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Abstract:  This  study  focused  on  demonstrating  the  potential  of  classification  algorithm  in  the  chemical 
composition characterization of  transiting exoplanets. The Python‐based module PLATON 5.3  for  forward 
modelling of transiting planet spectra was used to simulate a set of transmission spectra of an exoplanet with 
size Rp = 1.40*Rjupiter, and mass Mp = 0.73*Mjupiter orbiting around the host star of size Ms = 1.16*Msun and surface 
temperature of 1200 Kelvin. The gas composition of  the exoplanet atmosphere was varied at  low and high 
levels of 3‐gas mix of CO2, O2, N2 and CH4 resulting to eight classes of spectra. The transit spectra were then 
used as  input data  to a  forward neural network  classifier with  the eight gas  composition  classes as  target 
outputs. The trained classifier achieved at most 97.9% overall accuracy. 
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1. Introduction 

As of February 2023, around 5040 exoplanets have been identified [1] but the characterization of 
exoplanet  atmosphere  is  still  a  challenging  task  amid  significant  progress  in  improvement  of 
telescopes and data analytics [2]. Only a handful of observed exoplanets have been characterized in 
terms of atmosphere composition  [3], which  is vital  for various purposes  including  the search of 
habitable planets.   

Among  the  various  methods  of  exoplanet  observation  for  atmosphere  characterization, 
transmission spectroscopy is a common method used [4] specially when the orbit of the exoplanet 
aligns between the host star and the observing telescope (on Earth or around Earth). Typically, the 
data analysis task to be done given that an actual measurement has been made is by using calibration 
spectra  to  estimate  from  a  measured  transmission  (absorption)  spectra  the  amounts  of  the 
atmospheric chemicals. The data analytics approach study presented in this paper reformulates the 
data analysis problem by looking at it as a classification problem (Figure 1). 
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Figure 1. Schematic overview of the data analytics workflow implemented in this study. a) 
simulation of transit spectra using the PLATON 5.3 module, b) training a forward NN classifier. 

Posing the data analytics task as a classification problem requires two data components when 
training a classifier: (1) spectral data as input, and (2) label of the spectral data as output. This dataset 
structure  can be  created using known models about exoplanet atmosphere  composition, and one 
platform that has been developed for simulation of transmission spectra of transiting exoplanet is the 
PLATON 5.3 [5], which is a Python‐based module. With this data analytics workflow of simulating 
transmission spectra from randomized  levels of gases (CO2, O2, N2 and CH4) via the PLATON 5.3 
platform followed by the training of a forward neural network (NN) classifier (Figure 1), we show in 
this paper the potential of classification algorithm in characterizing the atmosphere composition of 
transiting exoplanet by using transit depth‐versus‐wavelength datasets.     

2. Methodology 

A schematic overview of the data analysis workflow is shown in Figure 1. This data analytics 
workflow leverages on the capability of transit‐depth‐versus‐wavelength spectral data to capture the 
characteristic atmosphere fingerprint of the transiting exoplanet [4]. The datasets and Python codes 
in Jupyter Notebook files used  in this study are provided online via the GitHub repository of the 
work [6].   

The  transit spectra datasets were simulated using  the Python‐based module PLATON 5.3 [5] 
(Figure 1a). The 3‐gas mix combinations used in the simulation of spectra are summarized in Table 
1. For the atmosphere composition simulations, the following star‐planet parameters were used: an 
exoplanet with size Rp = 1.40*Rjupiter, and mass Mp = 0.73*Mjupiter orbiting around the host star of size 
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Ms  =  1.16*Msun  and  surface  temperature of  1200 Kelvin. These parameter  levels were  the default 
settings in the PLATON 5.3 modules example simulation codes [5] and were kept the same in the 
work. The number of random simulations (n) in each class was varied at n = 10 and n = 100. A sample 
graphical rendering of the transit depth‐versus‐wavelength for the spectra Set I is shown in Figure 2. 

Table 1. Gas mix simulated in the three spectra sets used in the study. 

Spectra Set  Gas Component 1  Gas Component 2  Gas Component 3 
I  CO2  CH4  O2 
II  CO2  CH4  N2 
III  CO2  O2  N2 

 

Figure 2. Graphical rendering of sample transit spectra for the Set I of experiments. One spectra 
sample was taken from each class. 
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3. Results 

The performance of the trained forward neural network classifiers are shown as follows: Figure 
3 for the confusion matrix, Figure 4 for the receiver operating characteristic (ROC) curve, and Table 
2 for the summary of precision, recall, and F1‐score for each class. 

 

Figure 3. Multi‐class confusion matrix for all the classifier models for varied gas‐mix experiments at 
varying number of random samples in each class n=10 and n=100. a) Set I for CO2/CH4/O2 mix, b) Set 

II for CO2/CH4/N2 mix, and c) Set III for CO2/O2/N2 mix. 
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Figure 4. One‐versus‐rest ROC curves for all the classifier models for varied gas‐mix experiments at 
varying number of random samples in each class n=10 and n=100. a) Set I for CO2/CH4/O2 mix, b) Set 
II for CO2/CH4/N2 mix, and c) Set III for CO2/O2/N2 mix. The highest posisble area under the curve 
(AUC) value is 1.0 indicating good discrimination performance of the classifier favoring very high 

true positive rate and very low false positive rate. 
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Table 2. Summary of classification performance of the forward NN classifier for sets at n=100. 

Set I: CO2/CH4/O2; n =100 
Spectra Class  Precision  Recall  F1‐score  Support 

1  0.942308  0.98  0.960784  100 
2  0.933333  0.98  0.956098  100 
3  0.96  0.96  0.96  100 
4  0.959596  0.95  0.954774  100 
5  0.950495  0.96  0.955224  100 
6  0.959596  0.95  0.954774  100 
7  0.969388  0.95  0.959596  100 
8  0.989362  0.93  0.958763  100 

Overall Accuracy = 0.9575 
Set II: CO2/CH4/N2; n =100 

Spectra Class  Precision  Recall  F1‐score  Support 
1  0.961165  0.99  0.975369  100 
2  0.979798  0.97  0.974874  100 
3  0.970588  0.99  0.980198  100 
4  0.980198  0.99  0.985075  100 
5  0.970874  1  0.985222  100 
6  1  0.96  0.979592  100 
7  0.970297  0.98  0.975124  100 
8  1  0.95  0.974359  100 

Overall Accuracy = 0.97875 
Set III: CO2/O2/N2; n =100 

Spectra Class  Precision  Recall  F1‐score  Support 
1  0.951456  0.98  0.965517  100 
2  0.932039  0.96  0.945813  100 
3  0.850877  0.97  0.906542  100 
4  0.904762  0.95  0.926829  100 
5  0.942308  0.98  0.960784  100 
6  0.968421  0.92  0.94359  100 
7  0.988636  0.87  0.925532  100 
8  0.988636  0.87  0.925532  100 

Overall Accuracy = 0.9375 

4. Discussion 

Overall, the trained classifiers can achieve very good classification performance reaching 97.9% 
overall accuracy. The higher number of spectral data, which is n = 100 in this study, favors higher 
prediction accuracy. The levels of precision, recall, and F1‐score of the trained classifiers also indicate 
low misclassification rates. Based on these results of training forward NN classifiers on the transit 
spectra generated via PLATON 5.3, we conclude that a classification algorithm can be a potential 
method of characterizing the atmosphere of transiting exoplanets. 
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Appendix A 

In the following equations, these notations are used: TP = True positive; FP = False positive; FN 
= False negative. F1‐score is a measure of accuracy at each class. 

A.1 Equation of Precision  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑃  

A.2 Equation of Recall  𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑁 
A.3 Equation of F1‐Score  𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ 2 ൈ 𝑇𝑃

2 ൈ 𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁 
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