
Article

Not peer-reviewed version

Thermal Fatigue Effect on the

Grain Groove Profile in the Case of

Diffusion in Thin Polycrystalline

Films of Power Electronic Devices

Tayssir Hamieh 

*

 , Ali Ibrahim , Zoubir Khatir

Posted Date: 17 August 2023

doi: 10.20944/preprints202308.1233.v1

Keywords: Fourth-order differential equation; diffusion; evaporation; groove; surface energy; thermal

fatigue.; power electronic devices

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/53515


 

Article 

Thermal Fatigue Effect on the Grain Groove Profile 
in the Case of Diffusion in Thin Polycrystalline Films 
of Power Electronic Devices 

Tayssir Hamieh 1,2,*, Ali Ibrahim 1 and Zoubir Khatir 1 

1 Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The 

Netherlands; zoubir.khatir@univ-eiffel.fr (Z.K.); ali.ibrahim@univ-eiffel.fr (A.I.) 

2 Systèmes et Applications des Technologies de l’information et de l’Energie (SATIE), Gustave 

Eiffel University, 25 allée des Marronniers, 78000 Versailles, France.  

* Correspondence: t.hamieh@maastrichtuniversity.nl 

Highlights 

• An analytical and exact solution to the Mullins approximated problem, 
𝜕𝑦𝜕𝑡 + 𝐵 𝜕4𝑦𝜕𝑥4 = 0, was 

given. 

• The obtained analytical solution gave more accurate information on the geometric 

characteristics of the groove. 

• Expressions of zeros, minima, and maxima of the groove profile y(x) and its derivatives were 

determined. 

• Valuable insights into the diffusion behavior of various metals gained through this study.  

• The expressions for the evaporation and diffusion constants and coefficients were derived. 

Abstract: In a previous paper, we solved the partial differential equation of Mullins problem in the case of the 

evaporation-condensation in electronic devices and gave an exact solution relative to the geometric profile of 

the grain boundary grooving when materials are submitted to thermal and mechanical solicitation and fatigue 

effect. In this new research, new modelling of the grain groove profile was proposed and new analytical 

expressions of the groove profile, the derivative and the groove depth were obtained in the case of diffusion in 

thin polycrystalline films by the resolution of the fourth differential equation formulated by Mullins that 

supposed 𝑦′2 ≪ 1 . The obtained analytical solution gave more accurate information on the geometric 

characteristics of the groove that were necessary to study the depth and the width of the groove. These new 

findings will open a new way to study with more accuracy the problem of the evaporation-condensation 

combined to the diffusion phenomenon on the material surfaces with the help of the analytical solutions. 

Keywords: fourth-order differential equation; diffusion; evaporation; groove; surface energy; 

thermal fatigue 

 

Introduction 

The thermal fatigue plays an important role during of degradation of interconnection 

compartments of power electronic devices. The temperature variations resulting from the power 

cycling has as consequences the stresses and plastic deformations that can affect the microstructure 

of the materials at the interconnection interfaces of upper metallic parts. Wires and metallization 

layers more solicited than silicon layers lead to the distortion of material interfaces when the 

temperature increases, leading to the deformation or degradation of the material surfaces. This will 

decrease the composite life and leads to an accelerated degradation. The arrangement of grains and 

grain boundaries is key to understanding the microstructure of metals and composites. When 
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subjected to thermal and mechanical stresses, the variation in surface energies between adjacent 

grains, confined by the grain boundary, can cause the grains to separate. This phenomenon occurs 

due to the thermal and mechanical deformation of the grain boundary and the grain groove profile. 

Such occurrences are commonly observed in the bonding wires utilized in electronic devices. 

The studies [1-3] have focused on examining the impact of microstructure and physicochemical 

properties on degradation processes. In literature [4-6], three effects were investigated. The first two 

effects examined the influence of bonding procedures and temperature on crack formation and the 

microstructure of the interconnection zone. Meanwhile, the third effect explored the relationship 

between material purity, grain size, and hardness during cycling. The metallization layer, typically 

around 5μm thick, deposited on the chips undergoes significant distortion compared to materials like 
silicon when exposed to high temperature. This distortion results in substantial tensile and 

compressive stresses, leading to notable inelastic strains [7]. It has been reported that 

thermomechanical cycling can cause two main types of degradation on the topside of power chips: 

metallization reconstruction and degradation of bonding contacts [7-9]. It is assumed that during 

cyclic aging, a progressive effect of condensation-evaporation occurs, leading to structural 

degradation and grooving of the film. However, the precise mechanism of this degradation is not yet 

fully understood, and further efforts are required to better comprehend the effects of stress 

parameters on the degradation of contacts between metallization and bond wire. This involves 

finding a mathematical solution to describe the formation of grain boundary grooving in 

polycrystalline thin films. Several solutions to this mathematical problem have been proposed in the 

literature [10-20]. In 1957, Mullins [10] conducted a study on the thermal effect on the profile of grain 

boundary grooving, laying the foundation for subsequent research on this phenomenon [13-20]. 

Various studies have focused on the development of this phenomenon, particularly exploring 

evaporation-condensation, surface diffusion, and formulating the mathematical problem that 

describes the profile of grain boundary grooving [10-12].Some authors [22] tried to adapt integrable 

nonlinear evolution equations related to the well-known linearizable diffusion equation to derive a 

new integrable nonlinear equation which models the surface evolution of anisotropic material 

accompanying the action of evaporation-condensation and surface diffusion [22]. 

A multiple integration technique allowing to solve high-order diffusion equations was proposed 

by Hristov [23] based on multiple integration procedures by applying the heat-balance integral 

method of Goodman and the double integration method of Volkov. Hristov [24] presented a solution 

for the linear diffusion models of Mullins’ thermal grooving [10-12]. 

Fourth-order diffusion equations are commonly encountered in various applications, including 

surface diffusion on solids [10-12, 25-28] and thin film theory [27,28]. Unlike second-order diffusion 

equations, fourth-order equations generally do not satisfy any known maximum principle. Even with 

simple time-independent linear boundary conditions, evolving solutions tend to generate additional 

extrema from initially smooth conditions [29].  

Broadbridge [30] studied the problem of a surface groove by evaporation-condensation 

governed by 
𝜕𝑦𝜕𝑡 = 𝜕2𝑦𝜕𝑥21+(𝜕𝑦𝜕𝑥)2 . The depth of a groove at a grain boundary was predicted without any 

approximation [30]. 

Chugunova and Taranets [31] studied the initial–boundary value problem associated with the 

fourth-order Mullins equation with initial data. They considered this problem by assuming that the 

specific free energy of the boundary is lower than the surface free energy. The Mullins equation, 

originally introduced by Mullins in 1957 [10], is a model used to analyze the evolution of surface 

grooves at the grain boundaries of heated polycrystals. Chugunova and Taranets [31] successfully 

demonstrated the global existence of weak solutions over time and established that the energy 

minimizing steady state serves as the global attractor. 

Gurtin and Jabbour [32] developed a regularization theory that incorporates curvature effects, 

including surface diffusion and bulk-surface interactions. They investigated two specific cases: (i) the 

interface considered as a boundary between bulk phases or grains, and (ii) the interface between an 

elastic thin film bonded to a rigid substrate and a vapor phase depositing atoms on the surface [32]. 
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Huang [33] conducted isothermal stress relaxation tests on electroplated Cu thin films, 

considering both passivated and unpassivated films.  Based on a kinetic model, Huang [33] deduced 

grain-boundary and interface diffusivities and provided numerical and analytical solutions for the 

coupled diffusion problems. The study also analyzed the impact of surface and interface diffusivities 

on stress relaxation in polycrystalline thin films, comparing the results to experimental data. 

Asai and Giga [34] considered the surface diffusion flow equation under specific boundary 

conditions. The problem of Mullins (1957) was proposed to model the formation of surface grooves 

on the grain boundaries, where the second boundary condition  𝑦′′′(0) = 0 is replaced by zero slope 

condition on the curvature of the graph. Asai and Giga solved the initial-boundary problem with 

homogeneous initial data for construction of a self-similar solution and a solution was proposed by 

using a semi-divergence structure. 

Escher et al. [35] demonstrated the existence and uniqueness of classical solutions for the motion 

of immersed hypersurfaces driven by surface diffusion. They focused the surface diffusion proposed 

by Mullins [10-12] to model surface dynamics for phase interfaces when the evolution is governed 

solely by mass diffusion within the interface. Other studies were devoted to the diffusion problems, 

grain boundary migration and grain dynamics evolution in materials [36-42]. 

Mullins et al. [43] have linearized the differential equation by assuming a very small slope at any 

point of the grain profile. In 1975, Brailsford & Gjostein [44] derived approximate solutions by 

studying the influence of surface energy anisotropy on morphological changes occurring by surface 

diffusion on simply shaped bodies.  Wherever a grain boundary intersects the surface of a 

polycrystalline material, a groove develops. At the root of the groove, a balance between grain-

boundary tension and surface tension produces an equilibrium angle [45]. The difference in chemical 

potential between the curved surface near the groove’s root and the smoother surface farther away 
results in material drift.  

Tritscher [46] considered the boundary-value problem concerning the formation of a single 

groove due to surface diffusion at the junction of a bicrystal, assuming that the grain boundary 

remains planar. 

Martin [47] extended the original Mullins theory of surface grooving due to a single interface to 

multiple interacting grooves formed by closely spaced flat interfaces. Martin considered two cases: 

the first involved simplifying Mullins’ analysis using Fourier cosine transforms instead of Laplace 
transforms, while the second dealt with an infinite periodic row of grooves. Martin [40] also solved 

the problem for two interacting grooves. Analytical solutions for the fourth partial differential 

equation governing the groove profile in metals have not been found in the literature. 

In a previous study [48], we addressed the mathematical problem associated with the second 

non-linear partial differential equation in Mullin’s problem. We focused on the case of the 
evaporation-condensation and provided an exact solution for the geometric profile of grain boundary 

grooving when materials are subjected to thermal and mechanical stress, as well as fatigue effects. 

This paper is devoted to model the grain groove profile governed by the fourth-order partial 

differential equation in the case of diffusion in thin polycrystalline films. An analytical and exact 

solution to the Mullins approximated problem, 
𝜕𝑦𝜕𝑡 + 𝐵 𝜕4𝑦𝜕𝑥4 = 0, was given. 

Mathematical formulation in the diffusion case 

In this section, we were interested to the derivation of the differential equation that describes the 

evolution of a two-dimensional surface of small slope under capillary driving forces and surface 

diffusion transport. Surface properties are assumed to be independent of orientation. For a point on 

the surface at which the mean curvature is c, the chemical potential  (c) per atom can be written as 𝜇(𝑐) = 𝜇0 + 𝛾𝜔𝑐       (1) 

where 𝜇0 is the chemical potential of reference for a flat surface (c = 0),  is the surface tension of the 

metal/vapor interface and  is the atomic volume of the film material. A gradient of surface curvature 

will therefore create a gradient of the chemical potential, which will produce a drift of atoms on the 

surface with an average velocity v given by the Nernst-Einstein relation.  
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𝑣 = − 𝐷𝑠𝑘𝑇 𝜕𝜇𝜕𝑠 = − 𝐷𝑠𝛾𝜔𝑘𝑇 𝜕𝑐𝜕𝑠       (2) 

𝑣 = − 𝐷฀𝑘𝑇 𝜕𝜇𝜕𝑠 = − 𝐷𝑠𝛾𝜔𝑘𝑇 𝜕𝑐𝜕𝑠      (3) 

where Ds is the surface diffusivity, k is the Boltzmann constant and T the absolute temperature.   

The surface current of atoms JS is defined by the product of the average velocity v by the atom number 

NS per unit surface area S, it is given by the following equation: 𝐽฀ = 𝑣 𝑁𝑆        (4) 𝐽฀ = − 𝐷฀𝑘𝑇 𝜕𝜇𝜕𝑠 = − 𝐷𝑠𝛾𝜔𝑁𝑆𝑘𝑇 𝜕𝑐𝜕𝑠      (5) 

The evolution of the surface may finally be described by the speed of movement vn, of the surface 

element along its normal: 𝑣฀ = −𝜔 ∇𝑠 𝐽𝑆 = 𝐷฀𝛾𝜔2𝑁𝑆𝑘𝑇 𝜕2𝑐𝜕𝑠2     (6) 

𝑣฀ = 𝐵 𝜕2𝑐𝜕𝑠2       (7) 

Notice that 𝑁𝑆 is the number of diffusing atoms per unit area,  𝐽𝑆 the surface current of atoms 

and B a rate constant given by the following equation:  𝐵 = 𝐷฀𝛾𝜔2𝑁𝑆𝑘𝑇        (8) 

Equation (7) can be written in the general case as: 𝑣฀ = 𝐵 ∇𝑠2𝑐       (9) 

If y is the coordinate of a point at the surface along the axis normal to the initial flat surface, the 

speed of motion of the point along this axis vn is obtained by projection on the y-axis and one obtains: 𝑣฀ = 𝜕𝑦𝜕𝑡  𝜕𝑥𝜕𝑠 = (฀฀𝜕𝑡 )[1+(𝜕𝑦𝜕𝑥)2]12       (10) 

Combining equations (9) and (10), one obtains: (฀฀𝜕𝑡 )[1+(𝜕𝑦𝜕𝑥)2]12 =  𝐵 ∇𝑠2𝑐        (11) 

Knowing that the curvature c is given by the following expression: 

𝑐 =  − 𝜕2𝑦𝜕𝑥2[1+(𝜕𝑦𝜕𝑥)2]3/2         (12) 

and 
฀฀𝜕𝑠 = 𝜕𝑐𝜕𝑥  𝜕𝑥𝜕𝑠 = 1

[1+(฀฀𝜕𝑥 )2]12  𝜕𝑐𝜕𝑥          (13) 

One obtains: 

฀฀𝜕𝑠 = 𝜕𝑐𝜕𝑥  𝜕𝑥𝜕𝑠 = −[1 + (𝜕𝑦𝜕𝑥)2]−1/2 𝜕𝜕𝑥 [ 𝜕2𝑦𝜕𝑥2⌊1+(𝜕𝑦𝜕𝑥)2⌋3/2 ]         (14) 

Using the same method for 
𝜕2𝑐𝜕𝑠2  , one obtains: 
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𝜕2𝑐𝜕𝑠2 = 𝜕𝜕𝑠 (𝜕𝑐𝜕𝑠) =  𝜕𝜕𝑥 (𝜕𝑐𝜕𝑠) 𝜕𝑥𝜕𝑠 = [1+ (𝜕𝑦𝜕𝑥)2]−1/2 𝜕𝜕𝑥 (𝜕𝑐𝜕𝑠)      (15) 

Therefore: 

𝑣฀ = (฀฀𝜕𝑡 )[1+(𝜕𝑦𝜕𝑥)2]12 = − 𝐵 
[1+(𝜕𝑦𝜕𝑥)2]12  𝜕𝜕𝑥 [   

 [1 + (𝜕𝑦𝜕𝑥)2]−1/2 𝜕𝜕𝑥 [ 𝜕2𝑦𝜕𝑥2⌊1+(𝜕𝑦𝜕𝑥)2⌋3/2]]   
 
        (16) 

With 𝑦′ = 𝜕𝑦𝜕𝑥  and 𝑦′′ = 𝜕2𝑦𝜕𝑥2 , previous equation can be written as: 

฀฀𝜕𝑡 = −𝐵 𝜕𝜕𝑥 [(1+ 𝑦′2)−1/2  𝜕𝜕𝑥 [ 𝑦′′(1+𝑦′2)3/2]]     (17) 

With the following boundary conditions: 

{   
  
   𝑦(𝑥, 0) = 0                   𝑦(0, 𝑡) = − 𝑚 (𝐵𝑡)14√2 Γ(5/4)       𝑦′(0, 𝑡) = tan𝜃 =𝑚   

lim𝑥→∞𝑦′(𝑥, 𝑡) = 0            lim𝑥→∞𝑦′′(𝑥, 𝑡) = 0          𝑦′′′(0, 𝑡) = 0                
        (17) 

Knowing that 

฀𝜕𝑥 [ 𝑦′′(1+𝑦′2)3/2] =  𝑦′′′(1+𝑦′2)3/2 − 3 𝑦′𝑦′′2(1+𝑦′2)5/2     (18) 

฀฀𝜕𝑡 = −𝐵 𝜕𝜕𝑥 [ 𝑦′′′(1+𝑦′2)2 − 3 𝑦′𝑦′′2(1+𝑦′2)3]      (19) 

One obtains: 

฀฀𝜕𝑡 = −𝐵 [𝑦′′′′(1+𝑦′2)2−(𝑦′′3+10𝑦′𝑦′′𝑦′′′)(1+𝑦′2) + 18𝑦′2𝑦′′3(1+𝑦′2)4 ]    (20) 

By taking the following variable changes: 𝑦(𝑥, 𝑡) = 𝑚 (𝐵𝑡)1/4 𝑔 [ 𝑥(𝐵𝑡)1/4 ]               (21) 

𝑢(𝑥, 𝑡) = ฀(𝐵𝑡)1/4       (22) 𝑦(𝑢, 𝑡) = 𝑚 (𝐵𝑡)1/4 𝑔(𝑢)                      (23) 

One obtains the different derivatives of 𝑦(𝑥, 𝑡)and 𝑢(𝑥, 𝑡):     

฀฀𝜕𝑥 = 1(𝐵𝑡)1/4                       (24) 

฀฀𝜕𝑡 = 1
4

𝑚𝐵(𝐵𝑡)3/4  𝑔(𝑢) + 𝑚 (𝐵𝑡)1/4 𝜕𝑔𝜕𝑢  𝜕𝑢𝜕𝑡                               (25) 

with 
฀฀𝜕𝑡 = − 𝑢

4𝑡                      (26) 

𝑦′ = 𝜕𝑦𝜕𝑥 = 𝜕𝑦𝜕𝑢  𝜕𝑢𝜕𝑥 = 𝑚 𝜕𝑔𝜕𝑢                 (27) 

𝑦′′ = 𝜕2𝑦𝜕𝑥2 = 𝑚(𝐵𝑡)1/4  𝜕2𝑔𝜕𝑢2        (28) 
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𝑦′′′ = 𝜕3𝑦𝜕𝑥3 = 𝑚(𝐵𝑡)2/4  𝜕3𝑔𝜕𝑢3        (29) 

𝑦′′′′ = 𝜕4𝑦𝜕𝑥4 = 𝑚(𝐵𝑡)3/4  𝜕4𝑔𝜕𝑢4           (30) 

Equation (25) becomes: 

฀฀𝜕𝑡 = 1
4

𝑚𝐵(𝐵𝑡)3/4  𝑔(𝑢) − 𝑚𝑢
4𝑡 (𝐵𝑡)1/4 𝜕𝑔𝜕𝑢                               (31) 

or 

฀฀𝜕𝑡 = 1
4

𝑚𝐵(𝐵𝑡)3/4  [𝑔(𝑢) − 𝑢 𝜕𝑔𝜕𝑢]                                  (32) 

By using the previous equations, one obtains: 

{ 1 + 𝑦′2 =  1+𝑚2 (𝜕𝑔𝜕𝑢)2𝑦′𝑦′′𝑦′′′ = 𝑚3(𝐵𝑡)3/4  𝜕𝑔𝜕𝑢  𝜕2𝑔𝜕𝑢2  𝜕3𝑔𝜕𝑢3         (33) 

{ 𝑦′′3 = 𝑚3(𝐵𝑡)3/4  (𝜕2𝑔𝜕𝑢2)3𝑦′2𝑦′′3 = 𝑚5(𝐵𝑡)3/4  (𝜕𝑔𝜕𝑢)2 (𝜕2𝑔𝜕𝑢2)3     (34) 

With equation (20): 

฀฀𝜕𝑡 = − 𝐵 [𝑦′′′′(1+𝑦′2)2−(𝑦′′3+10𝑦′𝑦′′𝑦′′′)(1+𝑦′2) + 18𝑦′2𝑦′′3(1+𝑦′2)4 ]    (20) 

One writes: 

𝜕𝑦𝜕𝑡 = −𝐵 𝑚(𝐵𝑡)3/4  
𝜕4𝑔𝜕𝑢4(1+𝑚2(𝜕𝑔𝜕𝑢)2)2−𝑚2( (𝜕2𝑔𝜕𝑢2)3+10 𝜕𝑔𝜕𝑢 𝜕2𝑔𝜕𝑢2 𝜕3𝑔𝜕𝑢3)(1+𝑚2(𝜕𝑔𝜕𝑢)2) + 18𝑚4 (𝜕𝑔𝜕𝑢)2(𝜕2𝑔𝜕𝑢2)3(1+𝑚2(𝜕𝑔𝜕𝑢)2)4 Let us 

put: 𝑔′ = 𝜕𝑔𝜕𝑢,  𝑔′′ = 𝜕2𝑔𝜕𝑢2 ,  𝑔′′′ = 𝜕3𝑔𝜕𝑢3,  𝑔′′′′ = 𝜕4𝑔𝜕𝑢4                  (35) 

Using equation (32), one obtains: 

1
4
[𝑔 − 𝑢𝑔′] = −  (1+𝑚2𝑔′2)2𝑔′′′′−𝑚2(1+𝑚2𝑔′2)(𝑔′′2+10 𝑔′𝑔′′𝑔′′′) + 18 𝑚4 𝑔′2𝑔′′3(1+𝑚2𝑔′2)4               (36) 

New study of Mullins’s case 

If we suppose a second order approximation of the derivative, 𝑦′2  ≪ 1 , it is easy to deduce the 

following equation: 𝑔′′′′ − 1
4
𝑢𝑔′ + 1

4
𝑔 = 0                  (37) 

With the new boundary conditions: 

{   
   𝑔(𝑢, 0) = 0                    𝑔(0, 𝑡) = − 1√2 Γ(5/4)    

lim𝑢→∞𝑔′(𝑢, 𝑡) = 0            lim𝑢→∞𝑔′′(𝑢, 𝑡) = 0          𝑔′′′(0, 𝑡) = 0                
        (38) 

Exact resolution of Mullins’ problem 

In this section, we propose a new method to resolve the equation (38) by using the following 

equation: 
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𝑟4 − 1
4
𝑢 𝑟 + 1

4
= 0                   (39) 

and by considering the different solutions r in function of u. 

Let us consider the following equation valid for all values of : 𝑟4 − 1
4
𝑢 𝑟 + 1

4
= (𝑟2 + 𝜆)2 − (8𝜆𝑟2+𝑢 𝑟+4𝜆2−1

4
)      (40) 

To resolve equation (38), we begin by transforming equation (39’) into difference between two 
perfect squares, therefore, the expression (8𝜆𝑟2 + 𝑢 𝑟 + 4𝜆2 − 1) will be transformed into perfect 

square, if it has a double solution and then his discriminant has to be cancelled. 

Now, let us consider the equation: 

8𝜆𝑟2 + 𝑢 𝑟 + 4𝜆2 − 1 = 0        (41) 

The discriminant ∆ of this second-degree equation (40) function in r can be written as:  ∆=  𝑢2 − 32 𝜆(4𝜆2 − 1)        (41') 

Putting ∆ = 0, one has: 𝜆3 − 1
4
𝜆 − 𝑢2

128
= 0         (42) 

Equation (42) can be written as: 𝜆3 + 𝑝𝜆 + 𝑞 = 0         (43) 

With 𝑝 = − 1
4
 and 𝑞 = − 𝑢2

128
 

Putting 𝜆 = 𝛼 + 𝛽 and taking 𝛼𝛽 = −฀
3
= 1
12

  or 𝛼3𝛽3 = 1
123

  one obtains 𝛼3 + 𝛽3 = −𝑞 = 𝑢2
128

 ; and 𝛼3 et 𝛽3 will be the two solutions of the following second-degree equation:  𝑋2 + 𝑞𝑋 − 𝑝3
27
= 0         (44) 

or 𝑋2 − 𝑢2
128
𝑋 + 1

123
= 0          (44) 

The discriminant of equation (44): ∆฀= 27𝑞2+4𝑝327
         (45) 

Can be calculated as a function of u: ∆฀= 𝑢4214 − 1
24∗ 33 = 1214 (𝑢4 − 210

33
)        (46) 

Two cases have to be distinguished: 

1. First case ∆𝝀≥ 𝟎 and 𝒖 ≥ 𝟐𝟓/𝟐𝟑𝟑/𝟒 
In this case, the solutions of equation (44) will be given by: 

𝛼3 = 𝑢2+ √(𝑢4 − 210
33
)

28
        (47) 
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𝛽3 = 𝑢2− √(𝑢4 − 210
33
)

28
        (48) 

This leads to the solution of equation (43): 

𝜆2 = ( 
 𝑢2+ √(𝑢4 − 21033 )

28 ) 
 1/3 +( 

 𝑢2− √(𝑢4 − 21033 )
28 ) 

 1/3
   (49) 

This value of 𝜆2 will cancel the discriminant of equation (40) (8𝜆2𝑟2 + 𝑢 𝑟 + 4𝜆22 − 1) = 0       (39) 

Therefore, the solution r is given by: 𝑟 = − 𝑢
16𝜆2 

and then: (2𝜆2𝑟2 + 1
4
𝑢 𝑟 + 𝜆22 − 1

4
) =  2𝜆2 (𝑟 + 𝑢

16𝜆2)2       (50) 

Consequently, one obtains: 𝑟4 − 1
4
𝑢 𝑟 + 1

4
= (𝑟2 + 𝜆2)2 −  2𝜆2 (𝑟 + 𝑢

16𝜆2)2      (51) 

or 𝑟4 − 1
4
𝑢 𝑟 + 1

4
= (𝑟2 + √2𝜆2 𝑟 + 𝜆2 + 𝑢

8√2𝜆2) (𝑟2 − √2𝜆2 𝑟 + 𝜆2 − 𝑢
8√2𝜆2)     (51') 

The four solutions of equation (37) can be then obtained from the solutions of the two following 2nd 

degree equations: 𝑟2 + √2𝜆2 𝑟 + 𝜆2 + 𝑢
8√2𝜆2 = 0         (53) 

𝑟2 − √2𝜆2 𝑟 + 𝜆2 − 𝑢
8√2𝜆2 = 0          (54) 

The discriminants of equations (53) and (54) are given by the respective following expressions:  ∆1=  2𝜆2 − 4 (𝜆2 + 𝑢
8√2𝜆2)     (55) 

∆2=  2𝜆2 − 4 (𝜆2 − 𝑢
8√2𝜆2)     (56) 

Two cases can be studied: 

Solutions of 𝒓𝟐 + √𝟐𝝀𝟐 𝒓 + 𝝀𝟐 + 𝒖𝟖√𝟐𝝀𝟐 = 𝟎  

Knowing that ∆1= −2𝜆2 − 𝑢
2√2𝜆2  is negative because of the condition 𝑢 > 25/2

33/4 , one obtains two 

conjugate complex solutions: 

𝑟1 = −√2𝜆2 + 𝑖 √2𝜆2+ 𝑢
2√2𝜆2

2
         (57) 
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𝑟2 = −√2𝜆2 − 𝑖 √2𝜆2+ 𝑢
2√2𝜆2

2
         (58) 

Solutions of 𝒓𝟐 − √𝟐𝝀𝟐 𝒓 + 𝝀𝟐 − 𝒖𝟖√𝟐𝝀 = 𝟎 

Where ∆2= −2𝜆2 + 𝑢
2√2𝜆2  

Let us prove that ∆2> 0 ∆2 can be written as: ∆2= 𝜆2 (−2+ 𝑢(2𝜆2)3/2), To obtain the sign of ∆2 , we have to study the sign of 

2 (−1+ ฀
2(2𝜆2)3/2)  and then to compare between 1 and 

฀
2(2𝜆)3/2 or between 2𝜆2 and 

𝑢2/3
22/3 .  

22/3(2𝜆2)𝑢2/3 = 1
2
[(1+ √1 − 210

33𝑢4)1/3 + (1− √1 − 210

33𝑢4)1/3]   (59) 

𝜆2 = ( 
 𝑢2+ √(𝑢4 − 21033 )

28 ) 
 1/3 +( 

 𝑢2− √(𝑢4 − 21033 )
28 ) 

 1/3
   (49) 

Let us put = √1− 210

33𝑢4 , one obtains: 

𝑍 = 22/3(2𝜆2)𝑢2/3 = 1
2
[(1+  𝑋)1/3 + (1 −  𝑋)1/3]   (60) 

฀฀𝜕𝑋 = 1
6
[(1+  𝑋)−2/3 − (1−  𝑋)−2/3]    (61) 

Equation (61) shows that 
฀฀𝜕𝑋 ≤ 0 , this implies that Z decreases for all values of 𝑋 ≥ 0  and 𝑍 < 1 

for 𝑋 > 0 and therefore 
22/3(2𝜆2)𝑢2/3 < 1 or −2𝜆2 + 𝑢

2√2𝜆2 > 0 and ∆2> 0. 
Therefore, the two other solutions are then given by equations (62) and (63): 

𝑟3 = √2𝜆2 +  √ 𝑢
2√2𝜆2−2𝜆2
2

        (62) 

𝑟4 = √2𝜆2−  √ 𝑢
2√2𝜆2−2𝜆2
2

        (63) 

Solution of equation (38) for 𝒖 ≥ 𝟐𝟓/𝟐𝟑𝟑/𝟒 
Now, the final solution, in the case of  ≥ 25/2

33/4 , is given by equation (64):  

𝑔2(𝑢) = 𝑒−√𝜆22  𝑢 (𝐴12𝑐𝑜𝑠 (√ 𝑢
8√2𝜆2 + 𝜆2

2
 𝑢) + 𝐴22𝑠𝑖𝑛 (√ 𝑢

8√2𝜆2 + 𝜆2
2
 𝑢)) + 𝑒√𝜆22  𝑢 (𝐴32𝐸𝑥𝑝 (√ 𝑢

8√2𝜆2 − 𝜆2
2
 𝑢) +

𝐴42𝐸𝑥𝑝 (−√ 𝑢
8√2𝜆2 − 𝜆2

2
 𝑢))               (64) 

with 
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𝜆2 =
( 
  𝑢2 + √(𝑢4  −  21033 )

28 ) 
  
1/3
+
( 
  𝑢2 − √(𝑢4  −  21033 )

28 ) 
  
1/3

 

The solution in function of 𝑦(𝑥, 𝑡) will be written as: 𝑦(𝑥, 𝑡) = 𝑚 (𝐵𝑡)1/4 𝑔[𝑢(𝑥, 𝑡)] and 𝑢(𝑥, 𝑡) = ฀(𝐵𝑡)1/4  
Boundary conditions 

Using of the boundary conditions: 

{ 
 1) lim𝑢→∞𝑔(𝑢) = 0                      
2)  lim𝑢→∞𝑔′(𝑢) = 0                     
3) lim𝑢→∞𝑔′′(𝑢) = 0                             (65) 

The first condition implies necessary: A3 = A4 = 0 and therefore the solution will be given by the 

following form: 𝑔2(𝑢) = 𝑒−√𝜆22  𝑢 (𝐴12𝑐𝑜𝑠 (√ 𝑢
8√2𝜆2 + 𝜆2

2
 𝑢) + 𝐴22𝑠𝑖𝑛 (√ 𝑢

8√2𝜆2 + 𝜆2
2
 𝑢))       (65’) 

This solution can be written as: 𝑔2(𝑢) = 𝑒𝑝2(𝑢)(𝐴12𝑐𝑜𝑠 𝑞2(𝑢) + 𝐴22𝑠𝑖𝑛 𝑞2(𝑢)) 
With  

{  
  
   
 𝑝2(𝑢) = −2−12 𝜆2(𝑢)12 𝑢                                         𝑞2(𝑢) =  [2−72 𝑢 𝜆2(𝑢)−12 + 2−1𝜆2(𝑢)]12 𝑢          𝜆2 (𝑢) = 2−83 [(𝑢2 +  𝑠(𝑢))13 + (𝑢2 −  𝑠(𝑢))13]
𝑠2(𝑢) =  (𝑢4  −  21033 )12                                            

 

2. Second case ∆𝝀< 𝟎 and 𝒖 ≤ 𝟐𝟓/𝟐𝟑𝟑/𝟒 
In this case, one obtains two conjugate complex solutions 𝛼3 and 𝛽3: 

𝛼3 = 𝑢2+𝑖 √(  210
33
−𝑢4)

28
= 𝐴 𝑒𝑖𝜃         (66) 

𝛽3 = 𝑢2−𝑖 √(  210
33
−𝑢4)

28
=  𝐴 𝑒−𝑖𝜃        (66’) 

Where  𝐴2 = |𝛼3|2 = |𝛽3|2 = 210

33

216
= 1

26∗33 and 𝐴 =  1
23∗33/2 and finally 𝐴1/3 = 1

2 √3 
With: 
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{   
   𝐴 𝑐𝑜𝑠 𝜃 = 𝑢2

28               
𝐴 𝑠𝑖𝑛 𝜃 = √(2

10

33
− 𝑢4)
28

  
         (67) 

The real solution is given by:  𝜆1 = 𝐴1/3  (𝑒𝑖𝜃3 + 𝑒−𝑖𝜃3 ) =  2 𝐴1/3𝑐𝑜𝑠 (𝜃3)  
or 𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3)  
This leads to the solution of equation (43): 𝜆 = 𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3)     (68) 

This value of  will cancel the discriminant of equation (39) (2𝜆1𝑟2 + 1
4
𝑢 𝑟 + 𝜆12 − 1

4
)       (39) 

The solution is given here by: 

{𝑟 = − ฀
16 𝜆1         𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3)     (69) 

Remember that: 𝑟4 − 1
4
𝑢 𝑟 + 1

4
= (𝑟2 + √2𝜆1 𝑟 + 𝜆1 + 𝑢

8√2𝜆) (𝑟2 − √2𝜆1 𝑟 + 𝜆1 − 𝑢
8√2𝜆1) = 0    (51) 

And therefore: 𝑟2 + √2𝜆1 𝑟 + 𝜆1 + 𝑢
8√2𝜆1 = 0         (53) 

𝑟2 − √2𝜆1 𝑟 + 𝜆1 − 𝑢
8√2𝜆1 = 0          (54) 

Their respective discriminants are given below:  ∆1= −2𝜆1 − 𝑢
2√2𝜆1     (55) 

∆2= −2𝜆1 + 𝑢
2√2𝜆1     (56) 

Two cases can be studied for 𝑢 < 25/2
33/4: 

First case: 𝒓𝟐 + √𝟐𝜆1 𝒓 + 𝜆1 + 𝒖𝟖√𝟐𝜆1 = 𝟎  

Here one has 𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3) 
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Where ∆1= −2𝜆1 − 𝑢
2√2𝜆1 is negative. The two conjugate complex solutions of equation (53) are given 

below: 

𝑟1 = −√2𝜆1 + 𝑖 √2𝜆1+ 𝑢
2√2𝜆1

2
        (70) 

𝑟2 = −√2𝜆1 − 𝑖 √2𝜆1+ 𝑢
2√2𝜆1

2
        (71) 

Second case: 𝒓𝟐 − √𝟐𝜆1 𝒓 + 𝜆1 − 𝒖𝟖√𝟐𝜆1 = 𝟎  

Here one has 𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3) and ∆2= −2𝜆1 + 𝑢
2√2𝜆1  

Let us prove that ∆2 is negative 

∆2 can be written as: ∆2= 2𝜆1 ( 𝑢
2(2𝜆1)3/2 − 1) =  2√3 𝑐𝑜𝑠 (𝜃3) [ 𝑢

2( 2√3𝑐𝑜𝑠(𝜃3))3/2 − 1] 
∆2= 2√3 𝑐𝑜𝑠 (𝜃3) [ 33/4 𝑢

25/2(𝑐𝑜𝑠(𝜃3))3/2 − 1]        (72) 

Knowing that 𝐴 𝑐𝑜𝑠 𝜃 = 𝑢2
28   ;  𝑢2 = 25𝑐𝑜𝑠 𝜃

33/2    or 𝑢 = 25/2(𝑐𝑜𝑠 𝜃)1/2
33/4     therefore, one obtains: 

∆2= 2√3 𝑐𝑜𝑠 (𝜃3) [( 𝑐𝑜𝑠 𝜃(𝑐𝑜𝑠(฀3))3)
1/2 − 1]       (73) 

Now, one writes: (𝑐𝑜𝑠 (฀
3
))3 = 3

4
𝑐𝑜𝑠 (𝜃

3
) + 𝑐𝑜𝑠 𝜃  and one obtains: 

∆2= 2√3 𝑐𝑜𝑠 (𝜃3) [  
 

1√3
4 𝑐𝑜𝑠(฀3 )𝑐𝑜𝑠 𝜃 +1− 1]  

 
       (74) 

It is obvious that  √3
4
 𝑐𝑜𝑠(฀3)𝑐𝑜𝑠 𝜃 + 1  > 1 and then 

1√3
4 𝑐𝑜𝑠(฀3 )𝑐𝑜𝑠 𝜃 +1 < 1, therefore ∆2 < 0  

The two other conjugate complex solutions are then given by equations (75) and (76) 

𝑟3 = √2𝜆1 + 𝑖 √ 2𝜆1− 𝑢
2√2𝜆1

2
        (75) 

𝑟4 = √2𝜆1−  𝑖 √ 2𝜆1− 𝑢
2√2𝜆1

2
        (76) 

Now, the final solution in this case when ∆฀ is negative or when 𝑢 < 25/2
33/4 is given by: 

𝑔1(𝑢) = 𝑒−√𝜆12  𝑢(𝐴11𝑐𝑜𝑠 (√𝜆12 + 𝑢
8√2𝜆1  𝑢) + 𝐴21𝑠𝑖𝑛 (√𝜆12 + 𝑢

8√2𝜆  𝑢)) 
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+ 𝑒√𝜆12  𝑢 (𝐴31𝑐𝑜𝑠 (√𝜆12 − 𝑢
8√2𝜆1  𝑢) + 𝐴41𝑠𝑖𝑛 (√𝜆12 − 𝑢

8√2𝜆1  𝑢)) (77) 

One obtains: 𝑔1(𝑢) = 𝑒−𝑝1(𝑢) (𝐴11𝑐𝑜𝑠 𝑞1(𝑢) + 𝐴21𝑠𝑖𝑛 𝑞(𝑢)) + 𝑒𝑝1(𝑢)(𝐴31𝑐𝑜𝑠 𝑠1(𝑢) + 𝐴41𝑠𝑖𝑛 𝑠1(𝑢))    (77') 

where: 

{  
  
   
 𝑝1(𝑢) = 2−12 𝜆1(𝑢)12 𝑢                                                                           𝑞1(𝑢) =  [2−1𝜆1(𝑢) + 2−72 𝑢 𝜆1(𝑢)−12]12 𝑢                                        
𝑠1(𝑢) =  [2−1𝜆1(𝑢) − 2−72 𝑢 𝜆1(𝑢)−12]12 𝑢                                         𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3) ;   𝑐𝑜𝑠 𝜃 = 33/2

25 𝑢2 ;  𝑠𝑖𝑛 𝜃 = √(1 −  33210 𝑢4)     
 (78) 

The continuity and derivability of the solution g(u) and its derivatives imposed that 𝐴31 = 𝐴41 = 0 
Because the function √𝜆12 − 𝑢

8√2𝜆1  𝑢 is not derivable in point 𝑢 = 25/2
33/4 and then, one writes: 𝑔1(𝑢) = 𝑒−𝑝1(𝑢) (𝐴11𝑐𝑜𝑠 𝑞1(𝑢) + 𝐴21𝑠𝑖𝑛 𝑞(𝑢)) 

In conclusion, one obtains the solutions of the fourth differential equation (37): 

𝑔(𝑢) = {  
  𝑔1(𝑢)           𝑓𝑜𝑟 𝑢 ≤ 25/233/4 𝑔2(𝑢)          𝑓𝑜𝑟 𝑢 ≥ 25/233/4

 

For 𝑢 ≤ 25/2
33/4: 

𝑔1(𝑢) = 𝑒−√𝜆12  𝑢  (𝐴11𝑐𝑜𝑠 (√ 𝑢
8√2𝜆1 + 𝜆12  𝑢) + 𝐴21𝑠𝑖𝑛 (√ 𝑢

8√2𝜆1 + 𝜆12  𝑢)) 

For 𝑢 ≥ 25/2
33/4: 

𝑔2(𝑢) = 𝑒−√𝜆22  𝑢(𝐴12𝑐𝑜𝑠 (√ 𝑢
8√2𝜆2 + 𝜆22  𝑢) + 𝐴22𝑠𝑖𝑛(√ 𝑢

8√2𝜆2 + 𝜆22  𝑢)) 

With 

{  
   
   
  𝑝1(𝑢) = 2−12 𝜆1(𝑢)12 𝑢 ;  𝑝2(𝑢) = 2−12 𝜆2(𝑢)12 𝑢                                                                  𝑞1(𝑢) =  [2−1𝜆1(𝑢) + 2−72 𝑢 𝜆1(𝑢)−12]12 𝑢 ;  𝑞2(𝑢) =  [2−1𝜆2(𝑢) + 2−72 𝑢 𝜆2(𝑢)−12]12 𝑢
𝜆2 (𝑢) = 2−83 [(𝑢2 +  𝑠(𝑢))13 + (𝑢2 −  𝑠(𝑢))13] ;  𝑠2(𝑢) =  (𝑢4  −  21033 )12                     
𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3) ;   𝑐𝑜𝑠 𝜃 = 33/225 𝑢2 ;  𝑠𝑖𝑛 𝜃 = √(1 −  33210 𝑢4)                                                                                                                                                                      
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Satisfying the boundary conditions: 

{  
  
  𝑔(𝑢, 0) = 0                               𝑔(0, 𝑡) = 𝑔0 = − 1√2 Γ(5/4)

lim𝑢→∞𝑔′(𝑢, 𝑡) = 0                         lim𝑢→∞𝑔′′(𝑢, 𝑡) = 0                       𝑔′′′(0, 𝑡) = 0                           
 

Determination of the problem parameters of the solution for 𝒖 ≤ 𝟐𝟓/𝟐𝟑𝟑/𝟒 𝑔1(𝑢) = 𝑒−𝑝1 (𝐴11𝑐𝑜𝑠 𝑞1 + 𝐴21𝑠𝑖𝑛 𝑞1)  
With the boundary conditions and knowing that for u = 0, = ฀

2
 ; 𝜆1 =  1/2 and one obtains: 𝑔1(𝟎) = 𝑨𝟏𝟏 = − 𝜺𝒎(𝑩𝒕)𝟏𝟒 = 𝒈𝟎 = − 𝟏√𝟐 𝚪(𝟓/𝟒) 

Where 𝜺 is the groove depth. 

Condition on the first derivative 𝒈𝟏′ 
The calculation of the first derivative gave: 𝑔1′(𝑢) = −𝑝1′ (𝐴11 cos 𝑞1 + 𝐴21 sin𝑞1)𝑒−𝑝1+ 𝑞1′ (𝐴21 cos 𝑞1 − 𝐴11 sin𝑞1)𝑒−𝑝1 
with 𝑝1′ = 2−12  [𝜆112 + 2−1𝑢𝜆1′ 𝜆1−12] 

𝑞1′ =  [2−1𝜆1 + 2−72 𝑢 𝜆1−12]12 + 2−1𝑢 [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12 [2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′] 
Knowing that 𝜆1 = 1√3 𝑐𝑜𝑠 (𝜃3) ; 𝑐𝑜𝑠 𝜃 = 2−5 . 33/2𝑢2  and 𝑠𝑖𝑛 𝜃 = √(1 −  2−10. 33𝑢4) , one obtains: 

𝜆1′(𝑢) = 𝑑𝜆1𝑑𝑢 = 𝑑𝜆1𝑑𝜃 . 𝑑𝜃𝑑𝑢; 
𝑑𝜆1𝑑𝜃 = − 1

3√3 𝑠𝑖𝑛 (𝜃3);  ฀฀𝑑𝑢 = − 2−4.332𝑠𝑖𝑛 𝜃 𝑢 and then the first derivative 𝜆1′(𝑢): 
𝜆1′(𝑢) = − 1

3√3 𝑠𝑖𝑛 (𝜃3) (− 33224) 𝑢𝑠𝑖𝑛 𝜃 =  2−4 𝑠𝑖𝑛 (𝜃3)𝑠𝑖𝑛 𝜃  𝑢 

At u = 0,  𝜃 = 0 ;  𝜃 =  ฀
2
  ; 𝑠𝑖𝑛 (฀

3
) = 1

2
 ; 𝑐𝑜𝑠 (฀

3
) = √3

2
  , one obtains 𝜆1(0) =  12, 𝜆1′(0) = 0  and 

then 𝑝1(0) = 0 ; 𝑞1(0) = 0 ; 𝑝1′(0) = 1
2
  and 𝑞1′(0) =  12 . 

The use of the above parameters led to:  𝒈′(𝟎) = −𝟏𝟐 (𝑨𝟏𝟏 − 𝑨𝟐𝟏) 
The second derivative 𝒈𝟏′′ 
One had the second derivative: 𝑔1′′(𝑢) = (𝑝1′2 − 𝑞1′2 − 𝑝1′′)(𝐴11 cos 𝑞1 + 𝐴21 sin𝑞1)𝑒−𝑝1 + (𝑞1′′ −2 𝑝1′𝑞1′) (𝐴21 cos 𝑞1 − 𝐴11 sin𝑞1)𝑒−𝑝1 
To determine the values of  𝑝1′′ and 𝑞1′′, one needs to determine the second derivative 𝜆1′′(𝑢). 
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The second derivative 𝜆1′′ 𝜆1′(𝑢) = 2−4 𝑠𝑖𝑛(฀3)𝑠𝑖𝑛 𝜃  𝑢 ; let’s put 𝑣(𝜃) = (𝑠𝑖𝑛(฀3)𝑠𝑖𝑛 𝜃 ) ; therefore, 𝜆1′′(𝑢) =  𝑣 + 𝑢 𝑑𝑣𝑑𝑢 

𝜆1′′(𝑢) =  𝑣 + 𝑢 𝑑𝑣𝑑𝜃  𝑑𝜃𝑑𝑢 ; 
฀฀𝑑𝑢 = 𝑑𝑣𝑑𝜃  𝑑𝜃𝑑𝑢 = [ 𝑑𝑑𝜃 (𝑠𝑖𝑛(฀3)𝑠𝑖𝑛 𝜃 )] × (− 2−4×332)𝑠𝑖𝑛 𝜃 𝑢 

Knowing that: 
฀𝑑𝜃 (𝑠𝑖𝑛(฀3)𝑠𝑖𝑛 𝜃 ) = 3−1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(𝜃3)−3𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛(𝜃3)𝑠𝑖𝑛2 𝜃 , one obtains: 

฀฀𝑑𝑢 = 3−1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(฀3)−3𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛(𝜃3)𝑠𝑖𝑛2 𝜃 × (− 2−4×33/2)𝑠𝑖𝑛 𝜃 𝑢  

𝜆1′′(𝑢)  =  2−4 𝑠𝑖𝑛(฀3)𝑠𝑖𝑛 𝜃 + 2−4  × 3−1𝑢 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(𝜃3)−3𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛(𝜃3)𝑠𝑖𝑛2 𝜃 × (− 2−4×33/2)𝑠𝑖𝑛 𝜃 𝑢  

𝜆1′′(𝑢)  =  2−4 [𝑠𝑖𝑛 (𝜃3)𝑠𝑖𝑛 𝜃 − 2−4 × 312 𝑢2  𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 (𝜃3) − 3 𝑠𝑖𝑛 (𝜃3)  𝑐𝑜𝑠 𝜃𝑠𝑖𝑛3 𝜃 ] 
By using 𝑛 𝑎 𝑐𝑜𝑠𝑏 =  sin(𝑎+𝑏)+sin(𝑎−𝑏)

2
 , one obtains: 

𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(฀3)−3 𝑠𝑖𝑛(𝜃3) 𝑐𝑜𝑠 𝜃𝑠𝑖𝑛3 𝜃 = 2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃   

and therefore: 

𝜆1′′(𝑢)  =  2−4 [𝑠𝑖𝑛 (𝜃3)𝑠𝑖𝑛 𝜃 − 2−4 × 312 𝑢2  2𝑠𝑖𝑛 (2𝜃3 ) −  𝑠𝑖𝑛 (4𝜃3 ) 𝑠𝑖𝑛3 𝜃 ] 
The other second derivatives are given below: 𝑝1′′ = 2−12  [𝜆1′𝜆1−12 + 2−1𝑢𝜆1′′ 𝜆1−12 − 2−2𝑢𝜆1′2 𝜆1−32]  

𝑞1′′ = [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12 [2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′] 
−2−2𝑢 [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−32 [2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′]2 
+2−1𝑢 [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12  [2−72  (−𝜆1′𝜆1−32 − 2−1𝑢𝜆1′′𝜆1−32 + 2−2. 3 𝑢𝜆1′2𝜆1−52) + 2−1𝜆1′′]  

By calculating the values of the second derivatives at point u = 0: 𝜆1′′(0)  = 2−5  ; 𝑝1′′(0) = 0  ; 𝑞1′′(0) =  2−4; one obtains the following equation: 𝑔1′′(0) = −2−2 × (𝐴21) 
And then: 𝒈′′(𝟎) = − 14𝑨𝟐𝟏 

Condition on the second derivative 𝒈𝟏′′′ 
The calculation of the third derivative led to: 𝑔1′′′(𝑢) =  (3𝑝1′𝑝′′ −  3𝑞1′𝑞1′′ − 𝑝1′′′−𝑝1′3 +3 𝑝1′𝑞1′2) (𝐴11 cos 𝑞1 + 𝐴21 sin𝑞1)𝑒−𝑝1   

  +(3𝑝1′2𝑞1′ − 𝑞1′3 − 3𝑝1′′𝑞1′ + 𝑞1′′′ − 3𝑝1′𝑞1′′) (𝐴21 cos 𝑞1 − 𝐴11 sin 𝑞1)𝑒−𝑝1 
Let us calculate the third derivative 𝜆1′′′(𝑢): 
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𝜆1′′′(𝑢) = 2−4 𝑑𝑣𝑑𝑢 − 2−7 × 312 × 𝑢 2𝑠𝑖𝑛 (2𝜃3 ) −  𝑠𝑖𝑛 (4𝜃3 ) 𝑠𝑖𝑛3 𝜃  

−2−8 × 312  × 𝑢2 × [ 𝑑𝑑𝜃 (2𝑠𝑖𝑛 (2𝜃3 ) −  𝑠𝑖𝑛 (4𝜃3 ) 𝑠𝑖𝑛3 𝜃 )] × (− 2−4332)𝑠𝑖𝑛 𝜃 × 𝑢 

Using 
฀฀𝑑𝑢 = − 2−4 × 31/2 × 𝑢 × 2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃  , one obtains: 

𝜆1′′′(𝑢) = −2−8 × 312 × 𝑢 × 2𝑠𝑖𝑛 (2𝜃3 ) −  𝑠𝑖𝑛 (4𝜃3 ) 𝑠𝑖𝑛3 𝜃  

−2−7 × 31/2 × 𝑢 × 2𝑠𝑖𝑛 (2𝜃3 ) −  𝑠𝑖𝑛 (4𝜃3 ) 𝑠𝑖𝑛3 𝜃 − 2−8 × 312 𝑢2  [ 𝑑𝑑𝜃 (2𝑠𝑖𝑛 (2𝜃3 ) −  𝑠𝑖𝑛 (4𝜃3 ) 𝑠𝑖𝑛3 𝜃 )] × (− 2−4332)𝑠𝑖𝑛 𝜃 𝑢 

𝜆1′′′(𝑢) = −2−8 × 332 × 𝑢 × 2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃 + 2−12 × 32  × 𝑢3𝑠𝑖𝑛 𝜃 × [ 𝑑𝑑𝜃 (2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃 )]    

฀𝑑𝜃 (2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃 ) = 4
3× 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(2𝜃3 )− 43× 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(4𝜃3 )−6 𝑠𝑖𝑛(2𝜃3 )𝑐𝑜𝑠 𝜃+3𝑠𝑖𝑛(4𝜃3 )𝑐𝑜𝑠 𝜃  𝑠𝑖𝑛4 𝜃   

= 1
3
× 4 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(2𝜃3 )−4 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠(4𝜃3 )−18 𝑠𝑖𝑛(2𝜃3 )𝑐𝑜𝑠 𝜃+9 𝑠𝑖𝑛(4𝜃3 )𝑐𝑜𝑠 𝜃  𝑠𝑖𝑛4 𝜃   

By using relation: 𝑛 𝑎 𝑐𝑜𝑠𝑏 =  sin(𝑎+𝑏)+sin(𝑎−𝑏)
2

 , one obtains: 

฀𝑑𝜃 (2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃 ) = 1
3
× 2 𝑠𝑖𝑛(5𝜃3 )+2 𝑠𝑖𝑛(𝜃3)−2 𝑠𝑖𝑛(7𝜃3 )+2 𝑠𝑖𝑛(𝜃3)−9 𝑠𝑖𝑛(5𝜃3 )+9 𝑠𝑖𝑛(𝜃3)+92 𝑠𝑖𝑛(7𝜃3 )+92 𝑠𝑖𝑛(𝜃3) 𝑠𝑖𝑛4 𝜃   

฀𝑑𝜃 (2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃 ) = 1
6
× 35  𝑠𝑖𝑛(𝜃3)−14 𝑠𝑖𝑛(5𝜃3 )+5 𝑠𝑖𝑛(7𝜃3 ) 𝑠𝑖𝑛4 𝜃   

And finally, one obtains the third derivative 𝜆1′′′(𝑢): 𝜆1′′′(𝑢) = −2−8 × 332 × 𝑢 × 2𝑠𝑖𝑛(2𝜃3 )− 𝑠𝑖𝑛(4𝜃3 ) 𝑠𝑖𝑛3 𝜃 + 2−13 × 3 × 𝑢3 × [35  𝑠𝑖𝑛(𝜃3)−14 𝑠𝑖𝑛(5𝜃3 )+5 𝑠𝑖𝑛(7𝜃3 ) 𝑠𝑖𝑛5 𝜃 ]  

One also calculated the other derivatives: 𝑝1′′′ = 2−12  [2−1 × 3 × 𝜆1′′𝜆1−12 − 2−2 × 3 × 𝜆1′2𝜆1−32 + 2−1𝑢𝜆1′′′𝜆1−12
− 2−2 × 3𝑢𝜆1′ 𝜆1′′𝜆1−32+2−3 × 3 𝑢𝜆′3 𝜆−52] 

𝑞1′′′ = −2−2 × 3 × [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−32 [2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′]2
+ 2−1 × 3 [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12  × 

[2−72  (−𝜆1′𝜆1−32 − 2−1𝑢𝜆1′′𝜆1−32 + 2−2 × 3 𝑢𝜆1′2𝜆1−52) + 2−1𝜆1′′]+2−3 × 3𝑢
× [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−52 [2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′]3
− 2−2 × 3𝑢 [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−32 [2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′] × 
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 [2−72  (−𝜆1′𝜆1−32 − 2−1𝑢𝜆1′′𝜆1−32 + 2−2 × 3 𝑢𝜆1′2𝜆1−52) + 2−1𝜆1′′]
+ 2−1𝑢 [2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12  [2−72  (−2−1 × 3𝜆1′′𝜆1−32 + 2−2 × 32 𝜆1′2𝜆1−52 − 2−1𝑢𝜆1′′′𝜆1−32
+ 2−2 × 32𝑢𝜆1′𝜆1′′𝜆1−52 − 2−3 × 3 × 5 𝑢𝜆1′3𝜆1−72) + 2−1𝜆1′′′] 

and 

𝑠1′′′ = −2−2 × 3 × [−2−72 𝑢 𝜆1−12 + 2−1𝜆1]−32 [−2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′]2
+ 2−1 × 3 [−2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12  × 

[−2−72  (−𝜆1′𝜆1−32 − 2−1𝑢𝜆1′′𝜆1−32 + 2−2 × 3 𝑢𝜆1′2𝜆1−52) + 2−1𝜆1′′]+2−3 × 3𝑢
× [−2−72 𝑢 𝜆1−12 + 2−1𝜆1]−52 [−2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′]3
− 2−2 × 3𝑢 [−2−72 𝑢 𝜆1−12 + 2−1𝜆1]−32 [−2−72  (𝜆1−12 − 2−1𝑢𝜆1′𝜆1−32) + 2−1𝜆1′] ×  [−2−72  (−𝜆1′𝜆1−32 − 2−1𝑢𝜆1′′𝜆1−32 + 2−2 × 3 𝑢𝜆1′2𝜆1−52) + 2−1𝜆1′′]
+ 2−1𝑢 [−2−72 𝑢 𝜆1−12 + 2−1𝜆1]−12  [−2−72  (−2−1 × 3𝜆1′′𝜆1−32
+ 2−2 × 32 𝜆1′2𝜆1−52 − 2−1𝑢𝜆1′′′𝜆1−32 + 2−2 × 32𝑢𝜆1′𝜆1′′𝜆1−52− 2−3 × 3 × 5 𝑢𝜆1′3𝜆1−72) + 2−1𝜆1′′′] 

Knowing that the fourth boundary condition 𝑔′′′(0) = 0 and the values of the third derivatives at 

point u = 0:  𝜆1′′′(0) = 0 ; 𝑝1′′′(0) = 2−6 × 3 ; 𝑞1′′′(0) =  −2−6 × 3 ; 𝑠1′′′(0) = −2−6 × 3; one obtains 

the following equation: 𝑔1′′′(0) = 11
64
(𝐴11 + 𝐴21) = 0, therefore: 

𝒈𝟏′′′(𝟎) = 𝟏𝟏𝟔𝟒 (𝑨𝟏𝟏 + 𝑨𝟐𝟏) = 𝟎 

Consequently, the use of the boundary conditions gave the following linear system composed by four 

equations with four unknown parameters: 

{  
  𝐴11 = − 1√2  × Γ(5/4) =  𝑔0     𝐴21 = 1√2  × Γ(5/4) = − 𝑔0      

And the the function g and its different derivatives are given at point 0: 
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{   
  
   𝒈(𝟎) = − 1√2  × Γ(5/4)                                𝒈′(𝟎) =  1√2  × Γ(5/4)       𝒈′′(𝟎) = − 1

4√2  × Γ(5/4)                                                                    𝒈′′′(𝟎) = 𝟎                           
 

Therefore, the solution for 𝑢 < 25/2
33/4 is completely defined by all above parameters: 𝑔1(𝑢) = 𝑒−𝑝1(𝑢) (𝐴11𝑐𝑜𝑠 𝑞1(𝑢) + 𝐴21𝑠𝑖𝑛 𝑞(𝑢))  

The values of the different parameters and their derivatives at point (𝑢0; 𝑔1(𝑢0)) were calculated: 

{   
   𝜆1(𝑢0) = 1√3 ;   𝜆1′(𝑢0) = 1

6 × √2 × 33 4⁄  ; 𝜆1′′(𝑢0) = 11
1296  ;   𝜆1′′′(𝑢0) = − 13

972× √2 × 31 4⁄   𝑝1(𝑢0) = 43 ;  𝑝1′(𝑢0) = 5 × √2
9 × 31 4⁄  ;  𝑝1′′(𝑢0) =  31

324 × √3 ;  𝑝1′′′(𝑢0) = − 1
486 × √2 × 33 4⁄         𝑞1(𝑢0) = 4√23 ;   𝑞1′(𝑢0) = 23

18 × 31 4⁄  ;  𝑞1′′(𝑢0) =  431
1296 × √6 ;  𝑞1′′′(𝑢0) = − 4667

62208× 33 4⁄  
 

Determination of the problem constants of the solution for 𝒖 ≥ 𝟐𝟓/𝟐𝟑𝟑/𝟒 
In this case, on has 𝑔(𝑢) = 𝑔2(𝑢), with 𝑔2(𝑢) given by: 𝑔2(𝑢) = 𝑒−𝑝2(𝑢)(𝐴12𝑐𝑜𝑠 𝑞2(𝑢) + 𝐴22𝑠𝑖𝑛 𝑞2(𝑢)) 

{  
   
    
 𝑝2(𝑢) = √𝜆22  𝑢                                                                                               𝑞2(𝑢) =  √ 𝑢

8√2𝜆2 + 𝜆22  𝑢                                                                             
𝜆2 (𝑢) = 1

4 × 22 3⁄ [   
 (𝑢2 + √𝑢4  −  210

33
)13 + (𝑢2 − √𝑢4  −  210

33
)13]   
  

The values of the different parameters of the solution 𝑔2 and their derivatives at point (𝑢0; 𝑔2(𝑢0)) 
are given below: 

{   
   𝜆2(𝑢0)  = 1√3 ;  𝜆2′(𝑢0) = 1

6 × √2 × 33 4⁄   ;  𝜆2′′(𝑢0) = 11
1296  ;   𝜆2′′′(𝑢0) = − 13

972× √2 × 31 4⁄  𝑝2(𝑢0) = 43 ;  𝑝2′(𝑢0) = 5 × √2
9 × 31 4⁄  ;  𝑝2′′(𝑢0) =  31

324× √3 ;  𝑝2′′′(𝑢0) = − 1
486 × √2× 33 4⁄          𝑞2(𝑢0) = 4√23 ;  𝑞2′(𝑢0) = 23

18 × 31 4⁄  ;  𝑞2′′(𝑢0) =  431
1296 × √6 ;  𝑞2′′′(𝑢0) = − 4667

62208× 33 4⁄    
 

One proved that all parameters and derivatives for the two functions 𝑔1  and 𝑔2 are equal and the 

continuity of the solution and its derivatives is assured, at this point 𝑢0 and consequently at any 

point of the interval [0, ∞], for: 
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{  
  𝐴11 = 𝐴12 = − 1√2  × Γ(5/4) =  𝑔0𝐴21 = 𝐴22 = 1√2  × Γ(5/4) =  −𝑔0  

Now the analytical solution of the fourth order differential equation was completely given and all 

problem constants were determined.  

𝑔(𝑢) = {  
  𝑔1(𝑢)           𝑓𝑜𝑟 𝑢 ≤ 25/233/4 𝑔2(𝑢)          𝑓𝑜𝑟 𝑢 ≥ 25/233/4

 

with 𝑔1(𝑢) = 𝑒−𝑝1(𝑢) (𝐴11𝑐𝑜𝑠 𝑞1(𝑢) + 𝐴21𝑠𝑖𝑛 𝑞1(𝑢))  𝑔2(𝑢) = 𝑒−𝑝2(𝑢)(𝐴12𝑐𝑜𝑠 𝑞2(𝑢) + 𝐴22𝑠𝑖𝑛 𝑞2(𝑢)) 
With 𝑥 = (𝐵𝑡)1/4 𝑢(𝑥, 𝑡) and  𝑦(𝑢, 𝑡) = 𝑚 (𝐵𝑡)1/4 𝑔(𝑢) , the solution can be written as: 𝑦(𝑥, 𝑡) = 𝑚 (𝐵𝑡)1/4 √2  × Γ(5/4) 𝑒−𝑝[ 𝑥(𝐵𝑡)1/4 ]  [−𝑐𝑜𝑠 𝑞[ 𝑥(𝐵𝑡)1/4 ] + 𝑠𝑖𝑛 𝑞[ 𝑥(𝐵𝑡)1/4 ]] 
Profile of the groove shape in the diffusion case 

The variations of the profile 𝑦(𝑥, 𝑡) as a function of the distance x from the symmetric axis of the 

groove are plotted on Figure 1. 

 

Figure 1. Groove profile giving 𝑦(𝑥, 𝑡) as a function of the distance from the symmetric axis of the 

groove. 

The study of the solution 𝑦(𝑥, 𝑡) reveals a damped sinusoidal profile of the groove with an 

infinity of maxima, minima and zeros of the solutions. The oscillations can be easily observed in our 

solution. Mullins mentioned that it is questionable, however, that these oscillations could be observed 

due to the progressively decreasing amplitude of g. Here, we proved the superiority of our analytical 
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solution that can predict the all oscillations, their amplitudes, the zero, the maxima and minima of 

the groove profile.   

As example, we gave on Table 1 the 12 first values of the groove shape parameters and on Table 

2 the distance between two consecutive maxima and minima for the first 12 numbers. 

Table 1. Values of the coordinates of Maxima and minima of the function 𝑦(𝑥, 𝑡) with the 

Number N 

𝑥฀฀฀ in (𝐵𝑡)1/4  𝑦฀฀฀ in 

m(𝐵𝑡)1/4  𝑙𝑛𝑦฀฀฀ 
𝑥฀฀฀ in (𝐵𝑡)1/4  𝑦฀฀฀ in 

m(𝐵𝑡)1/4  −𝑙𝑛 |𝑦฀฀฀| 𝑥0 in (𝐵𝑡)1/4  𝑍𝑒𝑟𝑜𝑠 𝑜𝑓 𝑦 

1 2.4 2.60x10-1 -1.35 5.22 -4.02 x10-2 3.21 1.22 

2 7.62 6.44 x10-3 -5.05 9.66 -1.05 x10-3 6.86 4.35 

3 11.62 1.70 x10-4 -8.68 13.7 -2.57 x10-5 10.57 6.78 

4 15.26 4.50 x10-6 -12.31 16.98 -7.33 x10-7 14.13 9 

5 18.62 1.19 x10-7 -15.94 20.26 -1.95 x10-8 17.76 11 

6 21.82 3.17 x10-9 -19.57 23.34 -5.17 x10-10 21.38 12.89 

7 24.82 8.42 x10-11 -23.20 26.3 -1.37 x10-11 25.01 14.69 

8 27.74 2.24 x10-12 -26.83 29.14 -3.64 x10-13 28.64 16.44 

9 30.54 5.94 x10-14 -30.45 31.9 -9.67 x10-15 32.27 18.08 

10 33.26 1.58 x10-15 -34.08 34.58 -2.57 x10-16 35.90 19.72 

11 35.94 4.19 x10-17 -37.71 37.22 -6.84 x10-18 39.52 21.27 

12 38.5 1.11 x10-18 -41.34 39.78 -1.82 x10-19 43.15 22.83 

Table 2. values of the differences between two consecutive maxima and minima. 

Number 

∆𝑥฀฀฀ 

in (𝐵𝑡)1/4  |∆𝑙𝑛𝑦฀฀฀| ∆𝑥฀฀฀ 

in (𝐵𝑡)1/4  ∆[−𝑙𝑛 |𝑦฀฀฀|] 
1 - - - - 

2 5.22 3.70 4.44 3.65 

3 4.00 3.63 4.04 3.71 

4 3.64 3.63 3.28 3.56 

5 3.36 3.63 3.28 3.63 

6 3.20 3.63 3.08 3.63 

7 3.00 3.63 2.96 3.63 

8 2.92 3.63 2.84 3.63 

9 2.80 3.63 2.76 3.63 

10 2.72 3.63 2.68 3.63 

11 2.68 3.63 2.64 3.63 

12 2.56 3.63 2.56 3.63 

We observed that 𝑦𝑀𝑎𝑥 decreases towards zero when x increases to the infinity as well as the 

absolute value of 𝑦𝑚𝑖𝑛 (Table 1). This will decrease the distance between two consecutive maxima 

and minima when the distance x increases. 

Results of Table 1 led to draw the curves of Figure 2 
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Figure 2. Curves of interpolation of the parameters of the grove as a function of the parameter number 

N. 

These curves of Figures 1 and 2 allowed to give the interpolating equations (Table 3): 

Table 3. Equations of interpolation of the various parameters of the groove profile. 

Parameters of the groove 
Equation of interpolation 

Linear regression  

coefficient 𝑥฀฀฀ in (𝐵𝑡)1/4 = f(N) 𝑥฀฀฀ = -0.0929 N2 + 4.3906N - 1.1605 R² = 0.9991 
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𝑙𝑛𝑦฀฀฀= f(N) 𝑙𝑛𝑦฀฀฀ = 0.0012 N2 - 3.6476N + 2.2688 R² = 1.0000 𝑍𝑒𝑟𝑜𝑠 𝑜𝑓 𝑦 or 𝑥0 in (𝐵𝑡)1/4 𝑥0 = -0.0579 N2 + 2.6546N - 0.9316 R² = 0.9990 𝑥฀฀฀ in (𝐵𝑡)1/4= f(N) 𝑥฀฀฀  = -0.0767 N2 + 4.0748N + 1.6466 R² = 0.9996 −𝑙𝑛 |𝑦฀฀฀|= f(N) −𝑙𝑛 |𝑦฀฀฀| = -0.0006 N2 + 3.6352N - 0.3982 R² = 1 𝑙𝑛𝑦฀฀฀ = 𝑓(𝑥𝑀𝑎𝑥) 𝑙𝑛𝑦฀฀฀ = -0.0102 𝑥฀฀฀2  - 0.7048 𝑥฀฀฀ + 0.6885 R² = 0.9998 𝑥0 = 𝑓(𝑥𝑀𝑎𝑥) 𝑥0 = -0.0002 𝑥฀฀฀2  + 0.6073 𝑥฀฀฀ - 0.2429 R² = 1 −𝑙𝑛 |𝑦฀฀฀| = 𝑓(𝑥𝑚𝑖𝑛) −𝑙𝑛 |𝑦฀฀฀|  = 0.0093  𝑥฀฀฀2 + 0.7442  𝑥฀฀฀  - 

1.0789 
R² = 1 𝑥0 = 𝑓(𝑥𝑚𝑖𝑛) 𝑥0 = -0.0012 𝑥฀฀฀2  + 0.6723 𝑥฀฀฀ - 2.1302 R² = 0.9999 

Inflexion point 𝑥𝐼𝑛𝑓. = 𝑓(𝑁) 𝑥𝐼𝑛𝑓. = -0.0436 N2 + 2.3829N + 1.378 R2 =0.9996 

Equations given in Table 3 showed the properties of damped sinusoidal functions and the 

pseudo-periodicity of the various groove parameters and the strong correlations between them 

showing at the same time the infinity of the number of these different parameters. 

On Table 4, we gave the various results obtained by our analytical solution and the Mullins’s 
results. 

Table 4. Comparison between the results of our analytical solution and those obtained by Mullins. 

Studied parameter Results obtained by using our solution 
Results obtained by 

Mullins 

Approached 

equation of the 

groove profile 

𝑔(𝑥) = −0.1737 𝑥2 + 0.8609 𝑥 − 0.7958 𝑅2 = 0.9997; 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2.40 𝑔(𝑥) = −0.288 𝑥2 + 𝑥− 0.780 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 
First zero of y 1.22 1.14 

Coordinates of the 

principal maximum 
(2.40; 0.260) (2.30; 0.193) 

Coordinates of the 

first inflexion point 
(3.475; 0.131) 3.43 

Equations of 

inflexion point 𝑥𝐼𝑛𝑓. = 𝑓(𝑁) 𝑥𝐼𝑛𝑓. = -0.0436 N2 + 2.3829N + 1.378 

R2 =0.9996 
Not given 

Positive inflexion 

point relation 

𝑦𝐼𝑛𝑓.(+) = -0.0134 𝑥𝐼𝑛𝑓.(+)2  - 0.6214 𝑥𝐼𝑛𝑓.(+)+ 

0.3252 

R² = 0.9999 

Not given 

Negative inflexion 

point relation 

𝑦𝐼𝑛𝑓.(−) = 0.012 𝑥𝐼𝑛𝑓.(−)2  + 0.6638 𝑥𝐼𝑛𝑓.- 
0.6231 

R² = 1 

Not given 

The parabolic approximation of the groove profile obtained by Mullins was valid for 0 ≤ 𝑥 ≤ 1, 

whereas, our approximation more precise is valid for 0 ≤ 𝑥 ≤ 2.40 (from the origin until the first 

maximum of the groove shape). On the other hand, the error committed by Mullins calculations on 

the abscissa of the first maximum the zero of the function y and the first inflexion point is about 7%, 

while that on the ordinate of the profile maximum exceeds 25%. On Table 4, we were able, on the 

contrary of Mullins results, to give more information on the various maxima, minimas, zeros and 

positive and negative inflexion points of the grove shape profile.  

If we notice ℎ𝑀𝑎𝑥  and ℎ𝑚𝑖𝑛  the depths of the groove taken from the bottom of the grove 

respectively to its first maximum and minimum, one can write: 
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ℎ฀฀฀ = 𝜀0 + 𝑦𝑀𝑎𝑥.1 and ℎ฀฀฀ = 𝜀0 + 𝑦𝑚𝑖𝑛.1 
Now, knowing that  𝜀0 = 𝑚(𝐵𝑡)1/4 √2  × Γ(5/4) 
and 

 𝑦𝑀𝑎𝑥.1 = 0.260×𝑚(𝐵𝑡)1/4  and  𝑦𝑚𝑖𝑛.1 = −0.040×𝑚(𝐵𝑡)1/4  
One deduced: 

ℎ฀฀฀ = [ 1√2 ×Γ(5/4)+ 0.260]𝑚(𝐵𝑡)1/4  and ℎ฀฀฀ = [ 1√2 ×Γ(5/4)− 0.040]𝑚(𝐵𝑡)1/4  
and 

ℎ฀฀฀ = 1.040 ×𝑚(𝐵𝑡)1/4 ; ℎ฀฀฀ = 0.740×𝑚(𝐵𝑡)1/4  
The separation distance between two consecutive maxima 𝑑𝑀𝑎𝑥 or minima 𝑑𝑚𝑖𝑛 was given in 

Table 2 proving the variation of this distance as a function of optima number N. One obtained the 

interpolated expressions on Table 5: 

Table 5. Separation distance Between two consecutive maxima or minima and their ratios on the 

groove depth. 

Separation distance Equation of interpolation Ratio 𝑑/ℎ 
Between two consecutive maxima 

𝑑฀฀฀ = 6.2355 × (𝐵𝑡)1/4 𝑁−0.365 5.995 𝑁−0.365/𝑚 

Between two consecutive minima 
𝑑฀฀฀ = 5.3909 × (𝐵𝑡)1/4 𝑁−0.305 7.286 𝑁−0.365/𝑚 

Table 5 clearly showed that the ratio is independent from the time, for example, we can give this 

ratio for the first maximum: 𝑑฀฀฀
ℎ𝑀𝑎𝑥 = 5.02𝑚  

Table 6 showed a certain deviation of Mullins results with respect to those of the analytical 

solution proposed in this paper, that can reach 12% in the case of the first maximum of the groove 

shape. However, Mullins did not give any additional information on the other maxima, minima, 

zeros of the solution and the various inflexion points, while our solution gave more complete 

information on the different parameters of the groove and also proposed many correlations that can 

be very useful for the readers. 

Table 6. Values of the principal maximum, distance between the two first maxima and their ratios by 

using our analytical solution compared to those obtained by Mullins. 

Studied parameter Results from our solution Results of Mullins 

Depth of the groove profile, 

ℎ฀฀฀ 
ℎ฀฀฀ = 1.040×𝑚(𝐵𝑡)1/4  ℎ฀฀฀ = 0.973×𝑚(𝐵𝑡)1/4  

With an error of 6.5% 

Separation distance between 

the two first maxima 
𝑑฀฀฀ = 5.22 (𝐵𝑡)1/4  𝑑฀฀฀ = 4.6 (𝐵𝑡)1/4  

With an error of 11.88% 

 

Ratio 𝑑/ℎ 𝑑฀฀฀
ℎ𝑀𝑎𝑥 = 5.02𝑚  

𝑑฀฀฀
ℎ𝑀𝑎𝑥 = 4.73𝑚  

With an error of 5.78% 
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Here, some information on the coordinates of the positive and negative inflexion points are 

given on Table 7. 

Table 7. Coordinates of the positive and negative inflexion points and relations between 

coordinates. 

Number 
Abscissa of the positive 

inflexion point in (𝑩𝒕)𝟏/𝟒  Ordinate of the positive inflexion point in 𝒎(𝑩𝒕)𝟏/𝟒  
1 3.475 1.310 x10-1 

2 8.295 3.436 x10-3 

3 12.275 9.068 x10-5 

4 15.855 2.410 x10-6 

5 19.185 6.503 x10-8 

6 22.325 1.744 x10-9 

Equation 𝑙𝑛 𝑦𝐼𝑛𝑓.(+) = -0.0134 𝑥𝐼𝑛𝑓.(+)2  - 0.6214 𝑥𝐼𝑛𝑓.(+)+ 0.3252 ; R² = 0.9999 

Number 
Abscissa of the negative 

inflexion point 
Ordinate of the negative inflexion point 

1 6.055 -2.109 x10-2 

2 10.355 -5.568 x10-4 

3 14.105 -1.487 x10-5 

4 17.545 -4.013 x10-7 

5 20.775 -1.040 x10-8 

6 23.845 -2.823 x10-10 

Equation −ln (−𝑦𝐼𝑛𝑓.(−)) = 0.012 𝑥𝐼𝑛𝑓.(−)2  + 0.6638 𝑥𝐼𝑛𝑓.(−)- 0.6231 ; R² = 1 

Competition between evaporation and diffusion 

When studying the evolution of grain boundary groove profiles in the cases of the 

evaporation/condensation and surface diffusion, Mullins [10] assumed that: (1) the surface diffusivity 

and the surface energy, 𝛾𝑆𝑉 , were independent of the crystallographic orientation of the adjacent 

grains and (2) the tangent of the groove root angle, , is small compared to unity. Mullins also 

supposed an isotropic material. The assumption (tan  1) was used in all papers’ Mullins to 
simplify the study of the mathematical partial differential equation. The polycrystalline metal was 

supposed (3) in quasi-equilibrium with its vapor. The interface properties don’t depend on the 
orientation relative to the adjacent crystals. The grooving process was described by Mullins using the 

macroscopic concepts (4) of surface curvature and surface free energy. The matter flow (5) is 

neglected out of the grain surface boundary. 

The mathematical equation governing the evaporation-condensation problem can be written 

here as: 𝜕𝑦𝜕𝑡 = 𝐶(𝑇) 𝑦" (𝑥)(1 + 𝑦 (𝑥)2) 
where C(T) a constant of the problem depending on the temperature T, given by: 

𝐶(𝑇) = 𝜇 𝑃0(𝑇) 𝛾(𝑇) 𝜔2√2𝜋𝑚𝑘𝑇  
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where γ is the isotropic surface energy, 𝑃0(𝑇) the vapor pressure at temperature T in equilibrium 

with the plane surface of the metal characterized by a curvature c = 0,  is the atomic volume, m is 

molecular mass,  the coefficient of evaporation and k is the Boltzmann constant.  

We remember here the analytical solution of the evaporation case without any approximation [our 

paper] given by 𝑦(𝑥, 𝑡) =  ∫   𝑠𝑖𝑛 𝜃   √𝑒𝑣2/(2𝐶𝑡) − 𝑠𝑖𝑛2𝜃  𝑑𝑣𝑥/2√𝐶𝑡
∞

 

and 

𝑦(𝑥, 𝑡) = −√𝜋𝐶𝑡 𝑠𝑖𝑛 𝜃 [𝑒𝑟𝑓𝑐 ( 𝑥
2√𝐶𝑡) +∑ (2𝑛)!(𝑛!)222𝑛 √3𝑛

∞

𝑛=1  𝑠𝑖𝑛2𝑛𝜃 (𝑒𝑟𝑓𝑐 ( 𝑥√3𝑛
2√𝐶𝑡))] 

By combining the two phenomena of diffusion and evaporation/condensation, one writes: 𝜕𝑦𝜕𝑡 =  𝐶 𝑦′′(1+ 𝑦′2) − 𝐵 𝜕𝜕𝑥 [(1+ 𝑦′2)−1/2  𝜕𝜕𝑥 [ 𝑦′′(1+ 𝑦′2)3/2]] 
With the approximation postulated by Mullins supposing that 𝑦′2 ≪ 1 one can write: 

฀฀𝜕𝑡 = 𝐶𝑦′′ − 𝐵𝑦′′′′         (93) 

With 𝐵 = 𝐷฀𝛾𝜔2𝑁𝑆𝑘𝑇  and 𝐶 = 𝜇 𝑃0 𝛾 𝜔2√2𝜋𝑚(𝑘𝑇)3/2 
Let’s put ℬ the profile area. One can write the rate of change of profile area: 𝑑ℬ𝑑𝑡 = ∫ 𝜕𝑦𝜕𝑡 𝑑𝑥+∞

−∞ = 2∫ [𝐶𝑦′′ − 𝐵𝑦′′′′]𝑑𝑥+∞
0

 

One writes: 𝑑ℬ𝑑𝑡 = −2 [𝐶𝑦′(0) −  𝐵𝑦′′′(0)] 
The Mullins’ approximation supposed that 𝑦′2 ≪ 1 and 𝑦′′′(0) = 0. In a previous paper [ref], 

we studied the case of evaporation without this approximation and obtained at the origin the 

following relations: { 𝑦′(0, 𝑡) = 𝑡𝑎𝑛 𝜃 =  𝑚 𝑦′′′(0, 𝑡) =  −2 𝑚 (1+  𝑚2) 
In such case, on obtains: 𝑑ℬ𝑑𝑡 = −2𝑚[𝐶 + 2𝐵 (1+  𝑚2)] 
And    ℬ = −2𝑚[𝐶 + 2𝐵 (1 +  𝑚2)]𝑡 

This relationship provides clear evidence that the rate of change of the profile area is influenced 

by both evaporation and diffusion, contrary to Mullin’s prediction which states that ℬ = −2𝑚𝐶 and 

is  independent of surface diffusion. 

Calculation of the profile area 𝓐 from below to above the original surface 
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𝒜 = −∫ 𝑦(𝑥)𝑑𝑥𝑥0
0

= −𝑚(𝐵𝑡)3/4∫ 𝑔(𝑢)𝑑𝑢𝑢0
0

 

By using the differential equation: 𝑔′′′′ − 14𝑢𝑔′ + 14𝑔 = 0 
One writes: 𝒜 = −𝑚(𝐵𝑡)1/2∫ [4𝑔′′′′(𝑢) − 𝑢𝑔′(𝑢)]𝑑𝑢𝑢0

0
 

Where 𝑢0 is the first zero of the function g. ∫ 4𝑔′′′′(𝑢)𝑑𝑢𝑢0
0 = 4[𝑔′′′(𝑢)]𝑢=0𝑢=𝑢0 = 4𝑔′′′(𝑢0)  (𝑔′′′(0) = 0) ∫ −𝑢𝑔′(𝑢)𝑑𝑢𝑢0

0 = −[[𝑢𝑔(𝑢)]𝑢=0𝑢=𝑢0 − ∫ 𝑔(𝑢)𝑑𝑢𝑢0
0 ] = ∫ 𝑔(𝑢)𝑑𝑢𝑢0

0   (𝑔(𝑢0) = 0) 
Therefore: ∫ 𝑔(𝑢)𝑑𝑢𝑢0

0
= −∫ [4𝑔′′′′(𝑢) − 𝑢𝑔′(𝑢)]𝑑𝑢𝑢0

0
= −4𝑔′′′(𝑢0) − ∫ 𝑔(𝑢)𝑑𝑢𝑢0

0
 

And: 𝒜 = −𝑚(𝐵𝑡)1/2∫ 𝑔(𝑢)𝑑𝑢𝑢0
0

= 2𝑚(𝐵𝑡)3/4𝑔′′′(𝑢0) 
If  is the profile area transferred from below to above of the original surface by surface diffusion 

alone divided by the profile area lost by evaporation, one can write: 𝜎 = 𝒜ℬ = −2𝑚(𝐵𝑡)1/2𝑔′′′(𝑢0)2𝑚[𝐶 + 2𝐵 (1 +  𝑚2)]𝑡 
With 𝑢0 = 1.22, one has 𝑔′′′(𝑢0) = −0.1543 and one deduces: 𝜎 = 0.1543 × 𝐵1/2𝑡−1/2𝐶 + 2𝐵 (1+  𝑚2)  

If we suppose that the contact angle is small or  𝑚2 ≪ 1 (for Theta < 18°) we obtain: 𝜎 = 0.1543 × 𝐵1/2𝐶 + 2𝐵 𝑡−1/2 
𝜎 = 0.1543 × 𝑘𝑇(2𝜋𝑚𝐷฀𝑁𝑆)1/2𝜔𝛾1/2[𝜇𝑃0 + 2𝐷𝑠𝑁𝑆(2𝜋𝑚𝑘𝑇)1/2] 𝑡−1/2 

Our relation proved that 𝜎 depends on the temperature, at contrary of the relation obtained by 

Mullins: 𝜎 = 0.38𝐵1/2𝐶 𝑡−1/2 = 0.38 (2𝜋𝑚𝐷𝑠𝑁𝑆)1/2𝜔𝛾1/2𝑃0 𝑡−1/2 
Indeed, in this relation, there is no direct effect of the temperature. To compare between the two 

previous expressions, we supposed that 2𝐵 ≪ 𝐶 and obtained: 𝜎 = 0.1543 × 𝐵1/2𝐶 𝑡−1/2 
This calculation yielded a ratio of  

𝜎(𝑜𝑢𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)𝜎(𝑀𝑢𝑙𝑙𝑖𝑛𝑠) = 0.15430.38 = 12.46 = 0.406 , indicating  an 

overestimation compared to the value proposed by Mullins. Tables 8 and 9 provide two examples 

comparing the results obtained using the two methods for Au and Mg metals. 

Table 8. Thermodynamic parameters of Au and Mg. 

Molecular mass m 𝟏. 𝟕 × 𝟏𝟎−𝟐𝟓𝒌𝒈 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2023                   doi:10.20944/preprints202308.1233.v1

https://doi.org/10.20944/preprints202308.1233.v1


 27 

 

Temperature T (K) 725.15 K 

Surface energy  1J/m2 

Number of molecules/m2, 𝑁𝑆 1.5× 1019𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑚2 
kT 10-20 J 𝐷฀ 10-7 m2/s 

Molecular volume 𝜔 1.7 × 10−29𝑚3 
Vapor pressure P0 of Au 1.3 × 10−3𝑃𝑎 

P0 of Mg 2.4 × 102 𝑃𝑎 

Table 9. Values of C, B and profile area of Au and Mg by using our new method compared to the 

values of Mullins. 

Parameter Our results Mullins results 

C 2.8× 10−17𝑃0 (𝑖𝑛 𝑚2/𝑠) 3 × 10−17𝑃0 (𝑖𝑛 𝑚2/𝑠) 
B 4.3 × 10−26𝑚4/𝑠 10−26𝑚4/𝑠 

𝜎 𝜎 = 1148.48𝑃0 𝑡−1/2 𝜎 = 2828.40𝑃0 𝑡−1/2 𝜎฀฀ 8.8× 105𝑡−1/2 2.2 × 106𝑡−1/2 𝜎฀฀ 4.8 𝑡−1/2 11.8 𝑡−1/2 
We observed that the profile areas corresponding to Au and Mg are overestimated by the 

Mullins method (about 2.5 times greater than our new values). On the other hand, the calculated ratio 

of the profile area lost by evaporation of Au and Mg is equal to: 𝜎฀฀𝜎𝑀𝑔 = 1.8× 105 
This proved that whatever the time, the evaporation of Au is 1.8 × 105 times more important 

than that of Mg. However, the diffusion of Mg particles is greater than that of Au. 

The same procedure was used to determine the values of the profile area lost by evaporation of 

some common metals (Table 10). 

Table 10. Values of 𝜎𝑡1/2 and thermodynamic parameters of some metals, such as melting point: TMP 

(K), temperature of metal: T (K), vapor pressure at T: P0 (Pa), molar mass: M (g/mol), surface energy 

of metal:  (J/m2) and atomic volume:  (m3). 

Metal 
M 

(g/mol) 
 (J/m2)  (m3) TMP (K) T (K) P0 (Pa) 

𝝈𝒕𝟏/𝟐 

Cu 63.546 1.808 1.18 x10-29 1358.2 2200 11490.38 
1.2 x 10-

5 

Al 26.9815 1.152 2.32 x10-29 933.5 2000 2956.96 
1.9 x 10-

5 

Ti 47.867 2.045 1.77 x10-29 1941.2 2370 286.35 
2.5 x 10-

4 

Cs 132.905 0.095 1.18 x10-28 302.96 530 425.19 
2.0 x 10-

4 

Li 6.941 0.524 2.18 x10-29 453.7 970 294.34 
1.5 x 10-

4 
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Co 58.933 2.536 1.11x10-29 1768.2 2120 303.04 
3.8 x 10-

4 

Ga 69.723 0.991 1.96 x10-29 302.96 1570 278.52 
4.1 x 10-

4 

Tl 204.383 0.639 2.86 x10-29 577.2 1070 318.79 
5.2 x 10-

4 

Sr 87.62 0.415 5.60 x10-29 1050.2 1030 1008.65 
6.9 x 10-

5 

These interesting results of the Table 10 gave the following order of the various metals by 

increasing profile area: 

Cu < Al < Sr < Li < Cs < Ti < Co < Ga < Tl 

On Table 11, we gave the obtained values of the two constants C and B of evaporation and 

diffusion for the different metals. 

Table 11. Calculated values of evaporation C and diffusion B constants from the experimental data. 

Metal 𝑪 (𝒊𝒏 𝒎𝟐/𝒔) 𝑩 (𝒊𝒏 𝒎𝟒/𝒔) (𝑩𝒕)𝟏/𝟒(𝒊𝒏 𝒎) for 24 hours 

Co 5.9×10-15 1.6×10-26 6.1×10-6 

Ti 9.6×10-15 2.9×10-26 7.1×10-6 

Ga 1.0×10-14 2.6×10-26 6.9×10-6 

Li 1.5×10-14 2.8×10-26 7.0×10-6 

Tl 2.9×10-14 5.3×10-26 8.2×10-6 

Al 1.2×10-13 3.4×10-26 7.3×10-6 

Cu 1.7×10-13 1.2×10-26 5.7×10-6 

Sr 2.4×10-13 1.4×10-25 1.0×10-5 

Cs 2.8×10-13 2.7×10-25 1.2×10-5 

The constant of evaporation C decreases from the cobalt element Co to cesium by respecting the 

following increasing order: 

Co < Ti < Ga < Li < Tl < Al < Cu < Sr <Cs 

Whereas, this order changes for the constant of diffusion that increases from Cu to Cs with the 

following order: 

Cu < Co < Ga < Li < Ti < Al < Tl < Sr <Cs 

Another important conclusion concerns the larger value of constant C with respect to B. It is shown 

that the value of C is about 1012 times greater that of B. This led to conclude that the diffusion can be 

neglected relative to evaporation. 

The depth of the groove 

In many experiments, it was proved that the depth groove can vary from 0.1mm to several 10 

mm in the case of diffusion depending on the metal thermal properties and on the width of the 

groove. In order to understand the thermal behavior of diffusion of the various elements, let’s take 
the typical example where m = 0.20 and calculate the corresponding depth ℎ𝑀𝑎𝑥 of the groove for 

metals (Table 12). 
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Table 12. Variations of the depth ℎ𝑀𝑎𝑥 (in m) of the groove in the case of diffusion of different metals 

as a function of time. 

Metal 1 s 1 minute 1 hour 1 half-day 1 day 5 days 10 days 

Co 7.4×10-8 2.1×10-7 5.7×10-7 1.1×10-6 1.3×10-6 1.9×10-6 2.3×10-6 

Ti 8.6×10-8 2.4×10-7 6.7×10-7 1.2×10-6 1.5×10-6 2.2×10-6 2.6×10-6 

Ga 8.4×10-8 2.3×10-7 6.5×10-7 1.2×10-6 1.4×10-6 2.1×10-6 2.6×10-6 

Li 8.5×10-8 2.4×10-7 6.6×10-7 1.2×10-6 1.5×10-6 2.2×10-6 2.6×10-6 

Tl 1.0×10-7 2.8×10-7 7.7×10-7 1.4×10-6 1.7×10-6 2.6×10-6 3.0×10-6 

Al 8.9×10-8 2.5×10-7 6.9×10-7 1.3×10-6 1.5×10-6 2.3×10-6 2.7×10-6 

Cu 6.9×10-8 1.9×10-7 5.4×10-7 1.0×10-6 1.2×10-6 1.8×10-6 2.1×10-6 

Sr 1.3×10-7 3.5×10-7 9.8×10-7 1.8×10-6 2.2×10-6 3.2×10-6 3.9×10-6 

Cs 1.5×10-7 4.2×10-7 1.2×10-6 2.2×10-6 2.6×10-6 3.8×10-6 4.6×10-6 

Knowing that the width 𝑤𝑀𝑎𝑥 of the groove is given by: 𝑤𝑀𝑎𝑥 = 2𝑥𝑀𝑎𝑥 = 4.8× (𝐵𝑡)1/4  
One deduced the value of 𝑤฀฀฀ for the different metals presented on Table 13. 

Table 13. Variations of the width 𝑤𝑀𝑎𝑥 (in m) of the groove in the case of diffusion of different metals 

as a function of time. 

Metal 1 s 1 minute 1 hour 1 half-day 1 day 5 days 10 days 

Co 1.7×10-6 4.8×10-6 1.3×10-5 2.5×10-5 2.9×10-5 4.4×10-5 5.2×10-5 

Ti 2.0×10-6 5.5×10-6 1.5×10-5 2.9×10-5 3.4×10-5 5.1×10-5 6.1×10-5 

Ga 1.9×10-6 5.4×10-6 1.5×10-5 2.8×10-5 3.3×10-5 5.0×10-5 5.9×10-5 

Li 2.0×10-6 5.5×10-6 1.5×10-5 2.8×10-5 3.4×10-5 5.0×10-5 6.0×10-5 

Tl 2.3×10-6 6.4×10-6 1.8×10-5 3.3×10-5 4.0×10-5 5.9×10-5 7.0×10-5 

Al 2.1×10-6 5.7×10-6 1.6×10-5 3.0×10-5 3.5×10-5 5.3×10-5 6.3×10-5 

Cu 1.6×10-6 4.5×10-6 1.2×10-5 2.3×10-5 2.7×10-5 4.1×10-5 4.9×10-5 

Sr 2.9×10-6 8.1×10-6 2.3×10-5 4.2×10-5 5.0×10-5 7.5×10-5 8.9×10-5 

Cs 3.5×10-6 9.6×10-6 2.7×10-5 5.0×10-5 5.9×10-5 8.9×10-5 1.1×10-4 

Consequences of the new solution 

The experimental study of the geometric characteristics of the groove for metals can lead to the 

determination of the two constants of evaporation and diffusion. Indeed, the evaporation constant 

can be obtained by determining experimentally the value of the profile area ℬ and by considering 

in first approximation ℬ = −2𝑚𝐶𝑡 and therefore 𝐶 is given by: 𝐶 = − ℬ2𝑚𝑡 
By determining the value of C, it becomes possible to determine the surface energy  of the metal 

using the relation of the evaporation constant, resulting in the following expression: 

𝛾 = 𝐶√2𝜋𝑚(𝑘𝑇)3/2𝑃0  𝜔2 = −√𝜋(𝑘𝑇)32𝑚 ℬ𝑃0𝜔2𝑡 
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The evaluation of the width 𝑤𝑀𝑎𝑥  of the groove will give the value of diffusion constant 𝐵 by using 

our previous relation: 𝑤฀฀฀ = 4.8 × (𝐵𝑡)1/4  
And therefore: 𝐵 = 1.88 × 10−3𝑤𝑀𝑎𝑥4𝑡  

Knowing  and  , we will be able to obtain the value of the surface diffusion 𝐷฀: 𝐷฀ = 2.6× 10−26 𝑇𝑤𝑀𝑎𝑥4𝛾𝜔2𝑁𝑠𝑡 
Validity of the approximation of 𝒚′𝟐 ≪ 𝟏 

Let’s consider the case of copper metal to test the validity of 𝑦′2 ≪ 1 and draw on Figure 3 the 

variations of 𝑦′2 as a function of the distance x for different contact angles. 

 

Figure 3. Variations of 𝑦′2 as a function of the distance x from the symmetrical axis of the groove at 

different contact angles ( from 1° to 70 ° and m from 0.017 to 2.75) in the case of copper element. 

Figure 3 showed that for  < 30°, the value of 𝑦′2 <0.2 and can be approximately neglected 

behind 1 following Mullins’ approximation. Therefore, for  > 30°, the approximated fourth partial 

differential equation proposed by Mullins cannot be used for the diffusion case and then it will be 

necessary to resolve the non-linear partial fourth order differential equation that cannot be 

analytically obtained. 

Variations of the groove profile y(x) and the derivative y'(x) as a function of the distance x of Cu 

We used the results of our analytical solution to determine the groove profile and its derivative 

in the case of copper metal. On Figure 4, we drew the variations of the profile y(x) and y'(x) in the 

case of Cu by noting the geometric parameters of the groove such as ℎ𝑀𝑎𝑥, 𝑑𝑀𝑎𝑥 and 𝑤𝑀𝑎𝑥. By using 

our solution, we obtained the following geometric characteristics of the groove: 

ℎ฀฀฀ = 2.16 𝜇𝑚; 𝑑฀฀฀ = 29.54 𝜇𝑚; 
𝑤𝑀𝑎𝑥
2

= 13.68 𝜇𝑚 
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Figure 4. Variations of the profile y(x) and y'(x) as a function of the distance x from the symmetrical 

axis of the groove when  = 20° (m = 0.364) for copper metal with the geometric characteristics. 

On Figure 5, we plotted the variations of the profile y(x) of the groove of Cu as a function of the 

distance x for different values of contact angles. 

 

Figure 5. Variations of the profile y(x) as a function of the distance x for different values of m 

corresponding to  = 2.3° to 26.6° for copper metal. 

Figure 5 clearly showed the effect of the contact angle of the grove. The groove depth increases 

when m increases. However, the other characteristics such as 𝑑𝑀𝑎𝑥 and 𝑤𝑀𝑎𝑥 remain the same. 
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The obtained analytical solution allowed to compare between the groove profiles among various  

metals. Figure 6 showed different groove characteristics in different metals. It can be seen that the 

groove depth and the distance between two maxima increased from Cu to Cs 

 

Figure 6. Variations of the profile y(x) as a function of the distance x for the different metals at t = 24 

hours. 

Figure 6 also showed the large difference in the behavior of the various metals. The grove 

phenomenon is more accentuated for Cs, whereas, Cu is the less affected by the surface diffusion. 

Conclusion 

In this study, we have derived an exact solution to the partial differential equation 
𝜕𝑦𝜕𝑡 + 𝐵𝑦′′′′ =0. The obtained solution reveals a damped sinusoidal groove profile in the case of electronic power 

devices. We have provided expressions of zeros, minima, and maxima of the profile as a function of 

the order number, as well as detailed information about the groove profile y(x) and its derivatives. A 

comprehensive comparison with Mullins’ results was conducted, demonstrating that Mullins’ 
predictions significantly overestimate the geometric characteristics of the groove, exceeding the 

actual values by more than 2.5 times. Additionally, valuable insights into the diffusion behavior of 

various metals gained through this study. The expressions for the evaporation and diffusion 

constants and coefficients were also derived, accounting for the groove parameters. 
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Variations of the profile y(x) as a function of the distance x for different values of the contact slop 

m corresponding to  = 2.3° to 26.6° for copper metal. 𝑦(𝑥, 𝑡) = 𝑚 (𝐵𝑡)1/4 √2 × Γ(5/4) 𝑒−𝑝[ 𝑥(𝐵𝑡)1/4 ]  [−𝑐𝑜𝑠 𝑞[ 𝑥(𝐵𝑡)1/4 ] + 𝑠𝑖𝑛 𝑞[ 𝑥(𝐵𝑡)1/4 ]] 

{  
  
  𝑝(𝑥) = √𝜆(𝑥)2  𝑥 ;   𝑞(𝑥) =  √ 𝑥8√2𝜆(𝑥) + 𝜆(𝑥)2  𝑥                                                                                     
𝜆(𝑥) = 14 × 22 3⁄ [   

 (𝑥2 + √𝑥4  −  21033 )
13 + (𝑥2 − √𝑥4  −  21033 )

13
]   
  

 

Calculated values of evaporation C and diffusion B constants from the experimental data. 

Metal 𝑪 (𝒊𝒏 𝒎𝟐/𝒔) 𝑩 (𝒊𝒏 𝒎𝟒/𝒔) (𝑩𝒕)𝟏/𝟒(𝒊𝒏 𝒎) for 24 

hours 

Co 5.9×10
-15

 1.6×10
-26

 6.1×10
-6

 

Ti 9.6×10
-15

 2.9×10
-26

 7.1×10
-6

 

Ga 1.0×10
-14

 2.6×10
-26

 6.9×10
-6

 

Li 1.5×10
-14

 2.8×10
-26

 7.0×10
-6

 

Tl 2.9×10
-14

 5.3×10
-26

 8.2×10
-6

 

Al 1.2×10
-13

 3.4×10
-26

 7.3×10
-6

 

Cu 1.7×10
-13

 1.2×10
-26

 5.7×10
-6

 

Sr 2.4×10
-13

 1.4×10
-25

 1.0×10
-5

 

Cs 2.8×10
-13

 2.7×10
-25

 1.2×10
-5

 

 

 

 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2023                   doi:10.20944/preprints202308.1233.v1

https://doi.org/10.20944/preprints202308.1233.v1

