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Abstract: This study focused on demonstrating the potential of classification algorithm in the chemical
composition characterization of transiting exoplanets. The Python-based module PLATON 5.3 for forward
modelling of transiting planet spectra was used to simulate a set of transmission spectra of an exoplanet with
size Rp = 1.40*Rjupiter, and mass Mp = 0.73*Mjupiter orbiting around the host star of size Ms = 1.16*Msun and surface
temperature of 1200 Kelvin. The gas composition of the exoplanet atmosphere was varied at low and high
levels of 3-gas mix of CO2, Oz, N2 and CHa resulting to eight classes of spectra. The transit spectra were then
used as input data to a forward neural network classifier with the eight gas composition classes as target
outputs. The trained classifier achieved at most 97.9% overall accuracy.
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1. Introduction

As of February 2023, around 5040 exoplanets have been identified [1] but the characterization of
exoplanet atmosphere is still a challenging task amid significant progress in improvement of
telescopes and data analytics [2]. Only a handful of observed exoplanets have been characterized in
terms of atmosphere composition [3], which is vital for various purposes including the search of
habitable planets.

Among the various methods of exoplanet observation for atmosphere characterization,
transmission spectroscopy is a common method used [4] specially when the orbit of the exoplanet
aligns between the host star and the observing telescope (on Earth or around Earth). Typically, the
data analysis task to be done given that an actual measurement has been made is by using calibration
spectra to estimate from a measured transmission (absorption) spectra the amounts of the
atmospheric chemicals. The data analytics approach study presented in this paper reformulates the
data analysis problem by looking at it as a classification problem (Figure 1).

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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A Step 1: Data Preparation— Spectra Simulation

Star-Planet Configuration: CO,: Low = [0, 9.9e-5], High = [10e-5,10e-4]

Rs =1.16 * R_sun O,: Low = [0, 9.9e-5], High = [10e-5,10e-4]

Mp = 0.73 * M_jupiter N,: Low = [0, 9.9e-5], High = [10e-5,10e-4]

Rp = 1.40 * R_jupiter CH,: Low = [0, 9.9e-5], High = [10e-5,10e-4]

T =1200 Kelvin +—l 3 Gas Components Mixed

Class 1: Comp.1 @ Low, Comp.2 @ Low, Comp.3 @ Low  Class 5: Comp.1 @ Low, Comp. 2 @ Low, Comp. 3 @ High
Class 2: Comp. 1 @ High, Comp.2 @ Low, Comp.3 @ Low  Class 6: Comp. 1 @ High, Comp. 2 @ Low, Comp. 3 @ High
Class 3: Comp. 1 @ Low, Comp. 2 @ High, Comp.3 @ Low  Class 7: Comp. 1 @ Low, Comp. 2 @ High, Comp.3 @ High =
Class 4: Comp. 1 @ High, Comp.2 @ High, Comp.3 @ Low Class 8: Comp. 1 @ High, Comp. 2 @ High, Comp. 3 @ High

PLATON 5.3:Forward Modelling of Exoplanet Spectra
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Figure 1. Schematic overview of the data analytics workflow implemented in this study. a)
simulation of transit spectra using the PLATON 5.3 module, b) training a forward NN classifier.

Posing the data analytics task as a classification problem requires two data components when
training a classifier: (1) spectral data as input, and (2) label of the spectral data as output. This dataset
structure can be created using known models about exoplanet atmosphere composition, and one
platform that has been developed for simulation of transmission spectra of transiting exoplanet is the
PLATON 5.3 [5], which is a Python-based module. With this data analytics workflow of simulating
transmission spectra from randomized levels of gases (COz, Oz, N2 and CHas) via the PLATON 5.3
platform followed by the training of a forward neural network (NN) classifier (Figure 1), we show in
this paper the potential of classification algorithm in characterizing the atmosphere composition of
transiting exoplanet by using transit depth-versus-wavelength datasets.

2. Methodology

A schematic overview of the data analysis workflow is shown in Figure 1. This data analytics
workflow leverages on the capability of transit-depth-versus-wavelength spectral data to capture the
characteristic atmosphere fingerprint of the transiting exoplanet [4]. The datasets and Python codes
in Jupyter Notebook files used in this study are provided online via the GitHub repository of the
work [6].

The transit spectra datasets were simulated using the Python-based module PLATON 5.3 [5]
(Figure 1a). The 3-gas mix combinations used in the simulation of spectra are summarized in Table
1. For the atmosphere composition simulations, the following star-planet parameters were used: an
exoplanet with size Rp = 1.40*Rjupiter, and mass Mp = 0.73*Mjupiter orbiting around the host star of size
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Ms = 1.16*Man and surface temperature of 1200 Kelvin. These parameter levels were the default
settings in the PLATON 5.3 modules example simulation codes [5] and were kept the same in the
work. The number of random simulations (n) in each class was varied at n=10 and n =100. A sample
graphical rendering of the transit depth-versus-wavelength for the spectra Set I is shown in Figure 2.

Table 1. Gas mix simulated in the three spectra sets used in the study.

Spectra Set Gas Component 1 Gas Component 2 Gas Component 3
I CO2 CHs O2
II CO:2 CHas N2
II1 CO2 Oz N2
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Figure 2. Graphical rendering of sample transit spectra for the Set I of experiments. One spectra
sample was taken from each class.
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3. Results

The performance of the trained forward neural network classifiers are shown as follows: Figure
3 for the confusion matrix, Figure 4 for the receiver operating characteristic (ROC) curve, and Table
2 for the summary of precision, recall, and F1-score for each class.
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Figure 3. Multi-class confusion matrix for all the classifier models for varied gas-mix experiments at
varying number of random samples in each class n=10 and n=100. a) Set I for CO2/CHa4/O2 mix, b) Set
II for CO2/CH4/N2 mix, and c) Set III for CO2/O2/N2 mix.
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Figure 4. One-versus-rest ROC curves for all the classifier models for varied gas-mix experiments at

varying number of random samples in each class n=10 and n=100. a) Set I for CO2/CHa4/O2 mix, b) Set
II for CO2/CH4/N2 mix, and c) Set III for CO2/O2/N2 mix. The highest posisble area under the curve
(AUC) value is 1.0 indicating good discrimination performance of the classifier favoring very high

true positive rate and very low false positive rate.
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Table 2. Summary of classification performance of the forward NN classifier for sets at n=100.

Set I: CO2/CH4/Oz2; n =100

Spectra Class Precision Recall Fl-score Support
1 0.942308 0.98 0.960784 100
2 0.933333 0.98 0.956098 100
3 0.96 0.96 0.96 100
4 0.959596 0.95 0.954774 100
5 0.950495 0.96 0.955224 100
6 0.959596 0.95 0.954774 100
7 0.969388 0.95 0.959596 100
8 0.989362 0.93 0.958763 100

Overall Accuracy = 0.9575
Set II: CO2/CH4/N2; n =100

Spectra Class Precision Recall F1-score Support
1 0.961165 0.99 0.975369 100
2 0.979798 0.97 0.974874 100
3 0.970588 0.99 0.980198 100
4 0.980198 0.99 0.985075 100
5 0.970874 1 0.985222 100
6 1 0.96 0.979592 100
7 0.970297 0.98 0.975124 100
8 1 0.95 0.974359 100

Overall Accuracy = 0.97875
Set III: CO2/O2/Nz; n =100

Spectra Class Precision Recall F1-score Support
1 0.951456 0.98 0.965517 100
2 0.932039 0.96 0.945813 100
3 0.850877 0.97 0.906542 100
4 0.904762 0.95 0.926829 100
5 0.942308 0.98 0.960784 100
6 0.968421 0.92 0.94359 100
7 0.988636 0.87 0.925532 100
8 0.988636 0.87 0.925532 100

Overall Accuracy = 0.9375

4. Discussion

Overall, the trained classifiers can achieve very good classification performance reaching 97.9%
overall accuracy. The higher number of spectral data, which is n = 100 in this study, favors higher
prediction accuracy. The levels of precision, recall, and F1-score of the trained classifiers also indicate
low misclassification rates. Based on these results of training forward NN classifiers on the transit
spectra generated via PLATON 5.3, we conclude that a classification algorithm can be a potential
method of characterizing the atmosphere of transiting exoplanets.
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Appendix A

In the following equations, these notations are used: TP = True positive; FP = False positive; FN
= False negative. Fl-score is a measure of accuracy at each class.
A.1 Equation of Precision

Precision = P
TP + FP
A.2 Equation of Recall
Recall = T
TP+ FN
A.3 Equation of F1-Score
F1 Score = 2x TP

T 2XTP+FP+FN
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