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Abstract: In autonomous driving systems, high-speed and real-time image processing, along with 
object recognition, are crucial technologies. This paper builds upon the research achievements in 
industrial item sorting systems and proposes an object recognition and sorting system for 
autonomous driving. In industrial sorting lines, goods sorting robots often need to work at high 
speeds to efficiently sort large volumes of items. This poses a challenge to the robot’s real-time vision 
and sorting capabilities, making it both practical and economically viable to implement a real-time 
and low-cost sorting system in a real-world industrial sorting line. Existing sorting systems have 
limitations such as high cost, high computing resource consumption, and high power consumption. 
These issues lead to the fact that existing sorting systems are typically used only in large industrial 
plants. In this paper, we design a high-speed, low-cost, low-resource-consumption FPGA (Field-
Programmable Gate Array) based item sorting system that achieves similar performance to current 
mainstream sorting systems at a lower cost and consumption than existing sorting systems. The 
recognition part employs a morphological recognition method, which segments the image using a 
frame difference algorithm and then extracts the color and shape features of the items. To handle 
sorting, a six-degree-of-freedom robotic arm is introduced in the sorting segment. The improved 
cubic B-spline interpolation algorithm is employed to plan the motion trajectory and consequently 
control the robotic arm to execute the corresponding actions. Through a series of experiments, this 
system achieves an average recognition delay of 25.26ms, ensures smooth operation of the gripping 
motion trajectory, minimizes resource consumption, and reduces implementation costs. 

Keywords: autonomous driving system; product design; development and prototyping; motion 
and path planning; computer vision for manufacturing 

 

1. Introduction 

Industrial robots were first created in the 1950s and have since been developed for about 60 
years. Due to their ability to replace humans in relatively simple and repetitive tasks, they are widely 
used in various major fields [1]. In recent years, FPGAs (Field-Programmable Gate Arrays) have 
proven to be advantageous in the field of image processing due to their ability to perform real-time 
pipeline operations and achieve high real-time performance. FPGAs are widely utilized across 
industries for their programmability, enabling rapid prototyping, iterative development, and easy 
adaptation to changing requirements. The trend of employing FPGAs for image processing in 
machine vision is on the rise. Nowadays, machine vision utilizing neural networks for target 
recognition and sorting is extensively adopted in sorting lines within automated factories. GPUs 
(Graphics Processing Units) are designed to accelerate image and video processing. While most 
neural networks run on GPUs, their high power consumption and cost are limiting factors [2], making 
them unsuitable for extensive use in large automated factories. However, in various scenarios, such 
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as small platforms, the substantial power consumption and high cost are not feasible for users. Neural 
network-based machine vision for target recognition and sorting often demands significant 
resources, such as CNNs (Convolutional Neural Networks) [3], which not only consume substantial 
resources but also slow down processing speed due to the multitude of multiplication units required 
for convolutional operations. 

After the industrial robot system completes the recognition task, ensuring the robot’s accuracy 
in locating the grasping target and improving the robustness of the design method remains a 
challenging task. The traditional approach employing robotic arms, which use predetermined 
movement routes and grasping positions for task execution, exhibits limited adaptability [4]. In 
contemporary industrial production, time-optimal planning algorithms are utilized to complete 
corresponding paths in the shortest time, such as PSO (Particle Swarm Optimization) algorithms and 
genetic algorithms [5]. In multi-objective optimal trajectory planning, the accuracy of late curve 
control tends to diminish as runtime increases, resulting in reduced accuracy of the robotic arm 
system and increased overall mechanical loss [6]. This scenario is less than ideal for practical 
engineering applications. Considering the aforementioned factors, the demand for designing a low-
cost, low-power consumption, low-resource consumption, high real-time item identification, and 
sorting system with tangible economic benefits and practical value is particularly prominent for small 
and medium-sized enterprises or individuals. The system designed in this paper possesses the 
following advantages. 

• The hardware configuration of the entire system includes an FPGA development board, a vision 
camera, and a robotic arm grasping system. This setup eliminates the need for high power 
consumption and a large computer mobile platform, making it well-suited for the requirements 
of small enterprises or individuals; 

• The entire system is built on an FPGA, utilizing fundamental components such as counters, 
registers, and LUT (Look-Up Table) modules. This design significantly reduces system resources 
and power consumption when compared to GPUs; 

• In terms of algorithm implementation, the vision component employs traditional morphology 
for real-time parallel processing through pipeline operations, while the grasping segment 
utilizes an enhanced cubic B-spline algorithm for trajectory planning. This comprehensive 
system exhibits strong real-time performance and high operational stability. 

2. Related Works Analysis 

For items on industrial assembly lines, the application of industrial robots for recognition and 
grasping has garnered significant attention from researchers. In this section, we will provide a 
detailed analysis and summary, categorizing it into the visual component and the grasping segment. 

2.1. Visual Section 

The solutions in the vision section can be broadly divided into two categories: traditional 
morphological recognition algorithms and neural network-based image recognition algorithms [7]. 
Many researchers have proposed various algorithms and methods. Tang et al. [8] proposed a method 
to extract color features and shape features of items and use the BP (Backpropagation) neural network 
for the classification and recognition of items. The method has an accuracy rate of about 95%. The 
paper also compared the classification by selecting only color features and the classification by 
selecting only shape features; the accuracy rate was less than 84%, underscoring the importance of 
considering multiple features for classification judgments. In comparison to [8], Wang et al. [9] added 
the extraction of texture features, resulting in improved recognition accuracy to some extent. Both 
above methods are implemented based on software without hardware deployment, which imposes 
certain limitations on recognition speed. For image recognition, the deployment of neural networks 
to hardware generally involves GPUs, ensuring the algorithm’s implementation and fast recognition 
speed, but at the cost of higher power and resource consumption [1]. In [10], the neural network is 
deployed on hardware and image segmentation is performed using a bounding box regression 
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algorithm. Deploying the neural network to hardware implementation can effectively enhance the 
real-time performance of the system. 

In contrast to the neural network-based image recognition algorithm, the traditional 
morphological recognition algorithm does not require a large number of computing units as in a 
neural network, resulting in reduced resource consumption 

2.2. Grabbing Section 

Numerous domestic and international experts and scholars have conducted extensive in-depth 
studies and research on various aspects of robotic arm trajectory planning, including time-optimal, 
energy-optimal, impact-optimal, and integrated optimal approaches. 

Chowdhury et al. [11] reduced the multivariate interpolation problem to a joint polynomial 
approximation issue, thereby performing polynomial interpolation for robotic arm trajectory 
planning. However, this method requires specific constraints to be configured within each 
segmentation interval, leading to increased complexity in calculations, especially with a large number 
of nodes. Park and Kyung-Jo [12] employed Fourier series and polynomial functions for path design 
to mitigate vibration. Cao et al. [13] analyzed convergence based on B-spline curves but noted that 
errors in B-spline fitting could lead to end effector deviations. 

Building upon the analysis of the aforementioned relevant works, this paper employs a 
threshold classifier, instead of a neural network, for classification judgment in the recognition part. 
This approach significantly reduces resource consumption and minimizes the required number of 
operations. For the grasping part, the paper adopts the improved cubic B-spline curve for trajectory 
planning, benefiting from continuous second-order derivatives and adherence to the path points, 
thus satisfying the requirements of robotic arm trajectory planning. 

In FPGA hardware implementation, the unique advantage of high-speed parallel computing is 
harnessed to achieve a rapid recognition system. While the speed may be slightly lower than that of 
GPU recognition, FPGA’s power consumption is significantly reduced. 

3. Overall System Design 

The overall design of the proposed system adopts a morphological recognition method. The 
system’s overall block diagram is depicted in Figure 1. The framework comprises three main modules: 
the visual module, the grasping module, and the display module. 

In the visual module, the system initially captures the scene using an OV5640 camera. The 
OV5640, manufactured by OmniVision Technologies Inc., 500W pixels, supports up to QSXGA 
(2592x1944) photo function, 1080P video image output, supports autofocus function, automatic 
exposure control (AEC). To extract the shape features of fruit objects, the system computes the 
background frame difference when the scene changes. This algorithm is implemented using a four-
channel DDR3 (Double Data Rate 3) control module, employing the morphological filtering 
algorithm to eliminate noise and smoothen the image curve of the items. DDR3, a type of 
synchronous dynamic random-access memory (SDRAM), finds use in computer systems and 
succeeded DDR2. It was prevalent in personal computers, laptops, servers, and other computing 
devices. Subsequently, multi-target detection and localization algorithm enable the segmentation, 
position extraction, and quantitative detection of multiple items. Meanwhile, the color identification 
of objects is achieved through HSV (Hue, Saturation, and Value) color space transformation 
combined with location information. The HSV color model is widely utilized in computer graphics, 
image processing, and color-related applications due to its intuitive and perceptually uniform color 
representation. Extracted object shape features, along with color features, facilitate object recognition 
using a pre-trained threshold classifier. Ultimately, the visual module identifies the object and 
transmits the corresponding object coordinate data to the six-degree-of-freedom robotic arm for 
further grasping function. 

In the grasping module, the FPGA completes the forward and inverse kinematic analysis of the 
robotic arm and the trajectory planning. Subsequently, the robotic arm receives signals from the 
FPGA, enabling the sorting of corresponding objects on a simulated assembly line. 
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The display module showcases information from both the visual and grasping modules. The 
HDMI display presents details such as color, type, quantity, coordinate information, and whether the 
fruit has undergone sorting. 

 

Figure 1. System framework of visual module, the grabbing module, and the display module. 

This system is designed around the characteristics of FPGA to fully utilize its computation and 
extension abilities. The image processing algorithm is implemented on an FPGA, with the OV5640 and 
the robotic arm serving as an external device to capture signals and perform the sorting operation. Once 
image processing is completed, a threshold classifier which is implemented in FPGA is utilized to 
determine the object’s category and color. The positional information is processed by FPGA to perform 
forward and inverse kinematic analysis and robotic arm trajectory planning to grab objects. 

Through system architecture design and overall debugging, the system meets the expected 
requirements. The system is applicable to a large range of target categories. Because of the wide 
variety of fruits with different colors and shapes, the system utilizes fruits as representative objects 
for identification and sorting purposes. The system encompasses the following major steps in the 
overall operation, and their details are represented in the following four subsections. 

• Image processing; 
• Threshold classifier;  
• Robotic arm forward and inverse kinematic analysis; 
• Robotic arm trajectory planning. 

3.1. Image Processing 

The image processing module is the core of this system, as shown in Figure 2. After real-time 
detection by the OV5640, the grayscale Y required for image processing is obtained by RGB to YCbCr 
conversion. The grayscale of the background frame is saved to DDR3 memory, and the grayscale data 
of multiple fruits placed against the background is obtained by computing the difference with the 
current frame. The difference grayscale data of the background frame is then sequentially filtered 
through erosion and expansion [14]. Sobel edge detection is also applied to the filtered image in the 
image preprocessing section to obtain the perimeter of the fruit [15]. After the frame scan localization, 
the position information of each fruit is utilized to add frames around each fruit. Simultaneously, the 
color of each localized fruit is identified using the HSV color model via the RGB to HSV algorithm. 
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Figure 2. Image Processing. 

The boundary information, edge pixel points, and internal pixel points of each fruit obtained 
after image preprocessing are tallied to acquire shape features such as the long axis, short axis, 
perimeter, and area of each fruit. Further calculations yield second-order features like roundness, 
eccentricity, and body ratio. Ultimately, the acquired color features (Hue, Saturation, and Value) and 
shape features (Roundness, Eccentricity, and body Ratio) are combined to ascertain the fruit type 
using a trained threshold classifier (as discussed in Section 3.2). 

Following morphological filtering, target segmentation and quantity statistics are achieved by 
assessing the distances between each target. The fruits positioned on the detection platform are 
assessed, and the position coordinates of each fruit are real-time extracted based on the assessment 
outcome. The image is also binarized. Upon scanning the first white pixel, if the current target list is 
of black pixels, the pixel is automatically appraised during the subsequent white pixel scan. Upon 
detection, it first establishes whether the pixel pertains to an existing target. If not, it’s identified as a 
new target; if it does, it’s classified as an old target, and the target’s boundary is expanded according 
to the current pixel position information. 

After observation, when the line field scan completes a frame, some specially shaped fruits, such 
as bananas, may appear and be identified as two overlapping targets. Therefore, each target needs to 
be compared to determine whether there is overlap. If overlap is detected, it is considered a duplicate 
target, and its boundary is merged to eliminate the duplication. The algorithm’s flowchart is depicted 
in Figure 3. The images of apples and pears are input to the image processing module according to 
the flow, and the verification of the image processing effect is displayed in Figure 4. 

 

Figure 3. Multi-target detection and localization algorithms. 
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Figure 4. Effect of image processing. 

3.2. Threshold classifier 

After preprocessing the captured fruit images, feature extraction is also required. Here, the color 
features and shape features of fruits are primarily extracted. The color features are obtained through 
the color recognition module, allowing the system to perform an initial classification of fruits based 
on color. However, the core of fruit recognition lies in extracting the shape features of fruits. Figure 
5 illustrates the comprehensive flowchart of fruit type recognition. 

As evident from Figure 5, pattern recognition primarily encompasses two aspects: training and 
testing, with the training of images being particularly crucial. The training algorithm plays a pivotal 
role in handling the training data. The recognition classification algorithm, which involves training 
and testing the extracted features, constitutes the essence of the fruit recognition system. The 
thresholds employed for recognition are established through a threshold classifier’s training. In this 
system, each threshold parameter is derived from multiple training sessions involving different 
fruits. The training outcomes are detailed in Section 4.1 of the Experiment Results. 

Start

Whether the 
result is correct

Identify

Classifier model

Classification results

End

Extract features

Image processing

Image acquisition

Select the 
model

Training classifier

Average classifier

Target

Training

No

Yes  

Figure 5. Pattern recognition flowchart. 

3.3. Robotic arm forward and inverse kinematic analysis 

In the context of robotics and kinematics, ‘D-H’ represents Denavit-Hartenberg. The Denavit-
Hartenberg (D-H) method is a widely employed mathematical technique for illustrating the 
relationship between successive links in a robotic manipulator or robotic arm. It aids in defining the 
coordinate frames and kinematic parameters for each joint, facilitating efficient and systematic 
kinematic analysis. In this paper, a modified D-H coordinate system is utilized to depict the positional 
and angular relationship between two sets of jointed connecting rods, and a mathematical model 
along with a coordinate system for the robotic arm is established. In the modified D-H coordinate 
system, the linkage length ai-1, four parameters of linkage twist αi-1, linkage offset di, and joint rotation 
angle θi are employed to depict the system, and the D-H parameter table is constructed based on the 
robotic arm model employed in the experiment. 

After determining the D-H parameters and the homogeneous transformation matrix, a 
mathematical model of the kinematic equations of the robot arm was established. In the forward 
kinematic analysis, the orientation of the end effector relative to the coordinate system is obtained 
from the linkage parameters in Table 1, and the positional coordinate matrix of connecting rod i and 
connecting rod i-1 is shown in Equation (1). 
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Ti
i-1 θi =

cosθi -sinθi 0 ai-1
sinθicosαi-1 cosθicosαi-1 -sinαi-1 -sinαi-1di
sinθisinαi-1 cosθisinαi-1 cosαi-1 cosαi-1di

0 0 0 1

 (1) 

Table 1. Mechanical Arm Modified D-H Parameter Table. 

Joint number i ai-1 αi-1 di θi 

1 0 0 d1 θ1 
2 0 90° 0 θ2 
3 l3 0 0 θ3 
4 l4 0 0 θ4 
5 l5 0 0 θ5 
6 0 0 0 θ6 

In this table, l3=105mm, l4=90mm, l5=170mm, d1=100mm. 

To achieve the grasping of the object, it is necessary to ensure that the robotic arm is in the 
desired position. The position of the end effector is determined by sequentially multiplying the 
position coordinate matrices of each linkage [16]. The desired position of the robotic end effector is 
shown in Equation (2). The nx, ny and nz are the three direction cosine of the end effector’s x-axis of 
coordinates, with respect to the base-fixed coordinate system. The ox, oy and oz are the three direction 
cosine of the end effector’s y-axis of coordinates, with respect to the base-fixed coordinate system. 
The ax, ay and az are the three direction cosine of the end effector’s z-axis of coordinates, with respect 
to the base-fixed coordinate system.The symbol ‘p’ indicates the end effector’s coordinates, 
positioned relative to the base-fixed coordinate system. Additional details are provided in [16]. 

T6
0 = T1

0 θ1 T2
1 θ2 T3

2 θ3 T4
3 θ4 T5

4 θ5 T6
5 θ6 =

nx ox ax p
x

ny oy ay p
y

nz oz az p
z

0 0 0 1

 (2) 

In inverse kinematics, the goal is to determine the angles of each joint of the robotic arm based 
on the known positional coordinates. In this paper, the analysis is focused solely on the main body 
of the robotic arm. The coordinates of the end point P are defined as (Px, Py) in the XOY plane, and 
these coordinates are obtained according to the D-H model, as shown in Equations (3) and (4). 

Px=l3 cosθ3 +l4 cos θ3+θ4 +l5 cos θ3+θ4+θ5  (3) 

Py=l3 sinθ3 +l4 sin θ3+θ4 +l5 sin θ3+θ4+θ5  (4) 

In the inverse kinematics solution, the coordinates of the end point P are known, and l3, l4, and 
l5 are the inherent parameters of the D-H model. Through calculations, the formula (5) can be 
derived, and similarly, other angles can be obtained. These angles can be used to control servos and 
achieve coordinated position control. 

sinθ3 =
-b± b2-4ac

2a
a=m2+n2

b=
-n⋅ l3

2-l4
2-m2-n2

l4

c=
l3
2-l4

2-m2-n2

2l4

2

m=l3 cos θ3+θ4+θ5 -x
n=l3 sin θ3+θ4+θ5 -y

 (5) 
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3.4. Robotic arm trajectory planning 

To maintain a stable state during the movement of the robotic arm and at the same time achieve 
efficient gripping, the trajectory of the robotic arm needs to be planned. This paper focuses on the 
variation of position, velocity and acceleration of the robotic arm in the joint space, as well as the 
trajectory planning of the rotating joint over time. Trajectory planning involves the time series 
planning of velocity and acceleration during the movement of the robotic arm to ensure that the 
trajectory curve of the robotic arm at any moment is smooth and the speed is controllable, avoiding 
unnecessary sudden changes in position, velocity and acceleration. At the same time, the motion 
trajectory of each joint of the robotic arm is planned so that the end effector can complete the task 
under the work requirements during the motion process. By controlling the roles of each joint at the 
same time, it ensures that the end effector performs the task by the optimal path. Reasonable motion 
trajectory planning helps to improve the accuracy of the end position of the robotic arm, thus 
ensuring the operational efficiency of the robot in high-precision motion. Then a smooth path point 
position function is derived using the following two steps. 

• Path planning to establish the geometric profile of the path, involving the determination of 
spatial curves such as space curves or other complex NURBS curves [17]; 

• Interpolation, where parameters like time or distance are utilized. Interpolation helps densify 
the parameters to obtain the intermediate points along the motion path. 

In recent years, for the problem of free curve interpolation points in the field of robotic arm 
research, studies have been conducted on interpolation using the B-spline curve algorithm, which is 
relatively more advantageous than the polynomial interpolation algorithm, but due to the fact that 
the B-spline fitting the fitted curves do not necessarily pass through all the given interpolation points. 
In order to ensure that the B-spline curve passes through all control points, this paper employs an 
improved cubic B-spline interpolation algorithm for point-to-point trajectory planning [18]. This 
approach mitigates the impact of interpolation operations in both joint and Cartesian spaces, 
ultimately enhancing motion accuracy and quality. The expression for L3i+1 concerning time ‘t’ is 
depicted in Equation (6), and the same principle applies to L3i+2, L3i+3. 

L3i+1=

t3

t2

t
1

T -1 3 -3 1
3 -6 3 0
-3 0 3 0
1 4 3 0

Di
Di+1
Di+2
Di+3

 (6) 

In Equation (6), L3i+1 represents a segment of the trajectory curve of the cubic B-spline, while Di, 
Di+1, Di+2, and Di+3 serve as the control points along the trajectory curve. The provided Equation (6) 
smoothly fits the given path, ensuring adherence to velocity, acceleration, and the duration of the 
movement. This enables the planning of an optimal path. 

4. Experiment Result 

Image processing and object recognition are pivotal technologies in this research. The 
morphological recognition method and image segmentation techniques employed in this study can 
find application in image processing for the surrounding environment of vehicles, encompassing 
tasks like road, vehicle, and pedestrian detection. The system we have designed possesses the 
capability to recognize a wide array of objects. Through a straightforward replacement of these 
objects with road, vehicle, or pedestrian categories and the provision of suitable training, the system 
can be tailored for autonomous driving applications. Furthermore, by incorporating the enhanced 
motion trajectory planning algorithm to govern the actions of the robotic arm, it can be seamlessly 
integrated with path planning and vehicle control within autonomous driving systems, thereby 
enabling object grasping and placing operations. 
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4.1. Experimental Setup and Data 

Based on the above design plan, the physical system was fabricated and built, as shown in Figure 
6 below, and testing of the system was started. 

  

Figure 6. Overall system architecture (Left), Photography &Image-processing platform (Right). 

For this study, the color features and shape features of fruits are the primary focus. The color 
recognition module takes in the color characteristics of fruits, enabling the identification of fruits with 
distinct colors such as kiwi fruits characterized by their brown hue, and facilitating an initial 
classification of fruits based on color. The color thresholds, derived from pertinent experiments, are 
detailed in Table 2. 

Table 2. Fruit Color H, S, V Threshold. 

Fruit Type Hue Saturation Value 

Red Apple 0~15,300~359 200~225 70~105 
Green Apple 70~100 165~185 125~140 

Banana 40~70 40~60 130~140 
Yellow Mango 40~70 40~60 130~175 
Green Mango 70~100 200~230 70~90 

Green Pear 70~100 150~165 150~165 
Yellow Pear 40~70 150~165 180~200 

Orange 0~15,300~359 220~240 150~170 
Dragon Fruit 0~15,300~359 170~195 80~100 

Grape 0~15,300~359 100~140 30~60 
Kiwifruit 15~70 200~220 30~60 

Fig 5~30 120~130 70~90 
Mangosteen 0~15,300~359 110~130 10~40 

The shape characteristics of the fruit constitute a fundamental basis for fruit species 
identification. Various shape attributes contribute to this, including fruit size, fruit circumference, 
fruit area, fruit roundness, fruit eccentricity, and more. These shape features play a pivotal role in the 
identification process within the design. 

Given that first-order shape features are susceptible to effects from rotation, scaling, and translation, 
it becomes imperative to extract shape features with RST (Rotation, Scaling, and Translation) invariance. 
Consequently, second-order shape features such as body ratio, roundness, and eccentricity are 
predominantly employed. The calculation Equations (7), (8), and (9) are provided below. 

O=
4πS

L2  (7) 
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f=
H
L

 (8) 

e=
H2-W2

H
 (9) 

where O represents roundness, f denotes body ratio, which is the ratio of the long axis to the short 
axis, e stands for eccentricity, S signifies area, L represents perimeter, H corresponds to the long axis, 
and W represents the short axis. In the discrimination process, the measured roundness is normalized 
in the actual code by expanding the roundness value from 1 to 256. This normalization simplifies 
discrimination and enhances the accuracy of the threshold. Table 3 presents the data obtained for 
each feature measurement. 

Table 3. Shape Feature Thresholds. 

Fruit Type Roundness Eccentricity Body Ratio 

Red Apple 0.74~0.80 0.34~0.51 1.01~1.13 
Green Apple 0.73~0.79 0.35~0.52 1.00~1.13 

Banana 0.01~0.09 0.96~0.99 5.00~6.00 
Yellow Mango 0.31~0.37 0.89~0.95 2.50~3.20 
Green Mango 0.39~0.43 0.84~0.94 1.90~2.10 

Green Pear 0.69~0.77 0.32~0.42 0.89~0.94 
Yellow Pear 0.67~0.76 0.33~0.42 0.90~0.92 

Orange 0.71~0.86 0.12~0.21 0.98~1.26 
Dragon Fruit 0.05~0.11 0.71~0.85 1.68~1.88 

Grape 0.90~0.99 0.09~0.16 0.98~1.04 
Kiwifruit 0.82~0.90 0.64~0.76 1.20~1.50 

Fig 0.59~0.67 0.54~0.62 0.81~0.94 
Mangosteen 0.49~0.58 0.43~0.52 0.84~0.92 

4.2. Experimental Result 

The experimental setup and training data have been completed. The next step involves 
conducting a robot arm grasping experiment to test the system’s robustness, calculate resource 
consumption, and measure recognition speed. 

As the parameters of each joint of the robotic arm used in this paper serve as direct inputs and 
the system requires real-time capabilities, the trajectory planning method chosen is joint space. The 
LeArm 6-degree-of-freedom high-performance programmable robotic arm studied in this simulation 
is a six-axis structured rotary joint manufactured by Hiwonder. The arm structure comprises 6 digital 
servos with alloy grippers, an aluminum alloy stand, and an all-metal rotating base. The body is 
equipped with 6 high-precision digital servos, providing 6 degrees of freedom. The robotic arm’s 
gripper structure is modeled using Solidworks software and produced using a 3D printer. 

Based on the established mathematical model and D-H parameter table, this system conducts 
simulated object grasping experiments in the Matlab simulation environment. It adopts the improved 
cubic B-spline interpolation algorithm for trajectory planning and selects four path points as 
experiment constraints. The constraint points and joint parameter table are presented in Table 4. 

Table 4. Constraint Point And Joint Order List. 

Constraint Point Pi-1 Joint1(rad) Joint2(rad) Joint3(rad) Joint4(rad) Joint5(rad) Joint6(rad) 

P0 0 π/2 0 0 0 0 
P1 0 π/5 -π*2/3 0 -π/2 0 
P2 -π/3 π/6 0 0 π/3 0 
P3 -π/3 π/3 0 0 0 0 
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In this paper, the time of joint motion is set at each of the four constraint points. P0 represents 
the initial random position of the robotic arm, P1 signifies the position of the robotic arm after a reset, 
P2 corresponds to the position of the target object for the robotic arm, and P3 denotes the arrival 
position of the sorting robotic arm. These points collectively form the entire process of robotic arm 
grasping and sorting. The polynomial interpolation algorithm and the modified cubic B-spline 
interpolation algorithm are utilized to determine the pose of the robotic arm, encompassing 
displacement, velocity, and acceleration, as illustrated in Figure 7. 

Figures 7a and 8a display the positional changes of the robotic arm’s joints during the gripping 
of an object using the two algorithms. These figures illustrate the trajectory trends of the robotic arm’s 
joints over time. The two trajectories exhibit substantial consistency. Comparing Figures 7b and 8b, 
it becomes apparent that the cubic B-spline curve results in higher maximum velocity and 
acceleration. This adjustment is made to complete trajectory planning within the same timeframe. 
However, the improved cubic B-spline interpolation algorithm yields smoother curves, effectively 
reducing impact during the motion process. It addresses sudden parameter changes in the motion of 
each joint, enhancing stability and accuracy. Notably, an increase in the number of interpolation 
functions corresponds to a proportional rise in overall system computation. Thus, the improved cubic 
B-spline interpolation algorithm is a stable and efficient trajectory planning approach. 

   
(a) displacement (b) velocity (c) acceleration 

Figure 7. Polynomial interpolation algorithm motion simulation. 

   
(a) displacement (b) velocity (c) acceleration 

Figure 8. Motion simulation of improved cubic B spline interpolation algorithm. 

By recognizing and sorting different fruits multiple times at various locations within the 
recognition area, we achieve high accuracy in both recognition and sorting. The majority of fruits 
exhibit a high recognition and sorting accuracy, resulting in an impressive overall recognition success 
rate of 97.69% and a sorting success rate of 96.46%. These outcomes showcase the system’s robustness, 
as depicted in Table 5. 

Table 5. Robustness Test Results. 

Fruit Type 
The exact number of 

identification/total number 

The exact number of 

sorting/total number 

Red Apple 99/100 100/100 
Green Apple 100/100 100/100 

Banana 99/100 95/100 
Yellow Mango 98/100 98/100 
Green Mango 97/100 100/100 

Green Pear 98/100 98/100 
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Yellow Pear 93/100 95/100 
Orange 100/100 100/100 

Dragon Fruit 98/100 95/100 
Grape 96/100 88/100 

Kiwifruit 98/100 98/100 
Fig 96/100 92/100 

Mangosteen 97/100 96/100 

As displayed in Table 5, both recognition accuracy and sorting accuracy remain consistently above 
96%. In terms of the recognition component, it can be observed that higher accuracy is still achieved for 
items with brighter colors or more distinct shapes. For instance, the yellow pear may encounter 
recognition judgment errors due to its shape similarity to the green pear, despite the minor difference in 
their actual colors. Concerning the sorting aspect, superior grasping accuracy is observed for items closely 
resembling spheres or squares, while smaller objects like grapes and figs may incur grasping errors. This 
is attributed to the utilization of the traditional morphological recognition approach, which significantly 
reduces system resources compared to neural network schemes. 

Furthermore, the entire system is constructed on an FPGA development board utilizing 
fundamental components such as adders, multipliers, counters, registers, and Look-Up Tables 
(LUTs). Consequently, the system demonstrates substantially reduced resource utilization and power 
consumption. Although the CNN-based recognition system [19] and the YOLOv3-based recognition 
system [2] exhibit higher accuracy rates of approximately 99% and a mean Average Precision (mAP) 
of about 90.78%, respectively, compared to our method, the resource usage of our approach amounts 
to only about 1/10 of that employed in [19] and [2]. 

In addition, when considering recognition speed, the average recognition speed of the 
hardware-deployed CNN neural network recognition system is approximately 900ms, while the 
YOLOv3 neural network recognition system, deployed to hardware and optimized, achieves an 
average recognition speed of about 54.76ms. In contrast, our system demonstrates an average 
recognition speed of approximately 25.26ms. A comprehensive performance comparison is presented 
in Table 6. Compared to the systems introduced in [20] and [21], our system attains comparable or 
slightly higher accuracy while demanding fewer resources (FF, LUT). Furthermore, when contrasted 
with the system outlined in [22], our approach offers a substantial advantage in terms of recognition 
speed. Additionally, in comparison with the system described in [23], our system achieves relatively 
higher accuracy without compromising recognition speed. Moreover, when evaluated against the 
system detailed in [24], our approach significantly reduces resource consumption while effectively 
fulfilling the intended functionality. 

Table 6. Resource Usage, Speed, Accuracy List. 

Equipment FF(Flip-Flop) LUT Average recognition time/ms Average accuracy 

Ours 13K 19K 25.26 97.69% 
Yan, et al. [19] 148K 118K 900 99.6% 
Yin, et al. [2] 154K 71K 54.76 90.78%(mAP) 

Kojima, et al. [20] 40K 27K Not provided 96.33% 
Kojima [21] 66K 39K Not provided more than 90%(mAP) 

Wei, et al. [22] Not provided Not provided 1582 Not provided 
Hao, et al. [23] Not provided Not provided 28.2 69.4%(mAP) 

Takasaki, et al. [24] 14K 126K Not provided Not provided 

5. Conclusions 

FPGAs offer significant application value in image processing due to their ability to execute real-
time pipeline operations with the utmost efficiency. The proposed system in this paper leverages 
FPGA development boards to achieve enhanced recognition outcomes while optimizing resource 
utilization and effectively orchestrating the robotic arm to accomplish sorting duties. Moreover, 
when juxtaposed with recognition approaches like neural networks, the presented system boasts 
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rapid recognition speed, minimal resource consumption, and exceptional portability. With its cost-
effectiveness and adaptability across diverse scenarios, this system exhibits promising potential for 
small-scale production. Its implementation stands to substantially bolster production automation 
and markedly amplify sorting efficiency. 

Given the attributes of low power consumption, high real-time performance, and minimal 
resource utilization inherent in this devised system, this study underscores its viability in addressing 
relatively straightforward sorting tasks across an array of application settings. By delving into the 
realms of image recognition and trajectory planning, the system adeptly executes requisite operations 
while keeping power consumption to a minimum. A prime example of its utility lies in tasks like 
container sorting by port forklifts or material handling at construction sites. 
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