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Highlights
4
e  An analytical and exact solution to the Mullins approximated problem, 24+B B—Z =0, was
at dx

given.

e  The obtained analytical solution gave more accurate information on the geometric
characteristics of the groove.

e  Expressions of zeros, minima, and maxima of the groove profile y(x) and its derivatives were
determined.

e  Valuable insights into the diffusion behavior of various metals gained through this study.

e  The expressions for the evaporation and diffusion constants and coefficients were derived.

Abstract: In a previous paper, we solved the partial differential equation of Mullins problem in the case of the
evaporation-condensation in electronic devices and gave an exact solution relative to the geometric profile of
the grain boundary grooving when materials are submitted to thermal and mechanical solicitation and fatigue
effect. In this new research, new modelling of the grain groove profile was proposed and new analytical
expressions of the groove profile, the derivative and the groove depth were obtained in the case of diffusion in
thin polycrystalline films by the resolution of the fourth differential equation formulated by Mullins that
supposed y'?> « 1. The obtained analytical solution gave more accurate information on the geometric
characteristics of the groove that were necessary to study the depth and the width of the groove. These new
findings will open a new way to study with more accuracy the problem of the evaporation-condensation
combined to the diffusion phenomenon on the material surfaces with the help of the analytical solutions.

Keywords: fourth-order differential equation; diffusion; evaporation; groove; surface energy;
thermal fatigue

Introduction

The thermal fatigue plays an important role during of degradation of interconnection
compartments of power electronic devices. The temperature variations resulting from the power
cycling has as consequences the stresses and plastic deformations that can affect the microstructure
of the materials at the interconnection interfaces of upper metallic parts. Wires and metallization
layers more solicited than silicon layers lead to the distortion of material interfaces when the
temperature increases, leading to the deformation or degradation of the material surfaces. This will
decrease the composite life and leads to an accelerated degradation. The arrangement of grains and
grain boundaries is key to understanding the microstructure of metals and composites. When
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subjected to thermal and mechanical stresses, the variation in surface energies between adjacent
grains, confined by the grain boundary, can cause the grains to separate. This phenomenon occurs
due to the thermal and mechanical deformation of the grain boundary and the grain groove profile.
Such occurrences are commonly observed in the bonding wires utilized in electronic devices.

The studies [1-3] have focused on examining the impact of microstructure and physicochemical
properties on degradation processes. In literature [4-6], three effects were investigated. The first two
effects examined the influence of bonding procedures and temperature on crack formation and the
microstructure of the interconnection zone. Meanwhile, the third effect explored the relationship
between material purity, grain size, and hardness during cycling. The metallization layer, typically
around 5um thick, deposited on the chips undergoes significant distortion compared to materials like
silicon when exposed to high temperature. This distortion results in substantial tensile and
compressive stresses, leading to notable inelastic strains [7]. It has been reported that
thermomechanical cycling can cause two main types of degradation on the topside of power chips:
metallization reconstruction and degradation of bonding contacts [7-9]. It is assumed that during
cyclic aging, a progressive effect of condensation-evaporation occurs, leading to structural
degradation and grooving of the film. However, the precise mechanism of this degradation is not yet
fully understood, and further efforts are required to better comprehend the effects of stress
parameters on the degradation of contacts between metallization and bond wire. This involves
finding a mathematical solution to describe the formation of grain boundary grooving in
polycrystalline thin films. Several solutions to this mathematical problem have been proposed in the
literature [10-20]. In 1957, Mullins [10] conducted a study on the thermal effect on the profile of grain
boundary grooving, laying the foundation for subsequent research on this phenomenon [13-20].
Various studies have focused on the development of this phenomenon, particularly exploring
evaporation-condensation, surface diffusion, and formulating the mathematical problem that
describes the profile of grain boundary grooving [10-12].Some authors [22] tried to adapt integrable
nonlinear evolution equations related to the well-known linearizable diffusion equation to derive a
new integrable nonlinear equation which models the surface evolution of anisotropic material
accompanying the action of evaporation-condensation and surface diffusion [22].

A multiple integration technique allowing to solve high-order diffusion equations was proposed
by Hristov [23] based on multiple integration procedures by applying the heat-balance integral
method of Goodman and the double integration method of Volkov. Hristov [24] presented a solution
for the linear diffusion models of Mullins’ thermal grooving [10-12].

Fourth-order diffusion equations are commonly encountered in various applications, including
surface diffusion on solids [10-12, 25-28] and thin film theory [27,28]. Unlike second-order diffusion
equations, fourth-order equations generally do not satisfy any known maximum principle. Even with
simple time-independent linear boundary conditions, evolving solutions tend to generate additional
extrema from initially smooth conditions [29].

Broadbridge [30] studied the problem of a surface groove by evaporation-condensation
62y
xZ

()
approximation [30].

Chugunova and Taranets [31] studied the initial-boundary value problem associated with the
fourth-order Mullins equation with initial data. They considered this problem by assuming that the
specific free energy of the boundary is lower than the surface free energy. The Mullins equation,
originally introduced by Mullins in 1957 [10], is a model used to analyze the evolution of surface
grooves at the grain boundaries of heated polycrystals. Chugunova and Taranets [31] successfully
demonstrated the global existence of weak solutions over time and established that the energy
minimizing steady state serves as the global attractor.

Gurtin and Jabbour [32] developed a regularization theory that incorporates curvature effects,
including surface diffusion and bulk-surface interactions. They investigated two specific cases: (i) the
interface considered as a boundary between bulk phases or grains, and (ii) the interface between an

governed by 3—3; = The depth of a groove at a grain boundary was predicted without any

elastic thin film bonded to a rigid substrate and a vapor phase depositing atoms on the surface [32].
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Huang [33] conducted isothermal stress relaxation tests on electroplated Cu thin films,
considering both passivated and unpassivated films. Based on a kinetic model, Huang [33] deduced
grain-boundary and interface diffusivities and provided numerical and analytical solutions for the
coupled diffusion problems. The study also analyzed the impact of surface and interface diffusivities
on stress relaxation in polycrystalline thin films, comparing the results to experimental data.

Asai and Giga [34] considered the surface diffusion flow equation under specific boundary
conditions. The problem of Mullins (1957) was proposed to model the formation of surface grooves
on the grain boundaries, where the second boundary condition y'’(0) = 0 is replaced by zero slope
condition on the curvature of the graph. Asai and Giga solved the initial-boundary problem with
homogeneous initial data for construction of a self-similar solution and a solution was proposed by
using a semi-divergence structure.

Escher et al. [35] demonstrated the existence and uniqueness of classical solutions for the motion
of immersed hypersurfaces driven by surface diffusion. They focused the surface diffusion proposed
by Mullins [10-12] to model surface dynamics for phase interfaces when the evolution is governed
solely by mass diffusion within the interface. Other studies were devoted to the diffusion problems,
grain boundary migration and grain dynamics evolution in materials [36-42].

Mullins et al. [43] have linearized the differential equation by assuming a very small slope at any
point of the grain profile. In 1975, Brailsford & Gjostein [44] derived approximate solutions by
studying the influence of surface energy anisotropy on morphological changes occurring by surface
diffusion on simply shaped bodies. Wherever a grain boundary intersects the surface of a
polycrystalline material, a groove develops. At the root of the groove, a balance between grain-
boundary tension and surface tension produces an equilibrium angle [45]. The difference in chemical
potential between the curved surface near the groove’s root and the smoother surface farther away
results in material drift.

Tritscher [46] considered the boundary-value problem concerning the formation of a single
groove due to surface diffusion at the junction of a bicrystal, assuming that the grain boundary
remains planar.

Martin [47] extended the original Mullins theory of surface grooving due to a single interface to
multiple interacting grooves formed by closely spaced flat interfaces. Martin considered two cases:
the first involved simplifying Mullins’ analysis using Fourier cosine transforms instead of Laplace
transforms, while the second dealt with an infinite periodic row of grooves. Martin [40] also solved
the problem for two interacting grooves. Analytical solutions for the fourth partial differential
equation governing the groove profile in metals have not been found in the literature.

In a previous study [48], we addressed the mathematical problem associated with the second
non-linear partial differential equation in Mullin’s problem. We focused on the case of the
evaporation-condensation and provided an exact solution for the geometric profile of grain boundary
grooving when materials are subjected to thermal and mechanical stress, as well as fatigue effects.

This paper is devoted to model the grain groove profile governed by the fourth-order partial
differential equation in the case of diffusion in thin polycrystalline films. An analytical and exact

. ; ~ 9 g9y _ i
solution to the Mullins approximated problem, ==+ B——= = 0, was given.

Mathematical formulation in the diffusion case

In this section, we were interested to the derivation of the differential equation that describes the
evolution of a two-dimensional surface of small slope under capillary driving forces and surface
diffusion transport. Surface properties are assumed to be independent of orientation. For a point on

the surface at which the mean curvature is ¢, the chemical potential 1 (¢) per atom can be written as
u(c) = po + ywe 1
where p, is the chemical potential of reference for a flat surface (c =0), v is the surface tension of the

metal/vapor interface and @is the atomic volume of the film material. A gradient of surface curvature
will therefore create a gradient of the chemical potential, which will produce a drift of atoms on the
surface with an average velocity v given by the Nernst-Einstein relation.
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where Ds is the surface diffusivity, k is the Boltzmann constant and T the absolute temperature.

The surface current of atoms Jsis defined by the product of the average velocity v by the atom number
Nsper unit surface area S, it is given by the following equation:

.]Y =v NS (4)
_ _beou_ _DyeNsoc
J- = kT s kKT 9s )

The evolution of the surface may finally be described by the speed of movement v, of the surface
element along its normal:

D,,ya)ZN a%c
v, = 0V =" (6)
d%c
v, =B @)

Notice that N is the number of diffusing atoms per unit area, Js the surface current of atoms
and B a rate constant given by the following equation:

__ D.yw’Ng
B = B (8)

Equation (7) can be written in the general case as:
v, = BV ©)
If y is the coordinate of a point at the surface along the axis normal to the initial flat surface, the
speed of motion of the point along this axis v» is obtained by projection on the y-axis and one obtains:

e (10)
ay 272
|+
Combining equations (9) and (10), one obtains:

&) ;= BVic (11)
[T

Knowing that the curvature c is given by the following expression:

62y
9
c= -2y (12)
y
(3|
and
+v dc 0x 1 dac
B T mas . ,lox (13)
1+(35) ]
One obtains:
ac dx ay\? ~12 62—321
> _ geox_ _ Zy _Oxf
ds dx 0s [1 + (ax) ] (14)

2
Using the same method for % , one obtains:


https://doi.org/10.20944/preprints202308.1233.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1233.v1

-1/2
B (=50 %=+ )] £ (15)

Therefore:

vo=E o Blgw+gﬂ‘%-i§— (16

. 3 a? . . .
With y' = % and y" = ﬁ , previous equatlon can be written as:

-1 /2 2
(1+y7) (m 2)3,2” (17)
With the following boundary conditions:
y(x,0)=0

1
_ m (Bt)?

y(©0.8) = V2T(5/4)

y'(O, t) =tanfd =m (17!)

limy (x,t) =0

X—00

> a
>_ _pt
at 0x

limy '(x,t) = 0
X—00
y (0,t)=0

Knowing that

"y

~| v _ vy 4 ¥y
5[(1+y/2)3”] N (1+y'2)5/2 o

e d

Y
o P [(1+y 2y’ (1+y 2y’ ]

(19)

One obtains:

>~ _ _B [3’,,"(1+3’,Z)2—(y,’3+10y'yl”y;')(1+y'2) + 18y'2y"3] 0)
(1+y?2)

By taking the following variable changes:

yGt) =m (B g [ =] (21)

u(x, t) = W (22)
y(u,t) = m (Bt)/* g(u) (23)
One obtains the different derivatives of y(x,t)and u(x,t):

> 1
ox  (BOIA (24)

~ 1 .
o 4(303/4 gw) +m (Bt)1/4 ai a‘z: -

with

o (26)

% _dyou_ . 99
T ox  du ax ou (27)

2 2
=&y _m_ 29 (28)

ax2 (B4 ou?
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_ 63y _ m 63g
=9 = GOl ow (29)

_ a4y _ m 64g
= oxi = G ot (30)

Equation (25) becomes:

~~ 1

d
= g 9@ — B (31

or

=i 9w -] (32)

By using the previous equations, one obtains:

2 _ 99
1+y?=1+m? (au) 33)
m3 0g 62g 63

yy y = T (B34 ou 2 0wl
- (Y
YT Gk \aw?

vy = e () ()

With equation (20):

(34)

~_ _p [ym(“yrz)z‘(y”3+1"y'y"y”')(1+y'z> : wyw'“] 0)

at (1+y2)*

One writes:
2 3 3
d%g ag ) 2 (629) ag d y g 4 (9g 2(029)
ay m 6u4(1+m Go) ) m*( (5a2) +105u5ut o +18m o) (5
4

wooe (1+m2<3—5)2>

Let us

put:

ag ’ azg ’rr asg rrer 649
‘g ] 9 ou? ’ 9 ou’’ g out (35)

u’

Using equation (32), one obtains:

(1+ng,Z)Zg””—mz(1+nglz)(guz+10g'g”gm) +18mtg?g’3 (36)
(1+m2g'2)4

lg-ugl=-

New study of Mullins’s case

If we suppose a second order approximation of the derivative, y'? « 1, itis easy to deduce the
following equation:
v 11
g —ug t,;9=0 (37)
With the new boundary conditions:
g, 0) =0
_ 1
90,8 = V2T (5/4)
{ 1lli_r)£1°g'(u, t)=0 (38)
limg '(u,t) =0
U—o
g (0,t) =0

Exact resolution of Mullins’ problem

In this section, we propose a new method to resolve the equation (38) by using the following
equation:
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1 1
r4—Zur+Z=0 (39)

and by considering the different solutions r in function of u.
Let us consider the following equation valid for all values of

r4—1ur+i= (r? + )% - (

8ArZ4+u r+412—1)
4

: (40)

To resolve equation (38), we begin by transforming equation (39’) into difference between two
perfect squares, therefore, the expression (8Ar% + ur +44* — 1) will be transformed into perfect
square, if it has a double solution and then his discriminant has to be cancelled.

Now, let us consider the equation:

8Art+ur+42—-1=0 (41)
The discriminant A of this second-degree equation (40) function in r can be written as:
A= w2 — 32242 - 1) (41")
Putting A = 0, one has:
3_1,_ ¥ _
A==z =0 (42)

Equation (42) can be written as:
B4+pr+qg=0 (43)

. 1 u?
With p = — and q = ~ s

: — : —_rxr_1 3p3 — L : 3 3, W
Putting A = a + f and taking aff = Pl or a°f = one obtains a’ + B° = q—m,and

a’ et B3 will be the two solutions of the following second-degree equation:

3
X +qX-2=0 (44)
or
2 1 ,
X=X +=5=0 (44"

The discriminant of equation (44'):

27q%+4p3
A = Zatdp

= (45)

Can be calculated as a function of u:
u? 1 1 210
b= gy = w(v %) (46)
Two cases have to be distinguished:

, 25/2
1. Firstcase A;=> 0 and u 25

In this case, the solutions of equation (44') will be given by:

210
u?+ u4——3
3
3 —

R (47)
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p=—1— (48)

1/3 1/3
ul+ <u4 - %) u?— <u4 - 2;—:)
2, = - — (49)
This value of 4, will cancel the discriminant of equation (40)
(8’ +ur+42,°—-1)=0 (39)
Therefore, the solution r is given by:
. u
T 164,
and then:
2
(2/121‘ +1 Jur+ /12 - —) = 24, (r + 15_1) (50)
Consequently, one obtains:
YREE DRSNS B SRR Y
ri—ur+.= (0" +2) 2/12(r+16/12) (51)

or

r4—§ur+—— (r + 24T + A4, + )(7‘ — V24T + 2= ) (1)

The four solutions of equation (37) can be then obtained from the solutions of the two following 2nd

degree equations:

24+ 24,1 +’12+8¢%72=0 (53)
r - \/2127' +Az 2/12 =0 (54)

The discriminants of equations (53) and (54) are given by the respective following expressions:

Alz 2)12 —4 (/12 2 ) (55)

A= 22, — (,12 . Mz) (56)
Two cases can be studied:

Solutions of %> + [22, 7 + A, +

213

5/2
Knowing that A;= —24, — is negative because of the condition u > ;T' one obtains two

u
2,27,

conjugate complex solutions:

—J2A, +i /2/12+ —
r = 2% (57)

2
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~ -2, - /2,12+ z¢+72 8)
2

. 2 _ v _
Solutions of r 20, r + 4, Vo 0

n

u

222,

Let us prove that A,> 0

Where A,= —24, +

A, can be written as: A,= 4, (—2 + To obtain the sign of A, , we have to study the sign of

a7)
@a)32 )

2/3

2 (—1 + W) and then to compare between 1 and m or between 24, and T;T
2/3 10 13 10 13
2By _ 1 2 2
u2/32 == (1+ 1—W> +<1— l—m) ] (59)
1/3 1/3
/u2+ <u4—§> /uz— <u4—231—30>\
= k—g) + k—gj (49)
2 2
210 .
Letus put = |1 — P one obtains:
_2Peay) 1 1/3 1/3
=—5-=;[0+ X0+ - "] (60)
+ v 1 _ —
— =0+ 07 -1~ )7 (61)

Equation (61) shows that ;—; < 0 , this implies that Z decreases for all valuesof X >0 and Z <1

223229
u2/3

u
<1 or =24, +NTTZ>0 and A,> 0.

for X > 0 and therefore

Therefore, the two other solutions are then given by equations (62) and (63):

2 + L—le
p=— 2 (62)
V2ho- | 5m=24
= N2 (63)

2

25/2

Solution of equation (38) for u = 373

5/2
Now, the final solution, in the case of > ;T , is given by equation (64):

— Qu u 1> . u A A_Zu u A
gw)=e \/Z (Alzcos( ’m+7 u) +A225m( /&/TTZ-'_? u) +e\/: A32Exp( h 2 u) +

ApnExp (— - \/1;72 -2 u)) (64)

with
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The solution in function of y(x,t) will be written as:

y(x,t) = m (Bt)* glu(x, t)] and u(x,t) =

(Bt)7/4
Boundary conditions

Using of the boundary conditions:
D limgu) =0
U—0o
2) limg'(u) =0 (65)
U—oo
3)limg '(u)=0
U—o
The first condition implies necessary: As = As = 0 and therefore the solution will be given by the

following form:

_Jzzu u Ay . u A 7
gu)=e V2 Alzcos( 8\/772+7 u>+A225m( m+7 u) (65")

This solution can be written as:

9:(w) = eP2(A,c0s q,(u) + Apsin q,(w))
With

pa(u) = —277 ()2 u
; ) :
3@ = [2‘fu/12(u)‘2+2‘1/12(u)] u

(u2 + s(u))% + (uz - s(u))%l

10\ 2
(W) = <u4 - 2—)

25/2
33/4

4 _8
A () =273

\

2. Second case A;< 0 and u <

In this case, one obtains two conjugate complex solutions a® and

ul+i (ﬂ—u4>
33 .
a’ = — =4 e (66)
u?—i <231—30—u4> .
B = — =4 et (66")
10
Where A2 = o] = |f°] =25 = = and A = 5 and finally A% =
26— 36,53 25372 y 2

With:
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2

u
Acos 0 = 2—8
10
7
Asinf = 3

(67)

The real solution is given by:

i0 i0 0
A=A (eT + e_T) = 2 A3cos (E)

or
= 5eos(3)
=—cos|=
1= 3
This leads to the solution of equation (43):
1 0
A=12 =cos(3) (68)

This value of A will cancel the discriminant of equation (39)
1 1
(2272 +3ur + 27 -3) (39)

The solution is given here by:
(69)

Remember that:

1 1 u u
T4—ZuT+Z=(T2+ 1/2}11T +ﬂ.1 +m)<1"2— ,/2117” +21_8\/’TTI)=0 (51)

And therefore:
2+ 24, +Al+—8m=0 (53)
u
T2—1[2;11T +/11_8\/TT1=0 (54:)

Their respective discriminants are given below:

A= =22, — N%TI (55)
A= =22, + 2\/%71 (56)
. 25/2
Two cases can be studied for u < ez
First case: r2+ 24, r + 11+ ——==0

8/24,

Here one has 4; = % cos (g)
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Where A;= —21; — ZL is negative. The two conjugate complex solutions of equation (53) are given

V21,
below:
227 +i /211+2‘/+Tl
= 5 (70)
22 —i /zal+ﬁ
r= : 1)
. v _
Second case: r 24 + A4 Yol 0

u

1 [
Here one has A; = = cos (E) and A= —24; + N

V3

Let us prove that A, is negative

u

. u 2 2]
A, can be written as: A,= 24, (W — 1) = [cos (E) VR 1
Z(ECOS(E)>
2 0 334y
A= 7Cos (5) —5— 1 (72)
o)
cos 5)
2 5 5/2 1/2
Knowing that A cos 8 = = ul= % or u= % therefore, one obtains:
2 3 3
1/2
2 6 cos 6
A= cos (3) —1 (73)

(cos(3))’

3
. + 0 .
Now, one writes: (cos (E)) = Zcos (5) + cos 8 and one obtains:

(74)

2 [ 1
AZ_ ECOS (E) ‘[ﬁ - 1]
it VA
4 cos6

cos >
It is obvious that _[> )
4 cos@

1

+1 > 1 and then < 1, therefore A, <0

3 COS(;) ]

4 cos@

The two other conjugate complex solutions are then given by equations (75) and (76)

~ 2 +i /zal—ﬁ 75)

3 = >
V21— i | 24— ﬁ
= —— 76)

. o . . 252
Now, the final solution in this case when A_ is negative or when u < 7 s given by:

_ﬁ A] u /11 u
u)=-e \/;u Aq;cos —+ u |+ A,;sin —+—u
g:1(w) 11 2 8@ 21 2 " sva
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A
+ e\/:u(Aﬂcos( b ¥ u) +A4lsin( b _x u)) (77)

2 82n 2 82n
One obtains:
91(w) = e7P1 (A cos q;(w) + Aysin q(w)) + eP1® (Az5c0s s;(w) + Agsins; (W) (77')

where:

1 1
pi(w) =272, (u)2u
1

112

q;(u) = [2_111(11) + 2_5 ui; (u)_f] u

[

(78)

112

s;(u) = [2_1/11(u) — 2_% u /’ll(u)_f] u

_ 1 6\ . L T 3
A —ﬁcos(g) ; cos 0O =u; sin @ = (1 — ol )
The continuity and derivability of the solution g(u) and its derivatives imposed that
Az = Ay =0

u

84221
9:1(w) = e™P1 (Aj;cos g, () + Ayrsin q(w))

. 1 . . . . 2% .
Because the function 71 - u is not derivable in point u = perz and then, one writes:

In conclusion, one obtains the solutions of the fourth differential equation (37):

5/2

(91(11) forus g

g) = 25/2
9:(w) foruz= 7

25/2
For u Ssmz

u /11 ) u Al
+—u |+ A4ysin —+

(w) _\/@” A
u)==e coS — — Uu
a1 ! 822, 2 822, 2

25/2
For u 23%:

_ R u A u A
gw) =e \/Zu Aqycos ——+2u + Ayysin 2

—+_
822, 2 822, 2 "

With
U Lo
p1(W) =222 u; p,(w) =22 W) u
1

7 e ; 1z
q;(w) = [2_111(71) +2 ZUM(U)_?] u; q(u) = [2_1/12(11) +2_7U/12(u)_7] u

8
A (W) =273

o o
(u + s(u)) +(u - s(u)) i sp(u) = (u - 3_3>

1 0 0 3
A =—cos(—>; c0s 0 =—u’; sinf = 1——u4>
\ =3 3 29 < 10



https://doi.org/10.20944/preprints202308.1233.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1233.v1

14

Satisfying the boundary conditions:
(9w,0)=0

1
O,t = =
90.£) =50 V2T (5/4)
\ limg'(u,t) =0
U—oo
limg '(u,t) =0
U—oo

g 0t)=0

25/2
33/4

Determination of the problem parameters of the solution for u <
91(uw) = e7P1 (Ajscos q; + Aysin qp)
With the boundary conditions and knowing that for u =0, = ;i ; A1 = 1/2 and one obtains:

£ 1
0 :A === = —-_——-
91(0) 11 m(Bt)% Yo \/EF(S/4)

Where &€ is the groove depth.

Condition on the first derivative g,
The calculation of the first derivative gave:

91 (W) = —p; (Aj;cosqq + Ay singy)e P+ q;" (Ay cosq; — Ay sing;)e Pt
with

N O T 1
P1 =272 I:AIZ-I-Z_ u/ll'/ll 2]

1

, - A | T PR Ir7 1 g 3 1
q; = 2 /11+22u/112 + 2 u[Z 2u/112+2 Aljl [22(112_2 'U,A]/ll 2)+2 /11’:|

Knowing that A; = %cos G)" cos @ =27°.332y2 and sin@ = ’(1 - 2_10.33u4) , one obtains:

3
, -4 .
A (w) = % = %.Z—Z; %1 = —%sin (g) ; % =— zsm'zz u and then the first derivative 4; (u):
3 . (0
. 1 6 32\ u sin (3)
==t (£ 2l
1 (W 3\/§Sln 3 24 |sin @ sing "

> . b d hd \/_ . ’
Atu=0 6=0; 9=3 ;sm(g)zg;cos(g)zf , one obtains /11(0)=§, A; (0) =0 and

then p,(0) =0 ; q;(0) =0 ;p;'(0) =3 and q;'(0) =

1
>

The use of the above parameters led to:
, 1
g(0) = _E(All — A1)
The second derivative g,

One had the second derivative:

z 2 2 z . - . C, . _
g1 (W) = (Pl —q1 —Pi )(All cos q; + Ay singy)e Pl + (‘h =-2p1 q4 ) (Ay1 cosqq — Aqpsingy)e™P1
To determine the values of p; and g; , one needs to determine the second derivative 4, “(w).
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The second derivative 2, :

sin 6 sin 0

Al'(u) = 2_4M u ;let'sput v(0) = (ﬁ) ; therefore, /11”(u) =v+u %

3
-~ + od
)ll',(u) =v+u dv df _dv do _ [d (sin(g))] ><< 2 xaz)u

d0 du ’ du  df du  |a6\ sine sin @

6

. (x . . (6

sin(—+ _1 5in 08 cos(~)—3cos 6 sin(= .

Knowing that: — [ —2* G) =37 (3) > (3), one obtains:
dé \ sin6 sin“ 6

-~ _ 3_1 sin @ cos(%)—?,cos 6 sin(g) % (— 2_4><33/2)

du sin? 6 sin 6

2_4 sin(%) N 2_4 % 3_1 sin @ cos(%)—Scos 0 sin(g) (— 2_4x33/2)
— u

sin @ sin? @ sin @

A ()

. . 0 . (6
2w = 27 s::n(g) -ty 3% iy sin 0 cos (g)Si—n;%esm (3) cos 6

sin @ cos(?)—S sin(g) cos 6 _ 25in(§)— sin(g)

sin3 6 sin3 6

sin(a+b)+sin(a—b)
2

By using n a cosb = , one obtains:

and therefore:

. (0 . (20 . (460
R I ISEYC B

The other second derivatives are given below:
v 1o A2,
D1 =272 11’11 242 u/11"/11 2=-2 u/11' AI 2

ST & TIPS SRR N
q; = 22u/112+2 /11 22<3.12_2 u/11/11 2>+2 /11]

3

57

A T N, &
22<112—2 u/11/112)+2 /11:|

I R
-2 u22u112+2 Al

N~

G L TE[ S B B 28\
+2 u22u/11 242 Al 22(_}.111 2—-2 u/11 /11 242 .311.11 Al 2)+2 Al”:l

By calculating the values of the second derivatives at point u = 0: A; (0) =27 ; p,; (0) =0 ;

q;"(0) = 27% one obtains the following equation:

g1 (0) = =27 x (43)
And then:
. 1
g (0) = — 742

Condition on the second derivative g, "’

The calculation of the third derivative led to:

g1 (W)= (329119 -3q191 —p1 —p1 3P s 2) (A71 cos q; + Aypsingy)e Pt

+(3P1 ‘e —a” =3 e+ @ =3 )(A21 cos q; — Ay singq)e P!

Let us calculate the third derivative A4 m(u):
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AW = 244 57 3 x uZSin (%) o (g)

du sin3 0
3
o1 fa (@)= s\ (2
2~ 5 _
X 32 Xutx do sin3 0 x sin 0 xu

. v 4 1/2 Zsin(zse) sm(439) .
Using — = — 27" X 37" X u X —"=——==, one obtains:

sin3 6
1 2sin (230) — sin (%)
A W) =-2"%x32xux —
sin’ 6

2sin (239) — sin (%) d 2sin (%) — sin (g) § <_ 2—43%) )

27 %3 xux _ 2% 342
sin 0 do sind 0 sin@
- 3 2sin(22)- sin(%2 _ 3 a [2sin(%8)- sin(*2
A (W)=-2 8x32Xux% 212 o 32 x;ﬂx[g (351)1139 (3) ]

+~ <Zsin(230) sm(?) ) _ %x sin @ 605(230)— %x sin @ cos(4 ) ) sm(zse)cos 0+3$in(%)cos 6
de -

sin3 6 sint @

_ 1 % 4sin 6 cos(23 ) —4sin 6 cos(43 ) 18 sm(zse)cos 6+9 sin(g)cos 7]
3 sint 6

sin(a+b)+sin(a—b)

> , one obtains:

By using relation: n a cosb =

E (Zsm(zf) sm(439) ) _ % % 2 sm(5 )+2 sm(a) 2 szn(79)+2 sm(g) 9 sm(59)+9 sm(g)+g sm(739)+2 sm(g)

sin3 sint @

> Zsin(zf) sm(439) _ 1 % 35 sm(3) 14 sm(53 )+5 sm(?)
ao sin3 0 T 6 sint 0

And finally, one obtains the third derivative 1, W(u):

Zsin(zf) stn(49) s 13 % 3 % u % [35 sm(S) -14 sm(s )+5 sm(739)

sin3 6 sin’ 6

’r 3
A (W) =-2"%x3Txux

One also calculated the other derivatives:
3 1

S a1 23
P1 =222 XSXAIAIZ—Z X3X/‘11 /11 +2 u/11 /‘{1

-2 ’ ,y 3 -3 3,5
-2 X 3ullﬂ.1 /11 2+2 X3ud A2
» VA NP b SN ST \ W &
q1 =-2 ><3><[2 Zu/11 242 Aljl |:22<11 2-2 u/11/11 2)+2 AI,:I
1

42" ><3[2 Tua T4 1,11] X

-7 - 2,2 -1, 4 »-3
[22(—,11,112—2 w2427 % 3un, A, z)+2 ,11]+2 X 3u
VA SN I SN EPTRPR: \ WP, &
X[Z 211./11 242 /‘11:| [22(}{12—2 u/‘{IAI 2)+2 /11:|

) 7z A 12,2 L 23 —1
-2 ><3u[2 Zu/‘{12+2 /11:| [22(11 2-2 u/11/11 2)+2 /1{])(
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T, s , 3 2, 5
[2 2 (—Al A7 — 27N, 2,2 4 272 x 3ud, A, z)+2—111”]
1
R 3.7 .3 2. S o 3
+2 W 27zu, 2+2‘1/11] [2 2 (—2—1 X342, 2+272x3%22,"" 2,72 —27%uA, "2, 2

n _E I —Z nr
4272 x 32ud A, A2 — 273 X 3 X 5 Ul A, z) +2712, ]

and

, > VA B SIS a3\ oV
S ==-2 XSX[—Z Zull 2+2 Al:l [—22(112—2 u/'l]ll 2)"‘2 A]jl
1
4 VAN B I
+2 X3[—2 Zull 2+2 A]jl X
_Z ’ _é _1 [ _é _2 ’2 _é _1 ’ _3
[—22(—,11/112—2 wd AT 4272 X 3ud, A z)+2 ,11]+2 X 3u
5
VA NP k. A SN LRI I,
X[—Z ZU,/11 2+2 /’11] [—2 2 (/11 2-2 U./ll A] 2)"‘2 A] ]
3
5 VAN SN b A SN - PR
_2 ><3u[—2 YU 42 ,11] [—22(,112—2 wdy A z)+2 Al]x

7 ,. 3 v 3 2, 8
[—2 2 (—/11 AMT2—2"A ", 724272 x3ud A 2) + 2‘1/11”]
1
71 27 .o 3
+271u [—2 Zul, 2+ 2‘111] [—2 2 (—2‘1 X 31,"2;,72

5 3 n. _5
+272x 320, A2 — 27 A, A2 + 272 x 32ud, A, A 2
3. _7
~273 %3 x5ul,"°1, z) + 2-1/11"']

Knowing that the fourth boundary condition g (0) = 0 and the values of the third derivatives at
point u = 0: AIW(O) =0;p, (0=2"°x3;¢q,(0)= -2"°x3; s;(0) = —27° x 3; one obtains

the following equation:

g1 0)= %(AH + Ay;) = 0, therefore:

11
g1 (0) = a(Au +4;)=0

Consequently, the use of the boundary conditions gave the following linear system composed by four

equations with four unknown parameters:

1
{Au ——m— 9o
1
Az1=—\/§ Xr(5/4)=—90

And the the function g and its different derivatives are given at point 0:
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s 1
90 =~ 5 6w
, 1
] 99= 5 r6m
, 1
9= V2 xT(5/4)

L g'0=0

. 25/2
Therefore, the solution for u < P

577 1S completely defined by all above parameters:

g1(w) = e7P1 (A cos q;(w) + Ay sin q(w))

The values of the different parameters and their derivatives at point (ug; g;(u)) were calculated:

1 , 11 13
A(w) =—=; A4 (wy) = m ;A1 () = 1296 A () = —

V3
4 5x2 31
1p1(up) = gi p1(u) = ——;

1
; Uy) = —————; Uy) = ————F——7;
g P W)= o e ) 486 x V2 x 33/
YN/ 23 431 4667
) =—; @1 W) =———7: 0" W)= ——F= a1""(w) = ————7
q:(up) 3 q; (ug) 18 x 31/ q:’"(up) 1296 X 6 q1 0 62208 x 3°/*

5/2
Determination of the problem constants of the solution for u > ;j

In this case, on has g(u) = g,(w), with g,(u) given by:

g92(w) = e P2 (Ap,c0s qy(w) + Apsin qy(w))

p(u) = P u
A

u
W) = +—=

824, 2 “
1

3 3
10 10
Az(u)z% u? + u4—2—3 + | w? - u‘*—z—3
4% 2% 3 3

The values of the different parameters of the solution g, and their derivatives at point (uo ;9> (uo))

are given below:

1. . 11 13
L) == hW)=————7:h W)=>=; b W) =———F7—
2uo) =z (W) = =mm i A (W) = qpgp5 b (W) = =
4 5xV2 31 1
u) == p, (Uy) = ——— Up) = ———; o) = = 5 3k
Pa(uo) =33 P2 (o) = =y 5 P2 (o) = 25 S s P2 ) = =
N 23 431 4667

Uy) = —; (u =— "(uy) = ————; M up) = — ——
q>(up) 3 q, (up) 18><31/4 a2 (up) 1296 x 6 q2"" (up) 62208><33/4

One proved that all parameters and derivatives for the two functions g;

point of the interval [0, ], for:

972 x /2 x 3174

and g, are equal and the
continuity of the solution and its derivatives is assured, at this point u, and consequently at any

d0i:10.20944/preprints202308.1233.v1
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Ay =4, = ! =
11 = A4p = \/EXF(5/4)_‘90
1
A =A == -
21 22 \/Exl"(5/4) 9o

Now the analytical solution of the fourth order differential equation was completely given and all

problem constants were determined.

25/2

o) !&h(u) fOTuﬁsﬁ

5/2
g,(w) foruz= 57

with

91(w) = e7P1M (A cos q;(w) + Aysin q;(w))

g:(w) = e (Apycos qy(u) + Aysin qo(w))
With x = (Bt)#u(x,t) and y(u,t) = m (Bt)/* g(u) , the solution can be written as:
_ m@BY" il

V2 xT(5/4)

Profile of the groove shape in the diffusion case

y(x,t) —cos q[ﬁ] + sin q[ﬁ]

The variations of the profile y(x,t) as a function of the distance x from the symmetric axis of the

groove are plotted on Figure 1.

0.4
02 }
T
= 0 4 B ——
Q ¢ 2 4 6 8 1
H
s 02} Distance x in (Bt)4
2
L)
; 04 }
06
08 }
-1

Figure 1. Groove profile giving y(x,t) as a function of the distance from the symmetric axis of the
groove.

The study of the solution y(x,t) reveals a damped sinusoidal profile of the groove with an
infinity of maxima, minima and zeros of the solutions. The oscillations can be easily observed in our
solution. Mullins mentioned that it is questionable, however, that these oscillations could be observed
due to the progressively decreasing amplitude of g. Here, we proved the superiority of our analytical

d0i:10.20944/preprints202308.1233.v1
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solution that can predict the all oscillations, their amplitudes, the zero, the maxima and minima of
the groove profile.

As example, we gave on Table 1 the 12 first values of the groove shape parameters and on Table
2 the distance between two consecutive maxima and minima for the first 12 numbers.

Table 1. Values of the coordinates of Maxima and minima of the function y(x,t) with the

x... in in x... in in “oin
e VS T e s bl B0
Number N Zeros of y
1 24 2.60x10! -1.35 5.22 -4.02 x102 3.21 1.22
2 7.62 6.44 x103 -5.05 9.66 -1.05 x10-3 6.86 4.35
3 11.62 1.70 x10+ -8.68 13.7 -2.57 x10° 10.57 6.78
4 15.26 4.50 x10-° -12.31 16.98 -7.33 x107 14.13 9
5 18.62 1.19 x107 -15.94 20.26 -1.95 x10® 17.76 11
6 21.82 3.17 x10°* -19.57 23.34 -5.17 x10-10 21.38 12.89
7 24.82 8.42 x101t  -23.20 26.3 -1.37 x101 25.01 14.69
8 27.74 224 x1012  -26.83 29.14 -3.64 x10-13 28.64 16.44
9 30.54 594 x10+  -30.45 31.9 -9.67 x1015 32.27 18.08
10 33.26 1.58 x1015  -34.08 34.58 -2.57 x10-1e 35.90 19.72
11 35.94 4.19x107  -37.71 37.22 -6.84 x10-18 39.52 21.27
12 38.5 1.11 x1018  -41.34 39.78 -1.82 x10° 43.15 22.83
Table 2. values of the differences between two consecutive maxima and minima.
e (Alny..| iioes Al=n 1y,
Number in (Bt)!/4 in (Bt)!/4
1 - - - -
2 5.22 3.70 4.44 3.65
3 4.00 3.63 4.04 3.71
4 3.64 3.63 3.28 3.56
5 3.36 3.63 3.28 3.63
6 3.20 3.63 3.08 3.63
7 3.00 3.63 2.96 3.63
8 2.92 3.63 2.84 3.63
9 2.80 3.63 2.76 3.63
10 2.72 3.63 2.68 3.63
11 2.68 3.63 2.64 3.63
12 2.56 3.63 2.56 3.63

We observed that yy,, decreases towards zero when x increases to the infinity as well as the
absolute value of y,,;, (Table 1). This will decrease the distance between two consecutive maxima
and minima when the distance x increases.

Results of Table 1 led to draw the curves of Figure 2
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Max. parameters

& xMax
M InyMax
Zeros of y

5 10 15

Parameter number N

Maximum values and zeros of y

Min. parameters

€ Xxmin

M [-Inlyminl]

Minimum values and zeros of y

0 '] '] '] '] '] ']
0 2 4 6 8 10 12 14

Parameter number N

Figure 2. Curves of interpolation of the parameters of the grove as a function of the parameter number
N.

These curves of Figures 1 and 2 allowed to give the interpolating equations (Table 3):

Table 3. Equations of interpolation of the various parameters of the groove profile.

. . . Linear regression
Equation of interpolation

Parameters of the groove coefficient

x... in (Bt)¥=f(N) Xor. =-0.0929 N2+ 4.3906N - 1.1605 R2=0.9991
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Iny,..=f(N) Iny, ., =0.0012 N2 - 3.6476N + 2.2688 R2=1.0000
Zeros of y or x,in (Bt)/ xp =-0.0579 N2+ 2.6546N - 0.9316 R2=0.9990
X, in (Bt)¥4=f(N) Xyvr =-0.0767 N2 +4.0748N + 1.6466 R2=0.9996
—Inly...|=f(N) —In |y,+.| =-0.0006 N2+ 3.6352N - 0.3982 R2=1
ny. . = f(cyar) Iny, ., =-0.0102x2,, -0.7048 x,,, +0.6885 R2=0.9998

xp =-0.0002 x2,_, +0.6073 x, .. -0.2429 R2=1
—Inly. .| = 0.0093 x2,_+ 0.7442 x__, -

X0 = f (Xmax)

2=
= |yeor| = f (Xmin) 1.0789 Re=1
=_ 2 - 2=
x) = fmin) xp =-0.0012 x5, , +0.6723 x,,, -2.1302 R2=0.9999
Inflexion point x,,r. = f(N) *mf. = -0.0436 N2+ 2.3829N + 1.378 R2=0.9996

Equations given in Table 3 showed the properties of damped sinusoidal functions and the
pseudo-periodicity of the various groove parameters and the strong correlations between them
showing at the same time the infinity of the number of these different parameters.

On Table 4, we gave the various results obtained by our analytical solution and the Mullins’s
results.

Table 4. Comparison between the results of our analytical solution and those obtained by Mullins.

; ) . . Results obtained by
Studied parameter = Results obtained by using our solution

Mullins
Approached =_ 2
. iiﬁon of e 900 =—01737x+08609x - 07958 9(x) = ~0288x _+Ox7 50
1 ' R? = 0.9997; for 0 < x < 240 '
groove profile for0sx<1
First zero of y 1.22 1.14
Coordinates of the
o ) (2.40; 0.260) (2.30; 0.193)
principal maximum
Coordinates of the
o ) . (3.475; 0.131) 3.43
first inflexion point
Equati f
quations © Xing, = -0.0436 N2 +2.3829N +1.378 ‘
inflexion point Not given
R2=0.9996
Xing. = f(N)
=-0.0134 x; -0.6214 x +
Positive inflexion Yinf () Inf.(+) Inf (+) .
. . 0.3252 Not given
point relation
R2=0.9999
) =0.012 x}r ) +0.6638 xpps-
Negative inflexion Ying () nr(=) s .
. . 0.6231 Not given
point relation
R2=1

The parabolic approximation of the groove profile obtained by Mullins was valid for 0 < x <1,
whereas, our approximation more precise is valid for 0 < x < 2.40 (from the origin until the first
maximum of the groove shape). On the other hand, the error committed by Mullins calculations on
the abscissa of the first maximum the zero of the function y and the first inflexion point is about 7%,
while that on the ordinate of the profile maximum exceeds 25%. On Table 4, we were able, on the
contrary of Mullins results, to give more information on the various maxima, minimas, zeros and
positive and negative inflexion points of the grove shape profile.

If we notice hpg, and hy,;, the depths of the groove taken from the bottom of the grove
respectively to its first maximum and minimum, one can write:
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heoy =&+ Ymaxs and hoo = &+ Yming

Now, knowing that

m(Bt)/4
§H=—"—
"7 V2 xT(5/4)
and
Vmax1 = 0.260 X m(Bt)/* and Vming = —0.040 X m(Bt)/4
One deduced:
hooy = [; +0 260] m@Bt)* and h,., = [; -0 040] m(Bt)!/4
Y V2 xT'(5/4) "’ AAAS V2 XT'(5/4) '
and

hyvy = 1.040 x m(BO)V*; h,,, = 0740 x m(Bt)'/*
The separation distance between two consecutive maxima dj,, or minima d,,;, was given in
Table 2 proving the variation of this distance as a function of optima number N. One obtained the
interpolated expressions on Table 5:

Table 5. Separation distance Between two consecutive maxima or minima and their ratios on the

groove depth.
Separation distance Equation of interpolation Ratio d/h
5.995 N 0365
d,, = 62355 x (Bt)1/* N70365
Between two consecutive maxima /m
7.286 N 0365
d... = 53909 x (Bt)!/4 N~0305
Between two consecutive minima /m

Table 5 clearly showed that the ratio is independent from the time, for example, we can give this
ratio for the first maximum:

hMax m

Table 6 showed a certain deviation of Mullins results with respect to those of the analytical
solution proposed in this paper, that can reach 12% in the case of the first maximum of the groove
shape. However, Mullins did not give any additional information on the other maxima, minima,
zeros of the solution and the various inflexion points, while our solution gave more complete
information on the different parameters of the groove and also proposed many correlations that can
be very useful for the readers.

Table 6. Values of the principal maximum, distance between the two first maxima and their ratios by
using our analytical solution compared to those obtained by Mullins.

Studied parameter Results from our solution Results of Mullins

Depth of the groove profile, he ., = 0973 x m(Bt)'/*
P 8 P ho.. = 1.040 x m(BO)/* - (

hooy With an error of 6.5%

Separation distance between

. . d... =522 (BO*
the two first maxima
de.. 502
hMax m

Ratio d/h

d... =46 B/

With an error of 11.88%
d _ 4.73

hyax m

With an error of 5.78%

rrYy
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Here, some information on the coordinates of the positive and negative inflexion points are
given on Table 7.

Table 7. Coordinates of the positive and negative inflexion points and relations between

coordinates.
Number Abscissa of the positive Ordinate of the positive inflexion point in
inflexion point in (Bt)'/* m(Bt)Y/*
1 3.475 1.310 x10"
2 8.295 3.436 x10°3
3 12.275 9.068 x10°
4 15.855 2.410 x106
> 19.185 6.503 x10°
6 22.325 1.744 x10

Equation  Inypf ) =-0.0134 x,znf‘(ﬂ - 0.6214 xpr 4+ 0.3252 ; R*=0.9999

Abscissa of the negative

Number . . . Ordinate of the negative inflexion point
inflexion point
1 6.055 -2.109 x102
2 10.355 -5.568 x10+
3 14.105 -1.487 x105
4 17.545 -4.013 x107
5 20.775 -1.040 x10#
6 23.845 -2.823 x10-10
Equation —In(=ypnf(-) =0.012 x,znf_(_) +0.6638 x5 (- 0.6231 ; R2=1

Competition between evaporation and diffusion

When studying the evolution of grain boundary groove profiles in the cases of the
evaporation/condensation and surface diffusion, Mullins [10] assumed that: (1) the surface diffusivity
and the surface energy, ys,, were independent of the crystallographic orientation of the adjacent
grains and (2) the tangent of the groove root angle, y, is small compared to unity. Mullins also
supposed an isotropic material. The assumption (tané << 1) was used in all papers’ Mullins to
simplify the study of the mathematical partial differential equation. The polycrystalline metal was
supposed (3) in quasi-equilibrium with its vapor. The interface properties don’t depend on the
orientation relative to the adjacent crystals. The grooving process was described by Mullins using the
macroscopic concepts (4) of surface curvature and surface free energy. The matter flow (5) is
neglected out of the grain surface boundary.

The mathematical equation governing the evaporation-condensation problem can be written
here as:

y' ()

(1 +y'(x)%)

where C(T) a constant of the problem depending on the temperature T, given by:

Py(T) y(T) w?
2mmkT

dy
Frin c(T)

CTM)=u
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where » is the isotropic surface energy, Py(T) the vapor pressure at temperature T in equilibrium
with the plane surface of the metal characterized by a curvature ¢ = 0, @ is the atomic volume, m is
molecular mass, £ the coefficient of evaporation and k is the Boltzmann constant.

We remember here the analytical solution of the evaporation case without any approximation [our

paper] given by
x/2/ct sin @
y(x, t) = f dv
o0 Vev?/act) — sin29
and

=

2n)! 3
y(x,t) = —nCt sin 0 |erfc <2\7§) + Z (n')§2+3\/3_n sin’"0 | erfc ( JZC\/C_T;>

n=1

By combining the two phenomena of diffusion and evaporation/condensation, one writes:

dy y' 0 N-1/2 0 y
ot C(l +y?2) B 5 (1+y") ox [(1 +y2)32

With the approximation postulated by Mullins supposing that y? « 1 one can write:

b d

P Cy —By (93)
With
B = DyyszS d C = Poy(uz
- kT an =H \2rm(kT)3/?

Let's put B the profile area. One can write the rate of change of profile area:

dB _ (*"ay

oo
T B dezz-fo [Cy — By ]dx

One writes:
‘i—f =-2[¢y' @ - By (0]

The Mullins’ approximation supposed that y'* < 1 and y'"’(0) = 0. In a previous paper [ref],
we studied the case of evaporation without this approximation and obtained at the origin the
following relations:

y'(0,t)=tanf = m
{y"'(O, )= 2m{d+ m?

In such case, on obtains:

dB
i —2m[C + 2B (1 + m?)]

And
B=-2m[C + 2B (1+ m?)]t

This relationship provides clear evidence that the rate of change of the profile area is influenced
by both evaporation and diffusion, contrary to Mullin’s prediction which states that B = —2mC and
is independent of surface diffusion.

Calculation of the profile area A from below to above the original surface
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A=— J:Uy(x)dx = —m(Bt)%/* J;uog(u)du

By using the differential equation:

R SIS S
9 —qug +79=

One writes:

U

A = —m(BD)” f 49" (w) — ug’(w)]du
0

Where u, is the first zero of the function g.
Jy 49" (wdu = 4[g" W2 =49 () (g"(0) = 0)
ly —ug @du = ~[[ug N5 - [} 9@du] = [} gwdu  (9(uy) =0)

Therefore:
[ gdu=- [ ag" @ - ug @ldu = 49" @) - | g
0 0 0

And:

A = —m(Bt)!/? f uog(u)du =2m(Bt)*/* g (uy)
0

If ois the profile area transferred from below to above of the original surface by surface diffusion
alone divided by the profile area lost by evaporation, one can write:
A =2m(Bt)?2g"" (uy)
B~ 2m[C + 2B (1 + md)]t

With u, = 1.22, one has g (up) = —0.1543 and one deduces:

g =

01543 x B2t/
CTTCY 2B+ md)

If we suppose that the contact angle is small or m? < 1 (for Theta < 18°) we obtain:
_ 0.1543 x B2
=T C+2B
01543 x kT(2mmD_N;)'/?
o= wy2[uPy + 2D;Ng(2QrmkT)1/2]

Our relation proved that ¢ depends on the temperature, at contrary of the relation obtained by
Mullins:

-1/2

-1/2

B1/? g (2mmDyNy)'/2 -

o= 0.3871:_1/2 =03 2

wy/2P,
Indeed, in this relation, there is no direct effect of the temperature. To compare between the two
previous expressions, we supposed that 2B « C and obtained:

_ 0.1543 x B/ ,

-1/2
o
C
. . . . 0(0ursoluti0n)_0.1543_L_ . . .
This calculation yielded a ratio of sOmullims) | o038 746~ 0.406 , indicating an

overestimation compared to the value proposed by Mullins. Tables 8 and 9 provide two examples
comparing the results obtained using the two methods for Au and Mg metals.

Table 8. Thermodynamic parameters of Au and Mg.

Molecular mass m 1.7 x 10~ %5kg
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Temperature T (K) 725.15 K
Surface energy ¥ 1J/m?
Number of molecules/m?, Ng 1.5 x 10 molecules/m?
kT 1020]
D, 107 m?/s
Molecular volume w 1.7 x 107%m?
Vapor pressure Po of Au 1.3 x 107°Pa
Po of Mg 24 x 10> Pa

Table 9. Values of C, B and profile area of Au and Mg by using our new method compared to the
values of Mullins.

Parameter Our results Mullins results
C 2.8 x 107V Py (inm?/s) 3 x107P, (inm?/s)
B 43 x107%°m?/s 107%°m?/s
2828.40
o _l4s4s .- 172

g Po PO

ooy 8.8x 10°t1/2 2.2 % 10°t71/2

Our 4.8¢71/2 11.8t71/2

We observed that the profile areas corresponding to Au and Mg are overestimated by the
Mullins method (about 2.5 times greater than our new values). On the other hand, the calculated ratio
of the profile area lost by evaporation of Au and Mg is equal to:

T 18 x10°
Oumg
This proved that whatever the time, the evaporation of Au is 1.8 x 10° times more important
than that of Mg. However, the diffusion of Mg particles is greater than that of Au.
The same procedure was used to determine the values of the profile area lost by evaporation of
some common metals (Table 10).

Table 10. Values of ot'/? and thermodynamic parameters of some metals, such as melting point: Tmp
(K), temperature of metal: T (K), vapor pressure at T: Po (Pa), molar mass: M (g/mol), surface energy
of metal: y (J/m?) and atomic volume: @ (m?).

M otl/?
Metal y(/ m?) @ (m3) Tur (K) T (K) Py (Pa)
(g/mol)
1.2 x 10
Cu 63.546 1.808 1.18 x10-» 1358.2 2200 11490.38 .
1.9 x 10
Al 26.9815 1.152 2.32 x10-2° 933.5 2000 2956.96 .
2.5x 10
Ti 47 .867 2.045 1.77 x10-» 1941.2 2370 286.35 \
2.0x10-
Cs 132.905 0.095 1.18 x10-28 302.96 530 425.19 \
1.5 x 10

Li 6.941 0.524 2.18 x10» 453.7 970 294.34
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3.8 x10-
Co 58.933 2.536 1.11x10-2 1768.2 2120 303.04 \

4.1 x 10
Ga 69.723 0.991 1.96 x10-» 302.96 1570 278.52 \

5.2 x 10
Tl 204.383 0.639 2.86 x10-2° 577.2 1070 318.79 \

6.9 x 10
Sr 87.62 0.415 5.60 x10-2 1050.2 1030 1008.65

These interesting results of the Table 10 gave the following order of the various metals by
increasing profile area:

Cu<Al<Sr<Li<Cs<Ti<Co<Ga<Tl

On Table 11, we gave the obtained values of the two constants C and B of evaporation and
diffusion for the different metals.

Table 11. Calculated values of evaporation C and diffusion B constants from the experimental data.

Metal C (inm?/s) B (inm?*/s) (Bt)Y*(inm) for 24 hours
Co 5.9x10-15 1.6x10-26 6.1x10°
Ti 9.6x10-15 2.9x10-26 7.1x10°
Ga 1.0x10-14 2.6x10-26 6.9x10¢
Li 1.5x10-14 2.8x10-26 7.0x10
Tl 2.9x10-14 5.3x10-26 8.2x10¢
Al 1.2x1013 3.4x10-26 7.3x106
Cu 1.7x1013 1.2x10-26 5.7x10*¢
Sr 2.4x10-13 1.4x10% 1.0x10°5
Cs 2.8x10-13 2.7x1025 1.2x10°5

The constant of evaporation C decreases from the cobalt element Co to cesium by respecting the
following increasing order:

Co<Ti<Ga<Li<Tl<Al<Cu<Sr<Cs
Whereas, this order changes for the constant of diffusion that increases from Cu to Cs with the
following order:

Cu<Co<Ga<Li<Ti<Al<Tl<Sr<Cs
Another important conclusion concerns the larger value of constant C with respect to B. It is shown
that the value of C is about 10" times greater that of B. This led to conclude that the diffusion can be
neglected relative to evaporation.

The depth of the groove

In many experiments, it was proved that the depth groove can vary from 0.Imm to several 10
mm in the case of diffusion depending on the metal thermal properties and on the width of the
groove. In order to understand the thermal behavior of diffusion of the various elements, let’s take
the typical example where m = 0.20 and calculate the corresponding depth hy,, of the groove for
metals (Table 12).
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Table 12. Variations of the depth hy,, (in m) of the groove in the case of diffusion of different metals
as a function of time.

Metal 1s 1 minute 1 hour 1 half-day 1 day 5 days 10 days
Co 7.4x10® 2.1x107 5.7x107 1.1x10® 1.3x10¢ 1.9x10-¢ 2.3x10°
Ti 8.6x108 2.4x107 6.7x107 1.2x10® 1.5x10¢ 2.2x10° 2.6x10°
Ga 8.4x108 2.3x107 6.5x107 1.2x10 1.4x10° 2.1x10® 2.6x10°
Li 8.5x108 2.4x107 6.6x107 1.2x10° 1.5x10° 2.2x10° 2.6x10¢
Tl 1.0x107 2.8x107 7.7x107 1.4x10 1.7x10° 2.6x10° 3.0x10°
Al 8.9x108 2.5x107 6.9x107 1.3x10® 1.5x10¢ 2.3x10° 2.7x10°
Cu 6.9x108 1.9x107 5.4x107 1.0x10-® 1.2x10¢ 1.8x10¢ 2.1x10°
Sr 1.3x107 3.5x107 9.8x107 1.8x10° 2.2x10° 3.2x10° 3.9x10¢
Cs 1.5x107 4.2x107 1.2x10° 2.2x10® 2.6x10° 3.8x10° 4.6x10°

Knowing that the width wy,, of the groove is given by:
Wyax = 2Xpax = 4.8 X (Bt)!/*
One deduced the value of w, . for the different metals presented on Table 13.
Table 13. Variations of the width wy,, (in m) of the groove in the case of diffusion of different metals
as a function of time.

Metal 1s 1 minute 1 hour 1 half-day 1 day 5 days 10 days
Co 1.7x10¢ 4.8x10° 1.3x10% 2.5x10° 2.9x10° 4.4x10° 5.2x10"
Ti 2.0x10° 5.5x10-® 1.5x10% 2.9x10° 3.4x10° 5.1x10°% 6.1x10°
Ga 1.9x10¢ 5.4x10-° 1.5x10% 2.8x10° 3.3x10° 5.0x10°% 5.9x10°
Li 2.0x10° 5.5x10-® 1.5x10% 2.8x10° 3.4x10° 5.0x10°% 6.0x10"°
Tl 2.3x10° 6.4x10° 1.8x10 3.3x10° 4.0x10°% 5.9x10°% 7.0x10°
Al 2.1x10° 5.7x10® 1.6x10 3.0x10° 3.5x10°% 5.3x10°% 6.3x10°
Cu 1.6x10¢ 4.5x10° 1.2x10% 2.3x10°% 2.7x10°% 4.1x10° 4.9x10°
Sr 2.9x10° 8.1x10® 2.3x10° 4.2x10°% 5.0x10° 7.5x10° 8.9x10°
Cs 3.5x10° 9.6x10° 2.7x10° 5.0x10° 5.9x10°% 8.9x10° 1.1x104

Consequences of the new solution
The experimental study of the geometric characteristics of the groove for metals can lead to the
determination of the two constants of evaporation and diffusion. Indeed, the evaporation constant
can be obtained by determining experimentally the value of the profile area B and by considering
in first approximation B = —2m(t and therefore C is given by:
B
2mt

By determining the value of C, it becomes possible to determine the surface energy y of the metal

using the relation of the evaporation constant, resulting in the following expression:

_C\/an(kT)3/2_ n(kT)3 B
V=T w0 2m  Pow?t
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The evaluation of the width wy,,, of the groove will give the value of diffusion constant B by using
our previous relation:

w, ., =48 x (Bt)1/*
And therefore:

4
B = 1.88 x 1073 Max
Knowing yand , we will be able to obtain the value of the surface diffusion D, :

4
TWMax
yw?Ngt

D, =26x107%

Validity of the approximation of y” « 1

Let’s consider the case of copper metal to test the validity of y'?> « 1 and draw on Figure 3 the
variations of y'? as a function of the distance x for different contact angles.

2
18 Case of Cu
1.6 —f=1° —f=5°

1T 0=10° ——6=15°

v 12 f —0=20°0 ——0=25°
1} 0=30° 0=35°

0.8 0=40°  ——0=45°
——0=50° ——8=60°

0.6

0.4 6=70

0.2

0 5 10 15 20 25 30 35 40 45 50

Distance x (in mm)

Figure 3. Variations of y'? as a function of the distance x from the symmetrical axis of the groove at

different contact angles (0 from 1° to 70 © and m from 0.017 to 2.75) in the case of copper element.

Figure 3 showed that for 0 < 30°, the value of y'? <0.2 and can be approximately neglected
behind 1 following Mullins’ approximation. Therefore, for 0 > 30°, the approximated fourth partial
differential equation proposed by Mullins cannot be used for the diffusion case and then it will be
necessary to resolve the non-linear partial fourth order differential equation that cannot be
analytically obtained.

Variations of the groove profile y(x) and the derivative y'(x) as a function of the distance x of Cu

We used the results of our analytical solution to determine the groove profile and its derivative
in the case of copper metal. On Figure 4, we drew the variations of the profile y(x) and y’(x) in the
case of Cu by noting the geometric parameters of the groove such as hygy, dpygx and wy,,. By using
our solution, we obtained the following geometric characteristics of the groove:

heo. =216 um; d, . = 29.54 um; % = 13.68 um
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Case of Cu
1
—— Profile y(x)
0.5 '
—y'(x)
=
>
t 1}
H 0
E (1] 10 20 30 40 50
; .
2 .05 } Apmax x (in pm)
U=
e
n_ d
-1 F dMax
WM(JLx/2
-1.5 < Hi
-2

Figure 4. Variations of the profile y(x) and y'(x) as a function of the distance x from the symmetrical

axis of the groove when 0 = 20° (1 = 0.364) for copper metal with the geometric characteristics.

On Figure 5, we plotted the variations of the profile y(x) of the groove of Cu as a function of the
distance x for different values of contact angles.

1
Case of Cu ——m=0.05
03 ——m=0.1
0 . m=0.15
E 40 50 m=0.20
;E‘ -0.5 ——m=0.25
E . ——m=0.30
E —m=0.35
-1.5 ——m=0.40
—m=0.45
2 ——m=0.50
2.5

Figure 5. Variations of the profile y(x) as a function of the distance x for different values of m

corresponding to 0 =2.3° to 26.6° for copper metal.

Figure 5 clearly showed the effect of the contact angle of the grove. The groove depth increases
when m increases. However, the other characteristics such as dy,, and wy,, remain the same.
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The obtained analytical solution allowed to compare between the groove profiles among various
metals. Figure 6 showed different groove characteristics in different metals. It can be seen that the
groove depth and the distance between two maxima increased from Cu to Cs

1

Profile y(x) in pm

Figure 6. Variations of the profile y(x) as a function of the distance x for the different metals at t = 24

hours.

Figure 6 also showed the large difference in the behavior of the various metals. The grove
phenomenon is more accentuated for Cs, whereas, Cu is the less affected by the surface diffusion.

Conclusion

o __

In this study, we have derived an exact solution to the partial differential equation % + By

0. The obtained solution reveals a damped sinusoidal groove profile in the case of electronic power
devices. We have provided expressions of zeros, minima, and maxima of the profile as a function of
the order number, as well as detailed information about the groove profile y(x) and its derivatives. A
comprehensive comparison with Mullins’ results was conducted, demonstrating that Mullins’
predictions significantly overestimate the geometric characteristics of the groove, exceeding the
actual values by more than 2.5 times. Additionally, valuable insights into the diffusion behavior of
various metals gained through this study. The expressions for the evaporation and diffusion
constants and coefficients were also derived, accounting for the groove parameters.
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Variations of the profile y(x) as a function of the distance x for different values of the contact slop
m corresponding to 0 = 2.3° to 26.6° for copper metal.

_m (Bt)1/*
Tz xTG/)"

]
p(x) = @x; q(x):\/ X +A(x)x

y(x,t) _p[(Bt))Cl/”‘] [—cos q[L] + sin q[L]]
4 (Bt)1/4 (Bt)1/4

8,2A(x) 2

Ax) = 4 x 22/3

Calculated values of evaporation C and diffusion B constants from the experimental data.
(Bt)Y*(inm) for 24

Metal C (inm?/s) B (inm*/s) hours
Co 5.9x10° 1 1.6x10726 6.1x10°
Ti 9.6x1071> 2.9x107%6 7.1x10°
Ga 1.0x10%4 2.6x107%6 6.9x10°®
Li 1.5x10%4 2.8x107%6 7.0x10°®
Tl 2.9x1014 5.3x107%6 8.2x10°
Al 1.2x1013 3.4x107%6 7.3x10°®
Cu 1.7x1013 1.2x10%6 5.7x10°
Sr 2.4x1013 1.4x10% 1.0x107

Cs 2.8x1013 2.7x10% 1.2x107
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