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Abstract: The effectiveness of a recently proposed methodology in the identification of damage in planar,
multi-storey, Reinforced Concrete (RC) moment-frames, which develop a plastic-yield mechanism on their
beams, is showcased here via the examining of a group of such existing multi-storey frames with three or more
unequal spans. According to the methodology, the diagram of the instantaneous Eigen-Frequencies of the
frame in the nonlinear regime is drawn as a function of the inelastic seismic roof displacement by performing
a sequence of pushover and instantaneous modal analyses with gradually increasing target displacement.
Using this key-diagram, the locations of severe seismic damage in an existing moment-frame can be evaluated
if the instantaneous fundamental eigen-frequency of the damaged frame, at an analysis step within the
nonlinear area, is known in advance by “the monitoring and the identification of frequencies” using a local
network of uniaxial accelerometers. This is a hybrid technique because both procedures, the instrumental
Monitoring of the structure and the Pushover analysis on the frame (M and P technique), are combined.
Moreover, the damage image of the planar multi-storey moment-frame is illustrated, and the lateral stiffness
matrix of the damaged frame is calculated with high accuracy.

Keywords: damage identification; instantaneous eigen-frequencies diagram; pushover capacity
curve; nonlinear analysis of reinforced concrete structures; seismic target-displacement; beam-sway
plastic mechanism

1. Introduction

Identification of damage in reinforced concrete (RC) structures can be done by detection of
variations in their dynamic characteristics with reference to the undamaged state. To detect the Eigen-
Frequencies (and mode-shapes) of existing RC structures, instrumental monitoring of the structure
by an installed local multichannel network system of accelerometers is necessary, and then, an
analytic processing of the recorded response should be performed by using various stochastic and
deterministic procedures developed in the past [1-11]. Recent research effort has led to the
development of theories, methods, and techniques for the detection of damage in existing structures,
such as the rank perturbation theory (MRPT) [12,13], a technique about the discontinuity of forms of
mode-shapes [14,15], an artificial neural network technique [16], the method of the damage stiffness
matrix [17,18], a comprehensive review of data-driven damage indicators for rapid seismic structural
health monitoring [19] and a combination of traditional structural health monitoring techniques with
novel machine learning tools [20]. Furthermore, recently, a hybrid procedure for the damage
identification in existing planar RC frame has been developed [21], mainly for the case of seismic
loadings or wind loadings. The last methodology is based, on the one hand, on the development of
Eigen-Frequencies curves by performing two pushover analyses in a suitable nonlinear model of the
planar moment-frame, and, on the other hand, on the fundamental Eigen-Frequency of the damaged
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frame, which is identified by the instrumental monitoring of its structural integrity. Using the
fundamental Eigen-Frequency of the damaged moment-frame that arise by the instrumental
monitoring, all the other higher Eigen-Frequencies of the moment-frame are determined from the
diagram of the instantaneous Eigen-Frequencies of the frame in the nonlinear regime (namely the
key-diagram). Furthermore, the modal shapes of the damaged frame are determined with
instantaneous modal analysis (at the examined step of pushover analysis), where all calculations are
performed into the examined step of the nonlinear area of analysis. Last, the damage stiffness matrix
of the moment-frame is calculated at the examined step considering all plastic hinges and the
degradation of member stiffness, and therefore it determines the extent of damage of the moment-
frame. Finally, the damage image of the planar RC moment-frame, i.e. the location and the magnitude
of damage, is obtained from the state of the developed plastic hinges at the corresponding step of the
pushover analysis. It is noting that in planar frames, two pushover analyses, with lateral floor forces
with triangular (or according to the first mode-shape) distribution in elevation, are needed, where
the second pushover analysis has negative sign on the lateral floor forces with reference to the first
one.

To verify the abovementioned recently proposed methodology [21] in frames that develop a
beam-sway plastic mechanism, a group of existing ductile, multi-storey, multi-span, planar RC
frames with various lengths and storey heights is examined in this paper in order to determine the
damage state. Here, a numerical example of a five-storey moment-frame with three unequal spans is
presented. All the steps of the proposed methodology are clearly presented in the corresponding
section below and applied during the presentation of the numerical example. The article focuses, on
the one hand, on the determination of the Eigen-Frequencies curves of the damaged moment-frame
as a function of the seismic roof displacement, which are drawn by performing a sequence of
pushover and instantaneous modal analyses with gradually increasing target displacement, and, on
the other hand, on the evaluation of the damage stiffness matrix of the moment-frame. In addition, a
new load pattern appropriate for tall multi-storey frames is incorporated in pushover analysis to take
account of the effects of higher modes in the distribution of damage along the height of the frame.
Finally, for each case, the damage matrix of the frame is calculated, and the damage image of the
frame is illustrated.

2. Materials and Methods

The free vibration differential equation of motion of a multi-degree of freedom system (MDOF)

without damping due to an initial forced displacement or velocity is:

mii(t) + k, ut) =0 (1)
where m is the mass matrix of the frame, k, is the stiffness matrix of the frame while u(t) and ii(t)
are the time-varying displacement and acceleration vectors of the system respectively.

Next, itis assumed that this is an existing system that presents a damage image due to any cause.
Then, the stiffness matrix at any time step i will change by AK;, so it follows that:

k; =k, — Ak; (2)
where AKk; is the Damage Stiffness Matrix.

Moreover, the instantaneous mode-shapes at each inelastic i-step of the analysis can be defined
if a modal linear analysis is performed using the instantaneous stiffness matrix k;, which includes
the damage effects on stiffness. Therefore, the equation of motion is written:

mii(t) + (k, — AK;) u(t) = 0 (3)

That is, a modal analysis is performed using as initial conditions the inelastic response of the
frame structure at the i-step. Hence, considering that the mass matrix m does not vary, the eigenvalue
problem at the inelastic i-step is written:

[(k, — Ak;) — w?m] @; = 0 (4)
where w; (rad/s) is the instantaneous eigenvalues and ¢; is the instantaneous mode-shape vectors
of the frame structure at the inelastic i-step of the analysis. The solution of the eigenvalue problem is
given by setting the following determinant to zero and finding the roots w? of the resulting algebraic
equation:
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det[(k, — AK;) — w’m] = 0 (5)
Then, the instantaneous mode-shape vector ¢;, can be calculated by Equation (4) for each

value of w7y, where g =1,2,3,..N in an N-degrees of freedom system. Moreover, with a known
2

eigenvalue wj,,

Equation (4) is pre-multiplied by the @] ;:
(Pz?:g [(ko — Ak - wiz,g m] Qg = 0 (6)

Rearranging the terms in Equation (6), it can be rewritten as following:

@i AK; @ig = @i Ko @ig — i @jgm @iy (7)

It is noted that it is impossible to identify the instantaneous frequency w;, and the
instantaneous mode-shape vector @; ; of the structure at the inelastic i-step by analysis of the records
(time-history analysis with accelerograms) using the Random Data Processing, since these
procedures require the existence of a sufficient time-window, where the eigenfrequencies remain
constant. Instead, the obtained records by an installed monitoring multichannel network system of
accelerometers must come from the ambient vibration of an existing (with damage) calm structure,
without motion. Therefore, if w;y4, @;4, K,, AK;,m  are known by the recently proposed
methodology [21], then Equation (7) can be used at the end for verification reasons.

In summary, the recently proposed methodology [21] on multi-storey planar frames, using a
hybrid technique (that we call “M and P” technique, where the M means “Monitoring” and the P
means “Pushover”) that combines an identification system and a numerical model, consists of the
following phases:

(a) The fundamental Eigen-Frequency f; of the existing damaged structure is identified by
monitoring with a local network of uniaxial accelerometers located at the characteristic positions
along the degrees of freedom of the system.

(b) A suitable numerical non-linear model of the structure is obtained, and two pushover analyses
are performed, with positive and negative floor forces, leading to the drawing of the capacity
curves of the structure in terms of base shear and roof displacement (Figure 1). As regards the
floor lateral force pattern used in pushover analysis, the triangular or the first mode pattern of
forces is suitable for building structures up to four floors. For higher buildings, an additional
second-floor force pattern is proposed with a unit base shear (,), in which an additional force
equal to 0.20 -V, is applied at the top floor [22] and the rest of the base shear (namely the 0.80 -
V, ) is distributed (in floor forces) according to the triangular or to the first mode pattern. The
goal here is to consider the higher mode effects of tall buildings into the linear and non-linear
area, which can be significant especially for more flexible structures, such as moment-frames.
Another important point in the application of pushover analysis is that P-D effects should
always be considered in the nonlinear area, especially for frame structures which are more
flexible.

Near
Collapse

Base shear V (kN)

U;

T T T

Roof displacement u,,, (m)
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Figure 1. Pushover Capacity Curve of the multi-storey planar frame structure.

(c) By performing Modal analysis at each i-step (or at various characteristic steps) of the pushover
analysis, using the stiffness matrix of the damaged structure obtained at the last i-step in
pushover analysis, the diagram of the instantaneous (step) cyclic Eigen-Frequencies fy; (in Hz)
of the damaged structure is drawn as a function of the roof displacement u,,,; of the structure
(Figure 2). In this diagram, that is the novel key point of the proposed methodology, the value
of the inelastic roof displacement u,,; is the abscissa and the value of the Eigen-Frequencies
fn; of the damaged structure is the ordinate.

It is emphasized that that the sequence of pushover and instantaneous modal analyses of the
structure, targeting each time at a gradual increasing roof displacement, should be performed in a
nonlinear model of the structure with discrete values E.lfs; (E. is the elastic modulus of concrete)
of the effective bending stiffness of RC structural elements, that correspond to different damage states
at each i-step, due to stiffness degradation because of damage. The damage state corresponds to
various performance levels: undamaged state, first Yield (first plastic hinge formation), Damage
Limitation (DL), Significant Damage (SD), Near Collapse (NC), and all the intermediate ones. Hence,
an effective stiffness scenario in terms of the effective moment of inertia ratio Iozf;/I, (where I, is
the moment of inertia of the geometric section) must be prepared before performing pushover and
modal analyses, as a function of the mean (chord) rotation of the frame structure, 6,,;, where the
subscript pr,i refers to the chord rotation profile of the moment-frame at the examined i-step. This is
equal to 0,,; = Ut ropi/Heor, Where Uty is the seismic (target) roof displacement at the i-step and
Hyo; is the total building height (Figure 3). As shown in Figure 4, the effective moment of inertia Iofs;
of RC structural elements (as the mean value for their two end-sections) that corresponds to the NC
performance level is too low, and it can be calculated from an equation given in EN 1998-3 [23]:
M,-L,

(8)
36,

Ecler =

where M, is the plastic moment of the section determined through an elastoplastic idealization of
the Moment-Curvature diagram M-¢ of the section, L, is the shear length of the RC element taken
equal to the half clear-length of the element [22,23], and 8, is the available chord rotation of the shear
length of the element at yield state that is given approximately by Equation A.10 of Eurocode EN
1998-3. In fact, EN 1998-3 impose these low values of the effective bending stiffness on all RC
structural elements, in order to perform nonlinear analysis targeting all performance levels, from DL
to NC. Since this is too conservative, a scaling is proposed in Figure 4 when pushover analysis targets
other higher seismic performance levels, such as DL or SD or all other intermediate ones [22]. Another
point in Equation (8) is that it provides different values of effective stiffness at various structural
elements. To simplify this, the mean effective stiffness at NC state is assigned to each structural
element of the nonlinear model according to the proposed methodology. Moreover, the effective
stiffness scenario of Figure 4 proposes discrete I.¢r;/I, values from the uncracked state towards the
15t Yield (when the 1st plastic hinge is shown) and from there to DL. Additionally, two proposed lines
(with the corresponding equations) for the effective stiffness into the linear and nonlinear area are
also presented into Figure 4:

For the linear area, 0 < 6, < 0.004:

Ljs/ly = 11256, (9)
For the nonlinear area, 0.004 < 6,, < 0.032:
Lpr/ly = 3-10°-6,,*-253312-6,,° + 7383.2 - 0,,° —93.773 - 0, + 0.747 (10)
For the nonlinear area in the vicinity of (near) collapse, 0.032 < 6,,,:
Legr/lg = My - L, /(3 6, - E. - 1) (11)
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Figure 2. Instantaneous Eigen-Frequencies diagram, in the nonlinear area.
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Figure 3. The profile angle 8,, of the frame structure in pushover analysis with floor lateral forces.
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Figure 4. Effective moment of inertia ratio I,ff/I; with reference to the geometric moment of inertia
Iy of RC structural elements at discrete damage states as a function of the mean (chord) rotation of
the frame structure 6, (rad).

(d) The known fundamental Eigen-Frequency of the damaged structure of phase (a), f;, is inserted
in the instantaneous Eigen-Frequencies diagram (Figure 2) and, hence, the respective inelastic
seismic (target) roof displacement u; is determined. All the rest instantaneous higher Eigen-
Frequencies (f2;,f3, - fn,;) lie on the same vertical line passing through the target-
displacement u;.

(e) The damage state of the structure can be identified by the results of two pushover analyses (with
floor forces along the positive and negative direction) at the i-step where the roof displacement
u; is shown. The location and the state of the plastic hinges at this i-step of each pushover
analysis indicate the damaged state of the structure, while the final requested damaged state of
the structure will result from the superposition of the damage states of the two pushovers.

(f/ Moreover, alinear modal analysis is performed at the i-step of pushover analysis (phase e), using
as initial conditions the instantaneous stiffness matrix of the i-step. From this modal analysis, all
the circular Eigen-Frequencies w;, and all the instantaneous mode-shapes ¢;, of the
damaged structure are calculated.

(g) Atthe end, the instantaneous stiffness matrix K; of the structure at the examined inelastic i-step
is determined. Hence, the Damage Stiffness Matrix AK; at the same i-step is calculated from the
general relationship Ak; = k, —k;, where k, is the known Initial Stiffness Matrix of the
undamaged structure.

3. Numerical Example

We consider the existing five-storey planar RC frame of Figure 5, with three unequal spans, with
dimensions L; =3.5m, L, = 5.5m and L3 = 4.5 m. The strorey height is equal to 3.5 m in all floors,
and the total height of the frame is 17.5 m. The total vertical uniformly distributed loads of the seismic
combination p = g + Yrq (where g is the dead load, Yrq is the quasi-live load and ¥ = 0.3 [24])
applied on the spans of each floor are respectively equal to p; = 28, p, = 35 and p; = 32 kN/m.
These loads contribute to a floor mass of approximately 45 tn and to a total frame mass of 225 tns.
The floor mass and the degrees of freedom of the five-storey planar frame for the modal analysis are
illustrated in Figures 5b and 6b. Additionally, Figures 5a and 6a present the two patterns (P-1 and P-
2) of lateral floor forces that will be used in pushover analysis. The frame was constructed with
concrete grade C25/30 and steel grade B500s, with mean compressive and tensile strengths,
respectively equal to f.,, = 33 MPa and f,,, = 550 MPa. The Elasticity Modulus of the concrete is
equal to E. = 31 GPa, while that of the steel is E; = 200 GPa. There are two different column sections,
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with dimensions b, X h, equal to 0.45 X 0.45 and 0.50 X 0.50 m, respectively. All column sections
are symmetrically reinforced with 12 steel bars of 20 mm diameter (or 12020) at all floors, except the
top floor where the total steel bars are 4320+814 (Figure 7). The confinement reinforcement in all
columns, in every floor, consists of closed hoops with 4 ties of 8 mm diameter, evenly spaced per 8
cm axially at the critical end sections. The beams of the frame have a rectangular section of dimension
b, X hy = 0.30 X 0.60 m and are symmetrically reinforced at the upper and the lower fibers but have
different steel bars at various floors (Figure 7). The beams in all floors have a perimetric closed hoop
of 8mm diameter, evenly spaced per 8cm axially at the critical end sections, which acts as shear
reinforcement and provides a low confinement state. Steel reinforcement details of typical column
and beam sections are shown in Figure 8. It is noting that the planar RC frame has been designed
according to EN 1998-1 [24] for the high ductility class (DCH) and, hence, it is expected to
demonstrate a beam-sway plastic mechanism in the nonlinear area.

triangular
pattern, P-1
Psq > s @ Us = Uygop
\ | T
\ : Hs=3.50
p4\\ ;: —+ m,@ Uy
\ |
\ | H4=350
\ |
P3\ﬁ|‘ — ms . Uy
\\ : Hy=3.50
Pz\ ;' 4 m,@ Uy
\
\\ : H,=3.50
PI\?: 4 m ‘ U
|
\| H=3.50
\| i
' - - - ——
Five Degrees of
bL,=3.50+—1,=5.50—4—L=4.50— Freedom System
(a) (b)

Figure 5. Five-storey planar RC frame with three unequal spans: (a) static simulation for the first
pushover set (P-1) with a triangular force pattern, (b) dynamic simulation.

triangular pattern with an
adittional top force, P-2
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@ (b)

Figure 6. (a) Static simulation of the five-storey planar RC frame for the second pushover set (P-2)
with a triangular force pattern and an additional top force, (b) dynamic simulation.
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Figure 7. (a) Sections of RC structural elements, (b) longitudinal steel bars.
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Figure 8. Steel reinforcement details of typical column and beam sections.

In order to apply the proposed methodology [21] for the identification of the structural damage,
a sequence of pushover and instantaneous modal analyses should be performed. The nonlinear
model of the planar RC frame was created in the FEM analysis software SAP2000 [25] using fiber
hinges to simulate the locations of the possible developing plastic hinges at the end-sections of the
elements, with plastic hinge length calculated by Equation (A.9) of EN 1998-3 [23]. The material
constitutive relationships used in nonlinear analyses are consistent with: (a) the uniaxial unconfined
and confined model for the concrete proposed by Mander, Priestley and Park (1988) [26] (Figure 9),
and (b) the steel reinforcement model (parabolic at strain hardening region) proposed by Park and
Paulay (1975) [27] (Figure 10).
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Figure 9. Stress-strain diagram for unconfined and confined concrete.
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Figure 10. Stress-strain diagram for steel bars.

A section analysis [25] should be performed first, in order to calculate the effective bending
stiffness E loge Of the structural elements at the NC state, using Equation (8). Then, the stiffness
scenario used in the sequence of pushover analyses of the frame -with gradually increasing target
roof displacement- is established (phase c), which is presented in Table 1 as a function of the profile
angle 6,, (Figure 3). The discrete values of the effective moment of inertia I assigned to all RC
structural elements of the nonlinear model of the frame depend on the seismic (target) roof
displacement of the pushover analysis, i.e. on the target performance level (Figure 4). For example, if
the target roof displacement u,,, corresponds to a value of 8, equal to 0.028, i.e. Ut oy = Opy
Hioe = 0.028 - 17.5 = 0.49 m, then the value of I that should be assigned to all structural elements
of the nonlinear model is equal to 0.191; according to Table 1.

To obtain the capacity curve of the planar frame, two pushover analyses are performed targeting
the NC state, with positive and negative signs of the floor lateral forces. In these analyses, the effective
moment of inertia Iz, of Table 1 that correspond to the NC state is used (Equation 8), i.e. the value
0.15I,. Since the planar frame has more than four floors, two floor force patterns are used in pushover
analysis according to phase (b): (i) the triangular pattern (Figure 5a), (ii) the triangular pattern but
with an additional top force equal to 0.20 -V, for a unit base shear (V, = 1.00kN, Figure 6a). These
two force patterns will be referred to, from now on, as P-1 and P-2. The two capacity curves of the
planar frame for the two pushover sets are illustrated in Figure 11, together with bi-linearization lines
for the first set P-1 that mark the DL state at a value of 6, about equal to 0.01 rad. As shown in this
figure, the NC state of the frame is conservatively shown at a value of 6, equal to 0.56/17.5 =
0.032 rad, i.e., that in the last line of Table 1. The capacity curves for the second pushover set P-2
present higher ultimate displacements and lower elastic stiffness.
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Table 1. Effective moment of inertia ratio (Iff/I;) of RC structural elements as a function of the mean
(chord) rotation of the frame structure 8, (rad).

Opr IEff/Iy Opr Ieff/lg Opr Ieff/lg Opr IEff/Iy
0.000 1.00 0.010 0.32 0.020 0.28 0.030 0.17
0.001 0.87 0.011 0.32 0.021 0.27 0.031 0.16
0.002 0.74 0.012 0.31 0.022 0.26 0.032 0.15
0.003 0.61 0.013 0.30 0.023 0.25 0.032+ Eq. (8)
0.004 0.50 0.014 0.30 0.024 0.24
0.005 0.43 0.015 0.30 0.025 0.23
0.006 0.40 0.016 0.30 0.026 0.22
0.007 0.37 0.017 0.29 0.027 0.21
0.008 0.35 0.018 0.29 0.028 0.19
0.009 0.34 0.019 0.28 0.029 0.18
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Figure 11. Capacity curves of the planar frame along the +x and -x axis (El,ff at NC, Table 1), for the
two force patterns P-1 & P-2.

Next, a sequence of pushover analyses of the existing planar frame is performed, where each
one targets a seismic roof displacement which corresponds to the discrete values of the profile angle
0, of Table 1, from 0 to 0.032 rad. In each pushover analysis, the effective moment of inertia I¢f
assigned to the structural elements of the nonlinear model of the frame is that shown in Table 1,
which corresponds to the same discrete values of the target profile angle 6,,. At the last step of the
separate pushover analyses, an instantaneous modal analysis is running with initial condition the
damage state of this last step, i.e. using the stiffness matrix of the damaged frame at the last step of
each pushover analysis. From the sequence of modal analyses of the planar frame, the instantaneous
cyclic Eigen-Frequencies of the system are recorded (Fi to Fs) and the diagram of the instantaneous
cyclic Eigen-Frequencies (in Hz) of the planar frame in the nonlinear area is obtained as a function of
the roof displacement us. This is done for the two directions of application of the floor forces and the
mean values of the instantaneous cyclic Eigen-Frequencies (in Hz) of the planar frame are calculated,
for both pushover sets with the different floor force patterns P-1 and P-2. In Figure 12, the diagram
of the instantaneous cyclic Eigen-Frequencies (in Hz) is combined with the capacity curve of the
planar RC frame. For figure clarity, only one capacity curve is presented, that for the pushover with
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positive floor forces following a triangular pattern (P-1). This curve was determined using a nonlinear
model of the frame in which the I,;; value of Table 1 that corresponds to 6,, = 0.02 rad has been
assigned to all RC structural elements. As is shown in Figure 12, the two pushover sets P-1 and P-2
provide similar results for the instantaneous cyclic Eigen-Frequencies in this planar frame. At 6, =
0.02 rad, the second pushover set (P-2) provides a value for fi (Hz) which is 3% higher while for the
other frequencies lower values up to 8% are shown. Generally speaking, the difference for fi (Hz)
increase linearly with the damage state for the second pushover set, up to 30% at the NC state. Finally,
the mean values of the instantaneous cyclic Eigen-Frequencies (Hz) of the multi-storey frame resulted
from four pushovers along the positive and negative directions (P-2 and P-3) should be used in the
diagram.

i-step of pushover analysis

900 where #,=0.35 m
1 0.135; 750
800 - 4 T T .
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Figure 12. Diagram of the instantaneous Eigen-Frequencies in Nonlinear Area combined with the
Seismic Capacity Curve for the two pushover sets.

According to phase (a) of the methodology for existing structures, an identification multi-
channel system of uniaxial accelerometers is installed in the 5-storey planar RC frame and response
accelerations when the frame is quasi-calm are recorded. From the analysis of the records, the
fundamental Eigen-Frequency f;; = 0.23610 Hz for the i-step of pushover analysis is determined.

Then, according to phase (d) of the methodology, the fundamental Eigen-Frequency f;; is
inserted in the Eigen-Frequencies diagram of Figure 12 (see also the key-Figure 2) and the respective
displacement us; = 0.35 m of the frame roof is determined, which corresponds to 6, = 0.02 rad.
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All the other higher frequencies (f;,; to f5;) can also be found from Figure 12 at the same i-step. The
first three instantaneous mode shapes (@i to ¢s,) of the multi-storey frame at the corresponding i-
step where 6,, is equal to 0.02 rad are illustrated in Figure 13. Moreover, at the i-step of the pushover
analyses where the roof displacement us; appears, two damage images are obtained, one for the
positive and one for the negative application of floor forces, for each one of the two pushovers sets
P-1 and P-2. By these two damage images for each one pushover set and by taking the envelope
damage image from the two sets, the final requested estimation of the damage is obtained. In Figure
14 the damage image for the first pushover set P-1 is shown, separately for the positive and negative
direction of the lateral floor forces. In this figure, the developed plastic hinges are illustrated with a
black semicircle at the upper or lower fibers of the beams. As shown in this figure, the multi-storey
planar frame develops a beam-sway type plastic mechanism, with plastic hinges at the end-sections
of the beams in all floors (except the top floor) and at the base of the columns of the ground floor.
This is fully in line with the seismic design objective for high ductility [24]. For the second set P-2 of
pushover analysis, the damage is distributed throughout the frame, at the end-sections of the beams
in all floors, but the magnitude of damage is a little higher in the upper half of the frame and a little
lower in the lower half (Figure 15). Also, no plastic hinges appear at the base of the columns of the
ground floor.

It is noting that in an earthquake event, the actual seismic load on the structure is different and
this loading varies in each time step. Hence, the damage distribution on the frame can be different
from that obtained by the pushover analysis. However, the critical parameter in the recently
proposed methodology is the fundamental Eigen-Frequency, which is identified by monitoring with
a local network of uniaxial accelerometers. Knowing the fundamental Eigen-Frequency of the
structure, the equivalent lateral displacement of the monitoring point on the roof of the building can
be estimated by Figure 12 and then the capacity curve is considered to identify the damage state. On
the other hand, the second set of pushover analysis, with the load pattern with an additional top
force, should always be considered in tall moment-frames with more than four floors, to take account
of the higher mode effects on the damage potential. In this frame, both pushover sets provide similar
values for the fundamental instantaneous cyclic Eigen-Frequency f;; and for the damage image, but,
if the frame was taller, then these results might have been different.

Mode o, ; Mode Py Mode Py
T, =4351s; f,=0.22985 s T,~0.804s; f, =1.24361 s T,=0336s; f,,=2.97196 s

|
]

L 1 |

A
N L)

Figure 13. The first three instantaneous modes @i to @si at 8, = 0.02 rad.
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Figure 14. Plastic mechanism of the planar RC moment-frame by the 1% set P-1 of pushover analysis,
with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 m (8, =
0.02 rad) corresponding to the fundamental Eigen-Frequency of the damaged frame. Evaluation of
Damage Locations.
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Figure 15. Plastic mechanism of the planar RC moment-frame by the 2 set P-2 of pushover analysis,
with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 m (6, =
0.02 rad) corresponding to the fundamental Eigen-Frequency of the damaged frame. Evaluation of
Damage Locations.

Finally, according to phase (g) of the methodology, the instantaneous stiffness matrix k; of the
frame structure at the examined inelastic i-step (6, = 0.02 rad) is calculated for the case of pushover

analysis with positive floor forces following the triangular pattern (P-1):
[ 36370.51 —33082.10 14643.09 —3673.87 679.84
—33082.10 50479.70 —38748.17 1511843  —2690.79
k; =| 14643.09 —38748.17 52466.20 —36198.25 10206.16
—3673.87 15118.43 —36198.25 43966.32 —19808.32
679.84 —2690.79 10206.16 —19808.32 11722.76

Therefore, the Damage Stiffness Matrix AKk; at the same i-step is calculated from the general
relationship Ak; = k, — k;, where K, is the known Initial Stiffness Matrix of the planar frame in the
health state without damage. The later can be calculated from the nonlinear model of the frame in
which the geometric moment of inertia I, has been assigned to all RC structural elements and the
gravity loads are applying gradually:
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257837.85 —150932.01 37561.89 —5540.92 712.70
[—150932.01 225406.70 —140857.01  33129.35 —3282.19 }
k, =1 37561.89 —140857.01 207019.25 —118543.59 20706.76

l—5540.92 33129.35  —118543.59 152434.25 —62373.91J
712.70 —3282.19 20706.76 —62373.91  44252.75

Hence, the Damage Stiffness Matrix AK; of the planar frame, at the same i-step, is calculated as
following:

221467.34 —117849.92  22918.80 —1867.05 32.86
—117849.92 174926.99 -—102108.84 18010.92 —591.40
Ak; =k, —k; =] 2291880 —102108.84 154553.05 —82345.34 10500.60
—1867.05 18010.92 —82345.34 108467.94 —42565.59
32.86 —591.40 10500.60  —42565.59 32529.99

For the pushover analysis with positive floor forces following the triangular pattern but with an
additional top force (P-2), the corresponding Damage Stiffness Matrix AK; of the planar frame, at the
same i-step (6, = 0.02 rad), is calculated as abovementioned and is equal to:

219118.62 —117522.85 2293298 —1948.18 110.79
—117522.85 175015.31 —102488.80 18377.29 —872.53
Ak; =| 2293298 —102488.80 155574.83 —84085.17 11567.50
—1948.18 18377.29 —84085.17 114674.18 —47323.23
110.79 —872.53 11567.50  —47323.23 36434.37

4. Discussion

Knowing the Damage Stiffness Matrix Ak; of the planar frame, the final percentage deviation
terms of Ak; can be calculated with respect to the Initial Stiffness Matrix k, and are presented in
matrix form in Tables 2 and 3 respectively for the P-1 and P-2 force patterns. The visual representation
of these tables is shown in Figures 16 and 17, respectively. These deviations on the diagonal terms of
the Damage Stiffness matrix indicate the degree of damage of the planar five-storey RC frame at the
i-step where 6, = 0.02rad (us = 0.35m), which is fully compatible with the damage images of
Figures 14 and 15. We also notice that in Table 3 (P-2 pattern) the values of the terms in the damage
stiffness matrix AKk; that correspond to the upper half of the frame (degrees of freedom u,, us) are
higher while those corresponding to the lower half of the frame (degrees of freedom u;, u, ) are
lower relative to the respective ones in Table 2 (P-1 pattern). The values of AK; that correspond to
uz (intermediate floor) are about the same in both tables. Hence, the form as well as the values of the
damage stiffness matrix AK; is fully compatible with the damage image of Figures 14 and 15. The
final Damage Stiffness Matrix Ak;, which mark the damage state of this planar RC frame, will be
determined as the average of the corresponding values resulted from the two patterns P-1 and P-2
(Figures 16 and 17).

Table 2. Percentage deviation of the Damage Stiffness matrix Ak; at the i-step (6,, = 0.02 rad), for
the triangular force pattern (P-1).

Degrees of
freedom t 2 Us ta Us
Uy 85.89% 78.08% 61.02% 33.70% 4.61%
Uy 78.08% 77.61% 72.49% 54.37% 18.02%
Uz 61.02% 72.49% 74.66% 69.46% 50.71%
Uy 33.70% 54.37% 69.46% 71.16% 68.24%

Us 4.61% 18.02% 50.71% 68.24% 73.51%

d0i:10.20944/preprints202308.1246.v1
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Pushover floor force pattern P-1
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damage Stiffness Matrix Ak;
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of the Stiffness Matrix

Figure 16. Percentage deviation of the Damage Stiffness matrix Ak; at the i-step (6, = 0.02 rad), for
the triangular force pattern (P-1).

Table 3. Percentage deviation of the Damage Stiffness matrix AKk;, at the i-step (8, = 0.02 rad), for
the triangular force pattern with an additional top force (P-2).

Degrees of
freedom 4 2 s ta s
Uy 84.98% 77.86% 61.05% 35.16% 15.54%
U, 77.86% 77.64% 72.76% 55.47% 26.58%
Uz 61.05% 72.76% 75.15% 70.93% 55.86%
Uy 35.16% 55.47% 70.93% 75.23% 75.87%
Us 15.54% 26.58% 55.86% 75.87% 82.33%

Pushover floor force pattern P-2

Percentage deviation of the
damage Stiffness Matrix Ak;

100.00%
50.00%
0.00%

Degrees of freedom
of the Stiffness Matrix

Degrees of freedom
of the Stiffness Matrix us

Figure 17. Percentage deviation of the Damage Stiffness matrix Ak; at the i-step (8, = 0.02 rad), for

the triangular force pattern with an additional top force (P-2).
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5. Conclusions

A recently proposed methodology [21] for the identification of damage in RC frame structures
is validated in the present paper by examining a group of planar, ductile, multi-storey RC moment-
frames, from which a numerical example has been presented here. This is a five-storey planar
moment-frame with three unequal spans which develops a beam-sway plastic mechanism. The
proposed methodology uses a hybrid technique, that is called “M and P technique” (where the M
means “Monitoring” and the P means “Pushover”), where the pushover capacity curve of the multi-
storey frame is combined with the diagram of the Instantaneous Eigen-Frequencies of the structure
as a function of the inelastic seismic (target) roof displacement. This diagram has been resulted by
performing a sequence of pushover and instantaneous modal analyses, with gradually increasing
target displacement, and with appropriate values of the effective bending stiffness E.l;; of RC
structural elements as a function of the target displacement. This gradually increasing target
displacement corresponds at each i-step to a specific value of the mean (chord) rotation 6,,.; of the
moment-frame. By inserting in this diagram, the fundamental Eigen-Frequency of the damaged
frame determined by a monitoring network of accelerograms, the roof target displacement of the
frame arises and, hence, the damage image of the frame at the corresponding i-step of pushover
analysis. Moreover, the instantaneous stiffness matrix and the damage stiffness matrix of the frame
at the same i-step of pushover analysis is calculated. The latter is fully compatible with the degree of
damage in the multi-storey frame at this i-step of pushover analysis. In this article, pushover analysis
has been performed using two patterns of lateral floor forces (the second one with an additional top
force) to account for the equivalent results due to the higher mode effects in tall moment frames.
Finally, all results come as the average of four pushovers along the positive and negative direction.

Therefore, using the proposed methodology for damage identification, a very good estimation
of the distribution and of the magnitude of the damage in beam-sway, ductile, multi-storey, planar
RC frames has been achieved.

Author Contributions: Conceptualization, T.M., A.B.; methodology, T.M.; software, T.M., A.B.; validation, T.M.,
A.B.; formal analysis, T.M., A.B.; investigation, T.M., A.B.; resources, T.M., A.B.; data curation, T.M., A.B.;
writing —original draft preparation, A.B.; writing—review and editing, T.M., A.B.; visualization, T.M., AB.;
supervision, T.M.; project administration, T.M.; funding acquisition, None. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Basseville, M.; Benveniste, A.; Goursat, M.; Hermans, L.; Mevel, L.; Auweraer, H. Output-only Subspace-
based structural identification: from theory to industrial testing practice. Journal of Dynamic Systems,
measurement and Control, Transactions of the ASME 2001, Special issue on identification of mechanical
systems 4(123), pp. 668-76. http://dx.doi.org/10.1115/1.1410919

2. Brincker, R;; Zhang, L.; Andersen, P. Modal identification of output-only systems using frequency domain
decomposition. Smart Materials and Structures Journal 2001, 10, pp. 441-45 https://doi.org/10.1088/0964-

1726/10/3/303
3.  Peeters, B. Identification and damage detection in civil engineering. Ph.D. Thesis, Katholieke Universiteit,
Leuven, Belgium, 2000.

https://www.researchgate.net/publication/238331491_System_Identification_and_Damage_Detection_in_
Civil_Engineering

4. Peeters, B.; Roek, G. Stochastic System Identification for Operational Modal Analysis: A Review. Journal of
Dynamic Systems Measurement and Control 2001, 123 (4). https://doi.org/10.1115/1.1410370

5. Wenzel, H; Pichler, D. Ambient Vibration Monitoring, John Wiley & Sons, Ltd: England, 2005.

6.  Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory-Implemented-Applications, Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1996. http://dx.doi.org/10.1007/978-1-4613-0465-4

7. Papoulis, A. Signal Analysis, International Student Edition, McGraw-Hill Book: USA, 1985.


https://doi.org/10.20944/preprints202308.1246.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1246.v1

17

8. Oppenheim, A.; Schafer, R. Digital Signal Processing, Prentice-Hall, Inc, Publication: Englewood Cliffs, NJ,
New Jersey, 1999. https://research.iaun.ac.ir/pd/naghsh/pdfs/UploadFile_2230.pdf

9.  Bendat, J.; Piersol, A. Random Data. Analysis and Measurement Procedures, Fourth Edition; John Wiley & Sons,
Inc Publication: USA, 2010. https://www.wiley.com/en-
gb/Random+Data:+Analysis+tand+Measurement+Procedures,+4th+Edition-p-978047024 8775

10. Makarios, T. Identification of the mode shapes of spatial tall multi-storey buildings due to earthquakes.
The new "modal time-histories” method. Journal of the Structural Design of Tall & Special Buildings 2012, 21,
9, pp. 621-641. https://doi.org/10.1002/tal.630

11. Dragos, K.; Makarios, T.K.; Karetsou, I.; Manolis, G.D.; Smarsly, K. Detection and Correction of
Synchronization-induced Errors in Operational Modal Analysis. Journal of Archive of Applied Mechanics,
Springer 2020, 90, pp. 1547-1567. https://doi.org/10.1007/s00419-020-01683-6

12.  Zimmerman, D.C; Kaouk, M. Structural damage detection using a minimum rank update theory. Journal
of Vibration and Acoustics 1994, 116(2): pp. 222-231. https://doi.org/10.1115/1.2930416

13. Kaouk, M.; Zimmerman, D.C. Structural damage assessment using a generalized minimum rank
perturbation theory. AIAA Journal 1994, 32(4), pp. 836-842. https://doi.org/10.2514/3.12061

14. Domaneschi, M.; Limongelli, M.P.; Martinelli, L. Damage Identification in a benchmark Cable-Stayed
Bridge using the Interpolation Method. In Proceedings of the 7th European Workshop on Structural Health
Monitoring, La Cité, Nantes, France, July 8-11, 2014.
https://www.researchgate.net/publication/281947001_Damage_Identification_in_a_Benchmark_Cable-
Stayed Bridge Using_the_Interpolation_Method

15. Domaneschi, M.; Limongelli, M.P.; Martinelli, L. Damage detection and localization on a Cable-Stayed
Bridge. Earthquake and Structures 2015, vol. 5, issue 5, PP- 1113-1126.
https://doi.org/10.12989/eas.2015.8.5.1113

16. Nazari, F.; Baghalian, S. A new Method for Damage Detection in symmetric beams using artificial neural
network and Finite Element Method. International Journal of Engineering & Applied Sciences (IJEAS) 2011,
Vol.3, Issue 2, pp. 30-36. https://dergipark.org.tr/en/pub/ijeas/issue/23578/251156

17.  Amani, M.G,; Riera, ].D.; Curadelli, R.O. Identification of changes in the stiffness and damping matrices of
linear structures through ambient vibrations. Structural Control and Health Monitoring Journal 2007, 14, pp.
1155-1169. https://doi.org/10.1002/stc.206

18. Zhang, S.; Wang, H.; Wang, W.; Chen, S. Damage Detection in Structures Using Artificial Neural
Networks. In Proceedings of the International Conference on Artificial Intelligence and Computational
Intelligence, Sanya, China, Oct. 23-24, 2010, pp. 207-210. doi:10.1109/AICI.2010.50,
https://ieeexplore.ieee.org/document/5656766

19. Reuland, Y.; Martakis, P.; Chatzi, E. A Comparative Study of Damage-Sensitive Features for Rapid Data-
Driven  Seismic  Structural =~ Health ~ Monitoring.  Appl. Sci. 2023, 13(4):  2708.
https://doi.org/10.3390/app13042708

20. Martakis, P.; Reuland, Y.; Stavridis, A.; Chatzi, E. Fusing damage-sensitive features and domain adaptation
towards robust damage classification in real buildings. Soil Dynamics and Earthquake Engineering 2023, 166,
https://doi.org/10.1016/j.s0ildyn.2022.107739.

21. Makarios, T. Damage Identification in plane multi-storey reinforced concrete frame. The Open Construction
& Building Technology Journal 2023, 17. doi: 10.2174/18748368-v17-230223-2022-18

22. Bakalis, A.; Makarios, T. Seismic Enforced-Displacement pushover procedure on multistorey R/C
buildings. Engineering Structures 2021, 229. https://doi.org/10.1016 /j.engstruct.2020.111631

23. EN 1998-3. Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and
Retrofitting of Buildings; European Committee for Standardization: Brussels, Belgium, 2005.

24. EN 1998-1. Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic
Actions and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004.

25.  Structural Analysis Program SAP2000v23. 2021. Computers and Structures, Inc. www.csiamerica.com

26. Mander, ].B.; Priestley M.].N.; Park, R. Theoretical Stress-Strain Model for Confined Concrete. Journal of
Structural ~ Engineering 1988, Vol. 114, No. 8, Paper No. 22686, pp. 1804-1826,
https://ascelibrary.org/doi/10.1061/%28 ASCE%290733-9445%281988%29114%3 A8%281804%29

27. Park, R.; Paulay, T. Reinforced concrete structures, John Wiley & Sons, Inc.: New York, USA, 1975.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202308.1246.v1

