
Review

Not peer-reviewed version

Hyperparameter Optimization and

Combined Data Sampling

Techniques in Machine Learning

for Customer Churn Prediction: A

Comparative Analysis

Mehdi Imani

*

 and Hamid Reza Arabnia

Posted Date: 21 August 2023

doi: 10.20944/preprints202308.1478.v1

Keywords: Machine learning, Churn Prediction, Imbalanced Data, Combined Data Sampling Techniques,

Hyperparameter Optimization.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3109615
https://sciprofiles.com/profile/631535

Review

Hyperparameter Optimization and Combined Data
Sampling Techniques in Machine Learning for
Customer Churn Prediction: A Comparative Analysis

Mehdi Imani 1,* and Hamid Reza Arabnia 2

1 Mehdi Imani, Department of Computer and System Sciences, Stockholm University, Stockholm, Sweden,

m.imani@gmail.com

2 Hamid R. Arabnia, School of Computing, University of Georgia, Athens, Georgia, United States,

hra@uga.edu

* Correspondence: m.imani@gmail.com.

Abstract: In this paper, a variety of machine learning techniques, including Artificial Neural

Networks, Decision Trees, Support Vector Machines, Random Forests, Logistic Regression, and

three gradient boosting techniques (XGBoost, LightGBM, and CatBoost), were employed to predict

customer churn in the telecommunications industry using a publicly available dataset. To address

the issue of imbalanced data, various data sampling techniques, such as SMOTE, the combination

of SMOTE with Tomek Links, and the combination of SMOTE with Edited Nearest Neighbors, were

implemented. Additionally, hyperparameter tuning was utilized to optimize the performance of the

machine learning models. The models were evaluated and compared using commonly used metrics,

including Precision, Recall, F1-Score, and the Receiver Operating Characteristic Area Under Curve

(ROC AUC). The results revealed that the performance of the models was enhanced by the

application of hyperparameter tuning and the combined data sampling methods on the training

data. Overall, LightGBM demonstrated superior performance compared to the other machine

learning techniques examined. The findings indicate that LightGBM exhibited a superior

performance both prior to and following the application of these techniques.

Keywords: machine learning; churn prediction; imbalanced data; combined data sampling

techniques; hyperparameter optimization

1. Introduction

The implementation of Customer Relationship Management (CRM) is a strategic approach to

managing and enhancing relationships between businesses and their customers. Through the

utilization of CRM, businesses can establish an infrastructure that fosters long-term and loyal

customers. This concept is relevant across various industries, such as banking [1–4], insurance

companies [5], and telecommunications [6–15], to name a few. A key objective of CRM is customer

retention, as studies have demonstrated that the cost of acquiring new customers can be 20 times

higher than retaining existing ones [1]. As a result, it is imperative for businesses to develop practical

tools to achieve this goal. In recent years, various Machine Learning (ML) methods have been

proposed for constructing a churn model, including Artificial Neural Networks (ANN) [8,9,16–18],

Decision Trees [8,9,11,13,16,17], Random Forests [19,20], Logistic Regression (LR) [9,13], Support

Vector Machines (SVM) [17], and Rough Set Approach [21], among others.

In the following paragraphs, an overview is provided of five of the most commonly utilized

techniques. Additionally, three prominent boosting algorithms, namely eXtreme Gradient Boosting

(XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM), were

selected for use. Ensemble techniques [22], specifically boosting and bagging algorithms, have

become the prevalent choice for addressing classification problems [23,24], particularly in the realm

of churn prediction [25,26], due to their demonstrated high effectiveness.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202308.1478.v1
http://creativecommons.org/licenses/by/4.0/

 2

The remainder of the paper is organized as follows: Section 2 presents an introduction to

machine learning techniques, Section 3 delves into the examination of sampling methods, Section 4

defines evaluation metrics, simulation results are presented in Section 5, and the paper concludes in

Section 6.

2. Machine Learning Techniques

In the following, an overview is provided of the most frequently utilized techniques for

addressing the issue of churn prediction, including Artificial Neural Network, Decision Tree, Support

Vector Machine, Random Forest, Logistic Regression, and three advanced gradient boosting

techniques, specifically XGBoost, LightGBM, and CatBoost.

A. Artificial Neural Network

Artificial Neural Network (ANN) is a widely employed technique for addressing complex issues

such as the churn prediction problem [27]. ANNs are structures composed of interconnected units that

are modeled after the human brain. They can be utilized with various learning algorithms to enhance the

machine learning process and can take both hardware and software forms. One of the most widely

utilized models is the Multi-Layer Perceptron, which is trained using the Back-Propagation Network

(BPN) algorithm. Research has demonstrated that ANNs possess superior performance compared to

Decision Trees (DTs) [27], and have been shown to exhibit improved performance when compared to

Logistic Regression (LR) and DTs in the context of churn prediction [28].

B. Support Vector Machine

The technique of Support Vector Machine (SVM) was first introduced by authors in [29]. It is

classified as a supervised learning technique that utilizes learning algorithms to uncover latent

patterns within data. A popular method for improving the performance of SVMs is the utilization of

kernel functions [8]. In addressing customer churn problems, SVM may exhibit superior performance

in comparison to Artificial Neural Networks (ANNs) and Decision Trees (DTs) based on the specific

characteristics of the data [17,30].

For this study, we utilize both the Gaussian Radial Basis kernel function (RBF-SVM) and the

Polynomial kernel function (Poly-SVM) for the Support Vector Machine (SVM) technique. These

kernel functions are among the various options available for use with SVM.

For two samples 𝑥 and 𝑥′, the RBF kernel is defined as follows: 𝐾(𝑥. 𝑥′) = exp⁡ (− ‖𝑥 −⁡𝑥′‖22𝛿2) (1)

Where ‖𝑥 − ⁡𝑥′‖2 can be the squared Euclidean distance and 𝛿 is a free parameter.

For two samples 𝑥 and 𝑥′, the d-degree polynomial kernel is defined as follows: 𝐾(𝑥. 𝑥′) = (𝑥𝑇𝑥′ + 𝑐)𝑑 (2)

Where 𝑐 ≥ 0 and 𝑑 ≥ 1 is the polynomial degree.

C. Decision Tree

A Decision Tree (DT) is a representation of all potential decision pathways in the form of a tree

structure [31,32]. As Berry and Linoff stated, "a Decision Tree is a structure that can be used to divide

up a large collection of records into successively smaller sets of records by applying a sequence of

simple decision rules" [33]. Though they may not be as efficient in uncovering complex patterns or

detecting intricate relationships within data, DTs may be used to address the customer churn

problem, depending on the characteristics of the data. In DTs, class labels are indicated by leaves and

the conjunctions between various features are represented by branches.

D. Logistic Regression

Logistic Regression (LR) is a classification method that falls under the category of probabilistic

statistics. It can be employed to address the churn prediction problem by making predictions based

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 3

on multiple predictor variables. In order to obtain high accuracy, which can sometimes be

comparable to that of Decision Trees (DTs) [10], it is often beneficial to apply pre-processing and

transformation techniques to the original data prior to utilizing LR.

3. Ensemble Learning

Ensemble learning is one of the widely utilized techniques in machine learning for combining

the outputs of multiple learning models (often referred to as base learners) into a single classifier [34].

In ensemble learning, it is possible to combine various weak machine learning models (base learners)

to construct a stronger model with more accurate predictions [35,36]. Currently, ensemble learning

methods are widely accepted as a standard choice for enhancing the accuracy of machine learning

predictors [35]. Bagging and boosting are two distinct types of ensemble learning techniques that can

be utilized to improve the accuracy of machine learning predictors [36].

A. Bagging

As depicted in Figure 1, in the bagging technique, the training data is partitioned into multiple

subset sets, and the model is trained on each subset. The final prediction is then obtained by

combining all individual outputs through majority voting (in classification problems) or average

voting (in regression problems) [36–38].

Figure 1. Visualization of the bagging approach.

B. Random Forest

The concept of Random Forest was first introduced by Ho in 1995 [19] and has been the subject

of ongoing improvement by various researchers. One notable advancement in this field was made by

Leo Breiman in 2001 [20]. Random Forests are an ensemble learning technique for classification tasks

that employs a large number of Decision Trees in the training model. The output of Random Forests

is a class that is selected by the majority of the trees. In general, Random Forests exhibit superior

performance compared to Decision Trees (DTs), however, the performance can be influenced by the

characteristics of the data.

Random Forests utilize the bagging technique for their training algorithm. In greater detail, the

Random Forests operate as follows: For a training set 𝑇𝑆𝑛 = {(𝑥1. 𝑦1). ⋯ . (𝑥𝑛. 𝑦𝑛)}, bagging is repeated

B times, and each iteration selects a random sample with replacement from 𝑇𝑆𝑛, and fits trees to the

samples.:

1- Sample 𝑛 training examples; 𝑋𝑏. 𝑌𝑏

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 4

2- Train a classification tree (in the case of churn problems) 𝑓𝑏 on the samples 𝑋𝑏. 𝑌𝑏.

After the training phase, Random Forests can predict unseen samples 𝑥′ by taking the majority

vote from all the individual classification trees 𝑥′.

𝑓 = 1𝐵 ∑ 𝑓𝑏(𝑥′)𝐵
𝑏=1

 (3)

C. Boosting

Boosting is another method for combining multiple base learners to construct a stronger model

with more accurate predictions. The key distinction between bagging and boosting is that bagging

uses a parallel approach to combine weak learners, while boosting methods utilize a sequential

approach to combine weak learners and derive the final prediction, as shown in Figure 2. Like the

bagging technique, boosting improves the performance of machine learning predictors and in

addition, it reduces the bias of the model [36].

Figure 2. Visualization of the Random Forest classifier.

Figure 3. Visualization of the boosting approach.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 5

D. The Famous Trio: XGBoost, LightGBM, CatBoost

Recently, researchers have presented three effective gradient-based approaches using decision trees:

CatBoost, LightGBM, and XGBoost. These new approaches have demonstrated successful applications in

academia, industry, and competitive machine learning [39]. Utilizing gradient boosting techniques,

solutions can be constructed in a stagewise manner, and the over-fitting problem can be addressed

through the optimization of loss functions. For example, given a loss function 𝜓(𝑦, 𝑓(𝑥)) and a custom

base-learner h(x, θ) (e.g., decision tree), the direct estimation of parameters can be challenging. Thus, an

iterative model is proposed, which is updated at each iteration with the selection of a new base-learner

function h(x, θt), where the increment is directed by: 𝑔𝑡(𝑥) = 𝐸𝑦[𝜕𝜓(𝑦, 𝑓(𝑥))𝜕𝑓(𝑥) ⁡|𝑥]𝑓(𝑥)=𝑓̃𝑡−1(𝑥) (4)

Hence, the hard optimization problem is substituted with the typical least-squares optimization

problem: (𝑝𝑡 , 𝜃𝑡) = 𝑎𝑟𝑔⁡𝑚𝑖𝑛𝑝,𝜃 ∑ [−𝑔𝑡(𝑥𝑖) + 𝑝⁡ℎ(𝑥𝑖 , 𝜃)]2
𝑁𝑖=1

 (5)

The Friedman’s gradient boost algorithm is summarized by Algorithm 1.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦⁡𝟏⁡Gradient⁡Boost

1 − 𝐿𝑒𝑡⁡𝑓0⁡𝑏𝑒⁡𝑎⁡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

2 − 𝐹𝑜𝑟⁡𝑖 = 1⁡𝑡𝑜⁡𝑀 𝑎.⁡⁡⁡⁡𝐶𝑜𝑚𝑝𝑢𝑡𝑒⁡𝑔𝑖(𝑥)𝑢𝑠𝑖𝑛𝑔⁡𝑒𝑞()⁡ 𝑏.⁡⁡⁡⁡𝑇𝑟𝑎𝑖𝑛⁡𝑡ℎ𝑒⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛⁡ℎ(𝑥, 𝜃𝑖) 𝑐.⁡⁡⁡⁡𝐹𝑖𝑛𝑑⁡𝑝𝑖⁡𝑢𝑠𝑖𝑛𝑔⁡𝑒𝑞() 𝑑.⁡⁡⁡𝑈𝑝𝑑𝑎𝑡𝑒⁡𝑡ℎ𝑒⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑖 = 𝑓𝑖−1 + 𝑝𝑖ℎ(𝑥, 𝜃𝑖)

3 − 𝐸𝑛𝑑

After initiating the algorithm with a single leaf, the learning rate is optimized for each record

and each node [40–42]. The XGBoost method is a highly flexible, versatile, and scalable tool that has

been developed to effectively utilize resources and overcome the limitations of previous gradient

boosting methods. The primary distinction between other gradient boosting methods and XGBoost

is that XGBoost utilizes a new regularization approach for controlling overfitting, making it more

robust and efficient when the model is fine-tuned. To regularize this approach, a new term is added

to the loss function as follows: 𝐿(𝑓) = ∑ 𝐿(𝑦̂𝑖 , 𝑦𝑖)𝑛𝑖=1 + ∑ 𝛺(𝛿𝑚)𝑀𝑚=1

with 𝛺(𝛿) = 𝛼|𝛿| + 0.5𝛽||𝑤||2

(6)

Where w represents the value of each leaf,  indicates the regularization function, and ||

denotes the number of branches. A new gain function is used by XGBoost, as follows: 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗 (7)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 6

𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

𝐺𝑎𝑖𝑛 = 12 [𝐺𝐿2𝐻𝐿 + 𝛽 + 𝐺𝑅2𝐻𝑅 + 𝛽− (𝐺𝑅 + 𝐺𝐿)2𝐻𝑅 + 𝐻𝐿 + 𝛽] − 𝛼

where 𝑔𝑖 = 𝜕𝑦̂𝑖𝐿(𝑦̂𝑖 + 𝑦𝑖)

and ℎ𝑖 = 𝜕𝑦̂𝑖2 𝐿(𝑦̂𝑖 + 𝑦𝑖)

The Gain represents the score of no new child case, H indicates the score of the left child, and G

denotes the score of the right child [43].

To decrease the implementation time, the LightGBM method was developed by a team from

Microsoft in April 2017 [8]. The primary difference is that LightGBM decision trees are constructed

in a leaf-wise manner, rather than evaluating all previous leaves for each new leaf (Figure 4a,b). The

attributes are grouped and sorted into bins, known as the histogram implementation. LightGBM

offers several benefits, including faster training speed, higher accuracy, as well as the ability to handle

large scale data and support GPU learning.

Figure 4. (a) XGBoost Level-wise tree growth and (b) LightGBM Leaf-wise tree growth.

The focus of CatBoost is on categorical columns through the use of permutation methods, target-

based statistics, and one_hot_max_size (OHMS). By using a greedy technique at each new split of the

current tree, CatBoost has the capability to address the exponential growth of feature combinations.

The steps described below are employed by CatBoost for each feature with more categories than the

OHMS (an input parameter):

1. To randomly divide the records into subsets,

2. To convert the labels to integer numbers,

3. To transform the categorical features to numerical features, as follows: 𝑎𝑣𝑔𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑐𝑜𝑢𝑛𝑡𝐼𝑛𝐶𝑙𝑎𝑠𝑠 + 𝑝𝑟𝑖𝑜𝑟𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 + 1 (8)

Where totalCount denotes the number of previous objects, countInClass represents the number of

ones in the target for a specific categorical feature, and the starting parameters specify prior [44–46].

4. Handling Imbalanced Data

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 7

Imbalanced data is a prevalent problem in data mining. For instance, in binary classifications,

the number of instances in the majority class may be significantly higher than the number of instances

in the minority class. As a result, the ratio of instances in the minority class to instances in the majority

class (imbalanced ratio) may vary from 1:2 to 1:1000. The dataset used in this study is imbalanced,

with the distribution of majority class (non-churned) instances being six times that of the minority

class (churned) instances. This characteristic of the data leads to the construction of a biased classifier

that has high accuracy for the majority class (non-churned) but low accuracy for the minority class

(churned). Several sampling methods have been proposed to address this issue. Sampling techniques

are applied to imbalanced data to alter the class distribution and create balanced data. Generally,

sampling techniques are divided into two categories: undersampling and oversampling [47].

A. Sampling Techniques

Synthetic Minority Over-Sampling Technique (SMOTE) [48] is an oversampling technique that

aims to balance the data by replicating instances of the minority class and is widely utilized to address

this issue.

Tomek Links is an undersampling method, and an extension to the Condensed Nearest

Neighbor (CNN) method, proposed by Ivan Tomek (in his 1976 paper titled "Two modifications of

CNN") [49]. The Tomek links method identifies pairs of examples (each from a different class) that

have the minimum Euclidean distance to each other.

Edited Nearest Neighbors (ENN) is another undersampling method, proposed by Wilson (in his

1972 paper titled "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data") [50]. This

method computes the three nearest neighbors for each instance in the dataset. If the instance belongs

to the majority class and is misclassified by its three nearest neighbors, then it is removed from the

dataset. Alternatively, if the instance belongs to the minority class and is misclassified by its three

nearest neighbors, then the three majority-class instances are removed.

Applying just one undersampling or oversampling method to the training data can effectively

handle imbalanced data, but to achieve the best results, it is advisable to use combination techniques.

In this study, to address imbalanced data, we use two of the most popular combinations of sampling

techniques, such as the combination of SMOTE and Tomek Links, and the combination of SMOTE

and ENN.

B. Training and Validation Process

For evaluating our classifiers, we employ the k-fold cross-validation technique. However, there

is a limitation when using this technique with imbalanced data. The issue is that, with this technique,

the data is split into k-folds with a uniform probability distribution, and in imbalanced data, some

folds may have no or few examples from the minority class. To address this issue, we can use a

stratified sampling technique when performing train-test split or k-fold cross-validation. Using

stratification ensures that each split of the data has an equal number of instances from the minority

class.

We utilize an out-of-sample testing approach to evaluate the performance of the models. This

approach demonstrates the performance of the models on unseen data that was not used to train the

models.

When working with imbalanced data, it is essential to up-sample or down-sample only after

splitting the data into a train and test sets (and validate if desired). If the dataset is up-sampled prior

to splitting it into test and train, it is likely that the model experiences data leakage. This way, we

may wrongly assume that our machine learning model is performing well. After building a machine

learning model, it is recommended to test the metric on the not-up-sampled train dataset. When the

metric is tested on the not-up-sampled dataset, the model's performance can be more realistically

estimated compared to when it is tested on the up-sampled dataset.

5. Evaluation Metrics

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 8

We employ two types of metrics to evaluate our models. 1) Threshold metrics: These metrics are

designed to minimize the error rate and assist in calculating the exact number of predicted values

that do not match the actual values. 2) Ranking metrics: These metrics are designed to evaluate the

effectiveness of classifiers at separating classes. These metrics require classifiers to predict a

probability or a score of class membership. By applying different thresholds, we can test the

effectiveness of classifiers, and those classifiers that maintain a good score across a range of

thresholds will have better class separation and, as a result, will have a higher rank.

A. Threshold Metrics

Normally, we use the standard accuracy metric (equation 6) for measuring the performance of

ML models. However, for imbalanced data, classification ML models may achieve high accuracy, as

this metric only considers the majority class. In an imbalanced dataset, instances of the minority class

(churned) are rare, and thus, True Positives (TP) do not have a significant impact on the standard

accuracy metric. This metric, therefore, cannot accurately represent the performance of the models.

For example, if the model correctly predicts all data points in the majority class (non-churned), it will

result in high True Negatives (TN) and a high standard of accuracy, without accurately predicting

anything about the minority class (churned). In the case of imbalanced data, this metric is not

sufficient as a benchmark criterion measure [51]. Therefore, other metrics such as recall, precision,

and F-measure are commonly used to evaluate the performance of ML models in minority classes,

and can be extracted from the confusion matrix, as shown in Table 1.

The confusion matrix helps us to understand the performance of ML models by showing which

class is being predicted correctly and which one is being predicted incorrectly.

Table 1. The confusion matrix for evaluating methods.

Predicted Class

Churners Non-Churners

Actual class
Churners TP FN

Non-churners FP TN

In Table 1, TP and FP stand for True Positive and False Positive, and FN and TN stand for False

Negative and True Negative, respectively. Precision, Recall, and Accuracy can be calculated using

the following formulas: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (9)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (10)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡⁡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙⁡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠= 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(11)

But Precision and Recall are not sufficient for evaluating the accuracy of the mentioned methods,

since they do not provide enough information and can be misleading. Therefore, we usually use the

F-measure metric as a single metric to evaluate the accuracy of our models. F-measure is a

combination of Precision and Recall metrics and balances both precision and recall and provides a

single metric that represents the overall performance of the model. F-measure is defined as follows: 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (12)

The more the value of the F-measure is closer to 1, the better combination of Precision and Recall

is achieved by the model [52].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 9

B. Ranking Metrics

In the field of churn prediction, the Receiver Operating Characteristic (ROC) Curve is widely

recognized as a prominent ranking metric for evaluating the performance of classifiers. This metric

enables the assessment of a classifier's ability to differentiate between classes by providing a visual

representation of the true positive rate and false positive rate of predicted values, as calculated under

various threshold values.

The true positive rate (recall or sensitivity) is calculated as follows: 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (13)

And the false positive rate is calculated as follows: 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 (14)

Each point on the plot represents a prediction made by the model, with the curve being formed

by connecting all points. A line running diagonally from the bottom left to the top right on the plot

represents a model with no skill, and any point located below this line represents a model that

performs worse than one with no skill. Conversely, a point in the top left corner of the plot symbolizes

a perfect model.

Figure 5. The ROC curve.

The area under the ROC curve can be calculated and utilized as a single score to evaluate the

performance of models. A classifier with no skill has a score of 0.5, and a perfect classifier has a score

of 1.0. However, it should be noted that the ROC curve can be effective for classification problems

with a low imbalanced ratio, and can be optimistic for classification problems with a high imbalanced

ratio. In such cases, the precision-recall curve is a more appropriate metric, as it focuses on the

performance of the classifier on the minority class.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 10

Figure 6. The Precision-Recall curve.

The ROC curve is a widely used method for evaluating the performance of machine learning

models. The ROC curve plots the true positive rate against the false positive rate at various threshold

settings, with each point on the curve representing a predicted value by the model.

A horizontal line on the plot signifies a model with no skill, while points below the diagonal line

indicate a model that performs worse than random chance. Conversely, a point located in the top left

quadrant of the plot represents a model with perfect performance.

In datasets with a balanced distribution of positive and negative examples, the horizontal line

on the ROC plot is typically set at 0.5. However, when the dataset is imbalanced, such as with an

imbalanced ratio of 1:10, the horizontal line is adjusted to 0.1 to reflect the imbalanced nature of the

data.

In addition to the ROC curve, the area under the ROC curve (AUC) is also a commonly used

metric for evaluating the performance of machine learning models. The AUC provides a single score

for comparing the performance of different models. In cases where the dataset has a high imbalanced

ratio, the Precision-Recall AUC (PR AUC) may be more informative as it specifically focuses on the

performance of the minority class. However, if the imbalanced ratio of the dataset is not excessively

high, such as the dataset utilized in this study, the use of PR AUC may not be necessary for

evaluation.

In this paper, we employ a comprehensive set of metrics to evaluate the performance of machine

learning models, including Recall, Precision, F1-score, and Receiver Operating Characteristic (ROC)

AUC. These metrics provide a comprehensive evaluation of the model's performance, including its

ability to accurately identify positive examples, balance false positives and false negatives, and

handle imbalanced datasets.

Unlike the standard accuracy metric, ROC AUC places a particular emphasis on the performance

of the minority class, and the accurate prediction of minority class instances is central to its

calculation. This is particularly useful in situations where the dataset is imbalanced, as it ensures that

the model's performance is evaluated fairly and in a way that takes into account the specific

characteristics of the data.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 11

C. ROC AUC Benchmark

It is clear that a ROC Area Under the Curve (AUC) of 100% represents the optimal performance

that a machine learning model can achieve, as it indicates that all instances of the positive class (e.g.

churns in the case of customer retention) are ranked higher in risk than all instances of the negative

class (e.g. non-churns). However, it is highly unlikely that any model will achieve this level of

performance in real-world problems.

As such, when comparing the performance of different machine learning models using ROC

AUC, it is necessary to have a benchmark to determine whether the model's performance is

acceptable. The ROC AUC ranges from 50% to 100%, with 50% being equivalent to random guessing

and 100% representing perfect performance. As can be seen in Table 2, the worst possible AUC is

50%, which is similar to the result of a coin flip for prediction.

Table 2. ROC AUC benchmark for predicting churn.

ROC AUC<= 50% Something Is Wrong *

50%<= ROC AUC <60% Similar to flipping a coin

60%<= ROC AUC <70% Weak prediction

70%<= ROC AUC <80% Good Prediction

80%<= ROC AUC <90% Very Good Prediction

ROC AUC >= 90% Excellent Prediction

* Check the data and the AUC calculation.

6. Simulation

A. Simulation Setup

The primary objective of this study is to evaluate and compare the performance of several

popular classification techniques in solving the problem of customer churn prediction. The classifiers

under examination include Decision Tree, Logistic Regression, Random Forest, Support Vector

Machine, XGBoost, LightGBM, and CatBoost. To achieve this goal, simulations were conducted using

the Python programming language and various libraries such as Pandas, NumPy, and Scikit-learn.

A real-world dataset was used for this study, which was obtained from Kaggle, and is outlined

in Table 3. The training dataset consists of 20 attributes and 4250 instances, while the testing dataset

has 20 attributes and 750 instances. The training dataset features a churn rate of 14.1% and an active

subscriber rate of 85.9%. The performance of the models was evaluated using a variety of metrics,

including precision, recall, F-measure, and ROC AUC as defined previously. After undergoing pre-

processing steps such as handling categorical variables, feature selection, and removing outliers,

these metrics were evaluated using both the training and testing datasets. Additionally, the SMOTE

technique was used to handle imbalanced data and the effect on the performance of the models was

examined.

Table 3. The names and types of different variables in the churn dataset.

Variable Name Type

state, (the US state of customers) string

account_length (number of active months) numerical

area_code, (area code of customers) string

international_plan, (whether customers have international plans) yes/no

voice_mail_plan, (whether customers have voice mail plans) yes/no

number_vmail_messages, (number of voice-mail messages) numerical

total_day_minutes, (total minutes of day calls) numerical

total_day_calls, (total number of day calls) numerical

total_day_charge, (total charge of day calls) numerical

total_eve_minutes, (total minutes of evening calls) numerical

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 12

total_eve_calls, (total number of evening calls) numerical

total_eve_charge, (total charge of evening calls) numerical

total_night_minutes, (total minutes of night calls) numerical

total_night_calls, (total number of night calls) numerical

total_night_charge, (total charge of night calls) numerical

total_intl_minutes, (total minutes of international calls) numerical

total_intl_calls, (total number of international calls) numerical

total_intl_charge, (total charge of international calls) numerical

number_customer_service_calls, (number of calls to customer service) numerical

churn, (customer churn – the target variable) yes/no

7. Simulation Results

In this study, we evaluate the performance of several machine learning models (Decision Tree,

Logistic Regression, Artificial Neural Network, Support Vector Machine, Random Forest, XGBoost,

LightGBM, and CatBoost) on unseen data using a range of metrics including precision, recall, F1-

Score, Receiver Operating Characteristic (ROC) Area Under the Curve (AUC), and Precision-Recall

(PR) AUC. The evaluation is carried out on the testing dataset to assess the generalization ability of

the models and to determine their performance on unseen data.

A. Applying Feature Selection

After undergoing several pre-processing steps such as handling categorical features and feature

selection, the aforementioned models were applied to the data and their performance was evaluated.

The results of this evaluation are presented in Table 4, with the highest values highlighted in bold.

Table 4. Evaluation metrics for the different models after applying feature selection.

Models Precision% Recall% F1-Score% ROC AUC%

DT 91 72 77 72

ANN 85 76 80 77

LR 61 70 62 70

SVM 81 57 59 57

RF 96 75 81 75

CatB 90 90 90 90

LGBM 94 91 92 91

XGB 96 87 91 87

As depicted in Table 4, the Random Forest and XGBoost models exhibit superior performance

in terms of precision compared to other machine learning algorithms. However, in terms of recall,

F1-Score, and ROC AUC, the LightGBM model outperforms the other methods. Figure 7 shows the

diagram of the ROC Curve for the different models after feature selection.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 13

Figure 7. ROC Curve after applying feature selection.

B. Applying SMOTE

To address the issue of class imbalance in the training data, where the number of instances of

class-0 is 3652 and the number of instances of class-1 is 598, we have applied the SMOTE technique

to the training dataset. This technique was used to create synthetic instances of the minority class in

order to achieve a balanced training dataset. As a result of the application of SMOTE, the number of

instances for both class-0 and class-1 is now equal to 2125.

As Table 5 shows, LightGBM and XGBoost outperform other ML techniques in all evaluation

metrics. Figure 8 shows the diagram of the ROC Curve for the different models after applying

SMOTE.

Table 5. Evaluation metrics for the different models after applying SMOTE.

Models Precision% Recall% F1-Score% ROC AUC%

DT 69 72 70 72

ANN 70 73 71 83

LR 61 71 61 70

SVM 65 73 68 73

RF 83 76 79 76

CatB 79 88 83 88

LGBM 87 90 88 90

XGB 95 90 92 90

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 14

Figure 8. ROC Curve after applying SMOTE.

C. Applying SMOTE with Tomek Links

As previously discussed in Section IV, the Tomek Links method is an undersampling technique

that is used to identify pairs of examples, where each example belongs to a different class, that have

the minimum Euclidean distance to each other. Additionally, as noted in the section, it is beneficial

to utilize a combination of both oversampling and undersampling techniques to achieve optimal

results. The results of the evaluation metrics for the various models after applying the SMOTE

technique in conjunction with Tomek Links are presented in Table 6. As evidenced by the table, both

LightGBM and XGBoost outperform the other machine learning methods and demonstrate slightly

improved results when compared to utilizing SMOTE alone, as shown in Table 5. Figure 9 shows the

diagram of the ROC Curve for the different models after applying SMOTE with Tomek Links.

Table 6. Evaluation metrics for the different models after applying SMOTE with Tomek Links.

Models Precision% Recall% F1-Score% ROC AUC%

DT 74 74 74 74

ANN 69 75 71 75

LR 61 70 61 69

SVM 65 73 67 73

RF 85 78 81 78

CatB 80 88 83 88

LGBM 89 91 90 91

XGB 94 89 91 89

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 15

Figure 9. ROC Curve after applying SMOTE with Tomek Links.

D. Applying SMOTE with ENN

As previously discussed in Section IV, the ENN method is employed to compute the three

nearest neighbors for each instance within the dataset. In instances where the sample belongs to the

majority class and is misclassified by its three nearest neighbors, the instance is removed from the

dataset. Conversely, if the instance belongs to the minority class and is misclassified by its three

nearest neighbors, the three majority class instances are removed. Furthermore, as previously stated,

it has been shown to be beneficial to utilize a combination of undersampling and oversampling

techniques in order to achieve optimal results. Table 7 illustrates the evaluation metrics for the

various models following the application of the SMOTE technique in conjunction with the ENN

method. The results indicate that LightGBM and XGBoost models outperform other machine learning

techniques in all evaluation metrics once more. Figure 10 shows the diagram of the ROC Curve for

the different models after applying SMOTE with Tomek Links.

Table 7. Evaluation metrics for the different models after applying SMOTE with ENN.

Models Precision% Recall% F1-Score% ROC AUC%

DT 60 70 50 70

ANN 61 70 60 70

LR 52 50 13 50

SVM 60 70 58 70

RF 67 76 69 76

CatB 70 83 72 83

LGBM 80 89 84 87

XGB 88 89 88 89

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 16

Figure 10. ROC Curve after applying SMOTE with ENN.

E. Applying OPTUNA Hyperparameter Optimizer

Takuya Akiba et al. (2019) [53] introduced Optuna, an open-source Python library for

hyperparameter optimization. Optuna aims to balance the pruning and sampling algorithms through

the execution of various techniques, such as the Tree-Structured of Parzen Estimator (TPE) [54,55] for

independent parameter sampling, Covariance Matrix Adaptation (CMA) [56], and Gaussian

Processes (GP) [55] for relational parameter sampling. The library also utilizes a variant of the

Asynchronous Successive Halving (ASHA) algorithm [57] to prune search spaces. In this study, we

applied the Optuna library to the popular machine learning models, CatBoost, XGBoost, and

LightGBM. The results, as presented in Table 8, indicate that CatBoost outperforms XGBoost and

LightGBM when utilizing Optuna for hyperparameter optimization. Figure 11 shows the diagram of

the ROC Curve for the different models after applying OPTUNA hyperparameter tuning.

Table 8. Evaluation metrics for various models after the application of Optuna hyperparameter

optimization.

Models Precision% Recall% F1-Score% ROC AUC%

CatB 89 91 90 91

CatB-Optuna 95 91 93 91

LGBM 92 90 91 90

LGBM-Optuna 93 89 90 89

XGB 93 88 90 88

XGB-Optuna 94 88 91 88

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 17

Figure 11. ROC Curve after OPTUNA hyperparameter tuning.

8. Conclusion

In this study, we employed various machine learning (ML) models, including Artificial Neural

Networks, Decision Trees, Support Vector Machines, Random Forests, Logistic Regression, and three

modern gradient boosting techniques, namely XGBoost, LightGBM, and CatBoost, to predict

customer churn in the telecommunications industry using a real-world imbalanced dataset. We

evaluated the impact of different sampling techniques, such as SMOTE, SMOTE with Tomek Links,

and SMOTE with ENN, to handle the imbalanced data. We then assessed the performance of the ML

models using various metrics, including Precision, Recall, F1-score, and Receiver Operating

Characteristic Area Under the Curve (ROC AUC). Finally, we utilized the Optuna hyperparameter

optimization technique on CatBoost, LightGBM, and XGBoost to determine the effect of optimization

on the performance of the models. We compared the results of all the steps and presented them in

tabular form.

The simulation results demonstrate the performance of different models on unseen data.

LightGBM and XGBoost consistently exhibit superior performance across various evaluation metrics,

including precision, recall, F1-Score, and ROC AUC. The performance of these models is further

improved when applying techniques such as SMOTE with Tomek Links or SMOTE with ENN to

handle imbalanced data. Additionally, the use of Optuna hyperparameter optimization for CatBoost,

XGBoost, and LightGBM models shows further improvements in performance.

In future work, several avenues can be explored. Firstly, other machine learning techniques,

such as deep learning models like Long Short-Term Memory (LSTM) or Transformer-based models,

can be evaluated for churn prediction. These models have shown promise in various domains and

may provide further insights into churn behavior. Secondly, we suggest exploring the use of the

AdaSyn technique to handle imbalanced data and compare the results. Lastly, we recommend

applying the above techniques to a highly imbalanced dataset to evaluate their performance in such

conditions. Furthermore, employing the learning curve method to determine whether the models are

overfitting could also be a valuable avenue of research.

Author Contributions: Writing and original draft preparation, M.I.; supervision, review, and editing, H.R.A. All

authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 18

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. The Chartered Institute of Marketing, “Cost of Customer Acquisition versus Customer Retention”, 2010.
2. F. Eichinger, D.D. Nauck, F. Klawonn, “Sequence mining for customer behaviour predictions in

telecommunications”, in: Proceedings of the Workshop on Practical Data Mining at ECML/PKDD, 2006,
pp. 3–10.

3. U.D. Prasad, S. Madhavi, “Prediction of churn behaviour of bank customers using data mining tools”,
Indian J. Market. 42 (9) (2011) 25–30.

4. Keramati, Abbas, Hajar Ghaneei, and Seyed Mohammad Mirmohammadi. "Developing a prediction model

for customer churn from electronic banking services using data mining." Financial Innovation 2.1 (2016): 1-

13.

5. Scriney, Michael, Dongyun Nie, and Mark Roantree. "Predicting customer churn for insurance data."

International Conference on Big Data Analytics and Knowledge Discovery. Springer, Cham, 2020.

6. De Caigny, Arno, Kristof Coussement, and Koen W. De Bock. "A new hybrid classification algorithm for

customer churn prediction based on logistic regression and decision trees." European Journal of

Operational Research 269.2 (2018): 760-772.

7. K. Kim, C.-H. Jun, J. Lee, “Improved churn prediction in telecommunication industry by analyzing a large

network”, Expert Syst. Appl. 41 (15) (2014) 6575–6584.

8. Ahmad, Abdelrahim Kasem, Assef Jafar, and Kadan Aljoumaa. "Customer churn prediction in telecom

using machine learning in big data platform." Journal of Big Data 6.1 (2019): 1-24.

9. De Caigny, Arno, Kristof Coussement, and Koen W. De Bock. "A new hybrid classification algorithm for

customer churn prediction based on logistic regression and decision trees." European Journal of

Operational Research 269.2 (2018): 760-772.

10. R.J. Jadhav, U.T. Pawar, “Churn prediction in telecommunication using data mining technology”, IJACSA
Edit. 2 (2) (2011) 17–19.

11. D. Radosavljevik, P. van der Putten, K.K. Larsen, “The impact of experimental setup in prepaid churn
prediction for mobile telecommunications: what to predict, for whom and does the customer experience

matter?”, Trans MLDM 3 (2) (2010) 80–99.

12. Y. Richter, E. Yom-Tov, N. Slonim, “Predicting customer churn in mobile networks through analysis of
social groups”, SDM, vol. 2010, SIAM, 2010, pp. 732–741.

13. Amin, Adnan, et al. "Cross-company customer churn prediction in telecommunication: A comparison of

data transformation methods." International Journal of Information Management 46 (2019): 304-319.

14. K. Tsiptsis, A. Chorianopoulos, “Data Mining Techniques in CRM: Inside Customer Segmentation”, John
Wiley & Sons, 2011.

15. Joudaki, Majid, et al. "Presenting a New Approach for Predicting and Preventing Active/Deliberate

Customer Churn in Telecommunication Industry." Proceedings of the International Conference on Security

and Management (SAM). The Steering Committee of the World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), 2011.

16. Amin, Adnan, et al. "Customer churn prediction in telecommunication industry using data certainty."

Journal of Business Research 94 (2019): 290-301.

17. E. Shaaban, Y. Helmy, A. Khedr, M. Nasr, “A proposed churn prediction model”, J. Eng. Res. Appl. 2 (4)
(2012) 693–697.

18. Khan, Yasser, et al. "Customers churn prediction using artificial neural networks (ANN) in telecom

industry." Editorial Preface From the Desk of Managing Editor 10.9 (2019).

19. Ho, Tin Kam. "Random decision forests." Proceedings of 3rd international conference on document analysis

and recognition. Vol. 1. IEEE, 1995.

20. Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

21. A. Amin, S. Shehzad, C. Khan, I. Ali, S. Anwar, “Churn prediction in telecommunication industry using
rough set approach, in: New Trends in Computational Collective Intelligence”, Springer, 2015, pp. 83–95.

22. I. H. Witten, E. Frank, M. A. Hall and C. J. Pal, Data Mining : Practical Machine Learning Tools and

Techniques, San Francisco: Elsevier Science & Technology, 2016.

23. A. Kumar and M. Jain, Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting

Methods with Use Cases, Apress, 2020.

24. M. Van Wezel and R. Potharst, "Improved customer choice predictions using ensemble methods,"

European Journal of Operational Research, vol. 181, no. 1, pp. 436-452, 2007.

25. I. Ullah, B. Raza, A. K. Malik, M. Imran, S. U. Islam and S. W. Kim, "A churn prediction model using random

forest: analysis of machine learning techniques for churn prediction and factor identification in telecom

sector," IEEE Access, pp. 60134-60149, 2019

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 19

26. P. Lalwani, M. M. Kumar, J. Singh Chadha and P. Sethi, "Customer churn prediction system: a machine

learning approach," Computing, pp. 1-24, 2021.

27. Tarekegn, Adane, et al. "Predictive modeling for frailty conditions in elderly people: machine learning

approaches." JMIR medical informatics 8.6 (2020): e16678.

28. Ahmed, Mahreen, et al. "Exploring nested ensemble learners using overproduction and choose approach

for churn prediction in telecom industry." Neural Computing and Applications 32.8 (2020): 3237-3251.

29. B.E. Boser, I.M. Guyon, V.N. Vapnik, “A training algorithm for optimal margin classifiers”, in Proceedings
of the Fifth Annual Workshop on Computational Learning Theory”, ACM, 1992, pp. 144–152.

30. Y. Hur, S. Lim, “Customer churning prediction using support vector machines in online auto insurance
service, in: Advances in Neural Networks” – ISNN 2005, Springer, 2005, pp. 928–933.

31. S.J. Lee, K. Siau, A review of data mining techniques, Ind. Manage. Data Syst. 101 (1) (2001) 41–46.

32. Mazhari, N.,Imani, M., Joudaki, M. and Ghelichpour, A.,"An overview of classification and its algorithms"

3rd Data Mining Conference (IDMC'09): Tehran, 2009.

33. G.S. Linoff, M.J. Berry, “Data Mining Techniques: For Marketing, Sales, and Customer Relationship

Management”, John Wiley & Sons, 2011.
34. Z.-H. Zhou, Ensemble Methods - Foundations and Algorithms, Taylor & Francis group, LLC, 2012.

35. A. Kumar and M. Jain, Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting

Methods with Use Cases, Apress, 2020.

36. I. H. Witten, E. Frank, M. A. Hall and C. J. Pal, Data Mining : Practical Machine Learning Tools and

Techniques, San Francisco: Elsevier Science & Technology, 2016.

37. J. Karlberg and M. Axen, "Binary Classification for Predicting Customer Churn," Umeå University, Umeå,

2020.

38. D. Windridge and R. Nagarajan, "Quantum Bootstrap Aggregation," in International Symposium on Quantum

Interaction, 2017.

39. J. C. Wang, T. Hastie, “Boosted varying-coefficient regression models for product demand prediction,”
Journal of Computational and Graphical Statistics, vol. 23, no. 2, pp 361–382, 2014.

40. E Al Daoud, “Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines,”
World Academy of Science, Engineering and Technology, vol. 77, 59-62, 2013.

41. E. Al Daoud, H Turabieh, “New empirical nonparametric kernels for support vector machine
classification,” Applied Soft Computing, vol. 13, no. 4, 1759-1765, 2013.

42. E. Al Daoud, "An Efficient Algorithm for Finding a Fuzzy Rough Set Reduct Using an Improved Harmony

Search," I.J. Modern Education and Computer Science, vol. 7, no. 2, pp16-23, 2015.

43. Y. Zhang, A. Haghani. “A gradient boosting method to improve travel time prediction. Transportation

Research Part C,” Emerging Technologies, vol. 58,308–324,2015.

44. A. Dorogush, V. Ershov, A. Gulin "CatBoost: gradient boosting with categorical features support," NIPS,

p1-7, 2017.

M. Qi, K. Guolin, W. Taifeng, C. Wei, Y. Qiwei, M. Weidong, L. TieYan, "A Communication-Efficient

Parallel Algorithm for Decision Tree," Advances in Neural Information Processing Systems, vol. 29, pp. 1279-

1287, 2016.

45. A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, “Fast Bayesian optimization of machine learning

hyperparameters on large datasets,” In Proceedings of Machine Learning Research PMLR, vol. 54, pp 528-

536,2017.

46. Kubat, Miroslav, and Stan Matwin. "Addressing the curse of imbalanced training sets: one-sided

selection." Icml. Vol. 97. No. 1. 1997.

47. Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." Journal of artificial

intelligence research 16 (2002): 321-357.

48. Tomek, Ivan. "Two modifications of CNN." (1976).

49. Wilson, Dennis L. "Asymptotic properties of nearest neighbor rules using edited data." IEEE Transactions

on Systems, Man, and Cybernetics 3 (1972): 408-421.

50. S. Tyagi and S. Mittal, "Sampling Approaches for Imbalanced Data Classification Problem in Machine

Learning," in Proceedings of ICRIC 2019, 2020.

51. T. Fawcett, “An introduction to roc analysis”, Pattern Recogn. Lett. 27 (8) (2006) 861–874.

52. Akiba, Takuya, et al. "Optuna: A next-generation hyperparameter optimization framework." Proceedings of

the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019.

53. Bergstra, James, Daniel Yamins, and David Cox. “Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures.” Proceedings of The 30th International

Conference on Machine Learning. 2013.

54. Bergstra, James S., et al. “Algorithms for hyper-parameter optimization.” Advances in Neural Information
Processing Systems. 2011.

55. Hansen, Nikolaus, and Andreas Ostermeier. "Completely derandomized self-adaptation in evolution

strategies." Evolutionary computation 9.2 (2001): 159-195.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

 20

56. Li, Liam, et al. "A system for massively parallel hyperparameter tuning." Proceedings of Machine Learning

and Systems 2 (2020): 230-246.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 doi:10.20944/preprints202308.1478.v1

https://doi.org/10.20944/preprints202308.1478.v1

