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Abstract: The effectiveness of a recently proposed methodology in the identification of damage in planar, 

multi-storey, Reinforced Concrete (RC) moment-frames, which develop a plastic-yield mechanism on their 

beams, is showcased here via the examining of a group of such existing multi-storey frames with three or more 

unequal spans. According to the methodology, the diagram of the instantaneous Eigen-Frequencies of the 

frame in the nonlinear regime is drawn as a function of the inelastic seismic roof displacement by performing 

a sequence of pushover and instantaneous modal analyses with gradually increasing target displacement. 

Using this key-diagram, the locations of severe seismic damage in an existing moment-frame can be evaluated 

if the instantaneous fundamental eigen-frequency of the damaged frame, at an analysis step within the 

nonlinear area, is known in advance by “the monitoring and the identification of frequencies” using a local 

network of uniaxial accelerometers. This is a hybrid technique because both procedures, the instrumental 

Monitoring of the structure and the Pushover analysis on the frame (M and P technique), are combined. 

Moreover, the damage image of the planar multi-storey moment-frame is illustrated, and the lateral stiffness 

matrix of the damaged frame is calculated with high accuracy. 

Keywords: damage identification; instantaneous eigen-frequencies diagram; pushover capacity 

curve; nonlinear analysis of reinforced concrete structures; seismic target-displacement; beam-sway 

plastic mechanism 

 

1. Introduction 

Identification of damage in reinforced concrete (RC) structures can be done by detection of 

variations in their dynamic characteristics with reference to the undamaged state. To detect the Eigen-

Frequencies (and mode-shapes) of existing RC structures, instrumental monitoring of the structure 

by an installed local multichannel network system of accelerometers is necessary, and then, an 

analytic processing of the recorded response should be performed by using various stochastic and 

deterministic procedures developed in the past [1–11]. Recent research effort has led to the 

development of theories, methods, and techniques for the detection of damage in existing structures, 

such as the rank perturbation theory (MRPT) [12,13], a technique about the discontinuity of forms of 

mode-shapes [14,15], an artificial neural network technique [16], the method of the damage stiffness 

matrix [17,18], a comprehensive review of data-driven damage indicators for rapid seismic structural 

health monitoring [19] and a combination of traditional structural health monitoring techniques with 

novel machine learning tools [20]. Furthermore, recently, a hybrid procedure for the damage 

identification in existing planar RC frame has been developed [21], mainly for the case of seismic 

loadings or wind loadings. The last methodology is based, on the one hand, on the development of 

Eigen-Frequencies curves by performing two pushover analyses in a suitable nonlinear model of the 

planar moment-frame, and, on the other hand, on the fundamental Eigen-Frequency of the damaged 
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frame, which is identified by the instrumental monitoring of its structural integrity. Using the 

fundamental Eigen-Frequency of the damaged moment-frame that arise by the instrumental 

monitoring, all the other higher Eigen-Frequencies of the moment-frame are determined from the 

diagram of the instantaneous Eigen-Frequencies of the frame in the nonlinear regime (namely the 

key-diagram). Furthermore, the modal shapes of the damaged frame are determined with 

instantaneous modal analysis (at the examined step of pushover analysis), where all calculations are 

performed into the examined step of the nonlinear area of analysis. Last, the damage stiffness matrix 

of the moment-frame is calculated at the examined step considering all plastic hinges and the 

degradation of member stiffness, and therefore it determines the extent of damage of the moment-

frame. Finally, the damage image of the planar RC moment-frame, i.e. the location and the magnitude 

of damage, is obtained from the state of the developed plastic hinges at the corresponding step of the 

pushover analysis. It is noting that in planar frames, two pushover analyses, with lateral floor forces 

with triangular (or according to the first mode-shape) distribution in elevation, are needed, where 

the second pushover analysis has negative sign on the lateral floor forces with reference to the first 

one. 

To verify the abovementioned recently proposed methodology [21] in frames that develop a 

beam-sway plastic mechanism, a group of existing ductile, multi-storey, multi-span, planar RC 

frames with various lengths and storey heights is examined in this paper in order to determine the 

damage state. Here, a numerical example of a five-storey moment-frame with three unequal spans is 

presented. All the steps of the proposed methodology are clearly presented in the corresponding 

section below and applied during the presentation of the numerical example. The article focuses, on 

the one hand, on the determination of the Eigen-Frequencies curves of the damaged moment-frame 

as a function of the seismic roof displacement, which are drawn by performing a sequence of 

pushover and instantaneous modal analyses with gradually increasing target displacement, and, on 

the other hand, on the evaluation of the damage stiffness matrix of the moment-frame. In addition, a 

new load pattern appropriate for tall multi-storey frames is incorporated in pushover analysis to take 

account of the effects of higher modes in the distribution of damage along the height of the frame. 

Finally, for each case, the damage matrix of the frame is calculated, and the damage image of the 

frame is illustrated. 

2. Materials and Methods 

The free vibration differential equation of motion of a multi-degree of freedom system (MDOF) 

without damping due to an initial forced displacement or velocity is: 𝐦 𝐮ሷ (t) + 𝐤௢ 𝐮(t) = 𝟎 (1) 

where m is the mass matrix of the frame, 𝐤௢ is the stiffness matrix of the frame while 𝐮(t) and 𝐮ሷ (t) 

are the time-varying displacement and acceleration vectors of the system respectively.  

Next, it is assumed that this is an existing system that presents a damage image due to any cause. 

Then, the stiffness matrix at any time step i will change by 𝚫𝐤௜, so it follows that: 𝐤௜ = 𝐤௢ − 𝚫𝐤௜ (2) 

where 𝚫𝐤௜ is the Damage Stiffness Matrix. 

Moreover, the instantaneous mode-shapes at each inelastic i-step of the analysis can be defined 

if a modal linear analysis is performed using the instantaneous stiffness matrix 𝐤௜, which includes 

the damage effects on stiffness. Therefore, the equation of motion is written: 𝐦 𝐮ሷ (t) + (𝐤௢ − 𝚫𝐤௜) 𝐮(t) = 𝟎 (3) 

That is, a modal analysis is performed using as initial conditions the inelastic response of the 

frame structure at the i-step. Hence, considering that the mass matrix m does not vary, the eigenvalue 

problem at the inelastic i-step is written: ሾ(𝐤௢ − 𝚫𝐤௜) − 𝜔௜ଶ𝐦ሿ 𝛗௜ = 𝟎 (4) 

where 𝜔௜ (rad/s) is the instantaneous eigenvalues and 𝛗௜ is the instantaneous mode-shape vectors 

of the frame structure at the inelastic i-step of the analysis. The solution of the eigenvalue problem is 

given by setting the following determinant to zero and finding the roots 𝜔௜ଶ of the resulting algebraic 

equation: 
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detሾ(𝐤௢ − 𝚫𝐤௜) − 𝜔௜ଶ𝐦ሿ = 0 (5) 

Then, the instantaneous mode-shape vector 𝛗௜,௚  can be calculated by Equation (4) for each 

value of 𝜔௜,௚ଶ , where 𝑔 = 1,2,3, . . 𝑁 in an N-degrees of freedom system. Moreover, with a known 

eigenvalue 𝜔௜,௚ଶ , Equation (4) is pre-multiplied by the 𝛗௜,௚ఁ : 𝛗௜,௚ఁ  ൣ(𝐤௢ − 𝚫𝐤௜) − 𝜔௜,௚ଶ  𝐦൧ 𝛗௜,௚ = 0 (6) 

Rearranging the terms in Equation (6), it can be rewritten as following: 𝛗௜,௚ఁ  𝚫𝐤௜ 𝛗௜,௚ = 𝛗௜,௚ఁ  𝐤௢ 𝛗௜,௚ − 𝜔௜,௚ଶ   𝛗௜,௚ఁ  𝐦  𝛗௜,௚ (7) 

It is noted that it is impossible to identify the instantaneous frequency 𝜔௜,௚  and the 

instantaneous mode-shape vector 𝛗௜.௚ of the structure at the inelastic i-step by analysis of the records 

(time-history analysis with accelerograms) using the Random Data Processing, since these 

procedures require the existence of a sufficient time-window, where the eigenfrequencies remain 

constant. Instead, the obtained records by an installed monitoring multichannel network system of 

accelerometers must come from the ambient vibration of an existing (with damage) calm structure, 

without motion. Therefore, if 𝜔௜,௚ , 𝛗௜,௚ , 𝐤௢ , 𝚫𝐤௜ , 𝐦    are known by the recently proposed 

methodology [21], then Equation (7) can be used at the end for verification reasons. 

 In summary, the recently proposed methodology [21] on multi-storey planar frames, using a 

hybrid technique (that we call “M and P” technique, where the M means “Monitoring” and the P 

means “Pushover”) that combines an identification system and a numerical model, consists of the 

following phases: 

(a) The fundamental Eigen-Frequency 𝑓ଵ  of the existing damaged structure is identified by 

monitoring with a local network of uniaxial accelerometers located at the characteristic positions 

along the degrees of freedom of the system. 

(b) A suitable numerical non-linear model of the structure is obtained, and two pushover analyses 

are performed, with positive and negative floor forces, leading to the drawing of the capacity 

curves of the structure in terms of base shear and roof displacement (Figure 1). As regards the 

floor lateral force pattern used in pushover analysis, the triangular or the first mode pattern of 

forces is suitable for building structures up to four floors. For higher buildings, an additional 

second-floor force pattern is proposed with a unit base shear (𝑉௢), in which an additional force 

equal to 0.20 ∙ 𝑉௢ is applied at the top floor [22] and the rest of the base shear (namely the 0.80 ∙𝑉௢ ) is distributed (in floor forces) according to the triangular or to the first mode pattern. The 

goal here is to consider the higher mode effects of tall buildings into the linear and non-linear 

area, which can be significant especially for more flexible structures, such as moment-frames. 

Another important point in the application of pushover analysis is that P-D effects should 

always be considered in the nonlinear area, especially for frame structures which are more 

flexible. 
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Figure 1. Pushover Capacity Curve of the multi-storey planar frame structure. 

(c) By performing Modal analysis at each i-step (or at various characteristic steps) of the pushover 

analysis, using the stiffness matrix of the damaged structure obtained at the last i-step in 

pushover analysis, the diagram of the instantaneous (step) cyclic Eigen-Frequencies 𝑓ே,௜ (in Hz) 

of the damaged structure is drawn as a function of the roof displacement 𝑢௧௢௣,௜ of the structure 

(Figure 2). In this diagram, that is the novel key point of the proposed methodology, the value 

of the inelastic roof displacement 𝑢௧௢௣,௜ is the abscissa and the value of the Eigen-Frequencies 𝑓ே,௜ of the damaged structure is the ordinate. 

It is emphasized that that the sequence of pushover and instantaneous modal analyses of the 

structure, targeting each time at a gradual increasing roof displacement, should be performed in a 

nonlinear model of the structure with discrete values 𝐸௖𝐼௘௙௙,௜ (𝐸௖ is the elastic modulus of concrete) 

of the effective bending stiffness of RC structural elements, that correspond to different damage states 

at each i-step, due to stiffness degradation because of damage. The damage state corresponds to 

various performance levels: undamaged state, first Yield (first plastic hinge formation), Damage 

Limitation (DL), Significant Damage (SD), Near Collapse (NC), and all the intermediate ones. Hence, 

an effective stiffness scenario in terms of the effective moment of inertia ratio 𝐼௘௙௙,௜ 𝐼௚⁄  (where 𝐼௚ is 

the moment of inertia of the geometric section) must be prepared before performing pushover and 

modal analyses, as a function of the mean (chord) rotation of the frame structure, 𝜃௣௥,௜, where the 

subscript pr,i refers to the chord rotation profile of the moment-frame at the examined i-step. This is 

equal to 𝜃௣௥,௜ = 𝑢௧,௧௢௣,௜ 𝐻௧௢௧⁄ , where 𝑢௧,௧௢௣,௜ is the seismic (target) roof displacement at the i-step and 𝐻௧௢௧ is the total building height (Figure 3). As shown in Figure 4, the effective moment of inertia 𝐼௘௙௙,௜ 
of RC structural elements (as the mean value for their two end-sections) that corresponds to the NC 

performance level is too low, and it can be calculated from an equation given in EN 1998-3 [23]: 𝐸௖𝐼 ୤୤ = 𝑀௣ ∙ 𝐿௩3 ∙ 𝜃௬      (8) 

where 𝑀௣ is the plastic moment of the section determined through an elastoplastic idealization of 

the Moment-Curvature diagram Μ-φ of the section, 𝐿௩ is the shear length of the RC element taken 

equal to the half clear-length of the element [22,23], and 𝜃௬ is the available chord rotation of the shear 

length of the element at yield state that is given approximately by Equation A.10 of Eurocode EN 

1998-3. In fact, EN 1998-3 impose these low values of the effective bending stiffness on all RC 

structural elements, in order to perform nonlinear analysis targeting all performance levels, from DL 

to NC. Since this is too conservative, a scaling is proposed in Figure 4 when pushover analysis targets 

other higher seismic performance levels, such as DL or SD or all other intermediate ones [22]. Another 

point in Equation (8) is that it provides different values of effective stiffness at various structural 

elements. To simplify this, the mean effective stiffness at NC state is assigned to each structural 

element of the nonlinear model according to the proposed methodology. Moreover, the effective 

stiffness scenario of Figure 4 proposes discrete 𝐼௘௙௙,௜ 𝐼௚⁄  values from the uncracked state towards the 

1st Yield (when the 1st plastic hinge is shown) and from there to DL. Additionally, two proposed lines 

(with the corresponding equations) for the effective stiffness into the linear and nonlinear area are 

also presented into Figure 4: 

For the linear area, 0 ≤ 𝜃௣௥ ≤ 0.004:  𝐼௘௙௙ 𝐼௚⁄  =  1 − 125 · 𝜃௣௥   (9) 

For the nonlinear area, 0.004 < 𝜃௣௥ ≤ 0.032:  𝐼௘௙௙ 𝐼௚⁄ =  3 · 10଺ · 𝜃௣௥ସ– 253312 · 𝜃௣௥ଷ + 7383.2 ·  𝜃௣௥ଶ − 93.773 ·  𝜃௣௥ + 0.747  (10) 

For the nonlinear area in the vicinity of (near) collapse, 0.032 < 𝜃௣௥: 𝐼௘௙௙ 𝐼௚⁄ = 𝑀௣ ∙ 𝐿௩ (3 ∙ 𝜃௬ ∙ 𝐸௖ ∙ 𝐼௚)⁄  (11) 
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Figure 2. Instantaneous Eigen-Frequencies diagram, in the nonlinear area. 

 

Figure 3. The profile angle 𝜃௣௥ of the frame structure in pushover analysis with floor lateral forces. 
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Figure 4. Effective moment of inertia ratio 𝐼௘௙௙ 𝐼௚⁄  with reference to the geometric moment of inertia 𝐼௚ of RC structural elements at discrete damage states as a function of the mean (chord) rotation of 

the frame structure 𝜃௣௥ (rad). 

(d) The known fundamental Eigen-Frequency of the damaged structure of phase (a), 𝑓ଵ, is inserted 

in the instantaneous Eigen-Frequencies diagram (Figure 2) and, hence, the respective inelastic 

seismic (target) roof displacement 𝑢௜ is determined. All the rest instantaneous higher Eigen-

Frequencies (𝑓ଶ,௜ , 𝑓ଷ,௜ , … 𝑓ே,௜)  lie on the same vertical line passing through the target-

displacement 𝑢௜.  

(e) The damage state of the structure can be identified by the results of two pushover analyses (with 

floor forces along the positive and negative direction) at the i-step where the roof displacement 𝑢௜  is shown. The location and the state of the plastic hinges at this i-step of each pushover 

analysis indicate the damaged state of the structure, while the final requested damaged state of 

the structure will result from the superposition of the damage states of the two pushovers. 

(f) Moreover, a linear modal analysis is performed at the i-step of pushover analysis (phase e), using 

as initial conditions the instantaneous stiffness matrix of the i-step. From this modal analysis, all 

the circular Eigen-Frequencies 𝜔௜,௚  and all the instantaneous mode-shapes 𝛗௜,௚  of the 

damaged structure are calculated.  

(g) At the end, the instantaneous stiffness matrix 𝐤௜ of the structure at the examined inelastic i-step 

is determined. Hence, the Damage Stiffness Matrix 𝚫𝐤௜ at the same i-step is calculated from the 

general relationship 𝚫𝐤௜ = 𝐤௢ − 𝐤௜ , where 𝐤௢  is the known Initial Stiffness Matrix of the 

undamaged structure. 

3. Numerical Example 

We consider the existing five-storey planar RC frame of Figure 5, with three unequal spans, with 

dimensions 𝐿ଵ = 3.5 m, 𝐿ଶ = 5.5 m and 𝐿ଷ = 4.5 m. The strorey height is equal to 3.5 m in all floors, 

and the total height of the frame is 17.5 m. The total vertical uniformly distributed loads of the seismic 

combination 𝑝 = 𝑔 + 𝜓௲𝑞 (where 𝑔 is the dead load, 𝜓௲𝑞 is the quasi-live load and 𝜓௲ = 0.3 [24]) 

applied on the spans of each floor are respectively equal to 𝑝ଵ = 28, 𝑝ଶ = 35 and 𝑝ଷ = 32 kN/m. 

These loads contribute to a floor mass of approximately 45 tn and to a total frame mass of 225 tns. 

The floor mass and the degrees of freedom of the five-storey planar frame for the modal analysis are 

illustrated in Figures 5b and 6b. Additionally, Figures 5a and 6a present the two patterns (P-1 and P-

2) of lateral floor forces that will be used in pushover analysis. The frame was constructed with 

concrete grade C25/30 and steel grade B500s, with mean compressive and tensile strengths, 

respectively equal to 𝑓௖௠ = 33 MPa and 𝑓௬௠ = 550 MPa. The Elasticity Modulus of the concrete is 

equal to 𝐸௖ = 31 GPa, while that of the steel is 𝐸௦ = 200 GPa. There are two different column sections, 
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with dimensions 𝑏௖ × ℎ௖ equal to 0.45 × 0.45 and 0.50 × 0.50 m, respectively. All column sections 

are symmetrically reinforced with 12 steel bars of 20 mm diameter (or 12Ø20) at all floors, except the 

top floor where the total steel bars are 4Ø20+8Ø14 (Figure 7). The confinement reinforcement in all 

columns, in every floor, consists of closed hoops with 4 ties of 8 mm diameter, evenly spaced per 8 

cm axially at the critical end sections. The beams of the frame have a rectangular section of dimension  𝑏௕ × ℎ௕ = 0.30 × 0.60 m and are symmetrically reinforced at the upper and the lower fibers but have 

different steel bars at various floors (Figure 7). The beams in all floors have a perimetric closed hoop 

of 8mm diameter, evenly spaced per 8cm axially at the critical end sections, which acts as shear 

reinforcement and provides a low confinement state. Steel reinforcement details of typical column 

and beam sections are shown in Figure 8. It is noting that the planar RC frame has been designed 

according to EN 1998-1 [24] for the high ductility class (DCH) and, hence, it is expected to 

demonstrate a beam-sway plastic mechanism in the nonlinear area.  

 

Figure 5. Five-storey planar RC frame with three unequal spans: (a) static simulation for the first 

pushover set (P-1) with a triangular force pattern, (b) dynamic simulation. 

 

Figure 6. (a) Static simulation of the five-storey planar RC frame for the second pushover set (P-2) 

with a triangular force pattern and an additional top force, (b) dynamic simulation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2023                   doi:10.20944/preprints202308.1246.v1

https://doi.org/10.20944/preprints202308.1246.v1


 8 

 

 

Figure 7. (a) Sections of RC structural elements, (b) longitudinal steel bars. 

 

Figure 8. Steel reinforcement details of typical column and beam sections. 

In order to apply the proposed methodology [21] for the identification of the structural damage, 

a sequence of pushover and instantaneous modal analyses should be performed. The nonlinear 

model of the planar RC frame was created in the FEM analysis software SAP2000 [25] using fiber 

hinges to simulate the locations of the possible developing plastic hinges at the end-sections of the 

elements, with plastic hinge length calculated by Equation (A.9) of EN 1998-3 [23]. The material 

constitutive relationships used in nonlinear analyses are consistent with: (a) the uniaxial unconfined 

and confined model for the concrete proposed by Mander, Priestley and Park (1988) [26] (Figure 9), 

and (b) the steel reinforcement model (parabolic at strain hardening region) proposed by Park and 

Paulay (1975) [27] (Figure 10).  
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Figure 9. Stress-strain diagram for unconfined and confined concrete. 

 

Figure 10. Stress-strain diagram for steel bars. 

A section analysis [25] should be performed first, in order to calculate the effective bending 

stiffness 𝐸௖𝐼 ୤୤୤ of the structural elements at the NC state, using Equation (8). Then, the stiffness 

scenario used in the sequence of pushover analyses of the frame -with gradually increasing target 

roof displacement- is established (phase c), which is presented in Table 1 as a function of the profile 

angle 𝜃௣௥ (Figure 3). The discrete values of the effective moment of inertia 𝐼 ୤୤ assigned to all RC 

structural elements of the nonlinear model of the frame depend on the seismic (target) roof 

displacement of the pushover analysis, i.e. on the target performance level (Figure 4). For example, if 

the target roof displacement 𝑢௧,௧௢௣ corresponds to a value of 𝜃௣௥  equal to 0.028, i.e. 𝑢௧,௧௢௣ = 𝜃௣௥ ∙𝐻௧௢௧ = 0.028 ∙ 17.5 = 0.49 m, then the value of 𝐼 ୤୤ that should be assigned to all structural elements 

of the nonlinear model is equal to 0.19𝐼୥ according to Table 1. 

To obtain the capacity curve of the planar frame, two pushover analyses are performed targeting 

the NC state, with positive and negative signs of the floor lateral forces. In these analyses, the effective 

moment of inertia 𝐼௘௙௙ of Table 1 that correspond to the NC state is used (Equation 8), i.e. the value 

0.15𝐼௚. Since the planar frame has more than four floors, two floor force patterns are used in pushover 

analysis according to phase (b): (i) the triangular pattern (Figure 5a), (ii) the triangular pattern but 

with an additional top force equal to 0.20 ∙ 𝑉௢ for a unit base shear (𝑉௢ = 1.00kN, Figure 6a). These 

two force patterns will be referred to, from now on, as P-1 and P-2. The two capacity curves of the 

planar frame for the two pushover sets are illustrated in Figure 11, together with bi-linearization lines 

for the first set P-1 that mark the DL state at a value of 𝜃୮୰ about equal to 0.01 rad. As shown in this 

figure, the NC state of the frame is conservatively shown at a value of 𝜃୮୰ equal to 0.56 17.5⁄ =0.032 rad, i.e., that in the last line of Table 1. The capacity curves for the second pushover set P-2 

present higher ultimate displacements and lower elastic stiffness. 
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Table 1. Effective moment of inertia ratio (𝐼௘௙௙ 𝐼௚⁄ ) of RC structural elements as a function of the mean 

(chord) rotation of the frame structure 𝜃௣௥ (rad). 𝜽𝒑𝒓 𝑰𝒆𝒇𝒇 𝑰𝒈⁄   𝜽𝒑𝒓 𝑰𝒆𝒇𝒇 𝑰𝒈⁄   𝜽𝒑𝒓 𝑰𝒆𝒇𝒇 𝑰𝒈⁄   𝜽𝒑𝒓 𝑰𝒆𝒇𝒇 𝑰𝒈⁄  

0.000 1.00  0.010 0.32  0.020 0.28  0.030 0.17 

0.001 0.87  0.011 0.32  0.021 0.27  0.031 0.16 

0.002 0.74  0.012 0.31  0.022 0.26  0.032 0.15 

0.003 0.61  0.013 0.30  0.023 0.25  0.032+ Eq. (8) 

0.004 0.50  0.014 0.30  0.024 0.24    

0.005 0.43  0.015 0.30  0.025 0.23    

0.006 0.40  0.016 0.30  0.026 0.22    

0.007 0.37  0.017 0.29  0.027 0.21    

0.008 0.35  0.018 0.29  0.028 0.19    

0.009 0.34  0.019 0.28  0.029 0.18    

 

 

Figure 11. Capacity curves of the planar frame along the +x and -x axis (𝐸𝐼௘௙௙ at NC, Table 1), for the 

two force patterns P-1 & P-2. 

Next, a sequence of pushover analyses of the existing planar frame is performed, where each 

one targets a seismic roof displacement which corresponds to the discrete values of the profile angle 𝜃௣௥  of Table 1, from 0 to 0.032 rad. In each pushover analysis, the effective moment of inertia 𝐼௘௙௙ 

assigned to the structural elements of the nonlinear model of the frame is that shown in Table 1, 

which corresponds to the same discrete values of the target profile angle 𝜃௣௥. At the last step of the 

separate pushover analyses, an instantaneous modal analysis is running with initial condition the 

damage state of this last step, i.e. using the stiffness matrix of the damaged frame at the last step of 

each pushover analysis. From the sequence of modal analyses of the planar frame, the instantaneous 

cyclic Eigen-Frequencies of the system are recorded (F1 to F5) and the diagram of the instantaneous 

cyclic Eigen-Frequencies (in Hz) of the planar frame in the nonlinear area is obtained as a function of 

the roof displacement 𝑢ହ. This is done for the two directions of application of the floor forces and the 

mean values of the instantaneous cyclic Eigen-Frequencies (in Hz) of the planar frame are calculated, 

for both pushover sets with the different floor force patterns P-1 and P-2. In Figure 12, the diagram 

of the instantaneous cyclic Eigen-Frequencies (in Hz) is combined with the capacity curve of the 

planar RC frame. For figure clarity, only one capacity curve is presented, that for the pushover with 
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positive floor forces following a triangular pattern (P-1). This curve was determined using a nonlinear 

model of the frame in which the 𝐼௘௙௙ value of Table 1 that corresponds to 𝜃୮୰ = 0.02 rad has been 

assigned to all RC structural elements. As is shown in Figure 12, the two pushover sets P-1 and P-2 

provide similar results for the instantaneous cyclic Eigen-Frequencies in this planar frame. At 𝜃୮୰ =0.02 rad, the second pushover set (P-2) provides a value for f1 (Hz) which is 3% higher while for the 

other frequencies lower values up to 8% are shown. Generally speaking, the difference for f1 (Hz) 

increase linearly with the damage state for the second pushover set, up to 30% at the NC state. Finally, 

the mean values of the instantaneous cyclic Eigen-Frequencies (Hz) of the multi-storey frame resulted 

from four pushovers along the positive and negative directions (P-2 and P-3) should be used in the 

diagram. 

 

 

Figure 12. Diagram of the instantaneous Eigen-Frequencies in Nonlinear Area combined with the 

Seismic Capacity Curve for the two pushover sets. 

According to phase (a) of the methodology for existing structures, an identification multi-

channel system of uniaxial accelerometers is installed in the 5-storey planar RC frame and response 

accelerations when the frame is quasi-calm are recorded. From the analysis of the records, the 

fundamental Eigen-Frequency 𝑓ଵ,௜ = 0.23610 Hz for the i-step of pushover analysis is determined.  

Then, according to phase (d) of the methodology, the fundamental Eigen-Frequency 𝑓ଵ,௜  is 

inserted in the Eigen-Frequencies diagram of Figure 12 (see also the key-Figure 2) and the respective 

displacement 𝑢ହ,௜ = 0.35 m of the frame roof is determined, which corresponds to 𝜃௣௥ = 0.02 rad. 
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All the other higher frequencies (𝑓ଶ,௜ to 𝑓ହ,௜) can also be found from Figure 12 at the same i-step. The 

first three instantaneous mode shapes (φ1,i to φ3,i) of the multi-storey frame at the corresponding i-

step where 𝜃௣௥  is equal to 0.02 rad are illustrated in Figure 13. Moreover, at the i-step of the pushover 

analyses where the roof displacement 𝑢ହ,௜ appears, two damage images are obtained, one for the 

positive and one for the negative application of floor forces, for each one of the two pushovers sets 

P-1 and P-2. By these two damage images for each one pushover set and by taking the envelope 

damage image from the two sets, the final requested estimation of the damage is obtained. In Figure 

14 the damage image for the first pushover set P-1 is shown, separately for the positive and negative 

direction of the lateral floor forces. In this figure, the developed plastic hinges are illustrated with a 

black semicircle at the upper or lower fibers of the beams. As shown in this figure, the multi-storey 

planar frame develops a beam-sway type plastic mechanism, with plastic hinges at the end-sections 

of the beams in all floors (except the top floor) and at the base of the columns of the ground floor. 

Τhis is fully in line with the seismic design objective for high ductility [24]. For the second set P-2 of 

pushover analysis, the damage is distributed throughout the frame, at the end-sections of the beams 

in all floors, but the magnitude of damage is a little higher in the upper half of the frame and a little 

lower in the lower half (Figure 15). Also, no plastic hinges appear at the base of the columns of the 

ground floor. 

It is noting that in an earthquake event, the actual seismic load on the structure is different and 

this loading varies in each time step. Hence, the damage distribution on the frame can be different 

from that obtained by the pushover analysis. However, the critical parameter in the recently 

proposed methodology is the fundamental Eigen-Frequency, which is identified by monitoring with 

a local network of uniaxial accelerometers. Knowing the fundamental Eigen-Frequency of the 

structure, the equivalent lateral displacement of the monitoring point on the roof of the building can 

be estimated by Figure 12 and then the capacity curve is considered to identify the damage state. On 

the other hand, the second set of pushover analysis, with the load pattern with an additional top 

force, should always be considered in tall moment-frames with more than four floors, to take account 

of the higher mode effects on the damage potential. In this frame, both pushover sets provide similar 

values for the fundamental instantaneous cyclic Eigen-Frequency 𝑓ଵ,௜ and for the damage image, but, 

if the frame was taller, then these results might have been different. 

 

 
Figure 13. The first three instantaneous modes φ1,i to φ3,i at 𝜃௣௥ = 0.02 rad. 
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Figure 14. Plastic mechanism of the planar RC moment-frame by the 1st set P-1 of pushover analysis, 

with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 m (𝜃௣௥ =0.02 rad) corresponding to the fundamental Eigen-Frequency of the damaged frame. Evaluation of 

Damage Locations.  

 

Figure 15. Plastic mechanism of the planar RC moment-frame by the 2nd set P-2 of pushover analysis, 

with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 m (𝜃௣௥ =0.02 rad) corresponding to the fundamental Eigen-Frequency of the damaged frame. Evaluation of 

Damage Locations.  

Finally, according to phase (g) of the methodology, the instantaneous stiffness matrix 𝐤௜ of the 

frame structure at the examined inelastic i-step (𝜃௣௥ = 0.02 rad) is calculated for the case of pushover 

analysis with positive floor forces following the triangular pattern (P-1): 

𝐤௜ = ⎣⎢⎢⎢
⎡ 36370.51 −33082.10 14643.09 −3673.87 679.84−33082.10 50479.70 −38748.17 15118.43 −2690.7914643.09 −38748.17 52466.20 −36198.25 10206.16−3673.87 15118.43 −36198.25 43966.32 −19808.32679.84 −2690.79 10206.16 −19808.32 11722.76 ⎦⎥⎥⎥

⎤
 

Therefore, the Damage Stiffness Matrix 𝚫𝐤௜  at the same i-step is calculated from the general 

relationship 𝚫𝐤௜ = 𝐤௢ − 𝐤௜, where 𝐤௢ is the known Initial Stiffness Matrix of the planar frame in the 

health state without damage. The later can be calculated from the nonlinear model of the frame in 

which the geometric moment of inertia 𝐼௚ has been assigned to all RC structural elements and the 

gravity loads are applying gradually:  
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𝐤௢ = ⎣⎢⎢⎢
⎡ 257837.85 −150932.01 37561.89 −5540.92 712.70−150932.01 225406.70 −140857.01 33129.35 −3282.1937561.89 −140857.01 207019.25 −118543.59 20706.76−5540.92 33129.35 −118543.59 152434.25 −62373.91712.70 −3282.19 20706.76 −62373.91 44252.75 ⎦⎥⎥⎥

⎤
 

Hence, the Damage Stiffness Matrix 𝚫𝐤௜ of the planar frame, at the same i-step, is calculated as 

following: 

 

 

𝚫𝐤௜ = 𝐤௢ − 𝐤௜ = ⎣⎢⎢⎢
⎡ 221467.34 −117849.92 22918.80 −1867.05 32.86−117849.92 174926.99 −102108.84 18010.92 −591.4022918.80 −102108.84 154553.05 −82345.34 10500.60−1867.05 18010.92 −82345.34 108467.94 −42565.5932.86 −591.40 10500.60 −42565.59 32529.99 ⎦⎥⎥⎥

⎤
 

For the pushover analysis with positive floor forces following the triangular pattern but with an 

additional top force (P-2), the corresponding Damage Stiffness Matrix 𝚫𝐤௜ of the planar frame, at the 

same i-step (𝜃୮୰ = 0.02 rad), is calculated as abovementioned and is equal to: 

 

𝚫𝐤௜ = ⎣⎢⎢⎢
⎡ 219118.62 −117522.85 22932.98 −1948.18 110.79−117522.85 175015.31 −102488.80 18377.29 −872.5322932.98 −102488.80 155574.83 −84085.17 11567.50−1948.18 18377.29 −84085.17 114674.18 −47323.23110.79 −872.53 11567.50 −47323.23 36434.37 ⎦⎥⎥⎥

⎤
 

4. Discussion 

Knowing the Damage Stiffness Matrix 𝚫𝐤௜ of the planar frame, the final percentage deviation 

terms of 𝚫𝐤௜ can be calculated with respect to the Initial Stiffness Matrix 𝐤௢ and are presented in 

matrix form in Tables 2 and 3 respectively for the P-1 and P-2 force patterns. The visual representation 

of these tables is shown in Figures 16 and 17, respectively. These deviations on the diagonal terms of 

the Damage Stiffness matrix indicate the degree of damage of the planar five-storey RC frame at the 

i-step where 𝜃௣௥ = 0.02 rad (𝑢ହ = 0.35 m), which is fully compatible with the damage images of 

Figures 14 and 15. We also notice that in Table 3 (P-2 pattern) the values of the terms in the damage 

stiffness matrix 𝚫𝐤௜ that correspond to the upper half of the frame (degrees of freedom 𝑢ସ, 𝑢ହ) are 

higher while those corresponding to the lower half of the frame (degrees of freedom 𝑢ଵ, 𝑢ଶ ) are 

lower relative to the respective ones in Table 2 (P-1 pattern). The values of 𝚫𝐤௜ that correspond to 𝑢ଷ (intermediate floor) are about the same in both tables. Hence, the form as well as the values of the 

damage stiffness matrix 𝚫𝐤௜ is fully compatible with the damage image of Figures 14 and 15. The 

final Damage Stiffness Matrix 𝚫𝐤௜, which mark the damage state of this planar RC frame, will be 

determined as the average of the corresponding values resulted from the two patterns P-1 and P-2 

(Figures 16 and 17). 

Table 2. Percentage deviation of the Damage Stiffness matrix 𝚫𝐤௜ at the i-step (𝜃௣௥ = 0.02 rad), for 

the triangular force pattern (P-1). 

Degrees of 

freedom 
𝑢ଵ 𝑢ଶ 𝑢ଷ 𝑢ସ 𝑢ହ 𝑢ଵ 85.89% 78.08% 61.02% 33.70% 4.61% 𝑢ଶ 78.08% 77.61% 72.49% 54.37% 18.02% 𝑢ଷ 61.02% 72.49% 74.66% 69.46% 50.71% 𝑢ସ 33.70% 54.37% 69.46% 71.16% 68.24% 𝑢ହ 4.61% 18.02% 50.71% 68.24% 73.51% 
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Figure 16. Percentage deviation of the Damage Stiffness matrix 𝚫𝐤௜ at the i-step (𝜃௣௥ = 0.02 rad), for 

the triangular force pattern (P-1). 

Table 3. Percentage deviation of the Damage Stiffness matrix 𝚫𝐤௜, at the i-step (𝜃௣௥ = 0.02 rad), for 

the triangular force pattern with an additional top force (P-2). 

Degrees of 

freedom 
𝑢ଵ 𝑢ଶ 𝑢ଷ 𝑢ସ 𝑢ହ 𝑢ଵ 84.98% 77.86% 61.05% 35.16% 15.54% 𝑢ଶ 77.86% 77.64% 72.76% 55.47% 26.58% 𝑢ଷ 61.05% 72.76% 75.15% 70.93% 55.86% 𝑢ସ 35.16% 55.47% 70.93% 75.23% 75.87% 𝑢ହ 15.54% 26.58% 55.86% 75.87% 82.33% 

 

Figure 17. Percentage deviation of the Damage Stiffness matrix 𝚫𝐤௜ at the i-step (𝜃௣௥ = 0.02 rad), for 

the triangular force pattern with an additional top force (P-2). 
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5. Conclusions 

A recently proposed methodology [21] for the identification of damage in RC frame structures 

is validated in the present paper by examining a group of planar, ductile, multi-storey RC moment-

frames, from which a numerical example has been presented here. This is a five-storey planar 

moment-frame with three unequal spans which develops a beam-sway plastic mechanism. The 

proposed methodology uses a hybrid technique, that is called “M and P technique” (where the M 

means “Monitoring” and the P means “Pushover”), where the pushover capacity curve of the multi-

storey frame is combined with the diagram of the Instantaneous Eigen-Frequencies of the structure 

as a function of the inelastic seismic (target) roof displacement. Τhis diagram has been resulted by 

performing a sequence of pushover and instantaneous modal analyses, with gradually increasing 

target displacement, and with appropriate values of the effective bending stiffness 𝐸௖𝐼௘௙௙,௜  of RC 

structural elements as a function of the target displacement. This gradually increasing target 

displacement corresponds at each i-step to a specific value of the mean (chord) rotation 𝜃௣௥,௜ of the 

moment-frame. By inserting in this diagram, the fundamental Eigen-Frequency of the damaged 

frame determined by a monitoring network of accelerograms, the roof target displacement of the 

frame arises and, hence, the damage image of the frame at the corresponding i-step of pushover 

analysis. Moreover, the instantaneous stiffness matrix and the damage stiffness matrix of the frame 

at the same i-step of pushover analysis is calculated. The latter is fully compatible with the degree of 

damage in the multi-storey frame at this i-step of pushover analysis. In this article, pushover analysis 

has been performed using two patterns of lateral floor forces (the second one with an additional top 

force) to account for the equivalent results due to the higher mode effects in tall moment frames. 

Finally, all results cοme as the average of four pushovers along the positive and negative direction. 

Therefore, using the proposed methodology for damage identification, a very good estimation 

of the distribution and of the magnitude of the damage in beam-sway, ductile, multi-storey, planar 

RC frames has been achieved. 
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