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Abstract: In this paper, a variety of machine learning techniques, including Artificial Neural
Networks, Decision Trees, Support Vector Machines, Random Forests, Logistic Regression, and
three gradient boosting techniques (XGBoost, LightGBM, and CatBoost), were employed to predict
customer churn in the telecommunications industry using a publicly available dataset. To address
the issue of imbalanced data, various data sampling techniques, such as SMOTE, the combination
of SMOTE with Tomek Links, and the combination of SMOTE with Edited Nearest Neighbors, were
implemented. Additionally, hyperparameter tuning was utilized to optimize the performance of the
machine learning models. The models were evaluated and compared using commonly used metrics,
including Precision, Recall, F1-Score, and the Receiver Operating Characteristic Area Under Curve
(ROC AUC). The results revealed that the performance of the models was enhanced by the
application of hyperparameter tuning and the combined data sampling methods on the training
data. Overall, LightGBM demonstrated superior performance compared to the other machine
learning techniques examined. The findings indicate that LightGBM exhibited a superior
performance both prior to and following the application of these techniques.

Keywords: machine learning; churn prediction; imbalanced data; combined data sampling
techniques; hyperparameter optimization

1. Introduction

The implementation of Customer Relationship Management (CRM) is a strategic approach to
managing and enhancing relationships between businesses and their customers. Through the
utilization of CRM, businesses can establish an infrastructure that fosters long-term and loyal
customers. This concept is relevant across various industries, such as banking [1-4], insurance
companies [5], and telecommunications [6-15], to name a few. A key objective of CRM is customer
retention, as studies have demonstrated that the cost of acquiring new customers can be 20 times
higher than retaining existing ones [1]. As a result, it is imperative for businesses to develop practical
tools to achieve this goal. In recent years, various Machine Learning (ML) methods have been
proposed for constructing a churn model, including Artificial Neural Networks (ANN) [8,9,16-18],
Decision Trees [8,9,11,13,16,17], Random Forests [19,20], Logistic Regression (LR) [9,13], Support
Vector Machines (SVM) [17], and Rough Set Approach [21], among others.

In the following paragraphs, an overview is provided of five of the most commonly utilized
techniques. Additionally, three prominent boosting algorithms, namely eXtreme Gradient Boosting
(XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM), were
selected for use. Ensemble techniques [22], specifically boosting and bagging algorithms, have
become the prevalent choice for addressing classification problems [23,24], particularly in the realm
of churn prediction [25,26], due to their demonstrated high effectiveness.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The remainder of the paper is organized as follows: Section 2 presents an introduction to
machine learning techniques, Section 3 delves into the examination of sampling methods, Section 4
defines evaluation metrics, simulation results are presented in Section 5, and the paper concludes in
Section 6.

2. Machine Learning Techniques

In the following, an overview is provided of the most frequently utilized techniques for
addressing the issue of churn prediction, including Artificial Neural Network, Decision Tree, Support
Vector Machine, Random Forest, Logistic Regression, and three advanced gradient boosting
techniques, specifically XGBoost, LightGBM, and CatBoost.

A. Artificial Neural Network

Artificial Neural Network (ANN) is a widely employed technique for addressing complex issues
such as the churn prediction problem [27]. ANNSs are structures composed of interconnected units that
are modeled after the human brain. They can be utilized with various learning algorithms to enhance the
machine learning process and can take both hardware and software forms. One of the most widely
utilized models is the Multi-Layer Perceptron, which is trained using the Back-Propagation Network
(BPN) algorithm. Research has demonstrated that ANNs possess superior performance compared to
Decision Trees (DTs) [27], and have been shown to exhibit improved performance when compared to
Logistic Regression (LR) and DTs in the context of churn prediction [28].

B. Support Vector Machine

The technique of Support Vector Machine (SVM) was first introduced by authors in [29]. It is
classified as a supervised learning technique that utilizes learning algorithms to uncover latent
patterns within data. A popular method for improving the performance of SVMs is the utilization of
kernel functions [8]. In addressing customer churn problems, SVM may exhibit superior performance
in comparison to Artificial Neural Networks (ANNSs) and Decision Trees (DTs) based on the specific
characteristics of the data [17,30].

For this study, we utilize both the Gaussian Radial Basis kernel function (RBF-SVM) and the
Polynomial kernel function (Poly-SVM) for the Support Vector Machine (SVM) technique. These
kernel functions are among the various options available for use with SVM.

For two samples x and x', the RBF kernel is defined as follows:

, llx — x| 1
K(x.x") = exp <_TZ> 1)
Where ||x — x'|[|> can be the squared Euclidean distance and § is a free parameter.
For two samples x and x', the d-degree polynomial kernel is defined as follows:
K(x.x") = (xTx" + )¢ ()
Where ¢ >0 and d =1 is the polynomial degree.

C. Decision Tree

A Decision Tree (DT) is a representation of all potential decision pathways in the form of a tree
structure [31,32]. As Berry and Linoff stated, "a Decision Tree is a structure that can be used to divide
up a large collection of records into successively smaller sets of records by applying a sequence of
simple decision rules” [33]. Though they may not be as efficient in uncovering complex patterns or
detecting intricate relationships within data, DTs may be used to address the customer churn
problem, depending on the characteristics of the data. In DTs, class labels are indicated by leaves and
the conjunctions between various features are represented by branches.

D. Logistic Regression

Logistic Regression (LR) is a classification method that falls under the category of probabilistic
statistics. It can be employed to address the churn prediction problem by making predictions based
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on multiple predictor variables. In order to obtain high accuracy, which can sometimes be
comparable to that of Decision Trees (DTs) [10], it is often beneficial to apply pre-processing and
transformation techniques to the original data prior to utilizing LR.

3. Ensemble Learning

Ensemble learning is one of the widely utilized techniques in machine learning for combining
the outputs of multiple learning models (often referred to as base learners) into a single classifier [34].
In ensemble learning, it is possible to combine various weak machine learning models (base learners)
to construct a stronger model with more accurate predictions [35,36]. Currently, ensemble learning
methods are widely accepted as a standard choice for enhancing the accuracy of machine learning
predictors [35]. Bagging and boosting are two distinct types of ensemble learning techniques that can
be utilized to improve the accuracy of machine learning predictors [36].

A. Bagging

As depicted in Figure 1, in the bagging technique, the training data is partitioned into multiple
subset sets, and the model is trained on each subset. The final prediction is then obtained by
combining all individual outputs through majority voting (in classification problems) or average
voting (in regression problems) [36-38].

Bagging
Random -
] sample 'O Classn‘ler.
Data ol JlE Majority/Averaging
sample Classifier ;
vote
Random . /
By sample Classifier *
Parallel

Figure 1. Visualization of the bagging approach.

B. Random Forest

The concept of Random Forest was first introduced by Ho in 1995 [19] and has been the subject
of ongoing improvement by various researchers. One notable advancement in this field was made by
Leo Breiman in 2001 [20]. Random Forests are an ensemble learning technique for classification tasks
that employs a large number of Decision Trees in the training model. The output of Random Forests
is a class that is selected by the majority of the trees. In general, Random Forests exhibit superior
performance compared to Decision Trees (DTs), however, the performance can be influenced by the
characteristics of the data.

Random Forests utilize the bagging technique for their training algorithm. In greater detail, the
Random Forests operate as follows: For a training set TS,, = {(x;.y7).--*. (x,. ¥,,)}, bagging is repeated
B times, and each iteration selects a random sample with replacement from TS, and fits trees to the
samples.:

1- Sample n training examples; X,,.Y,
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2- Train a classification tree (in the case of churn problems) f, on the samples X,,.Y},.
After the training phase, Random Forests can predict unseen samples x by taking the majority
vote from all the individual classification trees x .

B
. 1 ,
F=5) h) @)

b=1

C. Boosting

Boosting is another method for combining multiple base learners to construct a stronger model
with more accurate predictions. The key distinction between bagging and boosting is that bagging
uses a parallel approach to combine weak learners, while boosting methods utilize a sequential
approach to combine weak learners and derive the final prediction, as shown in Figure 2. Like the
bagging technique, boosting improves the performance of machine learning predictors and in
addition, it reduces the bias of the model [36].

Training subset Training subset Training subset
@) O @)
O O O O @) O
O o O e © o 0O O O O O O
0 1 0 1 0 1 0 1 0 1 0 1
Decision tree 1 Decision tree2 Decision tree3
I
Class 1 Class 0 Cla__ss 0

Final: Class 0

T Majority voting —
'

Figure 2. Visualization of the Random Forest classifier.
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Figure 3. Visualization of the boosting approach.
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D. The Famous Trio: XGBoost, LightGBM, CatBoost

Recently, researchers have presented three effective gradient-based approaches using decision trees:
CatBoost, LightGBM, and XGBoost. These new approaches have demonstrated successful applications in
academia, industry, and competitive machine learning [39]. Utilizing gradient boosting techniques,
solutions can be constructed in a stagewise manner, and the over-fitting problem can be addressed
through the optimization of loss functions. For example, given a loss function 1(y, f(x)) and a custom
base-learner h(x, 6) (e.g., decision tree), the direct estimation of parameters can be challenging. Thus, an
iterative model is proposed, which is updated at each iteration with the selection of a new base-learner
function h(x, 6t), where the increment is directed by:

9:(x) = Eﬂ% 1%] £ oy =71 x) (4)
Hence, the hard optimization problem is substituted with the typical least-squares optimization

problem:
N

(0 = argmingp ) [=g:(e) +p A, OF  (5)

L

The Friedman'’s gradient boost algorithm is summarized by Algorithm 1.

Algorithm 1 Gradient Boost

1 — Let f, be a constant
2—Fori=1toM
a. Compute g;(x)using eq()
b. Train the function A(x, ;)
Find p; using eq()
d. Update the function
fi = fiz1 + pih(x, 6))

3 —End

After initiating the algorithm with a single leaf, the learning rate is optimized for each record
and each node [40-42]. The XGBoost method is a highly flexible, versatile, and scalable tool that has
been developed to effectively utilize resources and overcome the limitations of previous gradient
boosting methods. The primary distinction between other gradient boosting methods and XGBoost
is that XGBoost utilizes a new regularization approach for controlling overfitting, making it more
robust and efficient when the model is fine-tuned. To regularize this approach, a new term is added
to the loss function as follows:

L= LG

£y 06w @

with
2(6) = als| + 0.58]|w]|?
Where w represents the value of each leaf, Q indicates the regularization function, and 13|
denotes the number of branches. A new gain function is used by XGBoost, as follows:

Gj = gi (7)

LEI]'


https://doi.org/10.20944/preprints202308.1478.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2023 d0i:10.20944/preprints202308.1478.v1

H; = h;
i€l
1 G} Gi
Galn:ElHL+B+HR+,B
(Gg + G)?
THy+H, +B| “
where
gi =03, L(Vi + 1)
and

hy = 05.L(; + i)

The Gain represents the score of no new child case, H indicates the score of the left child, and G
denotes the score of the right child [43].

To decrease the implementation time, the LightGBM method was developed by a team from
Microsoft in April 2017 [8]. The primary difference is that LightGBM decision trees are constructed
in a leaf-wise manner, rather than evaluating all previous leaves for each new leaf (Figure 4a,b). The
attributes are grouped and sorted into bins, known as the histogram implementation. LightGBM
offers several benefits, including faster training speed, higher accuracy, as well as the ability to handle
large scale data and support GPU learning.

e e

a)

A-’/'\;\-’/?X-

Figure 4. (a) XGBoost Level-wise tree growth and (b) LightGBM Leaf-wise tree growth.

The focus of CatBoost is on categorical columns through the use of permutation methods, target-
based statistics, and one_hot_max_size (OHMS). By using a greedy technique at each new split of the
current tree, CatBoost has the capability to address the exponential growth of feature combinations.
The steps described below are employed by CatBoost for each feature with more categories than the
OHMS (an input parameter):

1. Torandomly divide the records into subsets,

2. To convert the labels to integer numbers,

3. To transform the categorical features to numerical features, as follows:

countinClass + prior
totalCount + 1

®)

Where totalCount denotes the number of previous objects, countInClass represents the number of
ones in the target for a specific categorical feature, and the starting parameters specify prior [44—46].

avgTarget =

4. Handling Imbalanced Data
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Imbalanced data is a prevalent problem in data mining. For instance, in binary classifications,
the number of instances in the majority class may be significantly higher than the number of instances
in the minority class. As a result, the ratio of instances in the minority class to instances in the majority
class (imbalanced ratio) may vary from 1:2 to 1:1000. The dataset used in this study is imbalanced,
with the distribution of majority class (non-churned) instances being six times that of the minority
class (churned) instances. This characteristic of the data leads to the construction of a biased classifier
that has high accuracy for the majority class (non-churned) but low accuracy for the minority class
(churned). Several sampling methods have been proposed to address this issue. Sampling techniques
are applied to imbalanced data to alter the class distribution and create balanced data. Generally,
sampling techniques are divided into two categories: undersampling and oversampling [47].

A. Sampling Techniques

Synthetic Minority Over-Sampling Technique (SMOTE) [48] is an oversampling technique that
aims to balance the data by replicating instances of the minority class and is widely utilized to address
this issue.

Tomek Links is an undersampling method, and an extension to the Condensed Nearest
Neighbor (CNN) method, proposed by Ivan Tomek (in his 1976 paper titled "Two modifications of
CNN") [49]. The Tomek links method identifies pairs of examples (each from a different class) that
have the minimum Euclidean distance to each other.

Edited Nearest Neighbors (ENN) is another undersampling method, proposed by Wilson (in his
1972 paper titled "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data") [50]. This
method computes the three nearest neighbors for each instance in the dataset. If the instance belongs
to the majority class and is misclassified by its three nearest neighbors, then it is removed from the
dataset. Alternatively, if the instance belongs to the minority class and is misclassified by its three
nearest neighbors, then the three majority-class instances are removed.

Applying just one undersampling or oversampling method to the training data can effectively
handle imbalanced data, but to achieve the best results, it is advisable to use combination techniques.
In this study, to address imbalanced data, we use two of the most popular combinations of sampling
techniques, such as the combination of SMOTE and Tomek Links, and the combination of SMOTE
and ENN.

B. Training and Validation Process

For evaluating our classifiers, we employ the k-fold cross-validation technique. However, there
is a limitation when using this technique with imbalanced data. The issue is that, with this technique,
the data is split into k-folds with a uniform probability distribution, and in imbalanced data, some
folds may have no or few examples from the minority class. To address this issue, we can use a
stratified sampling technique when performing train-test split or k-fold cross-validation. Using
stratification ensures that each split of the data has an equal number of instances from the minority
class.

We utilize an out-of-sample testing approach to evaluate the performance of the models. This
approach demonstrates the performance of the models on unseen data that was not used to train the
models.

When working with imbalanced data, it is essential to up-sample or down-sample only after
splitting the data into a train and test sets (and validate if desired). If the dataset is up-sampled prior
to splitting it into test and train, it is likely that the model experiences data leakage. This way, we
may wrongly assume that our machine learning model is performing well. After building a machine
learning model, it is recommended to test the metric on the not-up-sampled train dataset. When the
metric is tested on the not-up-sampled dataset, the model's performance can be more realistically
estimated compared to when it is tested on the up-sampled dataset.

5. Evaluation Metrics
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We employ two types of metrics to evaluate our models. 1) Threshold metrics: These metrics are
designed to minimize the error rate and assist in calculating the exact number of predicted values
that do not match the actual values. 2) Ranking metrics: These metrics are designed to evaluate the
effectiveness of classifiers at separating classes. These metrics require classifiers to predict a
probability or a score of class membership. By applying different thresholds, we can test the
effectiveness of classifiers, and those classifiers that maintain a good score across a range of
thresholds will have better class separation and, as a result, will have a higher rank.

A. Threshold Metrics

Normally, we use the standard accuracy metric (equation 6) for measuring the performance of
ML models. However, for imbalanced data, classification ML models may achieve high accuracy, as
this metric only considers the majority class. In an imbalanced dataset, instances of the minority class
(churned) are rare, and thus, True Positives (TP) do not have a significant impact on the standard
accuracy metric. This metric, therefore, cannot accurately represent the performance of the models.
For example, if the model correctly predicts all data points in the majority class (non-churned), it will
result in high True Negatives (TN) and a high standard of accuracy, without accurately predicting
anything about the minority class (churned). In the case of imbalanced data, this metric is not
sufficient as a benchmark criterion measure [51]. Therefore, other metrics such as recall, precision,
and F-measure are commonly used to evaluate the performance of ML models in minority classes,
and can be extracted from the confusion matrix, as shown in Table 1.

The confusion matrix helps us to understand the performance of ML models by showing which
class is being predicted correctly and which one is being predicted incorrectly.

Table 1. The confusion matrix for evaluating methods.

Predicted Class
Churners Non-Churners
Churners TP FN
Actual class
Non-churners FP TN

In Table 1, TP and FP stand for True Positive and False Positive, and FN and TN stand for False
Negative and True Negative, respectively. Precision, Recall, and Accuracy can be calculated using
the following formulas:

Precision = i C
recision = TP T FP )
Recall = i (10
S = TP YN )

4 _ Correct Predictions

ceuracy = Total Predictions
(11)
TP+ TN

“TP+FP+TN+FN

But Precision and Recall are not sufficient for evaluating the accuracy of the mentioned methods,
since they do not provide enough information and can be misleading. Therefore, we usually use the
F-measure metric as a single metric to evaluate the accuracy of our models. F-measure is a
combination of Precision and Recall metrics and balances both precision and recall and provides a
single metric that represents the overall performance of the model. F-measure is defined as follows:

F _ 2 X Precision X Recall (12)
measure = Precision + Recall

The more the value of the F-measure is closer to 1, the better combination of Precision and Recall
is achieved by the model [52].
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B. Ranking Metrics

In the field of churn prediction, the Receiver Operating Characteristic (ROC) Curve is widely
recognized as a prominent ranking metric for evaluating the performance of classifiers. This metric
enables the assessment of a classifier's ability to differentiate between classes by providing a visual
representation of the true positive rate and false positive rate of predicted values, as calculated under
various threshold values.

The true positive rate (recall or sensitivity) is calculated as follows:

TP
TruePositiveRate = TP+ FN (13)
And the false positive rate is calculated as follows:
FalsePositiveRate = _FP_ (14)
FP+TN

Each point on the plot represents a prediction made by the model, with the curve being formed
by connecting all points. A line running diagonally from the bottom left to the top right on the plot
represents a model with no skill, and any point located below this line represents a model that
performs worse than one with no skill. Conversely, a point in the top left corner of the plot symbolizes
a perfect model.

O

\

Perfect

classifier \
4

‘Worse than
no skill

True Positive Rate

False Positive Rate
Figure 5. The ROC curve.

The area under the ROC curve can be calculated and utilized as a single score to evaluate the
performance of models. A classifier with no skill has a score of 0.5, and a perfect classifier has a score
of 1.0. However, it should be noted that the ROC curve can be effective for classification problems
with a low imbalanced ratio, and can be optimistic for classification problems with a high imbalanced
ratio. In such cases, the precision-recall curve is a more appropriate metric, as it focuses on the
performance of the classifier on the minority class.
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Figure 6. The Precision-Recall curve.

The ROC curve is a widely used method for evaluating the performance of machine learning
models. The ROC curve plots the true positive rate against the false positive rate at various threshold
settings, with each point on the curve representing a predicted value by the model.

A horizontal line on the plot signifies a model with no skill, while points below the diagonal line
indicate a model that performs worse than random chance. Conversely, a point located in the top left
quadrant of the plot represents a model with perfect performance.

In datasets with a balanced distribution of positive and negative examples, the horizontal line
on the ROC plot is typically set at 0.5. However, when the dataset is imbalanced, such as with an
imbalanced ratio of 1:10, the horizontal line is adjusted to 0.1 to reflect the imbalanced nature of the
data.

In addition to the ROC curve, the area under the ROC curve (AUC) is also a commonly used
metric for evaluating the performance of machine learning models. The AUC provides a single score
for comparing the performance of different models. In cases where the dataset has a high imbalanced
ratio, the Precision-Recall AUC (PR AUC) may be more informative as it specifically focuses on the
performance of the minority class. However, if the imbalanced ratio of the dataset is not excessively
high, such as the dataset utilized in this study, the use of PR AUC may not be necessary for
evaluation.

In this paper, we employ a comprehensive set of metrics to evaluate the performance of machine
learning models, including Recall, Precision, F1-score, and Receiver Operating Characteristic (ROC)
AUC. These metrics provide a comprehensive evaluation of the model's performance, including its
ability to accurately identify positive examples, balance false positives and false negatives, and
handle imbalanced datasets.

Unlike the standard accuracy metric, ROC AUC places a particular emphasis on the performance
of the minority class, and the accurate prediction of minority class instances is central to its
calculation. This is particularly useful in situations where the dataset is imbalanced, as it ensures that
the model's performance is evaluated fairly and in a way that takes into account the specific
characteristics of the data.
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C. ROC AUC Benchmark

It is clear that a ROC Area Under the Curve (AUC) of 100% represents the optimal performance
that a machine learning model can achieve, as it indicates that all instances of the positive class (e.g.
churns in the case of customer retention) are ranked higher in risk than all instances of the negative
class (e.g. non-churns). However, it is highly unlikely that any model will achieve this level of
performance in real-world problems.

As such, when comparing the performance of different machine learning models using ROC
AUC, it is necessary to have a benchmark to determine whether the model's performance is
acceptable. The ROC AUC ranges from 50% to 100%, with 50% being equivalent to random guessing
and 100% representing perfect performance. As can be seen in Table 2, the worst possible AUC is
50%, which is similar to the result of a coin flip for prediction.

Table 2. ROC AUC benchmark for predicting churn.

ROC AUC<=50% Something Is Wrong *
50%<=ROC AUC <60% Similar to flipping a coin
60%<=ROC AUC <70% Weak prediction
70%<=ROC AUC <80% Good Prediction
80%<=ROC AUC <90% Very Good Prediction

ROC AUC >=90% Excellent Prediction

* Check the data and the AUC calculation.
6. Simulation

A. Simulation Setup

The primary objective of this study is to evaluate and compare the performance of several
popular classification techniques in solving the problem of customer churn prediction. The classifiers
under examination include Decision Tree, Logistic Regression, Random Forest, Support Vector
Machine, XGBoost, LightGBM, and CatBoost. To achieve this goal, simulations were conducted using
the Python programming language and various libraries such as Pandas, NumPy, and Scikit-learn.

A real-world dataset was used for this study, which was obtained from Kaggle, and is outlined
in Table 3. The training dataset consists of 20 attributes and 4250 instances, while the testing dataset
has 20 attributes and 750 instances. The training dataset features a churn rate of 14.1% and an active
subscriber rate of 85.9%. The performance of the models was evaluated using a variety of metrics,
including precision, recall, F-measure, and ROC AUC as defined previously. After undergoing pre-
processing steps such as handling categorical variables, feature selection, and removing outliers,
these metrics were evaluated using both the training and testing datasets. Additionally, the SMOTE
technique was used to handle imbalanced data and the effect on the performance of the models was
examined.

Table 3. The names and types of different variables in the churn dataset.

Variable Name Type

state, (the US state of customers) string
account_length (number of active months) numerical

area_code, (area code of customers) string

international_plan, (whether customers have international plans) yes/no

voice_mail_plan, (whether customers have voice mail plans) yes/no
number_vmail_messages, (number of voice-mail messages) numerical
total_day_minutes, (total minutes of day calls) numerical
total_day_calls, (total number of day calls) numerical
total_day_charge, (total charge of day calls) numerical

total_eve_minutes, (total minutes of evening calls) numerical
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total_eve_calls, (total number of evening calls) numerical
total_eve_charge, (total charge of evening calls) numerical

total_night_minutes, (total minutes of night calls) numerical
total_night_calls, (total number of night calls) numerical
total_night_charge, (total charge of night calls) numerical
total_intl_minutes, (total minutes of international calls) numerical
total_intl_calls, (total number of international calls) numerical
total_intl_charge, (total charge of international calls) numerical
number_customer_service_calls, (number of calls to customer service) numerical
churn, (customer churn — the target variable) yes/no

7. Simulation Results

In this study, we evaluate the performance of several machine learning models (Decision Tree,
Logistic Regression, Artificial Neural Network, Support Vector Machine, Random Forest, XGBoost,
LightGBM, and CatBoost) on unseen data using a range of metrics including precision, recall, F1-
Score, Receiver Operating Characteristic (ROC) Area Under the Curve (AUC), and Precision-Recall
(PR) AUC. The evaluation is carried out on the testing dataset to assess the generalization ability of
the models and to determine their performance on unseen data.

A. Applying Feature Selection

After undergoing several pre-processing steps such as handling categorical features and feature
selection, the aforementioned models were applied to the data and their performance was evaluated.
The results of this evaluation are presented in Table 4, with the highest values highlighted in bold.

Table 4. Evaluation metrics for the different models after applying feature selection.

Models Precision% Recall% F1-Score% ROC AUC%
DT 91 72 77 72
ANN 85 76 80 77
LR 61 70 62 70
SVM 81 57 59 57
RF 96 75 81 75
CatB 90 90 90 90
LGBM 94 91 92 91
XGB 96 87 91 87

As depicted in Table 4, the Random Forest and XGBoost models exhibit superior performance
in terms of precision compared to other machine learning algorithms. However, in terms of recall,
F1-Score, and ROC AUC, the LightGBM model outperforms the other methods. Figure 7 shows the
diagram of the ROC Curve for the different models after feature selection.
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Figure 7. ROC Curve after applying feature selection.

B. Applying SMOTE

To address the issue of class imbalance in the training data, where the number of instances of
class-0 is 3652 and the number of instances of class-1 is 598, we have applied the SMOTE technique
to the training dataset. This technique was used to create synthetic instances of the minority class in
order to achieve a balanced training dataset. As a result of the application of SMOTE, the number of
instances for both class-0 and class-1 is now equal to 2125.

As Table 5 shows, LightGBM and XGBoost outperform other ML techniques in all evaluation
metrics. Figure 8 shows the diagram of the ROC Curve for the different models after applying
SMOTE.

Table 5. Evaluation metrics for the different models after applying SMOTE.

Models Precision% Recall% F1-Score% ROC AUC%

DT 69 72 70 72
ANN 70 73 71 83
LR 61 71 61 70
SVM 65 73 68 73
RF 83 76 79 76
CatB 79 88 83 88
LGBM 87 90 88 90

XGB 95 90 92 90
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Figure 8. ROC Curve after applying SMOTE.

C. Applying SMOTE with Tomek Links

As previously discussed in Section IV, the Tomek Links method is an undersampling technique
that is used to identify pairs of examples, where each example belongs to a different class, that have
the minimum Euclidean distance to each other. Additionally, as noted in the section, it is beneficial
to utilize a combination of both oversampling and undersampling techniques to achieve optimal
results. The results of the evaluation metrics for the various models after applying the SMOTE
technique in conjunction with Tomek Links are presented in Table 6. As evidenced by the table, both
LightGBM and XGBoost outperform the other machine learning methods and demonstrate slightly
improved results when compared to utilizing SMOTE alone, as shown in Table 5. Figure 9 shows the
diagram of the ROC Curve for the different models after applying SMOTE with Tomek Links.

Table 6. Evaluation metrics for the different models after applying SMOTE with Tomek Links.

Models Precision% Recall% F1-Score% ROC AUC%
DT 74 74 74 74
ANN 69 75 71 75
LR 61 70 61 69
SVM 65 73 67 73
RF 85 78 81 78
CatB 80 88 83 88
LGBM 89 91 90 91

XGB 94 89 91 89
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Figure 9. ROC Curve after applying SMOTE with Tomek Links.

D. Applying SMOTE with ENN

As previously discussed in Section IV, the ENN method is employed to compute the three
nearest neighbors for each instance within the dataset. In instances where the sample belongs to the
majority class and is misclassified by its three nearest neighbors, the instance is removed from the
dataset. Conversely, if the instance belongs to the minority class and is misclassified by its three
nearest neighbors, the three majority class instances are removed. Furthermore, as previously stated,
it has been shown to be beneficial to utilize a combination of undersampling and oversampling
techniques in order to achieve optimal results. Table 7 illustrates the evaluation metrics for the
various models following the application of the SMOTE technique in conjunction with the ENN
method. The results indicate that Light GBM and XGBoost models outperform other machine learning
techniques in all evaluation metrics once more. Figure 10 shows the diagram of the ROC Curve for
the different models after applying SMOTE with Tomek Links.

Table 7. Evaluation metrics for the different models after applying SMOTE with ENN.

Models Precision% Recall% F1-Score% ROC AUC%
DT 60 70 50 70
ANN 61 70 60 70
LR 52 50 13 50
SVM 60 70 58 70
RF 67 76 69 76
CatB 70 83 72 83
LGBM 80 89 84 87

XGB 88 89 88 89
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Figure 10. ROC Curve after applying SMOTE with ENN.

E. Applying OPTUNA Hyperparameter Optimizer

Takuya Akiba et al. (2019) [53] introduced Optuna, an open-source Python library for
hyperparameter optimization. Optuna aims to balance the pruning and sampling algorithms through
the execution of various techniques, such as the Tree-Structured of Parzen Estimator (TPE) [54,55] for
independent parameter sampling, Covariance Matrix Adaptation (CMA) [56], and Gaussian
Processes (GP) [55] for relational parameter sampling. The library also utilizes a variant of the
Asynchronous Successive Halving (ASHA) algorithm [57] to prune search spaces. In this study, we
applied the Optuna library to the popular machine learning models, CatBoost, XGBoost, and
LightGBM. The results, as presented in Table 8, indicate that CatBoost outperforms XGBoost and
LightGBM when utilizing Optuna for hyperparameter optimization. Figure 11 shows the diagram of
the ROC Curve for the different models after applying OPTUNA hyperparameter tuning.

Table 8. Evaluation metrics for various models after the application of Optuna hyperparameter

optimization.
Models Precision% Recall% F1-Score% ROC AUC%
CatB 89 91 90 91
CatB-Optuna 95 91 93 91
LGBM 92 20 91 90
LGBM-Optuna 93 89 90 89
XGB 93 88 90 88

XGB-Optuna 94 88 91 88
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Figure 11. ROC Curve after OPTUNA hyperparameter tuning.

8. Conclusion

In this study, we employed various machine learning (ML) models, including Artificial Neural
Networks, Decision Trees, Support Vector Machines, Random Forests, Logistic Regression, and three
modern gradient boosting techniques, namely XGBoost, LightGBM, and CatBoost, to predict
customer churn in the telecommunications industry using a real-world imbalanced dataset. We
evaluated the impact of different sampling techniques, such as SMOTE, SMOTE with Tomek Links,
and SMOTE with ENN, to handle the imbalanced data. We then assessed the performance of the ML
models using various metrics, including Precision, Recall, Fl-score, and Receiver Operating
Characteristic Area Under the Curve (ROC AUC). Finally, we utilized the Optuna hyperparameter
optimization technique on CatBoost, LightGBM, and XGBoost to determine the effect of optimization
on the performance of the models. We compared the results of all the steps and presented them in
tabular form.

The simulation results demonstrate the performance of different models on unseen data.
LightGBM and XGBoost consistently exhibit superior performance across various evaluation metrics,
including precision, recall, F1-Score, and ROC AUC. The performance of these models is further
improved when applying techniques such as SMOTE with Tomek Links or SMOTE with ENN to
handle imbalanced data. Additionally, the use of Optuna hyperparameter optimization for CatBoost,
XGBoost, and LightGBM models shows further improvements in performance.

In future work, several avenues can be explored. Firstly, other machine learning techniques,
such as deep learning models like Long Short-Term Memory (LSTM) or Transformer-based models,
can be evaluated for churn prediction. These models have shown promise in various domains and
may provide further insights into churn behavior. Secondly, we suggest exploring the use of the
AdaSyn technique to handle imbalanced data and compare the results. Lastly, we recommend
applying the above techniques to a highly imbalanced dataset to evaluate their performance in such
conditions. Furthermore, employing the learning curve method to determine whether the models are
overfitting could also be a valuable avenue of research.
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