the expression in Eq. (50) is further simplified to 
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( )SM c/m L/AEarth ρ ρ

3
4πρ LMN

M L M L
δρ

ε ε ε ε
Δ Δ

 ≈ − + − +  .    (51) 

As seen in Eq. (51), the sub-lithospheric mantle geoid error SMN
ε  in this case depends on the 

accuracy of anomalous lithospheric mantle density 
LMδρ . In addition, the errors L/Aρ

ε
Δ  and c/mρ

ε
Δ  

in adopted values of the LAB density contrast 
L/AρΔ  and the Moho density contrast 

c/mρΔ  affect the 
accuracy. 

4. Results 

Tenzer and Chen [81] applied numerical procedures (described in Section 2) to compute the 
global sub-lithospheric mantle geoid globally with a spectral resolution up to degree 180 of spherical 
harmonics. They used the EIGEN-6C4 [86] global gravitational model, the Earth2014 topographic, 
bathymetric, and glacial bedrock relief datasets [72], the UNB_TopoDens global lateral topographic 
density model [87], the total sediment thickness data for the world's oceans and marginal seas [88], 
the CRUST1.0 [69] global seismic crustal model updated for the sediment and crustal layers of the 
Antarctic lithosphere by Baranov et al. [89], and the LITHO1.0 [70] global seismic lithospheric model. 
They adopted the reference density values 2670 kg.m-3 (cf. Hinze [90]; Artemjev et al. [91)) for the 
crust above the geoid, 2900 kg.m-3 for the crust below the geoid, and 3300 kg.m-3 for the lithospheric 
mantle. To further improve the accuracy of forward modelling, they defined the ocean density 
contrast for a depth-dependent seawater density function [47,84], and applied a density model of 
marine sediments [92] under marginal seas and oceans. 

The gravitational contributions of individual lithospheric density structures are plotted in Figure 
1, with the statistical summary of results in Table 1. Modifications of the geoidal geometry after 
subtracting gravitational contributions of individual lithospheric density structures are presented in 
Figure 2, with the statistical summary in Table 2. 

Table 1. Statistics of gravitational potentials used to compute the sub-lithospheric mantle gravity 
disturbances. For notation used, see legend in Figure 1. 

Gravitational 

potential 
Min [m2.s-2] Max [m2.s-2] Mean [m2.s-2]  STD [m2.s-2] 𝑉் 2226 8494 3589 1114 𝑉ூ -3472 -312 -731 729 𝑉஻ -28533 -16402 -22386 3185 𝑉ௌ -3862  -1937  -2719 444 𝑉஼ 11529 25075  15661 2741 𝑉ெ,௱ఘ೎ ೘⁄

 -69885 -46423 -55734 5832 𝑉௅ெ -262661 -174276 -213366 17795 𝑉௅஺஻ 168987 244558 203311 16194 

a b  
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c d  

e f  

g h  

Figure 1. Global maps of the gravitational potentials of: (a) topography 𝑉், (b) ice 𝑉ூ, (c) bathymetry 𝑉஻, (d) sediments 𝑉ௌ, (e) consolidated crust 𝑉஼, (f) Moho geometry 𝑉ெ,௱ఘ೎ ೘⁄
, (g) lithospheric mantle 𝑉௅ெ, and (h) LAB geometry 𝑉௅஺஻. 

Table 2. Statistics of geoid models. For notation used, see legend in Figure 2. 

Refined geoid Min [m] Max [m] Mean [m]  STD [m]  𝑁 -106 85 -1 29 𝑁஻ 1198 2946 2269 356 𝑁஼ௌ -1358 1743 671 630 𝑁ெ 5772 6617 6358 128 𝑁஼௅ 24009 33222 28130 1835 𝑁ௌெ 6445 8388 7384 372 

a b  
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c d  

e f  

Figure 2. Global maps of: (a) the geoid N , (b) the Bouguer geoid 𝑁஻, (c) the crust-stripped geoid 𝑁஼ௌ, (d) the mantle geoid 𝑁ெ, (e) the lithosphere-stripped geoid  𝑁஼௅, and (f) the sub-lithospheric 
mantle geoid 𝑁ௌெ. 

A long-wavelength geoidal geometry (Figure 2a) reflects mainly a mantle density structure—
e.g., [93,94], while a signature of crustal density and geometry variations (including a topographic 
surplus of large orogenic formations) is less prominent. After removing the gravitational 
contributions topography and lithospheric density and geometry (i.e., LAB) variations, the resulting 
(sub-lithospheric mantle) geoidal geometry (see Figure 2f) should (optimally) enhance the 
gravitational signature of sub-lithospheric mantle. 

It is well known fact that a spatial pattern in dynamic topography models—e.g., [54,55],[95–98] 
mainly reflects a mantle convection flow, with maxima marking locations of the African and South 
Pacific superplumes that represent large-scale regions characterized by an elevated topography and 
shallow ocean-floor depts caused by a low-density upwelling mantle material from the core-mantle 
boundary. The corresponding minima are explained by a high-density mantle downwelling flow. 
Tomographic studies—e.g., [99] indicate that superplumes coincide with locations of large low-shear-
velocity provinces (LLSVPs) beneath Africa (called Tuzo) and the South Pacific (called Jason). Since 
the gravitational contributions of lithospheric density and thickness variations have been modelled 
and consequently removed in our forward modelling procedure, the sub-lithospheric mantle geoid 
should mainly reflect deep mantle density anomalies. Consequently, the spatial pattern of sub-
lithospheric mantle geoid (especially its long-wavelength spectrum up to degree 5 of spherical 
harmonics; see Figure 3) does not closely agree with a spatial pattern of dynamic topography models 
(cf. Tenzer and Chen [81]). A comparative study of spatial patterns in the sub-lithospheric mantle 
geoid and dynamic topography models is thus not meaningful for the assessment of errors in our 
gravimetric forward modelling. 
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Figure 3. The sub-lithospheric mantle geoid computed up to degree 5 of spherical harmonics (and 
calibrated so its mean value equals zero). 

As seen in Figure 3, the long-wavelength pattern in the sub-lithospheric mantle geoid is 
characterized by a large positive anomaly in the Central Pacific and a less pronounced anomaly in 
the Central Atlantic with a prolonged shape across the Atlantic Ocean and further extending across 
the South Indian Ocean towards West Australia. These two positive anomalies are coupled by 
negative anomalies in the Equatorial East Pacific and across South and East Eurasia. An additional 
negative anomaly is detected in Antarctica. If we consider that a spatial pattern of the sub-lithospheric 
mantle geoid should mainly manifest sub-lithospheric mantle density heterogeneities, it becomes 
clear that a long-wavelength pattern in Figure 3 might be affected by large errors especially at 
locations with a maximum lithospheric thickness. This becomes even more evident when inspecting 
the sub-lithospheric mantle geoid in Figure 2f, where a maximum lithospheric deepening is clearly 
manifested in the geoidal geometry. This indicates a possible presence of large errors attributed to 
lithospheric model uncertainties used in the gravimetric forward modelling. These errors are 
estimated in the next section. 

5. Error analysis 

Large errors are expected in the CRUST1.0 and LITHO1.0 models used for a gravimetric forward 
modelling in this study. As already mentioned in the preceding section, this is particularly evident 
from pronounced positive sub-lithospheric mantle geoid anomalies (Figure 2f) that are also still 
partially exhibited in its long-wavelength pattern (Figure 3). These positive anomalies correspond 
with the largest cratonic lithospheric thickness (the Laurentian Shield in North America, the 

Amazonian Shield and São Francisco Craton in South America, the West African Craton, the East 
European and Siberian Cratons and the Baltic Shield in Eurasia, and the West Australian Craton). 

As seen in Eq. (47), the lithospheric thickness uncertainties propagate almost linearly to the sub-
lithospheric mantle geoid uncertainties. We can, therefore, readily estimate the geoid errors for 
particular lithospheric thickness uncertainties. According to the LITHO1.0 model, the lithospheric 
mantle density varies roughly from 3000 to 3450 kg.m-3. From these density variations we can assume 

that 
LMδρ  is mostly within ±200 kg.m-3. The boundary between the lowermost lithosphere and the 

uppermost asthenosphere (i.e., the LAB) is rheological, conventionally taken at the 1300°C isotherm, 
above which the mantle behaves in a rigid fashion and below which behaves in a ductile fashion 
[100]. Studies suggest the existence of a compositional or chemical density contrast 0-20 kg.m-3 [101], 
except probably the cratonic mantle. In addition to a possibly chemical density contrast, a strong 
thermal density contrast 30-60 kg.m-3 occurs when the asthenosphere is locally uplifted by rifting. 

We, therefore, assume that the density variations 
L/AρΔ  at the boundary between the lithosphere and 

the asthenosphere are mostly within ±30 kg.m-3. For 
L/Aρ 230LMδρ + Δ = ±  kg.m-3, the errors in the 

lithospheric thickness estimates of 10Lε ≈ ±  km cause errors in the sub-lithospheric mantle geoid 

roughly SM 0.1
N

ε ≈ ±  km. 
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The lithospheric thickness models vary significantly. Pasyanos et al. [70], for instance, found 
large differences between their LITHO1.0 model and that prepared by Conrad and Lithgow-
Bertelloni [102]. They also provided explanation that these large differences are due to applying 
different methods, assumptions, and input data. To get a rough idea about a magnitude of these 
errors, we compared the lithospheric thickness models SLNAAFSA [103], SL2013sv [104], LITHO1.0 
[70], CAM2016 [105–106], and 3D2015-07Sv [107], and used their differences to estimate (sub-
lithospheric mantle) geoid errors. We note here that the SLNAAFSA model was prepared by 
Hoggard et al. [103] by merging regional updates from North America [108], Africa [109], and South 
America [110] into the global SL2013sv model. The lithospheric thickness models are shown in Figure 
4, with their statistical summary given in Table 3. The statistics of differences between individual 
lithospheric thickness models are summarized in Table 4. 

Table 3. Statistics of the lithospheric thickness models SLNAAFSA, SL2013sv, LITHO1.0, CAM2016, 
and 3D2015-07Sv. 

Lithospheric thickness 

model 
Min [km] Max [km] Mean [km] STD [km] 

SLNAAFSA 38 364 115 57 
SL2013sv 40 350 112 52 
LITHO1.0 7 271 114 55 
CAM2016 38 241 111 46 

3D2015-07Sv 36 703 110 51 

a b  

c d  
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e  

Figure 4. Lithospheric thickness models: (a) SLNAAFSA, (b) SL2013sv, (c) LITHO1.0, and (d) 
CAM2016, and (e) 3D2015-07Sv.   

Table 4. Statistics of differences between the lithospheric thickness models SLNAAFSA, SL2013sv, 
LITHO1.0, CAM2016, and 3D2015-07Sv. 

Lithospheric thickness 

model differences 
Min [km] Max [km] Mean [km] RMS [km] 

SLNAAFSA - SL2013sv -237 303 3 11 
SLNAAFSA - LITHO1.0 -196 289 1 77 
SLNAAFSA - CAM2016 -160 307 4 26 

SLNAAFSA - 3D2015-07Sv -638 309 5 26 
SL2013sv - LITHO1.0 -195 298 -1 74 
SL2013sv - CAM2016 -160 306 1 22 

SL2013sv - 3D2015-07Sv -637 303 3 24 
LITHO1.0 - CAM2016 -184 206 2 71 

LITHO1.0 - 3D2015-07Sv -603 206 4 74 
CAM2016 - 3D2015-07Sv -561 195 2 18 

As seen in Table 4, differences between lithospheric thickness models exceed several hundreds 

of meters. If we consider that average uncertainties in the lithospheric thickness Lε  are about ±40 
km (the average of the Root-Mean-Square (RMS) of differences in Table 4), the sub-lithospheric 

mantle geoid errors SMN
ε  could reach or even exceed ±0.4 km. 

Tomographic images of the lithosphere have a limited accuracy and resolution. Moreover, the 
conversion between seismic wave velocities and rock densities is not unique—e.g., [58,111]. Hager 
and Richards [112], for instance, mentioned that a lithospheric mantle composition and seismic 
anisotropy is more complex than a deep mantle structure, making it harder to convert seismic 
anomalies to density anomalies or buoyancy (cf. also Simmons et al., [113]). We, therefore, expect also 
large (sub-lithospheric mantle) geoid modelling errors due to lithospheric mantle density 
uncertainties. 

According to Eq. (51), the sub-lithospheric mantle geoid error SMN
ε  depends on the accuracy of 

anomalous lithospheric mantle density 
LMδρ , and additional errors L/Aρ

ε
Δ  and c/mρ

ε
Δ  in adopted 

values of the LAB density contrast 
L/AρΔ  and the Moho density contrast 

c/mρΔ . Large density 
variations occur within the lithospheric mantle, although in comparison to the crust, fewer 
constraints exist on the composition of the lithospheric mantle. Petrological models for the origin of 
basalt are used to compile models of the oceanic lithospheric mantle. An undepleted peridotitic 
source that partially melts to produce the mid-ocean ridge basalt, leaves behind a depleted residue 
(a harzburgite), the thickness of which depends on the degree of a partial melt. As the oceanic 
lithosphere cools, the undepleted mantle becomes part of the lithospheric column and its thickness 
increases with the ocean-floor age. The composition of the continental lithospheric mantle depends 
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on a tectonic province and its age. Jordan [114] proposed that the lithospheric mantle might be cold 
and buoyant in the thickest cratonic portions of very fast seismic velocity (see also Gung et al., [115]). 
These conditions require the presence of a depleted layer overlying an undepleted upper mantle 
layer. Based on the LITHO1.0 lithospheric mantle density variations (roughly within ±200 kg.m-3) and 
the previously summarized studies, we can anticipate that lithospheric mantle density uncertainties 

LMδρ
ε  are mostly within ±100 kg.m-3. We further assume that uncertainties in the average LAB density 

contrast L/Aρ
ε

Δ  are roughly ±15 kg.m-3. 
Results from seismic and gravimetric studies revealed that the Moho density contrast varies 

substantially. Artemieva [116] demonstrated that the in situ density contrast between the crystalline 
crust and the lithospheric upper mantle differs substantially between the Cratonic and the 
Phanerozoic crust within the European part of the Eurasian tectonic plate, approximately 500 kg.m-3 
for the crust beneath Western Europe, between 300 and 350 kg.m-3 for most of the Precambrian crust, 
and by as little as 150-250 kg.m-3 for some parts of the Baltic and the Ukrainian Shields. Sjöberg and 
Bagherbandi [117] provided the average values 678±78 and 334±108 kg.m-3 of the Moho density 
contrast for the continental and oceanic areas respectively. According to these studies, we speculate 

that the errors of Moho density contrast c/mρ
ε

Δ  could be roughly ±50 kg.m-3. Adopting the above error 

estimates of 100LMδρ
ε ≈ ±  kg.m-3, L/Aρ

15ε
Δ

≈ ±  kg.m-3, and c/mρ
50ε

Δ
≈ ±  kg.m-3 and considering the 

lithospheric thickness L  ∼100 km and the Moho depth M  of ∼30 km, the geoid modelling error 
SMN

ε could, according to Eq. (51), reach or even exceed ±0.5 km. 
To confirm the above theoretical estimates, we rearranged the error propagation in Eq. (51) into 

the form that directly incorporates density uncertainties within the uppermost asthenosphere and 

the lowermost crust. Inserting for 
c/m LM cρ ρ ρΔ = − ,  

LMρLM LMδρ ρ= −  and 
L/A A LMρ ρ ρΔ = −  in Eq. 

(51), we get 

                  ( ) ( )( ) ( )SM LM c LM A LMEarth ρ ρ ρ ρ ρ

3
4πρ LMN

M L M L
ρ

ε ε ε ε ε ε ε ≈ − − + − − + −  
 

                  ( )LM c LM LM A LMEarth ρ ρ ρ ρ ρ ρ

3
4πρ LMM M L M L M L L

ρ
ε ε ε ε ε ε ε ≈ − − + − − − + −   

            
( )c AEarth ρ ρ

3
4πρ LMM L M L

ρ
ε ε ε ≈ + − +  ,     (52) 

where cρ
ε  and Aρ

ε  are errors in the average crustal 
cρ and asthenospheric 

Aρ  densities 

respectively. As seen in Eq. (52), the modelling error SMN
ε  depends on the accuracy of lithospheric 

mantle density distribution as well as adopted average densities of the crust and the asthenosphere, 

while errors in adopted value of the average lithospheric mantle density 
LMρ  cancel. 

Christensen and Mooney [111] reported the average value 2835 kg.m-3 for the continental 
crustal density. Tenzer et al. [50] provided a very similar value 2790 kg.m-3. The oceanic crust, 
composed primarily of mafic rocks, is typically heavier than the continental crust—e.g., [118]. Tenzer 
et al. [50] estimated that the average density of the oceanic crust (without marine sediments) is 
2860 kg.m-3. Carlson and Raskin [119] provided the estimate of 2890 kg.m-3. Tenzer and Gladkikh 
[92] confirmed a similar value (when disregarding marine sediments) of 2900 kg.m-3 based on the 
analysis of global samples of marine bedrock densities. If we focus only on the lowermost crustal 
density uncertainties, the density according to the CRUST1.0 varies from 2850 kg.m-3 under 
Himalayas to 3050 kg.m-3 under oceans with a standard deviation ∼70 kg.m-3. Christensen and 
Mooney [111] provided the uncertainty of ±50 kg.m-3 for the crystalline crust that could be reduced 

to ∼±30 kg.m-3 when considering only the lowermost crust. The error 
cρ

ε
 of ±50 kg.m-3 could then 

be a realistic expectation for an average density within the lowermost crust. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2023                   doi:10.20944/preprints202308.1507.v1

https://doi.org/10.20944/preprints202308.1507.v1


 19 

 

Density variations within the asthenosphere are probably controlled by a mantle flow pattern. 
Large density variations attributed to mantle plumes, for instance, were detected under Iceland, 
Hawaii, Azores, and elsewhere—e.g., [120]. Seismic tomography results indicate also relatively 
large density heterogeneities and density discontinuities in the mantle transition zone at depths 
approximately between 410 to 660 km—e.g., [121,122]. Based on petrological evidences, Griffin et 
al. [123] reported density variations 3300-3400 kg.m-3 in the asthenosphere. From these estimates, we 

could assume that the error Aρ
ε  in the average asthenosphere density is roughly ±30 kg.m-3. 

Assigning these density uncertainties to Eq. (52), the geoid modelling errors SMN
ε  within ±0.6 km 

closely corresponds with the estimated value of ±0.5 km according to Eq. (51). 
To check the correctness of our initial assumption that the lithospheric mantle density 

uncertainties LMδρ
ε  are mostly within ±100 kg.m-3, we used differences between the lithospheric 

thickness models (in Table 4) to reversely estimate errors of lithospheric mantle density. The 
computation was done approximately by using a simple relation for the gravitational potential V  
of an infinite planar plate that is computed from the density ρ  and thickness s values as follows 

          2π G RV sρ≈ .     (53) 

The error propagation model for Eq. (53) reads 

        ( )2π GRV ss ρε ε ρ ε≈ + ,    (54) 

where ρε  is a density uncertainty, and sε  is a thickness uncertainty. 

Since we here inspect the propagation only between errors LMδρ
ε  and SMN

ε  (or equivalently Vε

), the error sε  in Eq. (54) is disregarded. We then write 

        2πGRV s ρε ε≈ .      (55) 

Defining the potential errors Vε  in Eq. (55) in terms of geoid uncertainties Nε  , we arrive at 

    

3

2

2π GR RGR 2π 2π
MGM / R

V

N V

o o

s s sρ ρ ρ

ε
ε ε ε ε ε

γ γ
= ≈ ≈ ≈

,   (56) 

where M = 5.9722 x 1024 kg is the Earth’s total mass. 
According to Table 4, the RMS of differences between the lithospheric thickness models is on 

average roughly ±0.4 km. This RMS corresponds to the density error ρε  of ∼ ±160 kg.m-3. As seen, 
this error estimate agrees quite closely with the error analysis according to Eq. (51), where we 

assumed density errors within a similar range (i.e., 100LMδρ
ε ≈ ±  kg.m-3, L/Aρ

15ε
Δ

≈ ±  kg.m-3, and 
c/mρ

50ε
Δ

≈ ±  kg.m-3). 
As confirmed in this study, the sub-lithospheric mantle geoid modelling is affected mainly by 

errors in lithospheric thickness and lithospheric mantle density. Since we disregarded density 
variations within the asthenosphere, additional errors in our result are possibly attributed to 
temperature anomalies and small-scale convection patterns within the asthenosphere. It is also clear 
from Eq. (52) that the geoid modelling errors due to lithospheric mantle density uncertainties increase 
almost linearly with the increasing lithospheric thickness. Consequently, both uncertainties likely 
propagate into maximum geoid errors at locations characterized by the largest continental 
lithospheric deepening under cratonic formations that are manifested by large positive anomalies of 
the sub-lithospheric mantle geoid model (Figure 2e). At these locations, errors could according to our 
estimates reach (or even exceed) ±0.5 km. 

These theoretical findings indicate that the sub-lithospheric mantle geoid presented in Figure 2f 
(or Figure 3) might be very inaccurate, especially at locations with a maximum lithospheric 
deepening where these errors reach maxima. In reality, modifications of the geoidal geometry by sub-
lithospheric mantle density heterogeneities are probably much smaller than those seen in Figure 2f. 
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This is due to the fact that relative lateral density variations within the mantle are up to only a few 
percent—e.g., [124–129]. 

6. Summary and concluding remarks 

We have analyzed errors of computing the sub-lithospheric mantle geoid based on applying a 
gravimetric forward modelling and by using lithospheric density and thickness models as input data. 
The principle of this method is to model and subsequently remove the gravitational contributions of 
topography and lithospheric density and geometry variations in order to enhance a gravitational 
signature of the sub-lithospheric mantle density structure in the geoidal geometry. The expressions 
in the spectral domain, that utilize methods for a spherical harmonic analysis and synthesis of 
gravitational and lithospheric density structure models, were then used to establish the error 
propagation between geoid modelling errors and lithospheric mantle and lithospheric thickness 
uncertainties. 

According to our analysis, errors in modelling of sub-lithospheric mantle geoid due to 
lithospheric thickness and lithospheric mantle density uncertainties could reach or even exceed ±0.5 
km, particularly at locations with a maximum lithospheric thickness under cratons where both errors 
could magnify significantly. Theoretical error analysis and numerical results, therefore, suggest that 
actual modifications of the geoidal geometry by lateral mantle density variations below the 
lithosphere-asthenosphere boundary are much smaller than those computed and presented in Figure 
2f (or in Figure 3). 

This finding is indicative for a possible improvement of the Earth’s synthetic density and 
gravitational models based on a density calibration within individual lithospheric and underlying 
deeper mantle layers so that a sum of volumetric mass densities within the Earth’s synthetic model 
provides the value that closely agrees with the Earth’s total mass (excluding the atmosphere). 
Equivalently, the Earth’s synthetic density model should generate the gravitational field that closely 
agree with the Earth’s gravitational field. This issue will be addressed in the forthcoming study, 
where we will compile a synthetic model that closely fulfills both requirements. 
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