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Abstract: Forecasting electricity demand is of utmost importance for ensuring the stability of the entire
energy sector. However, predicting the future electricity demand and its value poses a formidable
challenge due to the intricate nature of the processes influenced by renewable energy sources. Within
this piece, we have meticulously explored the efficacy of fundamental deep-learning models designed
for electricity forecasting. Among the deep learning models, we have innovatively crafted recursive
neural networks (RNNs) predominantly based on LSTM and combined architectures. The data-set
employed was procured from a SolarEdge designer. The data-set encompasses daily records spanning
the past year, encompassing an exhaustive collection of parameters extracted from solar farm (based
on location in Central Europe (Poland Swietokrzyskie Voivodeship)). The experimental findings
unequivocally demonstrated the exceptional superiority of the LSTM models over other counterparts
concerning forecasting accuracy. Consequently, we compared multilayer DNN architectures with
results provided by the simulator.

Keywords: Al Forecasting; RES

1. Introduction

Poland’s photovoltaic (PV) sector has been witnessing a consistent upswing, with various factors
contributing to the advancement of photovoltaic technology in the nation. Similarly to many other
European Union (EU) member states, Poland has established ambitious renewable energy targets
to bolster the proportion of renewables in its energy mix. Consequently, this impetus has triggered
substantial investments in solar energy and PV technology. The government has proactively introduced
diverse support mechanisms, such as feed-in tariffs, auctions, and subsidies, to foster the growth of
renewable energy initiatives, including solar PV installations. Being an EU member state, Poland
enjoys access to funding programs that facilitate the transition to renewable energy sources, which has
further accelerated the development of photovoltaic projects in the country. Encouragingly, the cost
of PV technology has been consistently declining over the years, rendering solar energy increasingly
economically viable and appealing to both investors and consumers alike. Simultaneously, there has
been a concerted effort to reduce dependence on imported fossil fuels, leading to a notable emphasis
on fostering domestic renewable energy sources, including solar power. Notably, investments in
PV technology have enabled Poland to diversify its energy sources, thereby significantly bolstering
energy security. A remarkable milestone occurred between 2019 and 2022, as over one million new
PV micro-installations were established, primarily focusing on single-family households. These
PV micro-installations are thoughtfully tailored to align with specific energy consumption patterns,
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spanning distinct periods, such as a year, adhering dutifully to prosumer rules within Poland’s
regulatory framework.

The principal aim of this study centers around evaluating the feasibility and precision of
employing PV energy production calculation methods under Polish conditions. Researchers have
observed that presently utilized methods for calculating energy production may exhibit inaccuracies,
stemming from inadequate adaptation to terrain, location, wind conditions, and the representative
characteristics of PV panels within the installation. In this research, the application of Deep Neural
Network (DNN) methods will be explored to verify the accuracy of data provided by SolarEdge, a
widely renowned simulator. Emphasis will be placed on hybrid Long Short-Term Memory (LSTM)
based architectures to carry out this assessment effectively.

Furthermore, the statistical analysis conducted in this study meticulously evaluates representative
characteristics of the one-year analysis period. This comprehensive investigation marks the first-ever
assessment of energy production from a micro-inverter installation under simulated conditions within
Central Eastern Europe, specifically in the Swietokrzyskie Voivodeship region.

2. Materials and Methods

Simulation-based methods and Al predictions represent distinct approaches applied in the
estimation of electricity generation from renewable energy sources (RES). Let’s delve into each of these
methodologies:

2.1. Simulation-Based Techniques

Simulation-based methods entail the development of computer models that emulate the behavior
of renewable energy systems under various conditions. These models consider a myriad of factors,
including weather patterns, geographical location, technical specifications of the renewable energy
sources (PV farms), and the unique characteristics of the energy grid.

Advantages of Simulation-Based Methods:

e  Precision: Simulation models can offer precise predictions when properly calibrated and
grounded in real-world data.

¢  Flexibility: They can be tailored to accommodate diverse scenarios and configurations.

¢  Understanding: Simulations facilitate comprehension of the intricate interactions between
different components within the energy system.

Disadvantages of Simulation-Based Methods:

e  Computational Intensity: Developing and executing simulations can be computationally
demanding, particularly for large-scale systems.

¢  Data Requirements: High-quality data pertaining to weather, energy demand, and system
parameters are crucial for ensuring accurate simulations.

e  Complexity: Constructing a reliable simulation model necessitates expertise and domain
knowledge.

2.2. Al Predictions for Electricity Generation from RES

Al predictions encompass the use of machine learning algorithms, such as neural networks, to
scrutinize historical data and make forecasts regarding future electricity generation from renewable
sources. These algorithms discern patterns and relationships from data and can generate projections
based on these identified patterns.

Advantages of Al Predictions:

*  Speed: Al models can rapidly process vast data-sets and provide real-time predictions.
e  Adaptability: They possess the ability to adapt to changing conditions and learn from newly
acquired data.
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®  Scalability: AI models demonstrate efficacy in handling large-scale systems.

Disadvantages of Al Predictions:

¢ Data Quality: The accuracy of Al predictions heavily relies on the quality and sentative character
of the training data.

e  Black Box Nature: Neural networks can be challenging to interpret, making it difficult to
comprehend the underlying reasoning behind predictions.

¢ Limited Generalization: Al models may encounter difficulties when dealing with unseen
situations or data that significantly deviate from the training set.

Combining Both Approaches: In practice, a hybrid approach, integrating simulation-based
methods and Al predictions, emerges as a viable solution to capitalize on the strengths of each
technique. For instance, simulation models can furnish synthetic training data for Al models,
augmenting their accuracy. Moreover, Al models can optimize specific parameters within the
simulation model, thereby enhancing overall performance.

Ultimately, the selection between simulation-based methods and Al predictions hinges on factors
such as the availability of data, the complexity of the RES system, the desired level of accuracy, and
the computational resources at hand. In numerous cases, a combined methodology presents the most
robust and dependable outcomes.

2.3. Analyzed desgined PV farm

Data for further research were downloaded from SolarEdge designer:

e  The PV farm has a total installed DC power capacity of 27.25 kilowatts peak (KWp). This is
achieved through the use of 50 JAM72D30-545/MB solar panels.

. The PV system utilizes a Solar Edge SE25K inverter, which has a capacity of 25,000 watts. The
inverter converts the DC power generated by the solar panels into AC power, suitable for use in
homes and businesses.

¢ To maximize energy production and improve efficiency, the PV farm is equipped with 50 Solar
Edge S650B optimizers. These optimizers individually track and optimize the performance of
each solar panel, ensuring that the entire system operates at its highest potential.

¢  The maximum AC power output of the PV farm is 25 kilowatts (KW). This represents the highest
amount of electricity that the system can produce and supply to the grid or connected loads at
any given moment.

®  The PV farm’s estimated annual energy production is 28.10 megawatt-hours (MWh). This figure
indicates the total amount of electricity the system is expected to generate over the course of a
year under average sunlight conditions.

®  The performance index of the PV farm is 91%. This metric represents the efficiency of the system
in converting sunlight into electricity. An index of 91 suggests that the PV farm is performing at
a high level of efficiency, considering various factors such as shading, temperature, and soiling
losses.
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2.4. Parameters used as input for DNN

The list provided contains various parameters related to a solar photovoltaic (PV) system and its
performance, as well as some parameters related to energy storage and consumption. These parameters
can be used as input features for a Deep Neural Network (DNN) model to analyze and predict the
performance and behavior of the solar PV system. Here’s a description of each parameter:

¢  Timestamp: The date and time at which the data is recorded, providing a temporal context for
the other parameters.

U Global Horizontal Irradiance: The total solar irradiance received on a horizontal surface, including
direct and diffuse sunlight.

e  Diffuse Horizontal Irradiance: The solar irradiance from the sky’s scattered radiation received on
a horizontal surface.

e  Diffused Normal Irradiance: The solar irradiance received on a surface perpendicular to the sun’s
rays, after scattering in the atmosphere.

*  Global Tilted Irradiance: The total solar irradiance received on a tilted surface, which is typically
the PV panel’s orientation.

¢  Temperature: The ambient temperature of the solar PV panels or system.

¢  GITILoss: Loss in Global Tilted Irradiance, potentially due to shading or orientation issues.

e  Irradiance Shading Loss: Loss in irradiance due to shading on the PV panels.

¢  Array Incidence Loss: Loss caused by the angle at which sunlight strikes the PV panels.

*  Soiling and Snow Loss: Loss due to the accumulation of dirt, dust, or snow on the PV panels,
reducing their efficiency.

*  Nominal Energy: The expected energy output from the PV system under ideal conditions.
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*  Irradiance Level Loss: Loss related to variations in solar irradiance levels.

¢  Shading Electrical Loss: Electrical losses occurring in the system due to shading.

¢  Temperature Loss: Electrical losses caused by temperature variations in the PV panels.
*  Optimizer Loss: Losses associated with power optimizers used in the PV system.

*  Yijeld Factor Loss: Losses due to factors impacting the system’s overall yield.

*  Module Quality Loss: Losses caused by the quality of PV modules used in the system.
e LID Loss: Light-Induced Degradation losses in PV modules.

®  Ohmic Loss: Electrical losses caused by the resistance of materials in the system.

¢  String Clipping Loss: Losses due to limiting the output of strings of PV panels.

¢ Array Energy: The total energy output from the PV array.

¢ Inverter Efficiency Loss: Losses due to inefficiencies in the inverter.

*  Clipping Loss: Losses due to limiting the system’s output to protect the inverter.

e  System Unavailability Loss: Losses due to system downtime or unavailability.

e  Export Limitation Loss: Losses caused by limitations on exporting excess energy to the grid.
e  Battery Charge: The amount of energy being charged into the battery storage system.
¢  Battery Discharge: The amount of energy being discharged from the battery storage system.
¢  Battery State of Energy: The current energy level or state of charge of the battery.

e Inverter Output: The energy output from the inverter.

*  Consumption: The amount of energy consumed by the user or load.

®  Self-consumption: The energy consumed from the PV system by the user.

e Imported Energy: The amount of energy imported from the grid.

e  Exported Energy: The amount of excess energy exported to the grid.

Using these parameters as input to a DNN model, it could be possible to analyze the performance
of the solar PV system, predict energy output, optimize operations, and explore various scenarios for
efficient energy utilization and storage.

3. Results

Below we present our comparison between values reported by simulations and our DNN models.
Based on the DNN (Deep Neural Network) metrics provided, here is a description of the
MultiLSTM results:

1.  MAE (Mean Absolute Error): 98.531 The MAE represents the average absolute difference between
the predicted values and the actual values. In this case, the average absolute error is 98.531, which
means, on average, the predictions made by the DNN are off by approximately 98.531 Kwh.

2. NMAE (Normalized Mean Absolute Error): 0.048 NMAE is the MAE normalized by the mean of
the actual values. It is a relative measure of the MAE and is useful for comparing performance
across different data-sets. In this case, the NMAE is 0.048, indicating that the DNN’s predictions
have an average absolute error of 4.8% relative to the mean of the actual values.

3.  MPL (Mean Percentage Loss): 49.265 The MPL represents the average percentage difference
between the predicted values and the actual values. In this case, the average percentage loss
is 49.265, which means, on average, the predictions made by the DNN deviate from the actual
values by approximately 49.265%.

4. MAPE (Mean Absolute Percentage Error): 0.085 MAPE is a common metric for measuring the
accuracy of predictions as a percentage. It represents the average absolute percentage difference
between the predicted values and the actual values. In this case, the average absolute percentage
error is 0.085, meaning that the DNN's predictions have an average error of 8.5% relative to the
actual values.

5. MSE (Mean Squared Error): 18724.956 The MSE represents the average of the squared differences
between the predicted values and the actual values. It gives higher weights to larger errors. In
this case, the MSE is 18724.956, providing an insight into the average squared error of the DNN’s
predictions.
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6. EVS (Explained Variance Score): 0.889 EVS measures the proportion of variance in the target
variable that is explained by the model. It ranges from 0 to 1, where 1 indicates a perfect fit. An
EVS of 0.889 means that the DNN explains about 88.9% of the variance in the data, which is
considered a good result.

7. R2 (R-squared): 0.867 R-squared is another measure of how well the model fits the data. It
represents the proportion of variance in the target variable that can be predicted from the input
features. R-squared also ranges from 0 to 1, with 1 indicating a perfect fit. An R2 value of 0.867
indicates that the DNN explains about 86.7% of the variance in the data.

8. RMSE (Root Mean Squared Error): 136.839 RMSE is the square root of the MSE and is a common
metric for evaluating the accuracy of predictions. It represents the average magnitude of the
errors made by the DNN. In this case, the RMSE is 136.839, providing an insight into the average
magnitude of the errors made by the DNN'’s predictions.
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Figure 5. MultiLSTM comparison results of inverted output power simulation vs DNN model
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Table 1. Metrics MultiLSTM

MAE: 98.531 NMAE: 0.048 MPL: 49.265
MAPE: 0.085 MSE: 18724.956
EVS: 0.889 R2: 0.867 RMSE: 136.839

Overall, the DNN seems to be performing reasonably well, with relatively low errors and high
explained variance and R-squared values.
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Figure 6. EncoderDecoderLSTM comparison results of inverted output power simulation vs DNN
model

Table 2. Metrics EncoderDecoderLSTM

MAE: 130454 NMAE: 0.063 MPL: 65.227
MAPE: 0.124  MSE: 29203.207
EVS: 0.826 R2: 0.805 RMSE: 170.889
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In this scenario, the analysis reveals the following performance metrics for the model:

1. Mean Absolute Error (MAE): The MAE is measured at approximately 130.454 KWh, indicating
the average discrepancy between predicted and actual values.

2. Normalized Mean Absolute Error (NMAE): The NMAE stands at around 0.063, representing the
relative average absolute error.

3. Mean Absolute Percentage Error (MAPE): The MAPE is about 0.124%, signifying the average
error as a percentage of the actual values.

4. Mean Squared Error (MSE): The MSE is approximately 29203.207, reflecting the average squared
difference between predicted and actual values.

5. Explained Variance Score (EVS): With a value of approximately 0.826, the EVS suggests a
reasonably good fit of the model to the data. An EVS close to 1 indicates a stronger fit.

6. Coefficient of Determination (R2): The R2 value is estimated at around 0.805, which serves as a
measure of the model’s accuracy in explaining the variance in the dependent variable.

7.  Root Mean Squared Error (RMSE): The RMSE is evaluated at approximately 170.889 KWh,
signifying the square root of the average squared error.

EncoderDecoderLSTM model demonstrates reasonable performance within the context and
specific domain of the problem.

4. Discussion

Emphasizing the significance of data abundance for model improvement, it becomes evident
that increasing the data-set enhances output quality, particularly after applying feature selection. The
accuracy of models has been assessed using R2 and NMAE metrics, with the data split into 80% for
training and 20% for testing.

Choosing the best model manually can be challenging, relying solely on metrics and visual
representations. To address this, an automated approach has been adopted. Leveraging benchmarks
and a framework, proper hyperparameters and optimized models have been selected, considering
factors like calculation costs, weight, and performance.

The automated environment presents a distinct advantage in enabling easy comparison of results.
Metrics are measured for each method and learning stage, unveiling the advantages and drawbacks of
different architectures. Focus on optimization aspects becomes achievable, especially when evaluating
multiple horizons and methodologies. It is worth noting that the evaluation process took approximately
one and a half months.

To delve into the intricacies of energy forecasting, the models’ behavior has been extensively
tested concerning energy production from individual photovoltaic microinstallation based on example
from Swietokrzyskie Voivodeship Poland . This examination is based on the total energy output from
micro-installation.

In conclusion, this pioneering study seeks to address the challenges posed by existing PV energy
production calculation methods in Polish conditions. By identifying potential inaccuracies due to
factors such as terrain, location, wind conditions, and PV panel representative characteristics, the
research highlights the importance of refining these methods for more precise results.

To achieve this, the study explores the application of Deep Neural Network (DNN) methods,
with a particular focus on hybrid Long Short-Term Memory (LSTM) based architectures. Through the
evaluation of data provided by the esteemed SolarEdge simulator, the accuracy of energy production
calculations can be thoroughly verified.

Moreover, this research stands as a significant milestone as it pioneers the assessment of energy
production from a microinverter installation under simulated conditions in the Central Eastern
European region, specifically in the Swietokrzyskie Voivodeship area. The statistical analysis conducted
in this study meticulously examines the representative characterstics of the one-year analysis period,
providing valuable insights into the potential of PV energy generation in this specific context.
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Overall, this study’s findings and methodologies pave the way for future advancements in PV
energy production calculations, fostering the development of more accurate and efficient methods
tailored to the unique conditions of Poland and similar regions. With the integration of cutting-edge
DNN techniques, the renewable energy industry can take a step closer to realizing its full potential in
achieving a sustainable and eco-friendly future.
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