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Article 

Evaporation of Small Sessile Drop Deposited on 
Horizontal Solid Surface: New Exact Solutions  
and Approximations 

Peter Lebedev-Stepanov 1,* and Olga Savenko 1 

1 FSRC “Crystallography and Photonics” RAS, Leninskii Prospekt, 59, 119333 Moscow, Russia 
* Correspondence: lebstep.p@crys.ras.ru 

Abstract:  Evaporating liquid sessile drop deposited on horizontal surface is an important object of 
applications (printing technologies, electronics, sensorics, medical diagnostics, hydrophobic 
coatings, etc.) and theoretical investigations (microfluidics, self-assembly of nanoparticle, 
crystallization of the solute, etc.). The arsenal of formulas for calculating the slow evaporation of an 
axisymmetric drop of capillary dimensions deposited on a flat solid surface is reviewed.  Such 
characteristics as vapor density, evaporation flux density, total evaporation rate are considered. 
Exact solutions obtained in the framework of the Maxwellian model, in which the evaporation 
process of the drop is limited by vapor diffusion from the drop surface to the surrounding air, are 
presented. The summary covers both well-known results obtained during the last decades and new 
results published by us in the last few years, but practically unknown to the wide scientific 
community.  The newest formulas, not yet published in refereed publications, concerning exact 
solutions for a number of specific contact angles are also presented. In addition, new approximate 
solutions are presented for the first time (total evaporation rate and mass loss per unit surface area 
per unit time in the whole range of contact angles [0, )θ π∈ ), which can be used in modeling 

without requiring significant computational resources. 

Keywords: sessile liquid droplet; evaporation rate; diffusion, Laplace equation, analytical solution, 
flux density, mass loss per unit surface area per unit time 

 

1. Introduction 

Evaporating liquid sessile drop is an important object both for theoretical investigations 
(evaporation dynamics, microfluidics, self-organization of solute, etc.) and wide variety of 
applications (printing technologies for functional coatings, medical diagnostics, food science, 
geophysics, etc.) [1–10]. 

The model of diffusion-limited quasi-stationary evaporation of the spherical droplet in quiescent 
air environment was originally proposed by J.C. Maxwell [11].  He calculated the diffusive drift of 
vapor from the surface of the evaporating droplet into the air, assuming that the vapor concentration 
at the surface of the droplet determines by saturated vapor density. This is valid for a drop radius 
much larger than the mean free path length of vapor molecules in the air. For example, this is not true 
for droplets smaller than 100 nm in the normal conditions.  

Within the framework of the Maxwellian model (quasi-stationary evaporation), the diffusion 
equation practically turns into the Laplace equation for the vapor concentration, 2 0n∇ = , with the 
following initial boundary conditions: on the drop surface ( ) sn S n= . Outside the drop the vapor 

concentration is determined by the asymptotic value of the vapor concentration in the atmosphere 
(for aqueous solution, it is the relative humidity of the air, ( )n n∞∞ = ).  

It is considered that the liquid-gas transition layer is infinitely thin compared to the droplet size. 
Moreover, for correctness of the Maxwellian model it is necessary to assume that density of air is 
much greater than vapor density, so that diffusion of vapor is determined by the vapor diffusion 
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coefficient in the air. In particular, this requirement means that we must consider liquid at a 
temperature much smaller than its boiling point at a given air pressure.  

The smallness of the convective Stefan flux also has to be satisfied. Stephan showed for the first 
time [12] that near the surface of an evaporating drop there is an air current directed away from the 
surface, because in order to maintain the constancy of the total pressure in the medium under 
conditions of vapor production by the liquid surface, along with the gradient of the vapor density 
there must exist an equal and opposite in direction gradient of the partial pressure of the other 
components of the air.   

Fuchs showed [13] that the relative contribution of the Stefan flux to the evaporation process is 

given by factor 
2

sp p

p

∞+ , where p is the pressure of the air, sp and p∞  are the saturated vapor 

pressure and the vapor pressure in the air far from the droplet, respectively.  That factor for a drop 
of water under normal conditions does not exceed 1-2 percents (%). This is one of essential limitations 
of the Maxwellian model accuracy that indicates acceptable correctness of approximate solutions 
with respect to exact solutions of the diffusion problem.  There are also other error factors: inaccurate 
determination of such parameters as drop surface temperature, vapor diffusion coefficient in air at a 
given temperature, saturated vapor pressure, etc. The capillary surface oscillations, air movement 
near the drop surface also are the factors that introduce uncertainties. Therefore, the approximate 
solutions whose accuracy is of the order of 5 percents can be considered acceptable. 

In the following, we consider the small drop deposited on a flat solid horizontal substrate (so-
called sessile drop). It is easy to derive that the equilibrium shape of a sessile drop of a slowly 
evaporating liquid, the size of which is much smaller than the capillary constant (Bond number, 
Bo<<1), approximately corresponds to a spherical segment with the given contact (wetting) angle.  
Sessile water droplets with a height of less than 1 mm satisfy this criterion quite well.  

The Maxwellian model was apparently first applied to such sessile drop in the paper of Picknett 
and Bexon [14]. All solutions described below in this paper are given within the framework of this 
approach. 

Exact analytical solutions have been obtained to describe the total evaporation rate (mass loss 
per unit time) and evaporation flux density (mass loss per unit surface area per unit time) of a small 
sessile liquid droplet having the shape of an axisymmetric spherical segment deposited on a 
horizontal substrate [15–24]. 

There are currently two alternative expressions for the droplet evaporation flux density that are 
mathematically equivalent. First, the following solution was proposed [19,20]  

[ ]3/2
1/2

0

( )

sin cosh2(cosh cos ) tanh ( ) (cosh ) ,
2 cosh

s

i

n n
J D

R

P d

∞

∞

− + τ

−
α = ×

 θ θτ
× + α + θ π − θ τ α τ τ 

πτ 


                            (1) 

where  is the Legendre function of the first kind.  Here, 

toroidal coordinate α  ranges in the interval from 0 (top of the drop) to ∞ (contact line). So, this 
coordinate is related to the cylindrical coordinate r by  

sinh
cosh cos

R
r

α

α θ
=

+
,                                                                (2) 

where  θ  is the contact angle of the droplet (Figure 1). Equation (1) is a double integral, being an 
implicit function of cylindrical coordinate r, which makes formula (1) extremely difficult to use in 
calculations. A simpler from a computational point of view, but mathematically equivalent 
expression in polar coordinates was also obtained [21,22]. It allows to calculate the flux density at the 
surface of the droplet as a function of the polar angle φ explicitly (Figure 1): 

( )( ) ( )SD n n
J f

R

∞−
ϕ = ϕ ,                                                             (3) 

dt
t

t
P i 

∞

τ+−
α+

τ
πτ

π
=α

02/1 )cosh(cosh2
coscosh2)(cosh
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where 
1

3 2( ) 2( ) 2( ) 2

22

2( ) 2( )

sin (1 cos( )) (1 cos( )) (cos cos )( ) .
( ) cos cos cos cos

(1 cos( )) (1 cos( ))

d
f

π π π
−

θ π−θ π−θ π−θ

π π
ϕ

π−θ π−θ

π θ − θ+β − − θ−β β− θ β
ϕ =

π−θ ϕ− θ ϕ− β 
− θ+β + − θ−β  

 


          

(4) 

 

Figure 1. The geometry of the sessile droplet: θ is a contact angle, φ is a polar angle, ρ is a spherical segment 
radius, R is the radius of contact line, (z, r) are the cylindrical coordinates. 

Unfortunately, unlike expression (1), equations (3)-(4) are not yet known to the wider 
community and are completely ignored in the latest topical review [23].  

For the total evaporation rate, the following expression was obtained [20]: 

     [ ]
0

sin 1 cosh 2( ) ( ) 4 tanh ( )
1 cos sinh 2sW RD n n d

∞

∞

 θ + θτ
θ = π − + π − θ τ τ 

+ θ πτ 
          (5)     

where D is a diffusion coefficient of the vapor in the air, n is a vapor volume concentration outside 
the drop with the boundary conditions  at the drop air-liquid surface and far from 

the drop, R is the radius of contact line. However, as shown in [22], although the formula (5), correctly 
describes almost the entire dependence ( )W θ , where [0, )θ∈ π , it gives wrong result in the limit at 

θ π= , which can be determined by the direct calculation. 
From the point of view of application in computer simulations, this universal analytical 

expression that describes the evaporation flux density over the entire range of contact angles 0– π (0–
180 degrees), is still quite complex. It requires significant computational resources. To accelerate the 
calculations of the evaporation flux density, it is reasonable to use simplified approximate 
expressions.  

For example, there is a very good approximation for the integral evaporation flux proposed by 
Picknett and Bexon [14]: 

( ) 2 ( ) ( )sW D n n gθ πρ θ∞= − ,                                                    (6) 

where  

.175.0,01033.008878.01160.06333.000008957.0)(
;175.00,06144.009591.06366.0)(

432

32

π≤θ≤θ+θ−θ+θ+=θ

≤θ≤θ−θ+θ=θ

g

g           (7) 

This expression has a maximum error of about 0.2% and looks much more preferable for 
simulation than the exact analytical solution (5). In Section 3 of this paper, we propose a much simpler 
approximate solution in place of equations (6)-(7) and apply it to calculate the droplet evaporation 
time under different contact line motion scenarios. 

Sn n= n n∞=
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Similarly, for the evaporation flux density, instead of the exact formulas (1) or (3), approximate 
expressions can be proposed for selected narrow ranges of droplet contact angles. So, earlier an 
expression for the evaporation flux density was proposed, applicable in the case of small contact 
angles [24]: 

                
( )2

0 2( ) ( ) 1 r
J r J

R

λ θ

θ
−

 
= − 

 
, 1λ( )

2 π
θ

θ = − ,                              (8) 

where  2 2
0

( )( ) (0.27 1.30)(0.6381 0.2239( 0.25 ) )sD n n
J

R
θ θ θ π∞−

= + − − . 

Equation (8), being represented in the form of equations (3)-(4), can be rewritten as 
( )( ) ( )sD n n

J f
R

ϕ ϕ∞−
=


,                                         (9) 

where          
( )2

2 2
2

sin( ) 1 (0.27 1.30)(0.6381 0.2239( 0.25 ) )
sin

f

λ θ
ϕ

ϕ θ θ π
θ

−
 

= − + − − 
 


.                             (10) 

This expression gives a quite good description for contact angles smaller than 30 degrees (π/6). 
The graph that is represented in Figure 2 shows a comparison of the approximate expression (10) 
with the exact solution (3) for the contact angles of 1 degree and 30 degrees.   

  

(a) (b) 

Figure 2. Comparison of exact (4) and approximate (10) formulas for calculating the evaporation flux 

density of sessile drop. (a) contact angle 180
π : at the top - graphs of functions (4) and (10), bottom - 

relative error of the approximate formula in percent; (b) the same for contact angle 6
π . 
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It can be seen from the comparison that the error of the approximate expression (10) increases 
as angle φ approaches θ. Except for the region of φ angles near θ, the deviation of the approximate 
formula (10) from the exact solution (4) practically does not exceed 2%, which makes formula (10) 
suitable for describing droplets with sharp contact angles in the range approximately 0-30 degrees. 

However, the question of which simplified formulas would be appropriate to apply in other 
ranges of contact angles, for example, in the case of water drop deposited on hydrophobic substrates, 
still remains open. In Section 3 of this paper, we propose an approximate variant of exact expressions 
(3)- (4) in the whole range of contact angles [0, )θ π∈ ) that answers this question. 

2. New exact solutions for some values of contact angles 

Previously [21,22], an expression was obtained that describes the vapor concentration near an 
evaporating drop: 

1/2

1

2( )( , ) (cosh cos ) cos
2( )

sinh
2( )cosh cos

( ) ( ) cosh cosh

S
S

n n
n n

d

∞

−∞

ς=ω

− πξ
ω ξ = − ω− ξ ×

π−θ π−θ

πς
ς

 πς πξ π−θ
× − 

π−θ π−θ ς− ω 


 .                          (11) 

This expression can also be represented as: 

1/2( )( , ) (cosh cos )
2

sinh sinh
2 2 .

cosh coshcosh cos cosh cos
2 2 2 2

s
s

n n
n n

d

∞

∞

ω

−
ω ξ = − ω− ξ ×

γ

πς πς 
  ςγ γ

× − 
πς πξ πς πξ ς − ω − +

 γ γ γ γ 



               

(11a) 

Here θ−π=γ .  Integral (11a) can be represented as the sum of a finite number of terms for 

some specific contact angles [25,26].  It was shown that expression (11a) under the condition    

2 j

π
ξ = , where j=1,2,3, …                                          (12) 

can be rewritten as 

1/2

1

1 10

( , ) ( )(cosh cos )
1 1

cosh cos 2 cosh cos (2 1)

s s

k j

k

n n n n

k j k j

∞

= −

− −
=

ω ξ = − − ω− ξ ×

  × −    ω− ξ+ π ω− ξ+ − π     


          (13) 

Then, evaporation flux density is given by [21,22] 
( )cosh cos ( , ) ( , )(cosh cos )sn n Dn

J D
R R

∞−ω− ξ ∂ ω ξ ∂ψ ω ξ
= − = ω− ξ

∂ξ ∂ξ
,       (14) 

where 
1/2

1

1 10

( , ) (cosh cos )
1 1

cosh cos 2 cosh cos (2 1)

k j

k k j k j

= −

− −
=

ψ ω ξ = ω− ξ ×

  × −    ω− ξ+ π ω− ξ+ − π     
 .

 

By differentiating in the formula (13), we get 

( )sn n D
J J

R

∞−
=  ,                                                         (15)

 
where 
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( )

1
1/2

1

1 10

3/2

1 1

3
1 12

sin(0.5 )(cosh cos )
2

1 1

cosh cos 2 cosh cos (2 1)

(cosh cos )
2

sin 2 sin (2 1)

cosh cos 2 cosh cos (2 1)

k j

k

j
J

k j k j

k j k j

k j k j

−

= −

− −
=

− −

− −

π
= ω− ξ ×

  × − −    ω− ξ+ π ω− ξ+ − π     
ω− ξ

− ×

   ξ+ π ξ+ − π   × −

 ω− ξ+ π ω− ξ+ − π 





( )

1

3
0 2

k j

k

= −

=

  
 

    



        (16) 

It can be shown that the first sum in formula (16) gives identically zero (can be verified by direct 
calculation), and the terms in brackets in the second sum are equal in absolute value. With this in 
mind, the expression is greatly simplified 

             
( )

11
3/2

3
0 1 2

sin 2
(cosh cos )

cosh cos 2

k j

k

k j
J

k j

−= −

= −

 ξ+ π = ω− ξ

 ω− ξ+ π 
 .                    (17) 

Taking into account (11), we get 

              
( )

1 11
1 3/2

3
0 1 1 2

sin 0.5 2( ) (cosh cos0.5 )
cosh cos 0.5 2

k j

k

j k j
J j j

j k j

− −= −
−

= − −

 π + π = ω− π

 ω− π + π 
 .      (18) 

Thus, for any j, the evaporation flux density is given by [25] 

     
( )

1 11
1 3/2

3
0 1 1 2

sin 0.5 2( )( ) (cosh cos0.5 )
cosh cos 0.5 2

k j

s

k

j k jn n D
J j j

R
j k j

− −= −
−∞

= − −

 π + π−  = ω− π

 ω− π + π 
 .       (19) 

If k=j, the term under summation in (19) has the form 

          
( ) ( )

1 1 1

3 3
1 1 12 2

sin 0.5 2 sin 0.5

cosh cos 0.5 2 cosh cos 0.5

j j j j

j j j j

− − −

− − −

   π + π π   =

   ω− π + π ω− π   

.             (20) 

If k=0, the term under summation in (19) has the same form 

            
( ) ( )

1 1

3 3
1 12 2

sin 0.5 sin 0.5

cosh cos 0.5 cosh cos 0.5

j j

j j

− −

− −

   π π   =

   ω− π ω− π   

.                  (21) 

Taking into account (20) and (21), equation (19) can be transformed as 

      
( )

1 1
1 3/2

3
1 1 1 2

sin 0.5 2( )( ) (cosh cos0.5 )
cosh cos 0.5 2

k j

s

k

j k jn n D
J j j

R
j k j

− −=
−∞

= − −

 π + π−  = ω− π

 ω− π + π 
 .         (22) 

Expression (22) is the equivalent to (19).  
To apply expressions (19) or (22) for calculations, it is necessary to take into account the formula 

(11) and following geometric relationship [21,22]: 

                         2sincosh cos
cos cos

ξ
ω = + ξ

ϕ + ξ
.                             (23)

 To establish a relationship between the parameter j and the corresponding contact angle θ , one 
has to use the geometric relation 

                     ξ π θ= − .                                             (24) 
It means that 

           1 2 11
2 2

j

j j

− 
θ = π − = π 

 
, where j=1,2,3…                         (25) 
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Table 1 shows the first two solutions corresponding to j=1, 2, 3.  It's obvious that 

                                           lim
j→∞

θ = π .                          (26) 

First three solution of the expression (22) with j=1,2,3 are placed into Table 1. These mean that 
the general solution ( )f θ given by equation (4) can be represented as: 

                                o90
( ) 1f

θ=
ϕ = ,                                     (27) 

                           
( )

o 3
2135

3
2

1 0.25( )
2 2 cos

f
θ=

ϕ = −
+ ϕ

,                           (28) 

                ( ) ( )
3 3
2 2

o150

1( ) 1 7 4 3 cos 2 4 2 3 cos
2

f
− −

θ=

 ϕ = + + ϕ − + ϕ 
 

.              (29) 

Table 1. First three solutions for evaporation flux density J (contact angles of 90 deg, 135 deg and 150 

deg. 

j θ  J 

1 
11 90deg
2 2

π 
π − = = 
 

 ( )sn n D
J

R

∞−
=  

2 
1 31 135deg
4 4

π 
π − = = 
 

 
( )

3
23

2

( ) 1 0.25
2 2 cos

sn n D
J

R

∞

 
−  = −

 
+ ϕ 

 

3 
1 51 150deg
6 6

π 
π − = = 
 

 ( ) ( )
3 3
2 2( ) 1 7 4 3cos 2 4 2 3cos

2
sn n D

J
R

− −
∞−  = + + ϕ − + ϕ 

 

Figure 3 represents the dependences of the evaporation flux density (dimensionless) on the polar 
angle, which is given by formulas (28) and (29).  

 

Figure 3. Graphs of the functions represented by formulas (28) and (29). 

It is easy to verify by direct calculation that formula (4) gives the same curves, which confirms 
the correctness of the mathematical transformation that led to the formula (19) or the expression (22). 

3. New approximate solutions 

3.1. Total evaporation rate 

Let us consider compact approximate expression for the total evaporation rate of the form 
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( ) 4(ln 2) ( )sin
2sW D n n
θ

θ πρ ∞= −
                                      (30) 

and compare formula (30) with the very accurate approximation of Picknett and Bexon (6). For this 
purpose, one can represent equation (30) in the form (6): 

( ) 2 ( ) ( )sW D n n gθ πρ θ∞= −
  ,                                (31) 

where 

( ) 2 ln 2sin
2

g
θ

θ =
                                            (32) 

Figure 4 shows a graph of the function ( )g θ


 together with the exact solution ( )g θ . We see 

that visually the approximate solution (30) practically does not differ from the exact one. The 
maximum relative error reaches 9 percent, and the average error over the entire contact angle change 
interval, calculated by the formula 

                              0
0

0

1 ( ) ( ) 100
( )

g x g x
dx

g x

π
−

⋅
π 

                                 (33) 

does not exceed 1.5 percent (%). 

 

 
 

(a) (b) 

Figure 4. (a) approximate ( )g θ


and exact ( )g θ solutions describing evaporation rate of sessile 

droplet depending on contact angle; (b) relative error of the approximate formula (30) in percent over 
the entire range of contact angles [0, ]π  . 

Formula (30) can be recommended for estimating drop evaporation time if its contact angle 
varies over a wide range during evaporation. For example, this scenario occurs when a drop of 
aqueous solution evaporates on a hydrophobic substrate under contact line pinning conditions. 
Theoretically, equation (30) allows us to calculate the evaporation time of a sessile droplet at any 
character of dependence of the droplet radius on the contact angle during evaporation. Two extreme 
scenarios of contact line behavior are distinguished: the constant contact line radius mode (CCR) and 
the constant contact angle mode (CCA) [14]. 

The change in volume of a drop for time dt is defined by 

                               1( ) LdV W n dtθ −= − ,                            (34) 

where  Ln  is volume concentration of evaporating molecules in the liquid. The volume of the 

droplet with contact angle θ and spherical segment radius ρ (Figure 1) is determined by 
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3

3 2 coscos
3 3

V
θ

πρ θ
 

= − + 
 

,                       (35) 

Substituting equations (30) and (35) into expression (34), one can obtain the differential equation 

3
3 12 coscos 4 ( ) ln 2sin

3 3 2s L

d
D n n n

dt

θ θ
π ρ θ πρ −

∞

 
− + = − − 

 
,                (36) 

which allows to calculate the rate of drop size change under any scenario of contact line motion 
( )tθ . In particular, the condition that is satisfied in the CCR mode can be written as follows 

sin constR ρ θ= = .                             (37) 

In that case 
3

2(1 cos )
R d

dV
π θ

θ
=

+
. 

By expressing ρ  from equation (37), substituting it into (36), and performing trigonometric 

transformations, we get the evaporating time of the droplet of radius R and contact angle θ for CCR 
mode 

22

3
04ln 2( ) cos

L

s

n R d
t

n n D

θ

ξ

ξ∞

=
−  ,                                     (38) 

or 

2
2

42
2

sin ln(tan( ))
8ln 2( ) cos

L

s

n R
t

n n D

θ
π θ

θ

+

∞

 
= + 

−  
,    [0, )θ π∈                 (39) 

If we consider a drop of aqueous solution on a hydrophobic surface with an initial contact angle 
close to π, then its dimensions are conveniently characterized by the radius of the spherical segment 
and the contact angle at the initial instant of time. Then formula (39) can be conveniently rewritten as 

2 2
2

42
2

sinsin ln(tan( ))
8ln 2( ) cos

L
CCR

s

n
t

n n D

θ
π θ

θ

ρ θ +

∞

 
= + 

−  
,    [0, )θ π∈  ,   sin constρ θ = .      (40) 

Since, as follows from equation (35), the segment radius is described by the formula  
1

1 1 3 3
3 3 2 coscos

3 3
V

θ
ρ π θ

−
−  

= − + 
 

, 

then expression (40) can be rewritten as 
22 33

2
3

2 3
2

42
2

sinsin 2 cosln(tan( )) cos
cos 3 38 ln 2( )

L
CCR

s

n V
t

n n D

θ
π θ

θ

θ θ
θ

π

−

+

∞

   
= + − +  

−   
    .      (40a) 

Similarly, for the evaporation time of a drop in the CCA mode one can obtain 

12 33

2
3

3

0 2

3 2 coscos
3 38 ln 2 ( )sin

L
CCA

s

V n
t

D n n θ

θ
θ

π

 
= − + 

−  
,      constθ = .                   (41) 

Let's look at a practical example [27]: we have the water droplet with initial volume 1 μL , and 
initial θ = 110 deg, vapor diffusion coefficient, D = 25.41 × 10−6 m2/s, saturated vapor concentration ns 

= 0.0175 kg/m3, relative humidity (H)= 0.29. Calculations according to formulas (40a) and (40) give 
the following values: 860CCRt s=  and  974CCAt s= .  Figure 5 shows the graphs of the evaporation 

time of a drop with the indicated parameters as a function of the initial volume parameter in both 
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modes. We see that at equal initial volumes and initial contact angles, evaporation in the CCR mode 
is faster than in the CCA mode, as it should be, based on the general ideas about evaporation. 

 
Figure 5. Evaporation time of a drop with an initial contact angle of 110 deg in different evaporation 

modes as a function of 
2
3V . The CCR mode was calculated by equation (40a), and CCA mode was 

calculated by equation (41).    

The authors of the paper [27] calculated the evaporation time in this case on the basis of the 
Popov model [20], i.e., using the equation (5). They obtained the following values: 870CCRt s=  and  

954CCAt s= .   We see that these values are insignificantly different from the values obtained by the 

formulas (40a) and (41). At the same time, as indicated in the paper [26], the experiment that was 
made for such a drop drying in the CCA mode gives the evaporation time of 1009 s. We can conclude 
that, with respect to the real experiment, the simplified formula (30) gives approximately the same 
error as the complex expression (5). 

3.1. Evaporation flux density for acute and obtuse contact angles 

The previously derived new expression for the evaporation flux density gives new possibilities 
for finding approximate relations. Let us consider the expression for the evaporation flux density in 
bipolar coordinates [21,22]: 

3/2
2

2

sinh
( ) 2( )( ) (cosh cos( ))

2( ) cosh coshcosh
2( )

SD n n d
J

R

∞

∞

ω

πς

π − ςπ − θ
ω = ω − π − θ

πςπ − θ ς − ω
π − θ


 ,              (42)  

where  cosh ω is determined by the equation (23). 
Obviously, for obtuse contact angles, the value of ( )π − θ  is small. In this case, the argument of 

hyperbolic functions containing ( )π − θ  in the denominator under the integral will be large, so that 

tanh 1
2( )

πς
→

π − θ
. Consequently, the asymptotics of expression (42) is determined by 1cosh

2( )
− πω

π − θ

. Therefore, taking into account equation (23), the asymptotic expression can be written as follows  
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1 ( )cosh

2( )( )
cos cos

J

− πω ϕ

π − θ
ϕ ∝

ϕ − θ
 ,                            (43) 

where 

                          1 cos cos( ) arccosh
cos cos

 − ϕ θ
ω ϕ =  ϕ − θ 

.                          (44)

 Taking into account (23), one can obtain 

                             sin sinsinh
cos cos

ϕ θ
ω =

ϕ − θ
.                                (45)

 Performing the transformations, we have 

              2( ) 2( )( ) 1 1 cos( ) 1 1 cos( )cosh
2( ) 2 cos cos 2 cos cos

π π

π−θ π−θ   πω ϕ − ϕ + θ − ϕ − θ
= +   π − θ ϕ − θ ϕ − θ   

 .       (46) 

Substituting equation (46) into (43), one can obtain 

                   [ ]

[ ] [ ]

1
2( )

2( ) 2( )

2 cos cos
( )

1 cos( ) 1 cos( )
J

π
−

π−θ

π π

π−θ π−θ

ϕ − θ
ϕ ∝

− ϕ + θ + − ϕ − θ

 ,               (47) 

Comparing formula (43) with expressions (3)-(4), taking into account (47), let us write an 
approximate expression for function (4) in the following form 

[ ]

[ ] [ ]

13 2( )

2
2 2( ) 2( )

cos cos ( )sin( )
( ) sin 1 cos( ) 1 cos( )

P
f

π
−

π−θ

π πθ
π−θ π−θ

ϕ− θ × θπ θ
ϕ =

π−θ − ϕ+θ + − ϕ−θ

 ,              (48) 

where  ( )P θ is correction factor that, in general, depends on the contact angle. 

Our studies have shown that, in the first approximation, to obtain a relatively good description 
of the evaporation flux density in the whole range of contact angles [0, )θ π∈ using formula (48), it 

is convenient to choose a correction factor in the form of a constant 

1.166P ≈ .                                      (49)               
Taking into account (49), expression (48) can be rewritten as 

                    [ ]

[ ] [ ]

13 2( )

2
2 2( ) 2( )

cos cos1.166 sin( )
( ) sin 1 cos( ) 1 cos( )

f

π
−

π−θ

π πθ
π−θ π−θ

ϕ− θπ θ
ϕ =

π−θ − ϕ+θ + − ϕ−θ

 .   (50) 

Evaporation flux density can be calculated by a formula similar to equation (3): 

       ( )( ) ( )SD n n
J f

R

∞−
ϕ = ϕ

 .                          (51) 

Figure 6 represents the calculation results of the dimensionless evaporation flux density, 
determined by the approximate formula (50), together with the exact solution, determined by 
expression (4), for some acute and obtuse contact angles of a sessile droplet. 
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(a) (b) 

Figure 6. Comparison of exact (4) and approximate (50) expressions for calculating the evaporation 

flux density of sessile drop: (a)  graphs of functions (4) and (50) for the acute contact angles 180
π (top) 

and 6
π (bottom); (b) the same for the obtuse contact angles 2

3
π (top) and 170

180
π (bottom). 

In general, Figure 6 shows that the approximate formula (50) can adequately describe the 
behavior of the evaporation flux density over the entire range of contact angles [0, )θ π∈  , more 

accurately for acute angles than for obtuse angles.  A more detailed approach requires breaking the 
entire range of contact angles into smaller sub-intervals and finding correction functions ( )P θ for 

each sub-interval, possibly in a polynomial representation. This procedure is beyond the scope of this 
publication. 

4. Discussion 

The arsenal of formulas for calculating the slow evaporation of an axisymmetric drop of capillary 
dimensions deposited on a flat solid surface is reviewed.  Such characteristics as vapor density, 
evaporation flux density, total evaporation rate are considered. Exact solutions obtained in the 
framework of the Maxwellian model, in which the evaporation process of the drop is limited by vapor 
diffusion from the drop surface to the surrounding air, are presented.  

Along with the long-known solutions published by Popov et al. [19,20] during the last two 
decades, the existence of alternative expression to describe evaporation flux density is pointed out. 
This alternative equation depends explicitly on the polar angle and is a one-dimensional integral (3)-
(4), while the corresponding mathematical equivalent expression of Popov et al. (1) is a double 
integral with implicit dependence on the cylindrical coordinate. We draw the attention of researchers 
to the paper [22], which, apparently, remained unknown to the authors of the newest review of 
Wilson and D’Ambrosio [23] on drop evaporation. 

New complex solution (22) was derived for the evaporation flux density of a small liquid droplet 
having the shape of an axisymmetric spherical segment deposited on a horizontal substrate for the 
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set of discrete contact angles 11
2 j

 
θ = π − 

 
, where j=1,2,3…  As an example, very simple exact 

expressions (28) and (29) were obtained explicitly for the evaporation flux density for droplets with 

contact angles 
3 135
4
π

= deg and 5 150
6
π

=  deg that do not contain integral function. They can also 

be used as approximate expressions for a narrow range of contact angles around the specified values. 
Also, new approximate solutions are presented for the first time: equation (30) - total 

evaporation rate and expression (50) - mass loss per unit surface area per unit time in the whole range 
of contact angles [0, )θ π∈ ). These expressions are described through elementary functions and do 

not contain integrals. Thus, they can be used in modeling without requiring significant computational 
resources.  

Expression (50), taking into account (48), contains significant potential for successive 
improvements in accuracy through the breakdown of the contact angle determination domain into 
intervals and the introduction of individual correction factors.  That may be a further task to advance 
work in this direction. 
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