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Article

ERA*: Enhanced Relaxed A* algorithm for Solving
the Shortest Path Problem in Regular Grid Maps

Adel Ammar
RIOTU Lab, Prince Sultan UNiversity, Rafha Street, Riyadh, 11586, Saudi Arabia; aammar@psu.edu.s a

Abstract: This paper introduces a novel algorithm for solving the point-to-point shortest path problem
in a static regular 8-neighbor connectivity (G8) grid. This algorithm can be seen as a generalization
of Hadlock algorithm to G8 grids, and is shown to be theoretically equivalent to the relaxed A*
(RA*) algorithm in terms of the provided solution’s path length, but with substantial time and
memory savings, due to a completely different computation strategy, based on defining a set of
lookup matrices. Through an experimental study on grid maps of various types and sizes (1290 runs
on 43 maps), it is proven to be 2.25 times faster than RA* and 17 times faster than the original A*, in
average. Moreover, it is more memory-efficient, since it does not need to store a G score matrix.

Keywords: path planning; A*; grid maps; algorithms; shortest path problem

1. Introduction

The shortest path problem is a well-established and important problem that finds applications
in various fields, including robotics ([1,2]), VLSI design ([3]), wireless sensor networks ([4]), and
transportation ([5,6]). This problem can be represented either on a grid or a more general graph, with
different techniques employed for each representation. Grid-based approaches are commonly favored
in scenarios like extensive VLSI design, particularly when there are numerous obstacles to navigate
around.

Traditionally, two types of methods have been used to address the global path planning problem.
The first type is exhaustive search, which involves thorough exploration of the entire search space
to find the optimal solution. Examples of exact search algorithms commonly used for this purpose
include Dijkstra’s algorithm (([7,8])) and A* algorithm ([9]). These algorithms guarantee finding the
shortest path but may become impractical when dealing with large grids due to their computational
complexity.

The second type is local search, which employs metaheuristic algorithms to explore only a portion
of the search space. These algorithms, such as Tabu Search ([10]), Ant Colony Optimization ([11]),
Genetic Algorithm ([12]), Particle Swarm Optimization ([13,14]), and their multiple variants, provide
approximate solutions and are often used when the exhaustive search is not feasible due to the large
size of the grid. By exploring a limited subset of the search space, local search algorithms can find
reasonably good solutions efficiently.

Recently, some relaxed alternatives of exhaustive search algorithms have emerged. These
approaches aim to find a balance between the constraint of achieving optimality in path length
and the need for faster search times. The work being discussed here falls into this category. It is
demonstrated that the proposed Enhanced Relaxed A* (ERA*) algorithm is theoretically equivalent to
the relaxed A* (RA¥, [15]) algorithm in terms of the path length of the solutions it provides. However,
it achieves significant savings in terms of time and memory requirements by employing a completely
different computation strategy.

By relaxing the constraint of path length optimality to some extent, this approach manages to
expedite the search process while still delivering solutions that are comparable in terms of path length
to those obtained through the RA* algorithm. The key advantage lies in the adoption of a novel
computation strategy based on lookup matrices. These matrices store precomputed values that can be
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efficiently accessed during the search, eliminating the need for redundant calculations and resulting in
substantial time and memory savings.

The remaining of this paper is organized as follows: Section 2 discussed the most relevant related
works. Section 3 presents the proposed ERA* algorithm and proves its equivalence to RA* in terms of
path cost. Section 4 presents the results of the evaluation of ERA* on a benchmark of representative
grid maps, and compares it to A* and RA™* in terms of path cost and execution time. Finally, section 5
concludes the paper and suggests some future works.

2. Related Works

Shortest path algorithms are a crucial tool in the field of computer science and are used to solve
a wide range of problems. In general, point-to-point shortest path algorithms work by starting at a
source node and exploring the neighboring nodes until they reach the destination node. Along the way,
the algorithm keeps track of the shortest distance from the source to each node, using this information
to guide the search and ensure that the shortest path is found. There are a variety of shortest path
algorithms that have been developed for finding the shortest path between two points in a regular
grid ([16]). These algorithms typically involve searching through the grid to identify the optimal path,
taking into account factors such as the cost of moving from one cell to another and any obstacles that
may be present in the grid.

One of the most popular and well-known shortest path algorithms for regular grids is Dijkstra’s
algorithm, which was first proposed by Dutch computer scientist Edsger Dijkstra ([7,8]). Dijkstra’s
algorithm is a general-purpose algorithm that can be used to find the shortest path between any two
points in a weighted, directed graph. It is based on the idea of building a "shortest path tree" from the
source point to all other points in the grid, with the shortest path to each point being the minimum
sum of the weights of the edges along the path. Although Dijkstra’s algorithm is relatively simple and
easy to implement, it has a time complexity of O(|E| + |V|log|V|) when using a suitable data structure
(Fibonacci heaps), where |E| is the number of edges in the graph and |V| is the number of vertices.
This makes it less efficient for larger grids.

Another popular shortest path algorithm for regular grids is A* [9], which was proposed as an
improvement of Dijkstra’s algorithm. A* is a heuristic search algorithm that uses a combination of a
best-first search and a cost-estimation function to guide the search towards the goal. Unlike Dijkstra’s
algorithm, which considers all paths from the source to the goal, A* only considers paths that are
likely to lead to the goal, based on the cost-estimation function. This makes A* more efficient than
Dijkstra’s algorithm for many grid-based problems, although the performance of A* can be sensitive
to the choice of cost-estimation function.

[17] proposed the first Maze-solving algorithm that is based on target-directed grid propagation
and is memory-efficient. It was extensively employed in the field of printed circuit board design for
finding wire paths. However, [18] later revealed that the original claim of the algorithm’s generality
regarding the path cost function is incorrect.

More recent shortest path algorithms for regular grids include the Jump Point Search (JPS)
algorithm, proposed by [19] as an improvement over A* in grid maps. It is based on a selective node
expanding process that specifically identifies and expands certain nodes in the grid map, referred to as
jump points. Thus, intermediate nodes along a path between two jump points are not expanded at all,
which enhances the speed of A* search by an order of magnitude.

[20] proposed the Minimum Detour (MD) algorithm in G4 regular grids. Its main idea is to
calculate the detour number d(P), defined as the number of nodes on the path P that are directed away
from the goal. Then, the path length is calculated as M(S,G) + 2d(P), where M(5,G) is the Manhattan
distance between the start S and the goal G nodes. This is because any move opposed to the direction
of the goal necessarily needs to be compensated to reach the goal. Since M(S,G) is constant for a given
(5,G) pair, minimizing the path length is equivalent to minimizing the detour number. Nodes that
have lower detour numbers are given higher priority in the grid expansion process, in a breath-first
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search style. Since then, no similar algorithm has been proposed in G8 grids, because the detour
computation is not as simple as in G4 grids. This paper proposes to bridge this gap by introducing a
Hadlock-inspired algorithm applicable to G8 grids.

Relaxed Dijkstra and Relaxed A* (RA*) algorithms proposed by [15] exploit the grid-map
structure to establish an accurate approximation of the optimal path, without visiting any cell
more than once. The path length is approximated in terms of number of moves on the grid. This
approach distinguishes itself from previous bounded relaxation algorithms of A* ([21-24]) primarily
by performing relaxation on the exact cost, denoted as g, of the evaluation function f (where f = g + h).
This sets it apart from existing relaxations of the A* algorithm, which typically focus on relaxing the
heuristic h. The current work proposes aims to further accelerate the execution of the RA* algorithm
by completely changing its computing paradigm, drawing inspiration from the Hadlock algorithm.

It is worth noting that path planning in a grid map can be substantially accelerated in a completely
different way by building connection graphs before applying a search algorithm ([25]). Nevertheless,
the fact that the proposed ERA* algorithm does not construct connection graphs is a significant
advantage in many cases. For instance, in large VLSI design problems with a high number of obstacles,
the construction of the entire connection graph could be extremely costly.

3. Methodology

The proposed algorithm is based on calculating detour penalties that are propagated from the
source node S to the the goal node G. For a given current node C, we define:

* «: the angle between the x-axis and the CG vector.

* Ay = xg — xc, where xg and xc are the abscissas of the goal node and the current node,
respectively.

* Ay = yg — yc, where yg and yc are the ordinates of the goal node and the current node,
respectively.

Figure 1 clarifies the definition of the variables &, Ay, and Ay on an example. Figure 2 presents
the five first matrices of incremental detour penalty for « € [0°,90°]. These 3x3 matrices store the
incremental detour (penalty) from the goal expressed as:

Shortcut/distance

/
pp— -

0 A

A
[

- 4

Figure 1. Example showing the angle a between the current node (C) and the goal node (G), Ay =
xG — xc, Ay = Yy — yc, and the shortcut distance between C and G, which corresponds to the minimum
distance in a G8 grid when there are no obstacles between the two nodes.

D(n;) — D(nj_1) = dist(nj_1,n;) + h(n;) — h(n;_1) 1

Where h is the shortcut distance to goal (shortest path assuming there are no obstacles, see figure
1).
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a) a=0° b) 0°<a<45° c) a=45°
22 2 NE 2 2-42 0 2 2-V2 0
2 0 2 0 2 242
2V2 V2 SE 22 2VzZ -1 SE 2Vz 2 2

with:

NE=SE=22-2, if (Ax > 1)

with:

SE=2v2 -2, if (Ay < Ax —2)

NE=SE=+2, if(Ax=1) SE=+v2, if(dy=48x-1)
d) 45°<a<90° e) a=90°
NW 0 0 NW 0 NE
2v2 -1 2 vz
2y2 2 2 2v2 2 242
with:

with:
NW =2v2 — 2, if (Ax < Ay —2) NW = NE = 242 - 2, if (Ay = 1)

NW =+v2, if(Ax=24ay—1) NW =NE =42, if(Ay=1)

Figure 2. Incremental detour penalty lookup matrices for angles between the current node and the
goal node from 0° to 90°. The remaining cases can be obtained from the above cases, using simple
90° rotations of the 3x3 matrix. NE, SE, and NW stand for Northeast, Southeast, and Northwest,
respectively. These incremental penalties are added when propagating the total penalty the source

node to the goal node.

The value of some penalties, which are denoted as NE (North-East), SE (South-East), and NW
(North-West), depend on the value of Ay and Ay. For instance, in case (a), corresponding to « = 0
(C and G on the same row, with G on the right, so that the optimal path between them is equal to
Ay), if Ay =1, it means that the goal is adjacent to the current node on its right. Consequently, if we
move towards NE or SE, we will reach the goal with a minimum cost of V2 + 1 instead of just 1 for
the optimal path between C and G. That is why the penalty is v/2. Whereas, for all other values of
Ay > 1, if we move towards NE, we can return back to the row containing G with a total cost of 242
instead of 2 for the optimal path. That is why the penalty is 2v/2 — 2. Obviously, the case Ay < 1
cannot correspond to angle & = 0. The reasoning is similar for the other cases.

Notice that the matrix (e) can be obtained from the matrix (a) by applying a 90° anti-clockwise
rotation and substituting Ay for Ay, in the formulas of NE/SE that becomes NW/NE. Likewise:

* (f)90° < a < 135°: is obtained from (b) by applying a 90° anti-clockwise rotation.
* (g) a = 135°: is obtained from (c) by applying a 90° anti-clockwise rotation.
¢ (h) 135° < & < 180°: is obtained from (d) by applying a 90° anti-clockwise rotation.

In total, we have 28 fixed 3 x 3 matrices (counting the cases of different Ay and A, values), that
we store before running the search algorithm.
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As in [20], nodes that have lower detour numbers are given higher priority in the grid expansion
process. This process proceeds until the goal position is reached. Then the path is reconstructed
backwards from the goal cell, by moving from each cell to its parent cell that expanded it, until the
starting cell is reached.

Instead of two matrices (actual cost g and combined score f) as in A* and RA*, only one matrix
of detour penalties (D) is stored in memory. At a give node 7;, the detour value can be calculated
recursively, using the euclidean distance dist and the heuristic function / (shortcut distance), as:

D(n;) = D(n;_q) +dist(n;—1,n;) + h(n;) — h(n;—1)
= D(l’li_z) + diSt(ni_z, ni—l) + dist(ni_l, I’li) + h(l’li_l) — h(ﬂi_z) + h(nl-) — I’l(l’li_l)

i1 i
= D(ng) + Y_ dist(ng, 1) + Y h(ng) — h(ne_q)

k=0 k=1
With:
D(ng) =0
i—1
Z dist(ng, ng 1) = g(n;)
k=0
i
Z h(ng) — h(ng_1) = h(n;) — h(ng)
k=1
Therefore:

D(n;) = g(n;) + h(n;) — h(no)
= f(n;) —h(no)

Consequently, since h1(1g) is constant, optimizing D is equivalent to optimizing f.
Algorithm 1 presents the main steps for path exploration in ERA*. The algorithm takes as input a

@

grid represented by a 2D matrix (map) where obstacles are marked with a predefined value, and the
coordinates of the start (S) and goal (G) nodes. It calculates the penalty matrix D with a finite value for
all explored nodes. The algorithm stops when the node exploration reaches G, or when a predefined
maximum number of iterations is reached. We first store the 28 3 x 3 incremental penalty matrices
(see Figure 2), and initialize the priority queue I of expanded nodes to the start node S with associated
penalty O (line 4). The penalty matrix D and the Predecessor matrix P (used for path reconstruction)
are both initialized with default infinity values (lines 6-8), except for the penalty associated with S
which is initialized to O (line 10). Then, we iterate over the priority queue I by dequeuing each time
the node that has the minimum penalty value D(i, j). Based on the value of Ax and Ay between this
current node C and the goal node, we choose the corresponding incremental penalty matrix D;. This
choice is accomplished through a series of if statements where the most likely cases (e.g., inequalities
such as Ay > 1) are placed before less likely cases (e.g., equalities such as Ax = 0), in order to optimize
execution time. We define J (line 16) as the set of all free (i.e., non-obstacle) neighbor nodes of C for
which the penalty value D(i, j) is infinite (i.e., has not been calculated yet). For each node in J, we save
its predecessor C in the P matrix (line 17) for later path reconstruction, and we calculate its penalty
value D(ip, jp) as the sum of the current node’s penalty plus the corresponding incremental penalty in
the 3 x 3 D; matrix (line 18). Then, we enqueue ] in I (line 21), where the priorities correspond to the D
values. If there is a path between S and G, G will be reached and its penalty value calculated, unless
the predefined maximum number of iteration is attained.
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Algorithm 1: ERA* search algorithm.
input :map: The whole grid with obstacle information

max_nb_iter: maximum number of iterations

(is, js): coordinates of the Start node S on the grid

(ig, jg): coordinates of the Goal node G on the grid
output: D: penalty matrix

nb_iter: number of iterations to find the near-optimal path

1 nb_iter =0
2 fail = False
3 Store the 28 (3 x 3) D; penalty matrices  // See Fig.2 and eq.1
s I=(is, js,0)] // Priority queue of expanded nodes
5 // Initialization of the distance matrix D and the predecessors matrix P on the map:
6 foreach node in map do
7 | D(node) = +o0
8 | P(node) = +oo
9 end
10 D(is, js) =0
1 while (D(ig, jg) = +oo and nb_iter < max_nb_iter and size(I) > 0) do
12 | (ic,jc) = dequeueMin(l) // C will be the current node
13 Ax =ig —ic
u | Ay =jc—jc
15 Choose the correct (3 x 3) D; penalty matrix matP according to the relative value of Ax

and Ay

16 J=1{(i,j,D(i,j)) | (i,j) = N € map, N neighbor of C, N is not an obstacle, and
D(i,j) = +oo}

17 foreach (ip, jp, D(ip,jp)) in | do

18 P(ip,jp) = (ic, jc)

19 D(ip, jp) = D(ic, jc) + matP(ip — ic, jp — jc)

20 end

21 Enqueue JinI

22 nb_iter++
23 end

Once Algorithm 1 reaches the goal G, Algorithm 2 is used to reconstruct the path backward. It
takes as input the penalty matrix D and predecessors matrix P that were both generated in Algorithm
1, and the start and goal coordinates on the grid. If D(ig, jg) # +oo (line 1), it means that Algorithm 1
has reached the goal and a path from S to G has been found. The path reconstruction algorithm starts
from the goal (ig, jg) (line 3), and prepends the current node’s predecessor to the path at each iteration
(line 14), while adding 1 (for horizontal and vertical moves) or V2 (for diagonal moves) until it reaches
the start node S. Alternatively, we can count the number of diagonal moves, and multiply it by v/2
only at the end to avoid accumulating numerical inaccuracies.
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Algorithm 2: path reconstruction algorithm.

input :D: penalty matrix // Output from Algorithm 1
P: Predecessors matrix // Output from Algorithm 1
(is, js): coordinates of the Start node S on the grid
(ig, jc): coordinates of the Goal node G on the grid
output: path: near-optimal path between S and G
length: length of the near-optimal path between S and G
fail : True if no path has been found

1 if D(ig, jg) # +oo then

2 | fail = False

3 (ic,jc) = (ig,jg) // Path reconstruction starts from the Goal
4 | path=|(ic,jc)]

5 length =0

6 | while (ic, jc) # (is, js) do

7
8
9

(ip, jp) = Plic, jc)
if ip = ic or jp = jc then
‘ length +=1
10 else
1 ‘ length += /2
12 end
13 (ic,jc) = (ir, jp)
14 path.prepend((ic, jc))
15 end
16 else
17 ‘ fail = True
18 end

4. Evaluation and discussion

4.1. Dataset

The simulation study was performed using Matlab R2012a on a laptop with an Intel Core i7
processor (2.4 GHz) and 16 GB of RAM. The evaluation of the algorithms was based on the same
benchmark used in [15], which is composed of four categories of maps:

* 26 maps with randomly placed rectangular obstacles of various obstacle sizes and ratios, ranging
from 100 x 100 to 2000 x 2000 in size.

* 6 mazes with passages of different sizes, all 512 x 512 in size, with variable corridor size.

* 4 room maps (512 x 512) filled with random square rooms of variable size.

¢ 6 maps from video games and 1 real-world map (Willow Garage), ranging from 512 x 512 to 1024
x 1024 in size and selected for their varying levels of difficulty.

We designed and generated the first category of random maps, while the other three categories
(mazes, rooms, and video games) were selected from a large set of benchmarking maps provided by
[26]. For each map, we conducted 30 runs with randomly selected start and goal nodes each time.
Thus, the total number of runs is 1290 (43 maps x 30) for each algorithm.

We compared the proposed ERA* algorithm to the original A} (A* using path tie-breaks) and
to RA*yor (Relaxed A* without using path tie-breaks) which was proven in [15] to provide the best
tradeoff between path cost and execution time among the tested relaxed variants in G8 grids.
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4.2. Results

Two main performance metrics are considered to evaluate the three global planners:

® The path length: it represents the length of the shortest global path found by the planner.
¢ The execution time: time spent by an algorithm to find its best (or optimal) solution.

Table 1 shows the percentage of optimal paths (when a path exists) for the three tested algorithms,
per environment. The original A* provides the optimal in all cases, since no relaxation is applied
to it. We observe that ERA™ yields a slightly higher rate of optimal paths than RA}, , for random
environments of different sizes, a slightly lower rate for rooms and video games, and a markedly
lower rate for mazes, in which path lengths are the longest in average, as shown in table 2. This is due
to the numerical issues entailed by the incremental computation. Nevertheless, table 3 shows that
the percentage of extra length compared to the optimal path remains low at 2.3% in average, and a

maximum of 10.4%, which is slightly lower than the maximum extra length produced by RA} ;.

Table 1. Percentage of exact optimal paths (when a path exists) per environment, for the three tested

algorithms.
Mazes Rooms VideoGames
Algorithm | 100x100 | 500x500 | 1000x1000 | 2000x2000 (512x512 to All
(512:512) | (5126512) | 050 500
Af 100.0% | 100.0% | 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
RAZ .t 79.6% 85.0% 78.9% 96.7% 21.7% 25.0% 47.2% 62.9%
ERA* 81.9% 86.0% 80.6% 96.7% 4.4% 23.3% 46.7% 61.1%
Table 2. Average path cost per environment size, in cell units.
Mazes Rooms VideoGames
Algorithm | 100x100 | 500x500 | 1000x1000 | 2000x2000 (512x512 to All
(5126512) | (B12x512) | 15000
Af 60.4 284.8 631.2 1086.2 1479.1 317.1 375.8 490.3
RAY 60.7 285 632.3 1086.3 1501 321 381.3 494.8
ERA* 60.7 285.2 633 1086.3 1517 323.6 382.8 497.7

Table 3. Percentage of extra length compared to optimal path, calculated for non-optimal paths over
all environments.

Algorithm | Mean | Std | Max

RAZ, 17% | 1.6% | 10.7%
ERA* 23% | 1.8% | 10.4%

On the other hand, Table 4 shows the average execution time of each algorithm in each grid
environment. ERA* is 2.25 times faster in average than RA ;. This ratio varies from 1.74x to 2.47 x

depending on the type of grid environment. Figure 3 displays the histogram of this ratio. It shows that
RA? ,, is faster than ERA* in only very few cases.

Table 4. Average execution time (in seconds).

Mazes Rooms VideoGames
Algorithm | 100x100 | 500x500 | 1000x1000 | 2000x2000 (312x512) | (512x512) (512x512 to All
1024x1024)
Af 0.23 3.71 39.27 113.96 113 17.76 29.97 31.35
RA;;M 0.06 1.15 6.33 24.82 11.04 2.87 3.5 4.12
ERA* 0.03 0.51 2.71 10.05 4.65 1.3 2.01 1.83
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Figure 3. Histogram of the execution time ratio between RA}, , and ERA* algorithms.

When compared to A*, ERA* is 17.13 times faster in average, with a range from 7.27x to 24.3x.
Table 5 shows that ERA* has consistently the fastest execution time among the three algorithms in
nearly 90% of cases. This superiority applies in all tested grid environments as can be seen in the
scatter plots in Figure 4 (randomly generated environments of various sizes) and Figure 5 (structured
environments) which compare ERA* and RA}, , in the Cost/Time space. These two figures also show
that the range of path length for the two algorithms is similar.

Table 5. Percentage of runs for which each algorithm appears in rank 1 to 3, with regards to the
execution time.

Rank 1 2 3

Af 9.0% 5.3% | 85.7%
RAY ;| 1.1% | 86.6% | 12.3%
ERA* | 89.9% | 8.1% 2.0%

Figure 6 depicts the box plot of the ratio between the execution time and the optimal path for the
three algorithms. It shows a markedly reduced range for ERA* and RA* compared to A*. On a closer
scale, Figure 7 shows that ERA* further reduces this range by almost one half compared to RA*.

Figure 8 provides a comprehensive evaluation of the performance of the three algorithms by
representing them in cost/time space, in terms of average and standard deviation. The aim of this
comparison is to evaluate the performance of different algorithms for both the path cost and the
execution time. The cost/time space, therefore, shows the trade-off between the cost and time incurred
by each algorithm. The evaluation is done based on two metrics: average and standard deviation.
The width of each rectangle is proportional to the path cost standard deviation, while the height is
proportional to the execution time standard deviation. The average is represented by a star at the
center of each rectangle. The figure shows that ERA* provides the best tradeoff between cost and time,
a reduced range of execution time, and a range of path cost that is close to RA*’s.
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Figure 4. Comparison of execution time between the proposed ERA* (in blue) and RA;},, (in red)

algorithms, for different environment sizes (from 100x100 to 2000x2000 nodes), randomly generated.
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Figure 5. Comparison of execution time between the proposed ERA* (in blue) and RA},, (in red)
algorithms, for different structured environments.


https://doi.org/10.20944/preprints202308.1215.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1215.v1

110f13

08 T T . =

0.7 | + i
+

06| i
+

05} =
+

04t i ]

03 1

02 1

0.1 1

oF % # 4

A" (with TB) RA™ (without TB) ERA"

Figure 6. Box plot of the execution time divided by the optimal path length, for A*, RA},, and ERA*
algorithms.

0.06
0.05

0.04 -

=+
+
#
i
0.03 i
+
002}
I
0.01 '

RA* (without TB) ERA*

Figure 7. Box plot of the execution time divided by the optimal path length, for RA? . and ERA*
algorithms.

Furthermore, we conducted an analysis on the cost and time performance of the three algorithms
on the described set of experiments, using a T-test. The first comparison was between the ERA* and
RA7, , algorithms, where the null hypothesis of equal means for time was rejected with a very low
p-value of 1.1216e~?°. Whereas, the null hypothesis for cost was accepted with a p-value of 0.91,
indicating that the difference in cost between the two algorithms is not statistically significant. The
second comparison was between the ERA* and A;j algorithms. Again, the null hypothesis for equal
means in time was rejected with a very low p-value of 1.1002¢ 3%, indicating that there is a statistically
significant difference in time performance between the two algorithms. While the null hypothesis
for cost was accepted with a p-value of 0.7607, indicating that the cost difference between the two
algorithms is not statistically significant.
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5. Conclusion

In conclusion, this paper introduced a novel algorithm for solving the point-to-point shortest path
problem on a static regular 8-neighbor connectivity (G8) grid. The algorithm is a generalized version
of the Hadlock algorithm specifically designed for G8 grids. This work falls within the category of
relaxed alternative algorithms that balance the trade-off between path length optimality and search
time. By relaxing the constraint of path length optimality to some extent, the proposed Enhanced
Relaxed A* (ERA¥) algorithm accelerates the search process while still providing solutions with similar
path lengths to those obtained using RA*. The key advantage lies in the novel computation strategy
utilizing lookup matrices, which significantly reduces redundant calculations, resulting in substantial
time and memory savings.

Experimental results obtained through extensive testing on various grid maps validate the
algorithm’s effectiveness. On average, it is 2.25 times faster than RA* and 17 times faster than the
original A* algorithm. Additionally, it exhibits improved memory efficiency since it eliminates the
need for storing a G score matrix.

Future research can focus on exploring further optimizations and extensions of the ERA* algorithm.
This could involve investigating its performance in dynamic or uncertain environments, incorporating
additional constraints or cost factors, and exploring possibilities for parallelization or distributed
computation. Additionally, the algorithm’s applicability to other grid types or graph structures can
be explored. The insights gained from this work lay the foundation for potential advancements in
efficient path planning algorithms for various domains and applications.
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