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Article

An Algebraic Non-Equilibrium Turbulence Model of
the High Reynolds Number Transition Region

Nils T. Basse 1

1 Independent Scientist, Trubadurens väg 8, 423 41 Torslanda, Sweden; nils.basse@npb.dk

Abstract: We present a mixing length based algebraic turbulence model calibrated to pipe flow; the
main purpose of the model is to capture the increasing turbulence production-to-dissipation ratio
observed in connection with the high Reynolds number transition region. The model includes the
mixing length description by Gersten and Herwig which takes the observed variation of the von
Kármán number with Reynolds number into account. Pipe wall roughness effects are included in
the model. Results are presented for area-averaged (integral) quantities which can be used both as
a self-contained model and as initial inlet boundary conditions for computational fluid dynamics
simulations.

Keywords: algebraic turbulence model; non-equilibrium flow; mixing length; high Reynolds number
transition region

1. Introduction

The impetus for this paper came from an invited presentation on boundary conditions
for turbulence modelling (Basse, 2023a). Based on an observed variation of the turbulence
production-to-dissipation ratio with Reynolds number, a corresponding variation of the turbulence
model constant Cµ was discussed. Previously, Princeton Superpipe measurements (Hultmark et al.,
2013; Smits, 2023) of streamwise mean and fluctuating velocities have been analysed in detail (Basse,
2021a; Basse, 2021b).

We present a new algebraic (zero-equation) turbulence model based on the Prandtl mixing length
concept (Prandtl, 1925; Prandtl, 1926) to improve our understanding of the observed high Reynolds
number transition region. The model can be used both standalone and to provide initialisation of inlet
boundary conditions for computational fluid dynamics (CFD) simulations (Versteeg & Malalasekera,
2007; Greenshields & Weller 2022). Our approach is similar to the "LIKE" algorithm in (Rodriguez,
2019), where the letters in the abbreviation represent the integral turbulent Length scale, turbulence
Intensity, turbulent Kinetic energy and turbulent dissipation rate ε (E).

The paper is organised as follows: In Section 2, we summarise previous relevant findings, followed
by a model overview in Section 3. Model details can be found in the Supplementary Information (SI)
document (Basse, 2023b). Results from our new model are provided in Section 4 and discussed in
Section 5. We conclude and propose future research directions in Section 6.

2. The high Reynolds number transition region

In this section we summarise earlier findings which prompted this study.
We begin by defining the friction Reynolds number:

Reτ =
uτδ

νkin
, (1)

where uτ is the friction velocity, δ is the boundary layer thickness (pipe radius R for pipe flow) and
νkin is the kinematic viscosity.
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The normalised mean velocity U is given by the log-law (Kármán, 1930; Basse, 2021a):

Ug,mean(z)

uτ
=

1
κg

log(z+) + Ag,mean, (2)

where the subscript "g" indicates "global", Ag,mean = 1.01 and the global von Kármán number κg is
a function of Reτ (Basse, 2023b); z is the distance from the wall and z+ = zuτ/νkin is the normalised
distance from the wall. Note that z/δ = z+/Reτ .

We use an equation for the square of the normalised fluctuating velocity u including the viscous
term V as formulated in (Perry et al., 1986):

u2
g,fluc(z)

u2
τ

= Bg,fluc − Ag,fluc log(z/δ) + V(z+) (3)

= Bg,fluc − Ag,fluc log(z/δ)− Cg,fluc(z
+)−1/2 (4)

= Bg,fluc − Ag,fluc log(z/δ)−
Cg,fluc√

Reτ

√

δ

z
, (5)

where the subscript "fluc" indicates "fluctuating". Overbar is time averaging; Ag,fluc, Bg,fluc and Cg,fluc
are functions of Reτ (Basse, 2021b), see the left-hand plot in Figure 1. Note that we show Cg,fluc/

√
Reτ

instead of Cg,fluc. These functions are assumed to be identical for smooth and rough pipe flow.
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Figure 1. Left-hand plot: Functions for the square of the normalised fluctuating velocity as a function of
friction Reynolds number, right-hand plot: Area-averaged (AA) turbulence production-to-dissipation
ratio as a function of friction Reynolds number. For both plots, the smooth and rough pipe lines are
identical and cannot be distinguished.

For all figures including results from the model developed in this paper, we include both smooth
and rough pipe plots. For many cases, these will be identical, but for several important quantities they
will differ. To make it absolutely clear to the reader when wall roughness impacts the model, we have
chosen to include both plots throughout. Details on the smooth and rough pipe settings are provided
in Section 4.

As discussed in (Basse, 2021b), we combine our results with findings from (Davidson & Krogstad,
2009) to derive an area-averaged (AA) turbulence production-to-dissipation ratio:

〈P
ε

〉

AA
= exp(1.49 − Bg,fluc/0.91), (6)

with asymptotic limits:
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lim
Reτ→0

〈P
ε

〉

AA
= 0.99 (7)

lim
Reτ→∞

〈P
ε

〉

AA
= 1.55, (8)

see the right-hand plot in Figure 1. The AA definition can be found in (Basse, 2023b).
If turbulence production matches dissipation, the flow is said to be in (local) equilibrium. This

assumption is usually made for standard turbulent (eddy) viscosity models. As can be seen in the
right-hand plot in Figure 1, the AA production-to-dissipation ratio is close to one for low Reynolds
numbers, which can be considered as flow in (global) equilibrium. However, as the Reynolds number
increases, the turbulence production becomes much larger than the turbulence dissipation, which
means that the flow will not be in equilibrium. This leads to a need for an investigation on how
non-equilibrium flows can be included in turbulence models. A first step in this direction - an algebraic
turbulence model - is the main topic of this paper.

In the remainder of the paper, we will primarily use the expressions for the fluctuating part of the
velocity; therefore we drop the subscript "fluc"; however, the subscript "mean" will be used when we
are treating the mean velocity.

3. Model overview

Here, we summarise the main components of our model; for details and derivations, we refer to
the SI (Basse, 2023b).

3.1. Basic model

Simple shear flow is treated, where the mean shear rate (mean velocity gradient) is given by:

S = ∂U/∂z, (9)

which can be inverted to define a mean shear time scale:

τS =
1
S (10)

For equlibrium flows, we use the Prandtl (subscript "P") characteristic velocity and for
non-equilibrium flows we use the Kolmogorov-Prandtl (subscript "K-P") characteristic velocity (Basse,
2023b). For the turbulent viscosity and the Reynolds (shear) stress of the streamwise fluctuating
velocity u and the wall-normal fluctuating velocity v we write:

νt,K−P = ℓ
2
m|S|

(P
ε

)−1/2
= νt,P

(P
ε

)−1/2
(11)

− uvK−P = ℓ
2
mS|S|

(P
ε

)−1/2
= −uvP

(P
ε

)−1/2
, (12)

where ℓm is the mixing length and the turbulent kinetic energy (TKE) production and dissipation rates
are given by:

P = ℓ
2
m|S|3

(P
ε

)−1/2
(13)

ε = ℓ
2
m|S|3

(P
ε

)−3/2
(14)
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The turbulence model constant Cµ, which relates the turbulent viscosity, the TKE (k) and the
dissipation of the TKE, can be written as:

Cµ =
ℓ4

mS4

k2

(P
ε

)−2
(15)

A turbulent length scale can be defined from k and ε as:

L =
k3/2

ε
, (16)

and the corresponding ratio between the mixing length and this new length scale is:

ℓm

L
= C3/4

µ (17)

A turbulent time scale can be defined as:

τL =
k

ε
=

L√
k

(18)

The turbulent viscosity ratio is defined as the ratio between the turbulent and kinematic viscosities:

νr =
νt

νkin
(19)

3.2. Turbulent Mixing Length Scales

In (Basse, 2023b) we show that the global von Kármán number κg transitions from a lower value
to a higher value with increasing Reτ . Three mixing length definitions are considered and the decision
is made to proceed with the Gersten-Herwig (subscript "G-H") expression. Taking the AA of the local
mixing length we get:

〈ℓm,G−H〉AA = 0.14κg × δ (20)

As a shorthand, we can also define the AA mean velocity as:

Um = 〈Ug,mean〉AA (21)

3.3. Turbulence Intensity

We introduce the friction factor λ through an equation relating it to the friction velocity and the
AA mean velocity:

u2
τ =

λ

8
× U2

m, (22)

however, we note that this equation is not completely accurate for the measurements used, see (Basse,
2021b).

The TKE is equal to the sum of the contributions from streamwise, wall-normal and spanwise
velocity fluctuations. We will assume that the TKE is proportional to the square of the streamwise
velocity fluctuations:

k = βu2 = β × u2

u2
τ
× u2

τ = β × u2

u2
τ
× λ

8
× U2

m, (23)

where β is a constant of proportionality, see Section 5.1 for more details.
The square of the AA turbulence intensity (TI) is defined as:
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I2
AA =

〈u2〉AA

U2
m

=
〈u2〉AA

u2
τ

× u2
τ

U2
m

=
〈u2〉AA

u2
τ

× λ

8
(24)

=

[

Bg +
3
2

Ag −
8Cg

3
√

Reτ

]

× λ

8
, (25)

with a corresponding AA TKE:

kAA = βU2
m I2

AA = β〈u2〉AA (26)

= β

[

Bg +
3
2

Ag −
8Cg

3
√

Reτ

]

× λ

8
× U2

m (27)

4. Model results

We now apply the results from the preceding sections and the SI to the case of the Princeton
Superpipe.

For the TKE, β = 1 and β = 1.5 will be compared, see Section 5.1 for a discussion of those choices.

4.1. Model output

Outputs from our model will be shown for both smooth and rough pipes. The two initial quantities
derived are the friction factor and the friction velocity:

1. λ from (Basse, 2019)
2. uτ from Equation (22),

where the friction velocity enables the calculation of the friction Reynolds number:

Reτ =
Ruτ

νkin
, (28)

see the left-hand plot in Figure 2. It is clear that the smooth and rough pipe results begin to deviate
above Reτ ∼ 104.
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Figure 2. Left-hand plot: Friction factor and friction velocity as a function of Reτ . For the friction factor,
Superpipe measurements are included, right-hand plot: AA turbulence intensity as a function of Reτ .

Having calculated the friction factor, we can derive the AA TI:

I2
AA =

[

Bg +
3
2

Ag −
8Cg

3
√

Reτ

]

× λ

8
, (29)
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see the right-hand plot in Figure 2. Again, the smooth and rough pipe friction factor difference is
reflected in the divergence of the TI’s: The smooth pipe TI continues to decrease, whereas the rough
pipe TI reaches a plateau.

4.1.1. Quantities depending on TKE, but not mixing length

Now we split our analysis in two parts - in this section, expressions depend on β (TKE) but not
on 〈ℓm,G−H〉AA. In Section 4.1.2, we study the opposite case.

The TKE is defined as:

kAA = β

[

Bg +
3
2

Ag −
8Cg

3
√

Reτ

]

× λ

8
× U2

m, (30)

see Figure 3. The two different β values lead to an overall shift of the TKE. The rough pipe TKE
reaches a fixed value for high Reynolds numbers in contrast to the smooth pipe TKE which continues
to decrease.
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Figure 3. Turbulent kinetic energy as a function of Reτ for β = 1 and β = 1.5.

The ratio of the absolute value of the Reynolds stress to the TKE is:

|uv|AA

kAA
=

u2
τ

kAA
×

〈P
ε

〉−1/2

AA
=

1

β ×
(

Bg +
3
2 Ag − 8Cg

3
√

Reτ

) ×
〈P

ε

〉−1/2

AA
, (31)

which is compared to the standard value of 0.3 (Bradshaw et al., 1967; Basse, 2023b) in the left-hand
plot in Figure 4. The magnitude of our AA expressions match the standard value quite well for the
β = 1 case, but it does decrease by 15% across the high Reynolds number transition region, mainly due
to the scaling with the turbulence production-to-dissipation ratio. In contrast, the magnitude of our
AA expressions with β = 1.5 is much smaller than the standard value. See Section 5.3 for a discussion
on these findings.

Note also that there is no difference between the smooth and rough pipe model.
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Figure 4. Left-hand plot: The ratio of the absolute value of the Reynolds stress to the turbulent kinetic
energy as a function of Reτ for β = 1 and β = 1.5, right-hand plot: Cµ as a function of Reτ for β = 1
and β = 1.5. For both plots, smooth and rough pipe lines are identical and cannot be distinguished.

The AA turbulence model constant Cµ is defined as:

Cµ,AA =
u4

τ

k2
AA

×
〈P

ε

〉−2

AA
(32)

=
1

β2 ×
(

〈u2〉AA
u2

τ

)2 ×
〈P

ε

〉−2

AA
(33)

=
1

β2 ×
(

Bg +
3
2 Ag − 8Cg

3
√

Reτ

)2
×

〈

P
ε

〉2

AA

, (34)

see the right-hand plot in Figure 4. For β = 1, the values at low Reynolds numbers are fairly close to the
standard value of 0.09, but they decrease to around half of that value for high Reynolds numbers. An
increase of β to 1.5 leads to a downward shift of Cµ. As above, we refer to Section 5.1 for a discussion
of these findings.

The AA definition of the turbulence-to-mean shear time scale ratio is:

〈

τL

τS

〉

AA
=

SAAkAA

εAA
=

〈L〉AA√
kAA

uτ

〈ℓm〉AA
=

〈

L

ℓm

〉

AA

uτ
√

β〈u2〉AA

, (35)

where we have used Equations (10) and (18), see the left-hand plot in Figure 5. The standard value of
10/3 (Basse, 2023b) is included for reference. For β = 1 and low Reynolds number, the AA definition
matches the standard value quite well, but increases for higher Reynolds numbers. For β = 1.5, the
AA definition is shifted upwards. Other time scales are discussed in Section 5.5.

Finally, we show the length scale ratio:

〈

L

ℓm

〉

AA
= C−3/4

µ,AA = β3/2 ×
(

Bg +
3
2

Ag −
8Cg

3
√

Reτ

)3/2
×

〈P
ε

〉3/2

AA
, (36)

see the right-hand plot in Figure 5. The standard value of 6.1
(

0.09−3/4
)

is included for reference.
Overall, we conclude that 〈L〉AA ∼ 6 − 19 × 〈ℓm〉AA, depending on the Reynolds number and β values.
Specifically applied to the Gersten-Herwig mixing length we have:

〈LG−H〉AA ∼ 6 − 19 × 〈ℓm,G−H〉AA ∼ 0.3 − 1 × δ, (37)

leading to an interpretation of L as being a characteristic length corresponding to the boundary
layer thickness.
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Figure 5. Left-hand plot: The turbulence-to-mean shear time scale ratio as a function of Reτ for β = 1
and β = 1.5, right-hand plot: AA length scale ratio as a function of Reτ for β = 1 and β = 1.5. For both
plots, smooth and rough pipe lines are identical and cannot be distinguished.

4.1.2. Quantities depending on mixing length, but not TKE

We now treat the inverse case of what was covered in Section 4.1.1, where the quantities depend
on 〈ℓm,G−H〉AA but not on β (TKE).

We start by writing expressions for the TKE production and dissipation rates:

PAA =
u3

τ

〈ℓm,G−H〉AA
×

〈P
ε

〉−1/2

AA
(38)

εAA =
u3

τ

〈ℓm,G−H〉AA
×

〈P
ε

〉−3/2

AA
(39)

The TKE production and dissipation rates are shown in Figure 6. The dominating quantity is u3
τ ,

which leads to a rapid decrease with increasing Reynolds number. Further, the smooth pipe values
continue to decrease while the rough pipe values reach a constant number.
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Figure 6. Turbulent kinetic energy production and dissipation rate as a function of Reτ .

The turbulent viscosity is given by:

νt,AA = uτ〈ℓm,G−H〉AA ×
〈P

ε

〉−1/2

AA
= Cµ,AA × k2

AA
εAA

, (40)

see the left-hand plot in Figure 7, with corresponding turbulent viscosity ratios in the right-hand plot
in Figure 7. The values from our model do not depend on β, but for the lines marked "CL standard",
there is a dependency, which will be discussed in Section 5.4.
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For our model at low Reynolds numbers, the turbulent viscosity decreases for increasing
Reynolds number for both smooth and rough pipes. For high Reynolds numbers, the smooth pipe
turbulent viscosity continues to decrease, while the rough pipe turbulent viscosity approaches a
constant value. For both smooth and rough pipes there is a transition region which is due to the
combination of the Reynolds number dependency of the von Kármán number and the turbulence
production-to-dissipation ratio.

The turbulent viscosity ratio covers a large range from about 10 to 106 which is directly linked to
the range of the kinematic viscosities (Basse, 2023b).

5. Discussion

5.1. Turbulence isotropy

β as defined in Equation (23) is 1.5 for isotropic turbulence, where each of the three fluctuating
velocity components contribute equally. For actual flows, what is typically observed is that half of the
TKE is in the streamwise fluctuations and the other half in the sum of the wall-normal and spanwise
fluctuations, which implies a β of 1 (Gersten & Herwig, 1992; Schlichting & Gersten, 2000).

An open question is whether β is a function of Reτ or if variations in P/ε (based on streamwise
fluctuations) are related to a change in β?

We will use a Reynolds number independent β = 1 for all figures in Section 5, but note that this is
an assumption which can - and should - be questioned.

5.2. Physical mechanism

One explanation for the high Reynolds number transition region is an increase of large scale
structures in the wake region. This can be thought of as an analogy to the "drag crisis" (Prandtl, 1914).

The question is if these structures are active or inactive, i.e. if they contribute to the turbulent
shear stress or not.

In (Bradshaw et al., 1967), the ratio of the absolute value of the Reynolds stress to the TKE
is discussed: "In the last-named paper, evidence is presented that the considerable variation in a1,
observed experimentally is at least partly due to an ‘inactive’, quasiirrotational component of the
turbulent motion (Townsend 1961), which does not contribute to the shear stress or the dissipation
and can therefore be disregarded; therefore a1 = constant is a much better approximation than at first
appears." In our notation, 2a1 = |uv|/k and it is thus argued that this quantity can be considered
constant.

A similar interpretation is provided in (Cogo et al., 2022), which cites results from (Pirozzoli et al.,
2021): "[...]which argued that the excess of turbulent production in the log layer feeds inactive motions
that do not contribute to the turbulent shear stress, but transfer energy to other locations of the flow.".
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An opposing view can be found in (Chi et al., 2022), where it is stated that very-large-scale motions
(VLSM) "[...]can contain up to 60% of the cumulative fraction of the Reynolds shear stress[...]".

To summarise, it remains unclear to which extent the high Reynolds number structures contribute
to the turbulent shear stress.

An additional uncertainty of our analysis is that it is based on the Princeton Superpipe
measurements, where it has been found that the inner peak of the streamwise fluctuations is not
resolved for all Reynolds numbers (Smits, 2022). However, our main results should be robust, since
the global (integral) treatment is not dominated by this inner peak.

5.3. Scaling of Cµ

Scaling of Cµ with P/ε has been discussed in (Rodi, 1972). We note that the definition of P/ε in
(Rodi, 1972) is different from our ours; in (Rodi, 1972), P/ε is weighted with |uv|, whereas we use
area-averaging. An expression for Cµ as a function of P/ε, valid for P/ε > 1, is given as:

Cµ,R =
2
3
× 1 − α0

ω0
×

1 − 1
ω0

(1 − α0〈P/ε〉AA)
[

1 + 1
ω0

(〈P/ε〉AA − 1)
]2 , (41)

with:

α0 = 2.8 (42)

ω0 = 0.55, (43)

where we use the subscript "R" for Rodi and have replaced the turbulence production-to-dissipation
ratio from (Rodi, 1972) with our area-averaged definition.

As written in (Rodi, 1972), under certain conditions "[...]the mixing length hypothesis implies that
P/ε is constant; but P/ε need not equal unity.".

In Figure 8, Cµ,R from (Rodi, 1972) is compared to Cµ,B/〈P/ε〉AA and our AA expressions.
The difference in scaling with P/ε between previous findings and our results originates from

the assumption of whether |uv| scales with P/ε or not: Overall, previous findings predict a scaling
of Cµ with (P/ε)−1, while our expressions imply a scaling of Cµ with (P/ε)−2. In (Rodi, 1972), the
weighting of P/ε with |uv| complicates the comparison somewhat.
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0.1

C

Figure 8. Cµ,R from (Rodi, 1972) compared to Cµ,B/〈P/ε〉AA and our AA expressions, left-hand plot:
As a function of 〈P/ε〉AA, right-hand plot: As a function of Reτ . Smooth and rough pipe lines are
identical and cannot be distinguished.

5.4. Scaling of νt and I

The scaling of the turbulent viscosity can be compared to the standard CL expression from
(Greenshields & Weller, 2022), which we have modified to include β specifically:
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νt,CL =
√

βC1/4
µ,B × UCL ICLℓm,G−H,CL, (44)

where we use (Russo & Basse, 2016):

ICL = 0.055 × Re−0.041
D (45)

In Figure 7 (both plots) we have included the turbulent viscosity from Equation (44) and marked
it "CL standard". This does not match our model for the low Reynolds number range, but it does match
the smooth pipe model expression quite well for the high Reynolds number range and β = 1.5. There
is no β dependency of the turbulent viscosity in our model.

5.5. Time scales

From the log-law mean velocity, a single length scale is associated with the von Kármán mixing
length. Or rather, a continuum of length scales increasing from the wall.

In contrast, the mixing length expressions by Nikuradse and Gersten-Herwig can be considered as
consisting of two different ranges, one close to the wall and another one towards the CL. These length
scales can be used to define two time scales. A similar conclusion can be drawn from the fluctuations
as defined in Equation (3), which also correspond to two length scales as noted in (Basse, 2021b).

Below, we will explore the idea of two time scales based on the assumption of two corresponding
length scales. Note that a different time scale ratio for the turbulence-to-mean shear is contained in our
model and has been treated in (Basse, 2023b), see also Figure 5.

5.5.1. k − ε turbulence model with two time scales

Turbulence models with multiple time scales have been treated in (Hanjalić et al., 1980), with more
recent further development to be found in (Klein et al., 2018). We base our discussion on homogeneous
flow, where equations for the time evolution of k and ε can be written (Hamlington & Ihme, 2014):

dk

dt
= P − ε

cs
(46)

dε

dt
=

(

Cε1P − Cε2
ε

cs

)

ε

k
, (47)

where the standard values of the coefficients Cε1 = 1.44, Cε2 = 1.92 (Launder & Spalding, 1974) and:

cs =
τfluc

τmean
(48)

is the ratio of the turbulence and the mean flow time scales. Note that cs = 1 for the standard k − ε

model (Jones & Launder, 1972).
The evolution of the turbulence time scale τfluc = τL = k/ε (see Equation (18)) is given as

(Hamlington & Ihme, 2014):

d(k/ε)

dt
= (1 − Cε1)

P
ε
− 1

cs
(1 − Cε2) (49)

If k/ε does not vary with time, d(k/ε)/dt = 0 and we have:

cs =

(

Cε2 − 1
Cε1 − 1

)(P
ε

)−1
, (50)

which can be written for AA as:
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〈cs〉AA =

(

Cε2 − 1
Cε1 − 1

)〈P
ε

〉−1

AA
= 2.1 ×

〈P
ε

〉−1

AA
, (51)

where the final equation assumes that Cε1 and Cε2 are constant, i.e. do not scale with Reτ (or,
equivalently, with P/ε). See the left-hand plot in Figure 9, where this k − ε expression is equal
to the 2.1 "Standard k − ε" value for low Reynolds numbers and decreases monotonically to 1.4 for
high Reynolds numbers.
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Figure 9. Left-hand plot: The ratio of the turbulence and the mean flow time scales as a function of Reτ .
The smooth and rough pipe lines (for k − ε) are identical and cannot be distinguished, right-hand plot:
Exponential constant as a function of Reτ .

5.5.2. Eddy-turnover time scales

An alternative time scale ratio can be defined by an eddy-turnover (ET) time, both for the
fluctuations and for the mean flow (Pope, 2000):

τET,fluc =
ℓm
√

u2
(52)

τET,mean =
L

U
, (53)

along with their ratio:

cs,ET =
τET,fluc

τET,mean
=

ℓm

L

U
√

u2
(54)

For AA, this can be rewritten to:

〈cs,ET〉AA =

〈

ℓm

L

〉

AA
× 1

√

I2
AA

, (55)

see the left-hand plot in Figure 9 marked "ET". The range of cs values is similar to the ones from Section
5.5.1, but not monotonic. The main difference is the increase of 〈cs,ET〉AA for the smooth pipe which is
due to an increase of the fluctuating time scale, which in turn is due to a decreasing TKE.

5.5.3. Time evolution of TKE

The time scale ratio from Section 5.5.1 can be used to define an equation for the time evolution of
the TKE:

τL

k

dk

dt
=

P
ε
− 1

cs
, (56)
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which has the solution:

k(t) = k(0) exp
[

t

τL

(P
ε
− 1

cs

)]

, (57)

where k grows if:

P
ε
>

1
cs

(58)

Defining normalised quantities k∗(t) = k(t)/k(0) and t∗ = S t (Speziale, 1999) we can rewrite
Equation (57) to:

k∗(t∗) = exp
[

t∗ × 1
τLS

(P
ε
− 1

cs

)]

(59)

= exp
[

t∗ × kCµ

|uv|

(P
ε
− 1

cs

)]

, (60)

where we have used Equation (18) for the second equation.
For cs = 2.1 and the definitions in (Basse, 2023b), kCµ/|uv| = 0.3 and we can add values to the

equation:

k∗B(t
∗) = exp [0.16 × t∗] (61)

= exp [c∗B × t∗] , (62)

where c∗B is shown in the right-hand plot in Figure 9 and k∗B is shown in Figure 10.
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Figure 10. Normalised turbulent kinetic energy as a function of normalised time for low and high
friction Reynolds numbers.

As for the standard definitions, we can write the TKE as a function of time for our AA model with
cs,ET:

k∗AA(t
∗) = exp

[

kAACµ,AA

|uv|AA

(〈P
ε

〉

AA
− 1

〈cs,ET〉AA

)

× t∗
]

(63)

= exp [c∗AA × t∗] , (64)
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also shown in the right-hand plot in Figure 9 (c∗AA) and in Figure 10 (k∗AA).
In the right-hand plot in Figure 9 we see that c∗AA is a function of Reynolds number as opposed to

c∗B which is independent of Reynolds number. The increase of c∗AA for the smooth pipe is because of an
increase of 〈cs,ET〉AA. It is interesting to note that for high Reynolds numbers, k∗AA increases faster for
the smooth pipe than for the rough pipe.

5.6. A plasma physics analogy

An analogy for the high Reynolds number transition is a controlled confinement transition in
fusion plasmas (Zoletnik et al., 2002). Here, a change in the topology of the magnetic field triggers a
transition from "good" to "bad" confinement, where the temperature gradient decreases and the core
turbulence level increases (Basse et al., 2002).

In a similar fashion, the mean velocity gradient decreases (mixing length increases) and the CL
velocity fluctuations increase with increasing Reynolds number (Basse, 2023b).

Thus the low (high) Reynolds number range corresponds good (bad) confinement, respectively.
One physical aspect which may play a part is the emergence of large structures for the pipe flow case
and correlated density-magnetic fluctuations for the fusion plasma example.

5.7. Recommendations for CFD practitioners

In addition to being used for inlet boundary conditions in CFD simulations, the model output can
be used as a complete, self-consistent model. These two applications are described in the following
two sections.

For both applications we recommend to use β = 1 for the TKE, since this matches the standard
turbulence model for low Reynolds numbers.

5.7.1. Equilibrium usage as inlet boundary conditions for CFD simulations

The standard turbulence models in CFD simulations assume equilibrium flow; therefore we set
the AA turbulence production-to-dissipation ratio equal to one. For this case, we compare the LIKE
algorithm to our proposed equilibrium model in Table 1. Some comments are in order regarding the
contents of the table:

• L: The expressions are taken from (Basse, 2023b). Note that ℓLIKE/ℓAA = 1/κg ∼ 3.
• I: The mix power-law expression is derived in (Ansys, 2022) with more details provided in (Basse,

2023a). The equilibrium model formulation is from Equation (29).
• K: The mix and equilibrium expressions are from (Basse, 2023b) and Equation (26).

• E: For the equilibrium model, we define C3/4
µ,AA =

(

Bg +
3
2 Ag − 8Cg

3
√

Reτ

)−3/2
, see Equation (34).

There is a difference of a factor C1/4
µ between the TKE dissipation rates, which (partially)

compensates for the difference between the length scales. Note that Cµ,AA is a function of
Reτ whereas the LIKE algorithm uses the fixed standard value Cµ,B (Basse, 2023b).

We are of the opinion that consistent units must be used to define all turbulent quantities, i.e.
either CL or AA. The mixed TI (Imix) is not straightforward to interpret and thus caution is advised for
this definition.

The LIKE algorithm can be viewed as a CL model, since the used mean velocity Um cancels out
for the TKE. However, Imix remains a mixture of CL and AA quantities. The LIKE algorithm could be
made into a consistent CL model by replacing the existing mixed TI definition with the CL TI definition
presented in (Basse, 2023b).

Thus, the AA-based equilibrium model we propose is more consistent than what is presented in
the LIKE algorithm. Another advantage of the equilibrium model is that wall roughness is taken into
account through the friction factor.
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Table 1. A comparison between the LIKE algorithm (Rodriguez, 2019) and the proposed equilibrium
model.

Source LIKE algorithm Equilibrium model

L ℓLIKE = ℓm,N,CL = 0.14 × δ ℓAA = 〈ℓm,G−H〉AA = 0.14κg × δ

I ILIKE = Imix = 0.16 × Re−1/8
D IAA =

√

[

Bg +
3
2 Ag − 8Cg

3
√

Reτ

]

× λ
8

K kLIKE = kmix = U2
m I2

mix kAA = U2
m I2

AA

E εLIKE = Cµ,B × k3/2
LIKE
ℓLIKE

εAA = C3/4
µ,AA × k3/2

AA
ℓAA

=
k3/2

AA
LAA

5.7.2. Non-equilibrium usage as a standalone model

The recommendation for use of the non-equilibrium model as a standalone model is to use the
AA expressions in Section 4.1 with β = 1.

5.8. Known model issues

Our model is not able to capture low Reynolds number effects such as the decrease of Cµ (Jones &
Launder, 1972; Launder & Sharma, 1974). This is because the hyperbolic tangent functions used can
only describe a single transition, which in our case is the high Reynolds number transition.

6. Conclusions

An algebraic mixing length non-equilibrium turbulence model has been developed to capture the
high Reynolds number transition observed in pipe flow. The model equations have been derived to
take the turbulence production-to-dissipation ratio explicitly into account. We provide area-averaged
(integral) quantities and examples to match the Princeton Superpipe measurements used to calibrate
the model, both for smooth and rough pipes.

The impact of isotropic or non-isotropic turbulence is investigated and area-averaged scaling of
relevant figures-of-merit are included such as turbulent viscosity, Cµ and time scales. We expect the
predictions to be valid both for pipes and similar geometries such as closed/open channel flow, see
(Hoyas et al., 2022) and (Yao et al., 2022), respectively.

A next step could be to use a similar non-equilibrium approach for more complex one- or
two-equation turbulent viscosity models.

Future research could be to generalise to rotating flows, see e.g. an extended expression for Cµ

which has been proposed (Pope, 1975). Funding: This research received no external funding.
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