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Abstract: Evaporating liquid sessile drop deposited on horizontal surface is an important object of
applications (printing technologies, electronics, sensorics, medical diagnostics, hydrophobic
coatings, etc.) and theoretical investigations (microfluidics, self-assembly of nanoparticle,
crystallization of the solute, etc.). The arsenal of formulas for calculating the slow evaporation of an
axisymmetric drop of capillary dimensions deposited on a flat solid surface is reviewed. Such
characteristics as vapor density, evaporation flux density, total evaporation rate are considered.
Exact solutions obtained in the framework of the Maxwellian model, in which the evaporation
process of the drop is limited by vapor diffusion from the drop surface to the surrounding air, are
presented. The summary covers both well-known results obtained during the last decades and new
results published by us in the last few years, but practically unknown to the wide scientific
community. The newest formulas, not yet published in refereed publications, concerning exact
solutions for a number of specific contact angles are also presented. In addition, new approximate
solutions are presented for the first time (total evaporation rate and mass loss per unit surface area
per unit time in the whole range of contact angles &€ [0, 7)), which can be used in modeling

without requiring significant computational resources.

Keywords: sessile liquid droplet; evaporation rate; diffusion, Laplace equation, analytical solution,
flux density, mass loss per unit surface area per unit time

1. Introduction

Evaporating liquid sessile drop is an important object both for theoretical investigations
(evaporation dynamics, microfluidics, self-organization of solute, etc.) and wide variety of
applications (printing technologies for functional coatings, medical diagnostics, food science,
geophysics, etc.) [1-10].

The model of diffusion-limited quasi-stationary evaporation of the spherical droplet in quiescent
air environment was originally proposed by J.C. Maxwell [11]. He calculated the diffusive drift of
vapor from the surface of the evaporating droplet into the air, assuming that the vapor concentration
at the surface of the droplet determines by saturated vapor density. This is valid for a drop radius
much larger than the mean free path length of vapor molecules in the air. For example, this is not true
for droplets smaller than 100 nm in the normal conditions.

Within the framework of the Maxwellian model (quasi-stationary evaporation), the diffusion
equation practically turns into the Laplace equation for the vapor concentration, V’n =0, with the
following initial boundary conditions: on the drop surface n(S)=n,. Outside the drop the vapor

concentration is determined by the asymptotic value of the vapor concentration in the atmosphere
(for aqueous solution, it is the relative humidity of the air, n(e0)=n_).

It is considered that the liquid-gas transition layer is infinitely thin compared to the droplet size.
Moreover, for correctness of the Maxwellian model it is necessary to assume that density of air is
much greater than vapor density, so that diffusion of vapor is determined by the vapor diffusion

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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coefficient in the air. In particular, this requirement means that we must consider liquid at a
temperature much smaller than its boiling point at a given air pressure.

The smallness of the convective Stefan flux also has to be satisfied. Stephan showed for the first
time [12] that near the surface of an evaporating drop there is an air current directed away from the
surface, because in order to maintain the constancy of the total pressure in the medium under
conditions of vapor production by the liquid surface, along with the gradient of the vapor density
there must exist an equal and opposite in direction gradient of the partial pressure of the other
components of the air.

Fuchs showed [13] that the relative contribution of the Stefan flux to the evaporation process is

given by factor %, where p is the pressure of the air, p and p_ are the saturated vapor
p

pressure and the vapor pressure in the air far from the droplet, respectively. That factor for a drop
of water under normal conditions does not exceed 1-2 percents (%). This is one of essential limitations
of the Maxwellian model accuracy that indicates acceptable correctness of approximate solutions
with respect to exact solutions of the diffusion problem. There are also other error factors: inaccurate
determination of such parameters as drop surface temperature, vapor diffusion coefficient in air at a
given temperature, saturated vapor pressure, etc. The capillary surface oscillations, air movement
near the drop surface also are the factors that introduce uncertainties. Therefore, the approximate
solutions whose accuracy is of the order of 5 percents can be considered acceptable.

In the following, we consider the small drop deposited on a flat solid horizontal substrate (so-
called sessile drop). It is easy to derive that the equilibrium shape of a sessile drop of a slowly
evaporating liquid, the size of which is much smaller than the capillary constant (Bond number,
Bo<<1), approximately corresponds to a spherical segment with the given contact (wetting) angle.
Sessile water droplets with a height of less than 1 mm satisfy this criterion quite well.

The Maxwellian model was apparently first applied to such sessile drop in the paper of Picknett
and Bexon [14]. All solutions described below in this paper are given within the framework of this
approach.

Exact analytical solutions have been obtained to describe the total evaporation rate (mass loss
per unit time) and evaporation flux density (mass loss per unit surface area per unit time) of a small
sessile liquid droplet having the shape of an axisymmetric spherical segment deposited on a
horizontal substrate [15-24].

There are currently two alternative expressions for the droplet evaporation flux density that are
mathematically equivalent. First, the following solution was proposed [19,20]

n,—n

J()y=D R =X (1)

T cosh 0t

{Slgtﬁ(mshmcose)” tanh [(~6)z] P, ., (cosh oordr}

o coshmt

cost g; is the Legendre function of the first kind. Here,
sht +cosha)

where P, ..(cosha) = 2 cosh Tc‘cr
T 0 \/ 2(co

toroidal coordinate QU ranges in the interval from 0 (top of the drop) to  (contact line). So, this
coordinate is related to the cylindrical coordinate r by
Rsinh o , )
cosha +cos @

where @ is the contact angle of the droplet (Figure 1). Equation (1) is a double integral, being an
implicit function of cylindrical coordinate r, which makes formula (1) extremely difficult to use in
calculations. A simpler from a computational point of view, but mathematically equivalent
expression in polar coordinates was also obtained [21,22]. It allows to calculate the flux density at the
surface of the droplet as a function of the polar angle ¢ explicitly (Figure 1):

J(w)=@f«m, 3)
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-
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Figure 1. The geometry of the sessile droplet: 0 is a contact angle, ¢ is a polar angle, p is a spherical segment
radius, R is the radius of contact line, (z, r) are the cylindrical coordinates.

Unfortunately, unlike expression (1), equations (3)-(4) are not yet known to the wider
community and are completely ignored in the latest topical review [23].
For the total evaporation rate, the following expression was obtained [20]:

sin© +4.[1+c0sh29‘c

- )
Troosd tanh[(n—0)t]dt

W(0)=nRD(n, — nw){

o sinh2mt

where D is a diffusion coefficient of the vapor in the air, 7 is a vapor volume concentration outside
the drop with the boundary conditions 7 = n; at the drop air-liquid surface and n = n_ far from

the drop, R is the radius of contact line. However, as shown in [22], although the formula (5), correctly
describes almost the entire dependence W (0), where 0¢ [0,T), it gives wrong result in the limit at
6 = 7, which can be determined by the direct calculation.

From the point of view of application in computer simulations, this universal analytical
expression that describes the evaporation flux density over the entire range of contact angles 0— rt (0-
180 degrees), is still quite complex. It requires significant computational resources. To accelerate the
calculations of the evaporation flux density, it is reasonable to use simplified approximate

expressions.
For example, there is a very good approximation for the integral evaporation flux proposed by
Picknett and Bexon [14]:
W(6)=2apD(n, —n.)g(6) (6)
where

2(8) =0.63660+0.095910° —0.061446°, 0<6<0.175;

(7
2(8) =0.00008957+0.63330+0.11606” —0.088786° +0.010330", 0.175<0<m.

This expression has a maximum error of about 0.2% and looks much more preferable for
simulation than the exact analytical solution (5). In Section 3 of this paper, we propose a much simpler
approximate solution in place of equations (6)-(7) and apply it to calculate the droplet evaporation
time under different contact line motion scenarios.
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Similarly, for the evaporation flux density, instead of the exact formulas (1) or (3), approximate
expressions can be proposed for selected narrow ranges of droplet contact angles. So, earlier an
expression for the evaporation flux density was proposed, applicable in the case of small contact
angles [24]:

2

P2 Y o=l 8 ®
J(r)=J0(9)(1_F] > ()—E—;a

where J (0)= D(ngT—nm) (0.276* +1.30)(0.6381-0.2239(8 - 0.257)°) -
Equation (8), being represented in the form of equations (3)-(4), can be rewritten as
D(n,—n) -
Ty =2 fp), ©)

where

2 \AO)
(@)= (1 L Zj (0.276% +1.30)(0.6381-0.2239(8—0.257)?) - (10)
sin

This expression gives a quite good description for contact angles smaller than 30 degrees (71/6).
The graph that is represented in Figure 2 shows a comparison of the approximate expression (10)
with the exact solution (3) for the contact angles of 1degree and 30 degrees.
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Figure 2. Comparison of exact (4) and approximate (10) formulas for calculating the evaporation flux

density of sessile drop. (a) contact angle % : at the top - graphs of functions (4) and (10), bottom -

relative error of the approximate formula in percent; (b) the same for contact angle % .
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It can be seen from the comparison that the error of the approximate expression (10) increases
as angle ¢ approaches 0. Except for the region of ¢ angles near 0, the deviation of the approximate
formula (10) from the exact solution (4) practically does not exceed 2%, which makes formula (10)
suitable for describing droplets with sharp contact angles in the range approximately 0-30 degrees.

However, the question of which simplified formulas would be appropriate to apply in other
ranges of contact angles, for example, in the case of water drop deposited on hydrophobic substrates,
still remains open. In Section 3 of this paper, we propose an approximate variant of exact expressions
(3)- (4) in the whole range of contact angles @€ [0, x)) that answers this question.

2. New exact solutions for some values of contact angles

Previously [21,22], an expression was obtained that describes the vapor concentration near an
evaporating drop:

_ 2Ans—n,) 12 LS
0D =~ ooy s T
(11)
o sinh 89

XI( n&] 2An—6)
(n— @ n-6) Jeoshg—coshm

This expression can also be represented as:

n(w,&) =n, —g(cosh ®—cos&)"* x
2y
- sinh 72 sinh %
X_[ 2y _ 2y dg
o| cosh ™5 —cos i3 cosh ™ 4 cos ™2 \/COSh g—cosho (ITa)
2y 2y 2y 2y

Here y=mn—0. Integral (11a) can be represented as the sum of a finite number of terms for

some specific contact angles [25,26]. It was shown that expression (11a) under the condition

gzzlj,wherej=1,2,3, (12)

can be rewritten as

1/2

n(®,&)=n, —(n,—n_)(coshw—cos&)"* x

in : | ) 1 (13)
k=0 \/coshw—cos[§+2kﬂ:j"1] \/coshw—cos[§+(2k—l)nj"]

Then, evaporation flux density is given by [21,22]
coshw—cos& dn(®w,§) _ (n,—n_)D (cosh®—cosE) y(0,8) ’ (14)
R 9 R 9

J=-D

where
123

W(,8) = (coshw—cos&) " x

& 1 1 .
X Z —1 B —1
k=0 \/ cosh w—cos[é';+2krg ] \/ cosh ®—cos [§+(2k—1)71:] ]
By differentiating in the formula (13), we get

J_L_£)2~ (15)

b

where
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J =(cosh w—cos&)" MX

2
inl 1 B 1 _
k=0 \/ cosh m—cos [& + 2k :| \/ cosh m—cos [& +Qk-Dm! :l (16)
(coshw—cos&)”” «
2
5 sin[ &+ 2k | sin[ €+ (2k - ]

= (cosh —cos| &+ 2kt ])5 (COSh o~—cos[ §+(2k - ])E

It can be shown that the first sum in formula (16) gives identically zero (can be verified by direct
calculation), and the terms in brackets in the second sum are equal in absolute value. With this in
mind, the expression is greatly simplified

J = (cosh w—cos )" kzzjjl sin [é +2ky” :I T (17)

“ (cosh —cos[ & +2km ' ])?

Taking into account (11), we get

sin [057971 +2kTg.71:| ) (1 8)

k=j1
J(j)=(coshw—cos0.5m")** Zj: 3
= (cosh—cos[ 0.5 +2km ™ )2

Thus, for any j, the evaporation flux density is given by [25]

3

_ k=j1 . 1 1
J(j):W(COSh(B—COSO.STﬁ_I)” Zj: sin[ 0.5~ + 24y | ) (19)
“ (cosh —cos[ 0.5 +2km " ])?

If k=j, the term under summation in (19) has the form

sinf 0.5m™" +2,jm" | _ sin[ 0.5m™" ] ) (20)

3 3
(cosh o—cos[ 0.5m" +2,m" ])5 (cosh ®—Cos [0.5nj'lj)5
If k=0, the term under summation in (19) has the same form
sin[ 0.5m" | B sin[ 0.5 | (21)
3 e
(cosh - cos[O.Snj"1 ])5 (cosh W—cos [O.Snj'1 ])5

Taking into account (20) and (21), equation (19) can be transformed as

k= sin[ 0.5 +2k1 " | . (22)

3
2

J(j)= (n,=n.)D _1:"“ )D (cosh®—cos0.5m )"
= (cosh w—cos| 0.5 +2kmy ™! ])

Expression (22) is the equivalent to (19).

To apply expressions (19) or (22) for calculations, it is necessary to take into account the formula
(11) and following geometric relationship [21,22]:
sin* &

cos @+ cos

+cosé& - (23)

coshm=

To establish a relationship between the parameter j and the corresponding contact angle 6, one
has to use the geometric relation
E=r-6. (24)
It means that

ezn(l—i_]:nzj_l,Wherej=1,2,3... (25)

2j 2j
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Table 1 shows the first two solutions corresponding to j=1, 2, 3. It's obvious that

limO=r. (26)

joe

First three solution of the expression (22) with j=1,2,3 are placed into Table 1. These mean that
the general solution f'(0) given by equation (4) can be represented as:

oo (@ =15 (27)
1 0.25 28)
f: o ((p) == 3 > (
6=135 \/E (%+\/ECOS([))2
1 -2 o
f9=1500((P)=5(1+(7+4\/§COS(P) —2(4+2\/§COS(p) j (29)
Table 1. First three solutions for evaporation flux density J (contact angles of 90 deg, 135 deg and 150
deg.
j 0 7
1 n(l—lJZE:QOdeg J=(ns —-n_)D
2) 2 R
? n(l_%j:%n_usdeg gln=n)Di 1 025

R V2 (%+ 2cos<p)%

—n)D S| +
%zlSOdeg J:%(l+(7+4«/§comp) —2(4+2\/§COS(|)) )

w
a
7\
—_
|
| =
Ne—
1l

Figure 3 represents the dependences of the evaporation flux density (dimensionless) on the polar
angle, which is given by formulas (28) and (29).

N6

P

Figure 3. Graphs of the functions represented by formulas (28) and (29).

It is easy to verify by direct calculation that formula (4) gives the same curves, which confirms
the correctness of the mathematical transformation that led to the formula (19) or the expression (22).

3. New approximate solutions

3.1. Total evaporation rate

Let us consider compact approximate expression for the total evaporation rate of the form
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W () = 4(In 2)mpD(n, —nm)sing (30)

and compare formula (30) with the very accurate approximation of Picknett and Bexon (6). For this
purpose, one can represent equation (30) in the form (6):

W (6) =27pD(n, —n_)g(6)., 31)
where

g2(0)= 2ln2sin§ (32)

Figure 4 shows a graph of the function g(6) together with the exact solution g(@). We see
that visually the approximate solution (30) practically does not differ from the exact one. The
maximum relative error reaches 9 percent, and the average error over the entire contact angle change
interval, calculated by the formula

my o og)
does not exceed 1.5 percent (%).
= ' ' T e@-20 o '
B X100%
ol ; 1 5
£(9)
g(8)
0.35F H i
% Ii ; bid
o s J ’
(a) (b)

Figure 4. (a) approximate g(€) and exact g(@) solutions describing evaporation rate of sessile

droplet depending on contact angle; (b) relative error of the approximate formula (30) in percent over
the entire range of contact angles [0, 7] .

Formula (30) can be recommended for estimating drop evaporation time if its contact angle
varies over a wide range during evaporation. For example, this scenario occurs when a drop of
aqueous solution evaporates on a hydrophobic substrate under contact line pinning conditions.
Theoretically, equation (30) allows us to calculate the evaporation time of a sessile droplet at any
character of dependence of the droplet radius on the contact angle during evaporation. Two extreme
scenarios of contact line behavior are distinguished: the constant contact line radius mode (CCR) and
the constant contact angle mode (CCA) [14].

The change in volume of a drop for time dt is defined by

av =-w(@)n,”'dt, (34)

where 7, is volume concentration of evaporating molecules in the liquid. The volume of the

droplet with contact angle 0 and spherical segment radius p (Figure 1) is determined by
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V =np’ [%—cosﬁ+coz 9]9 (35)

Substituting equations (30) and (35) into expression (34), one can obtain the differential equation

3
7[%,03 [% —cos@+ COZ 0] =-4mpD(n,—n_)n,” In2 sing 5 (36)

which allows to calculate the rate of drop size change under any scenario of contact line motion
6(t) . In particular, the condition that is satisfied in the CCR mode can be written as follows

R = psin@ = const . (37)
In that case
TR'do
T (+cosh)
By expressing p from equation (37), substituting it into (36), and performing trigonometric

transformations, we get the evaporating time of the droplet of radius R and contact angle 6 for CCR

mode
%
t= l’lLR2 dé , (3 8)
4In2(n,—n_)Dy cos’ &

or

n, R? sin ¢

t= L 2 tIn(tan(Z2)) |, 0€[0, 1) (39)
81n2(ns—nw)DLosz§ n(tan®s ))}

If we consider a drop of aqueous solution on a hydrophobic surface with an initial contact angle
close to 7, then its dimensions are conveniently characterized by the radius of the spherical segment
and the contact angle at the initial instant of time. Then formula (39) can be conveniently rewritten as

2 1.2 1 O
n,p" sin” @ sin§ o
P L) 2 4n(tan(22)) |,  @€[0, 7) , sin @ = const . (40)
cex 81n2(ns—nm)DLosz‘§ n(tan(*5 ))} P

Since, as follows from equation (35), the segment radius is described by the formula

1
1 1

> (2 cos’@) 3
p=V3r 3 ——cosf+ ,
3 3
then expression (40) can be rewritten as

gin? né 3 -3
lecr = ;nLV sin” 6 szz +1n(tan(%6)) (E—COSH+ cos QJ . (408.)
87° In2(n, —n_)D| c0s"§ 3 3

Similarly, for the evaporation time of a drop in the CCA mode one can obtain

tCCA

; PN
- W [2_c059+005 9], 6= const. (41)
87 In2D(n, —n,)sin 4\ 3 3

Let's look at a practical example [27]: we have the water droplet with initial volume 1 uL , and
initial 6 =110 deg, vapor diffusion coefficient, D = 25.41 x 106 m?/s, saturated vapor concentration s
= 0.0175 kg/m3, relative humidity (H)= 0.29. Calculations according to formulas (40a) and (40) give
the following values: ¢.., =860s and ¢..,=974s. Figure5shows the graphs of the evaporation

time of a drop with the indicated parameters as a function of the initial volume parameter in both
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modes. We see that at equal initial volumes and initial contact angles, evaporation in the CCR mode
is faster than in the CCA mode, as it should be, based on the general ideas about evaporation.

Sx 1 .
Ilf'(li ) 8
410°
rcc.EJ s
x10°F
10
1x10°F 4
G | | | |
0 1 2 3 4 5

v, ul

Figure 5. Evaporation time of a drop with an initial contact angle of 110 deg in different evaporation

2
modes as a function of V. The CCR mode was calculated by equation (40a), and CCA mode was
calculated by equation (41).

The authors of the paper [27] calculated the evaporation time in this case on the basis of the
=870s and

tocy =954s. We see that these values are insignificantly different from the values obtained by the

Popov model [20], i.e., using the equation (5). They obtained the following values: 7.,

formulas (40a) and (41). At the same time, as indicated in the paper [26], the experiment that was
made for such a drop drying in the CCA mode gives the evaporation time of 1009 s. We can conclude
that, with respect to the real experiment, the simplified formula (30) gives approximately the same
error as the complex expression (5).

3.1. Evaporation flux density for acute and obtuse contact angles

The previously derived new expression for the evaporation flux density gives new possibilities
for finding approximate relations. Let us consider the expression for the evaporation flux density in
bipolar coordinates [21,22]:

nD . sinh LS J (42)
J () =(ns—_:1°')(cosh (D—COS(Tt—G))mJ‘ 2(m—0) G ,
2(n-0)'R ocosh? s \Jeosh g—cosh m
2(m—0)

where cosh wis determined by the equation (23).
Obviously, for obtuse contact angles, the value of (1—) is small. In this case, the argument of

hyperbolic functions containing (n—6) in the denominator under the integral will be large, so that

fanh—2 1. Consequently, the asymptotics of expression (42) is determined by ¢osh™ _To
2(n—0) 2(n—0)

. Therefore, taking into account equation (23), the asymptotic expression can be written as follows
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cosh™ Znu)((pg
J(@) o ——2F=9) (43)
cos@—cos0

where

1—cos@cos 9] (44)

(@) =arc cosh{
cosP—cosH

Taking into account (23), one can obtain

sinh o= sin@sin® (45)
cos@—cos0

Performing the transformations, we have

cosh To(Q) _ 1| 1-cos(+8) |26 + 1] 1-cos(@—8) |26 (46)
2(mr—0) 2| cos@—cosHO 2| cos@—cosHO
Substituting equation (46) into (43), one can obtain
_n
J(g)ee 2[cos @ —cos 0]2-0) , (47)

[1-cos(+6)]2x-9 +[1-cos(g—8)2x-o

Comparing formula (43) with expressions (3)-(4), taking into account (47), let us write an
approximate expression for function (4) in the following form

- Ttsin’ O cos p—cos 6 2w X P(6)

Flp= 0 loosemend ., (48)
(=6)"SI% 11 _ cos(¢-+ ) [0 +[1—cos(o—8) [0

where P(0)is correction factor that, in general, depends on the contact angle.

Our studies have shown that, in the first approximation, to obtain a relatively good description
of the evaporation flux density in the whole range of contact angles @< [0, ) using formula (48), it

is convenient to choose a correction factor in the form of a constant
P=~1.166. (49)
Taking into account (49), expression (48) can be rewritten as

Fo)= 1.166 msin® 0 [c:OS(p—cose]ﬁ_l . (50)

- 2o T n
(m—6)"sin3 [1-cos(@+6)]2@0) +[1—cos(—0) |20
Evaporation flux density can be calculated by a formula similar to equation (3):
Mf((p) . (51)
R
Figure 6 represents the calculation results of the dimensionless evaporation flux density,

determined by the approximate formula (50), together with the exact solution, determined by
expression (4), for some acute and obtuse contact angles of a sessile droplet.

J(@)=

d0i:10.20944/preprints202308.1274.v1
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Figure 6. Comparison of exact (4) and approximate (50) expressions for calculating the evaporation
flux density of sessile drop: (a) graphs of functions (4) and (50) for the acute contact angles 155 (top)

and % (bottom); (b) the same for the obtuse contact angles 2—3” (top) and % (bottom).

In general, Figure 6 shows that the approximate formula (50) can adequately describe the
behavior of the evaporation flux density over the entire range of contact angles @€ [0, 7) , more
accurately for acute angles than for obtuse angles. A more detailed approach requires breaking the
entire range of contact angles into smaller sub-intervals and finding correction functions P(0)for

each sub-interval, possibly in a polynomial representation. This procedure is beyond the scope of this
publication.

4. Discussion

The arsenal of formulas for calculating the slow evaporation of an axisymmetric drop of capillary
dimensions deposited on a flat solid surface is reviewed. Such characteristics as vapor density,
evaporation flux density, total evaporation rate are considered. Exact solutions obtained in the
framework of the Maxwellian model, in which the evaporation process of the drop is limited by vapor
diffusion from the drop surface to the surrounding air, are presented.

Along with the long-known solutions published by Popov et al. [19,20] during the last two
decades, the existence of alternative expression to describe evaporation flux density is pointed out.
This alternative equation depends explicitly on the polar angle and is a one-dimensional integral (3)-
(4), while the corresponding mathematical equivalent expression of Popov et al. (1) is a double
integral with implicit dependence on the cylindrical coordinate. We draw the attention of researchers
to the paper [22], which, apparently, remained unknown to the authors of the newest review of
Wilson and D’ Ambrosio [23] on drop evaporation.

New complex solution (22) was derived for the evaporation flux density of a small liquid droplet
having the shape of an axisymmetric spherical segment deposited on a horizontal substrate for the
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expressions (28) and (29) were obtained explicitly for the evaporation flux density for droplets with

set of discrete contact angles 9= n(l— 1 j, where j=1,2,3... As an example, very simple exact

contact angles ?%c =135deg and S?TC =150 deg that do not contain integral function. They can also

be used as approximate expressions for a narrow range of contact angles around the specified values.

Also, new approximate solutions are presented for the first time: equation (30) - total
evaporation rate and expression (50) - mass loss per unit surface area per unit time in the whole range
of contact angles @€ [0, 7)). These expressions are described through elementary functions and do

not contain integrals. Thus, they can be used in modeling without requiring significant computational
resources.

Expression (50), taking into account (48), contains significant potential for successive
improvements in accuracy through the breakdown of the contact angle determination domain into
intervals and the introduction of individual correction factors. That may be a further task to advance
work in this direction.
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