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Abstract: Breast cancer is the most common malignancy in women worldwide. The pathogenesis of
this disease is closely related to the estrogen receptor alpha subtype (ERa). Therefore, it is of great
importance to develop effective inhibitors of ERa activity for the treatment of breast cancer. In this
paper, we propose a novel ensemble machine learning model for quantitative structure-activity
relationship of anti-breast cancer drugs, which can effectively predict drug activity in small samples
with multiple characteristic variables. To avoid the problem of over-fitting caused by low-
correlation independent variables, the scoring mechanism of random forest was improved by
incorporating three relevance indicators, including the maximum mutual information number,
Pearson correlation coefficient and distance correlation coefficient, and 20 optimal molecular
descriptors were selected. The Bayesian hyperparameter optimization method was used to optimize
the parameters of multiple linear regression (MLR), support vector regression (SVR), and extreme
gradient boosting (XGBoost), respectively. The AdaBoost strong learner was constructed by
combining the weak learner with the weighted linear addition method. The results show that the
proposed ensemble learning model has the best prediction performance compared to the three basic
learner models and the CNN-LSTM combination prediction model. The root mean square error was
reduced by 7.60%-26.51%. The mean relative error was reduced by 6.46%-30.92%. Goodness of fit
increased by 9.57%-36.94%. Finally, the biological activities of 50 candidate compounds for ERa
inhibitors were predicted, and it was found that 4-[2-benzyl-1-[4-(2-pyrrolidin-1-
ylethoxy)phenyl]but-1-enyl]phenol had an excellent biological activity value pIC50, which had the
potential to be an ERa inhibitor. The model proposed in this paper has good prediction accuracy,
which can provide an effective reference for the discovery and development of anti-breast cancer
drugs.

Keywords: breast cancer; activity prediction; random forest; feature selection; Bayesian
hyperparameter optimization; AdaBoosting

1. Introduction

Breast cancer is one of the most common cancers with a high mortality rate in the world and is
the leading cancer among women worldwide, as shown in Figure 1. According to data published by
the International Agency for Research on Cancer (IARC) of the World Health Organization, the
number of new cases of breast cancer worldwide will reach 2.26 million in 2020, and breast cancer
will replace lung cancer as the fastest growing cancer in the world [1]. The distribution of the highest
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cancer incidence in women worldwide is shown in Figure 1. According to statistics, approximately
one in three people in the United States will be diagnosed with cancer, and one in eight women will
develop breast cancer. The global incidence of breast cancer is expected to increase to 3 million cases
by 2040 [2]. Although the mortality rate from breast cancer has decreased over the past two years due
to improvements in medical care, the incidence and disease burden of breast cancer are still slowly
increasing each year [3], threatening the health of women worldwide.

Breast (159)
Cervix uteri (23)
Thyroid (1)

B Lung (1) I Not applicable

Liver (1) No data

Figure 1. Distribution of highest cancer incidence in women worldwide [4]. It shows the top cancer
per country, estimated number of new cases in 2020, females, all ages (excluding NMSC).

There are significant regional differences in the incidence of breast cancer in women, as shown
in Figure 2.
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Figure 2. Regional distribution of breast cancer incidence in women worldwide [4]. It shows the
estimated age-standardized incidence rates (World) in 2020, breast, females, all ages.

The figure above shows that the incidence of breast cancer is relatively low in Asian and African
countries and relatively high in the Americas and Oceania. In addition, the higher the level of
economic development in Europe and the United States, the higher the incidence of breast cancer
among women. However, scholars have found that the reporting age of women in some Asian
countries is generally earlier than that in Europe [5], and the incidence of breast cancer has shown a
rapidly increasing trend in recent years due to economic transformation and lifestyle changes [6].

The development of breast cancer is closely associated with estrogen receptors. Related studies
have shown that estrogen receptor alpha (ERa) is expressed in less than 10% of normal breast
epithelial cells, but in approximately 60% of breast tumor cells [7-8]. Experimental results in mice by
Tekmal et al. [9] showed that mammary gland development in mice lacking the ERa gene would be
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impaired even in the presence of persistent tissue estrogen, demonstrating that ERa plays an
important role in mammary gland development and induces mammary gland hyperplasia in mice.
In addition, Lee et al. [10] further demonstrated through whole genome sequencing (WGS) that the
disruption and translocation of the ERa genome in estrogen is a direct factor influencing breast cancer
gene expansion. Therefore, estrogen is considered to be one of the important pathogenesis of breast
cancer, and ERa is considered to be an important target.

In the treatment process, estrogen receptor activity plays an important role in controlling
estrogen levels in the body, especially in anti-hormone therapy, which is commonly used in ERa-
expressing breast cancer patients [11]. This means that compounds that can inhibit the activity of ERax
may be the key drugs for the treatment of breast cancer, such as transcription factor activating protein
2y (TFAP2C, AP-2y) [12] and aromatase inhibitors [13]. Good anti-breast cancer activity is an
important evaluation index for the selection of inhibitors. Therefore, in recent years, more and more
scholars have adopted the method of establishing compound activity prediction models to screen
anti-breast cancer candidate drugs [14-16]. The accurate prediction model and the key factors
affecting the biological activity of estrogen receptor o subtype, the therapeutic target of breast cancer,
have become the focus of medical attention.

The main contributions of this paper are as follows: (1) The advantages of the maximum
information coefficient method, distance correlation and Pearson correlation are integrated, and the
traditional random forest method is improved to compensate for the disadvantages of the lack of
variable correlation in the feature selection process of the traditional random forest, so as to better
filter out the optimal molecular descriptors. (2) The Bayesian hyperparameter optimization method
is adopted to optimize the hyperparameters of the XGBoost model, so as to effectively improve the
prediction accuracy and generalization ability of the model. (3) In this paper, the above research
methods are applied to drug activity prediction studies for the first time, and the biological activities
of 50 new anti-breast cancer candidates are verified. At the same time, this method can also be used
to solve other drug activity prediction problems. These contributions make this study have important
scientific significance and practical application prospect.

The rest of this paper is organized as follows: Section 2 summarizes the literature on drug
activity prediction from both traditional experimental methods and machine learning methods.
Section 3 introduces the data used in this study and preprocesses the dataset. In Section 4, we present
our improved random forest feature selection method and a comprehensive prediction model for the
activity of ERa inhibitors against breast cancer. In Section 5, the dataset is divided into test and
training sets, and the model proposed in this paper is used for empirical analysis. In Section 6, the
rationality and accuracy of this model were verified by comparing with other classical drug activity
prediction models, and the biological activities of 50 new candidate compounds were predicted. In
Section 7, the main results of this paper are summarized and the direction for future improvement is
suggested.

2. Related Work

With the rapid development of drug research and development, many drug activity prediction
methods have emerged. After reviewing important literature, drug activity prediction methods can
be divided into two categories: traditional experimental methods and machine learning methods.

2.1. Traditional Experimental Method

This type of method is characterized by the fact that no machine learning algorithms are used in
the computational process. The application of drugs in the treatment of diseases is regarded as a
complex interaction process between drug molecules and corresponding target proteins [17]. At
present, the study of drug-target protein interaction is mainly divided into experimental methods
and computational methods.

2.1.1. Experimental Method
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Nuclear magnetic resonance (NMR) spectroscopy can accurately probe the distribution of
metabolites in living cells and tissues in vivo and identify lead compounds that inhibit protein
interactions [18]. Mansa et al. [19] found that isothermal microcalorimetry (IMC) has more potential
than agar diffusion and broth culture in determining the antimicrobial activity of probiotic isolates.
Surface plasmon resonance (SPR) has been used by scientists for secondary screening, lead
optimization, and quantitative structure-activity relationship analysis [20]. Kenlchiro et al. [21] used
structure-based high throughput screening (HTS) to discover the multifunctional chemical inhibitors
of florigen activation complex.

However, these experimental methods have the limitations of high cost, long time and small
application range, so the computer-aided drug target prediction method is more favored by
researchers in the traditional experimental methods.

2.1.2. Computer Aided Method

Computational methods have undergone continuous development and enrichment from the
earliest ligand-based prediction methods, to structure-based prediction methods, to molecular
dynamics prediction methods.

The ligand-based prediction method is to analyze the three-dimensional structure of drug
molecules for activity prediction, and the quantitative structure-activity relationship (QSAR)
proposed by Hansch et al. [22] has been widely used in drug activity prediction. For example,
Mansouri et al. [23] trained estrogen or androgen receptor activity prediction by various QSAR
methods, and Putri et al. [24] used QSAR to establish a prediction model for anti-colon cancer and
anti-liver cancer activity of substituted 4-anilylmarin derivatives.

Structure-based methods, which are widely used in molecular docking and virtual screening
(VS), predict the activity of target proteins by analyzing the three-dimensional structure of the target
protein. Both molecular docking and virtual screening predict the activity and selectivity of drugs by
simulating and evaluating the interaction between drug molecules and target molecules. Wang et al.
[25] first proposed the protein-ligand scoring method (SCORE), which introduced the atomic binding
score and used the empirical scoring function to represent the binding free energy, and then
calculated the binding affinity between the protein with known three-dimensional structure and the
corresponding ligand. In addition, empirical scoring methods include DrugScore [26] based on
knowledge, genetic optimization for ligand docking (GOLD) [27] based on force field, and
VALIDATE [28] based on statistical methods, and so on. These functions effectively discriminate
between well-docked protein-ligand binding modes.

Molecular dynamics simulation is a research method using computer simulation, which can
realize the search of receptor concept, the selection of the best binding site of small molecules, and
the evaluation of the binding strength between drug molecules and target proteins in the study of
drug activity. The molecular dynamics simulation of Yang et al. [29] showed that the candidate
compound had stable binding ability between the two proteases at the same time, thus finding a new
potent dual-target inhibitor that can be used for cancer treatment. Xiao et al. [30] investigated the
conformational changes of GLP-1R in the activation process by accelerated molecular dynamics and
conventional molecular dynamics simulation, and obtained the intermediate states and their effects
of different helices in the activation process by structural analysis and potential of mean force (PMF)
calculation.

2.2. Machine Learning Method

With the rapid development of biomedicine, drug activity data is showing a rapid growth trend.
The use of traditional experimental methods to predict drug activity can no longer meet the needs of
new drug research and development. Machine learning has a good ability to express the deep level
of high-dimensional data, and scholars have found that the accuracy of drug activity prediction can
be greatly improved by using algorithms [31]. Related research can be divided into traditional
machine learning methods and some new directions of machine learning in recent years, such as deep
learning and ensemble learning.
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2.2.1. Traditional Machine Learning Methods

Traditional machine learning methods mainly include support vector machine, decision tree,
Bayes, stepwise regression, and so on.

Martincic et al. [32] used machine learning methods of support vector regression and multiple
linear regression to predict antioxidant activity, and proposed a new method for graphical evaluation
of the applicable range of the support vector regression (SVR) model. Dutt et al. [33] combined
decision tree algorithm and moving average analysis method in their study to predict agonist activity
of G protein-coupled receptor-40. Lane et al. [34] used the Bayesian model to learn from a library of
more than 1000 synthesized molecules. Under the threshold of 100 nM and 1 uM, the average
accuracy of predicting the in vitro activity of Mycobacterium tuberculosis was as high as 0.93 and
0.89, respectively, showing excellent performance for a single machine learning algorithm.
Hrynkiewicz et al. [35] used forward and backward stepwise regression methods (FR and BR) to
predict the structural biological activity of angiotensin converting enzyme (ACE) inhibitor/bitter
dipeptide, respectively, and found that C-atC(-) and N-Molw(+) had dual functions on dipeptides.
And there was no direct relationship between ACE inhibition and the bitterness of dipeptides.

2.2.2. Deep Learning Method

Deep learning models have been developed to predict inhibitors of various targets, including
kinases, and have been shown to achieve better prediction performance than traditional machine
learning. Among them, the deep learning neural network (DNN) model is the most widely used and
has the highest maturity [36-38], including single-task DNN, multi-task DNN, bypass DNN, etc.
Convolutional neural network (CNN) is widely used in molecular image learning to identify
molecular features in the field of drug activity prediction. For example, Hentabli et al. [39] developed
a molecular matrix format adapted from two-dimensional fingerprint descriptors to predict the
biological activity of compounds based on deep learning convolutional neural network. The area
under the curve (AUC) of the CNN activity prediction method was the highest. Dadfar et al. [40] used
genetic algorithm (GA) to optimize the parameters of artificial neural network (ANN) and established
the activity prediction model of sulfonamides, and the results showed that the prediction effect was
better than genetic algorithm-multiple linear regression (GA-MLR).

In addition, some scholars have proposed combined prediction models of deep learning and
machine learning, which have also achieved good prediction effects, such as CNN-SVR [41], SVM-
DNN [42], KNN-ANN [43], and so on.

2.2.3. Integrated Learning Method

In recent years, ensemble learning models have been gradually applied to drug activity
prediction, but there are still relatively few studies. Boosting is one of the most important strategies
in ensemble learning. Afolabi et al. [44] used a combination of different boosting methods (Adaboost)
to predict new bioactive molecules in order to find pharmacologically active molecules that can
provide remedies for a range of different diseases and infections. They conducted research
experiments using the widely used molecular diagnostic laboratories (MDL) drug data reporting
(MDDR) database and found that the Adaboost method produced better results than other machine
learning methods; Tavakoli et al. [45] developed a boosting-enhanced ensemble algorithm (AdaBoost
R3) for predicting the biological activity of tyrosine kinase inhibitors, which improved the prediction
accuracy of the traditional boosting model and made it free from the influence of outliers. Rong et al.
[14] proposed a regression prediction model for the biological activity of ERa of improved sparrow
search algorithm-random forest (ISSA-RF), and optimized the parameter range of random forest by
an improved sparrow search algorithm to improve the prediction accuracy and efficiency of anti-
breast cancer drug candidates. In addition, ensemble learning models such as rotation forest [46] and
gradient boosting decision tree (GBDT) [47] have also been applied in drug activity prediction
research.
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In summary, the research methods of drug activity prediction have gradually diversified from
pure biochemical experiments to the support of machine learning algorithms, and then to the
application of deep learning and ensemble learning algorithms. Compared with traditional
experimental methods, traditional machine learning algorithms save research and development costs
and have higher efficiency. However, with the increase of data volume, the performance of traditional
machine learning models starts to decline. At present, more and more researchers tend to introduce
transfer learning and attention mechanism into deep learning models to shorten the model training
time, which greatly improves the prediction accuracy of drug molecules and the effectiveness of drug
molecule generation. However, it should be noted that deep learning models sometimes have
problems such as overfitting or gradient disappearance, which makes the model unable to effectively
learn and further apply the data samples, that is, the generalization performance is not good enough.
Data preprocessing and model structure optimization should be the main tasks of further research.
Due to the limited prediction accuracy and generalization ability of individual classifiers, some
scholars have turned to ensemble learning methods using ensemble classifiers. However, the
application of ensemble learning in biomedicine is not mature enough, and the prediction model is
relatively single. Second, most of the existing studies mainly focus on using different models for
prediction, and select the best prediction method by comparing the performance without further
optimizing the model itself. For example, some important hyperparameters in the model often choose
empirical values. In addition, there are few studies on the combination of ensemble learning and
machine learning algorithms for drug activity prediction.

3. Data Preprocessing

The data used in this paper are from the Drug molecular database of the University of Alberta
Drug Bank [48]. The dataset contains the biological activity value pIC50 of 1974 candidate compounds
against ERa, as well as the molecular descriptor information of the compounds. Higher pIC50 values
indicate higher biological activity. Molecular descriptors include 2D/3D features such as
physicochemical properties of the compound (e.g. molecular weight, LogP, etc.), topology (e.g.
number of hydrogen bond donors, number of hydrogen bond receptors, etc.).

After statistical screening, there were no empty values in this data set. The number of
compounds, i.e. the number of samples, is 1974 and the number of variables, i.e. the number of
molecular descriptors, is 729. There is no gap between the number of samples and the number of
features. Without any treatment, when the model-based regression algorithm is used for feature
selection, it is easy to cause serious overfitting. Therefore, this paper first preprocessed the data set
at a deep level, used low-variance filtering to remove invalid variables with low-variance features,
and then used Laida criterion to eliminate abnormal variables to obtain high-quality sample data.

3.1 Descriptive Statistics

Descriptive statistical analysis was performed on the biological activity data of 1974 compounds
and the data of 729 molecular descriptors, and the results are shown in Table 1.

Table 1. Descriptive statistics of the partial results (N=1974).

Molecular Minimum Maximum Standard
) Mean value . ..
descriptor value value deviation
pIC50 2.456 10.34 6.59 1.42
nAcid 0.00 4.00 0.11 0.35
ALogP -23.11 5.18 1.11 1.43
ALogp2 0.00 533.84 3.29 12.83

AMR 54.07 517.43 116.56 31.57
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WPATH 349.00 301690.00 2709.62 7194.53
WPOL 14.00 230.00 46.28 13.29
XLogP -3.59 14.28 297 1.62
Zagreb 6.00 748.00 150.72 41.45

As can be seen from Table 1, the statistical values of molecular descriptors as a whole are very
different, the law of data structure is not obvious, and it is difficult to directly analyze and predict. In
addition, the sample data corresponding to 225 molecular descriptors are all 0, and there is data
redundancy. These independent variables will be eliminated in the next data preprocessing.

3.2 Elimination of Low Variance Characteristics

All values of the column characteristics of the low-variance function variables are basically the
same, the data range does not vary much, the variance is very small, and this type of variable can
provide little or no information (such as constant variables and zero-variance variables). In this case,
this type of function should be deleted. Low variance filtering is a common feature selection method,
which can quickly identify the features with low variance and delete them from the data set to avoid
the noise or misleading the model caused by low variance features [49]. In this paper, low variance
filtering is used to preprocess the data.

Since the variance is related to the data range, it is necessary to normalize the data set first. The
normalization formula is:

X = (X=X ) (X = X i) 1

In the formula, Xuorm represents the normalized value, X represents the original value, Xui» and
Xmax represent the minimum and maximum values in the data set, respectively. The data visualization
results of the 729 molecular descriptors after normalization are shown in Figure 3. The single dashed
line in the figure represents the distribution of the values of a single molecular feature over the entire
data set, 1974 compounds.
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Figure 3. Visualized results of 729 molecular descriptors.

As can be seen from the Figure 3, the data range fluctuations of 729 molecular descriptors are
quite different, and the data of some molecular descriptors almost form a horizontal line, which
should be removed from the sample data first. After repeated experiments, the variance threshold in
this study was finally set to 1%, and 261 high-variance feature variables were retained.
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3.3 Diagnosis of Abnormal Variables

After the single characteristic variable is eliminated, the data are further screened using the
PauTa criterion [50] to improve the accuracy and reliability of subsequent data analysis and
modeling. The specific procedures are as follows: The features whose eigenvalues are not in the range
of u+30 and the number of outliers is more than 100 are eliminated. On this basis, the features whose
eigenvalues are not in the range of p+30 and the number of outliers is not more than 100 are processed
by the maximum value limiting method. That is, the outliers larger than p+30 are replaced by p+3o
and those smaller than p-3o are replaced by p-3o. In this paper, a total of 24 features are eliminated
by the PauTa criterion screening. Due to space limitations, 9 features are selected and illustrated by
a box plot as shown in Figure 4. In which, (a) Description: Maximum E-state descriptors of strength
for potential Hydrogen Bonds of path length 3, Class: 2D; (b) Description: Sum of atom-type E-State:
:N:-, Class: 2D; (c) Description: Minimum atom-type E-State: :N:-, Class: 2D; (d) Description:
Maximum atom-type E-State: :N:-, Class: 2D; (e) Description: Minimum atom-type E-State: aSa,
Class: 2D; (f) Description: Count of atom-type HE-State: :NH:, Class: 2D; (g) Description: Sum of
atom-type E-State: :NH:, Class: 2D; (h) Description: Minimum atom-type E-State: :NH:, Class: 2D; (i)
Description: Maximum atom-type E-State: :NH:, Class: 2D.

By observing the box plot of abnormal data, it is found that the data distribution is too scattered,
the box is compressed very flat, even only one line is left, and there are still many outliers, so such
features are eliminated.
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Figure 4. Box plot of features excluded by Rajda’s rule.


https://doi.org/10.20944/preprints202308.1209.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1209.v1

The data preprocessing eliminates a total of 492 feature variables, leaving 237. In the next section,
the improved random forest feature selection method is presented in detail. Among the remaining
237 feature variables, the top 20 variables that affect the contribution degree of ERa biological activity
are selected as the feature variables of the activity prediction model.

4. Methodology

For ERq, a therapeutic target of breast cancer, it is necessary to collect a series of biological
activity data of compounds acting on the target, and then to construct a quantitative prediction model
of biological activity of ERa using many molecular structure descriptors as independent variables
and biological activity values as dependent variables. The algorithm flow of the proposed prediction
model is shown in Figure 5.

As shown in Figure 5, the method used in this paper can be divided into three steps: First, to
avoid the problem that the independent variables with weak correlation increase the complexity of
the subsequent prediction model, resulting in overfitting and decreased prediction accuracy, the
random forest method was improved to screen the best molecular descriptors. Three complementary
correlation functions were incorporated into the random forest method to screen the best molecular
descriptors. Second, in the ensemble learning AdaBoosting method, the prediction performance of
each base learner is closely related to the selection of hyperparameters. Therefore, in this paper,
Bayesian hyperparameter optimization is selected, and the optimal hyperparameter combination of
each base learner is obtained by continuous iteration according to the data set. Finally, the AdaBoost
strong learner was constructed by combining the weak learner with the weighted linear addition
method, and the ensemble learning model was used to predict the biological activities of 50 anti-
breast cancer candidate compounds.

Improved Random Forest :
Scoring Mechanism |

Input data I
v Ma.x:unum u}utual | Start
Reorganization of information
S = = | ¥ Low Variance Filter
Distance correlation Data
} | preprocessing i
Pearson correlation | ‘ pauta criterion
o @ coefficient | A
Demslon Tree-1 Decision Tree-2 Decision TleeK \ | Ophmﬂl
e : 3dorr (X, Ty+p(X, D+ MICIX,F]) T molecular
Tk lf'k | | descriptors
Z” 50 trials | l
i e — *  Selection of top 20 *1 -
frequencies : Divide the data set
Bayesian Hyperparametric ¥ \L
Uphoicah: Training set Testset
Randomly generate _
initialization points h h
| ) Basic learning machines ~ ~ Construct meta-
v parameter funing learning Machine
Gaussian regression ‘
process J m X
| Sl Prediction of
Hyperparameter .
' i ™ e : meta-learning
S Combination of Basic 5
Acquisition : = Machine
. Learning Machines
function
| Y L 4
: d
En
SeIe.c v next. ~—* Machines training
sampling point ‘
1 No L
| Whether the
| Whether the - " number of iterations
No objectives are met Yes is satisfied

Yes


https://doi.org/10.20944/preprints202308.1209.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1209.v1

10
Figure 5. Schematic diagram of the quantitative prediction model for ERa biological activity.

4.1 Improved Random Forest Feature Selection Method.

The random forest algorithm can perform regression analysis based on classification, and obtain
the contribution degree of each molecular descriptor to biological activity through the internal
operation mechanism. However, the traditional random forest method does not consider the
correlation between the independent variable and the dependent variable, so the calculation result
may not be able to select the optimal feature. Because in the whole random forest, the features that
avoid overfitting and combine to improve the generalization ability may get higher contribution
scores, but their correlation with independent variables may be weak, which will reduce the accuracy
and interpretation ability of the subsequent prediction model. Therefore, we propose an improved
random forest scoring mechanism that integrates correlation into the random forest scoring
mechanism.

4.1.1. The Original Random Forest Method

Random forest algorithm is an algorithm used to solve classification, regression and other
problems, it will combine multiple decision trees into a random forest, through the selection of
random samples and random features, improve the accuracy and generalization ability of the model.
The random forest algorithm can quantify the importance of each molecular descriptor on biological
activity. The greater the importance of a molecular descriptor, the greater the influence of the feature
on biological activity, and the smaller the importance, the less the influence of the feature on the
result.

xG xG

n =w, XG, —w teft ~ Wright 7 Cright )

left
where: wx, wis, and wright are node k and the ratio of training samples to the total number of training
samples in its left and right nodes, respectively; G, G, and Grign: are the impurity of node k and its
left and right child nodes, respectively. After knowing the importance of each node, the importance
of a feature can be obtained:

fi=2m [ ©

where j belongs to nodes that are split on feature 7 and k belongs to all nodes.

4.1.2. Maximum Mutual Information Coefficient

The maximum mutual information coefficient (MIC) method is generally used to reflect the
linear and nonlinear relationship between the independent variable and the dependent variable, and
has been widely applied. In this paper, we use the maximum mutual information coefficient method
to measure the correlation between biological activity and analysis descriptors. It is calculated as
follows [51]:

PeLY) g dy
p(X)p(Y)

@)
I y]=11%;Y]= Y p(X, V)log, PEX)
i pX)p(Y)
where p(x, y) is the joint probability density of the molecular descriptor x and the biological activity
y of the compound. However, it is difficult to calculate the joint probability density in practical
application. Therefore, the idea of the maximum mutual information coefficient method is to map the
relationship between x and y in a two-dimensional space and express it in terms of scatter points, and
then divide the two-dimensional space into several grid structures. In this way, the problem of
solving the joint probability density is transformed into the probability of scatter point distribution
in the grid. The MIC calculation method is as follows:

I(x;y)= [ p(x,y)log,
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MIC(x;y) = maxI[x—f.y]
»b<B log, min(a,b)

I[X;Y] ®)
Y))

MIC[x; y] = max -
X[vi<s logz(mm(|X

4

4.1.3. Pearson Correlation Coefficient

The Pearson correlation coefficient is a method of calculating linear correlation proposed by the
British statistician Pearson [52] in the 20th century to measure the degree of linear correlation between
the molecular descriptor X and the biological activity Y of a compound, with a value between -1 and
1. This intuition of linear correlation is expressed as follows: when X increases, Y simultaneously
increases or decreases; when the two are distributed on a line, the Pearson correlation coefficient is
equal to 1 or -1; when there is no linear relationship between the two variables, the Pearson
correlation coefficient is 0. The Pearson correlation coefficient between two variables can be
calculated using the following formula:

cov(X,Y) _ E[(X =, )(Y —p1,)]

0.0, \/Z X - ) \/Z - ) ©)

pX,Y)=

4.1.4. Distance Correlation Coefficient

The traditional Pearson correlation coefficient can only measure the linear relationship between
the molecular descriptor X and the biological activity Y of a compound, and the data must satisfy the
assumption of normal distribution. To compensate for the lack of Pearson correlation coefficient to
some extent, this paper uses distance correlation coefficient (DC) to measure the correlation between
molecular descriptor X and compound bioactivity Y, and selects the important factors. The advantage
of DC is that it can describe any regression relationship of predicted objects and factors, whether
linear or nonlinear, and does not require any model assumptions and parameter conditions, which
greatly strengthens the universality of this method.

In this study, distance correlation coefficients were used to measure the independence of the
molecular descriptor X from the biological activity Y of the compound, denoted dcorr(x, y). When
deorr(x, y)=0, it means that X and Y are independent of each other. The larger the dcorr(x, y), the
stronger the distance correlation between x and y. Let {(x;, i), i=1, 2, ..., n} be a random sample of the
population (x, y). Szekely et al. [53] defined the DC sample estimate of x and y of two random
variables as follows

d cov(x,y)
\/ d cov(x,x)xd cov(y,y)

dcov’(x,y)=S,+8S, 28,
2y e %
i=1 j=I

1 n n l n n
Se=m X2 fr=x ], <2 vy
2 2 i 2 i
noio = hoont T Jj=1 %
1 n n n
Sy= oz 222w, -,
] * v

Similarly, dcov(x, x) and dcov(y, y) can be calculated.

dorr(x,y) =

4.1.5. Improved Random Forest Method
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Since that the traditional random forest model does not consider the correlation between
independent variables and dependent variables, the optimal molecular descriptor cannot be selected.
To this end, we propose an improved random forest method that combines the maximum mutual
information coefficient method, distance correlation and Pearson correlation comprehensive function
based on the random forest contribution score.

These three correlation indicators can complement each other. Pearson correlation coefficient
can provide linear dependence between molecular descriptors and biological activity. Compared
with the other two indices, the maximum mutual information coefficient method has a stronger
ability to detect the nonlinear relationship between molecular descriptors and biological activities of
compounds. The distance correlation coefficient is more robust in dealing with nonlinear
relationships and is not affected by scale transformation. Therefore, in this paper, these three
correlation indicators are added to the improved random forest scoring mechanism, and the formula
is as follows:

S 1 )
D fi dorr(X,Y)+p(X,,Y)+MICIX,, Y]

where j belongs to the nodes split on feature 7, Y represents the biological activity of the compound.

fni= 3 (8)

4.2. Establishment of the BHO-AdaBoosting Model

The AdaBoost algorithm is an implementation version of the ensemble learning method
boosting algorithm [54], whose core idea is to train different classifiers on the same training set (weak
classifiers), and then combine these weak classifiers to form a stronger final classifier (strong
classifier). In this study, MLR, SVR, and XGBoost are selected as the base learners, and these three
base learners show good prediction ability on linear, nonlinear, and high-dimensional data sets,
respectively. When they are combined as the weak learners of AdaBoosting, the model is expected to
have good prediction and generalization potential. The framework of the ensemble learning
prediction model based on Bayesian hyperparameter optimization is shown in Figure 6.

;
Basic Learning

| | | s . I | |
i | | Optimization |
B | Algorithm | | Machine |
|
| o | | I
| I Bayesian | |
| | | - Multiple Linear
I Sample Set 1 —K—r' Hyperparametric —‘rIrajm‘ngJ"’» M;l . m - : \ Mieta.d .
| | S | egression | eta-learning
: } : O tion } | | Weightl Machine
| | N

I ‘ I : ‘ | I

e | | | Bayesian I | [ ey |

msi;mz:g : Sample Set2 4'-'} [~ Hyperparametric jLIraim‘ng#f % N V:::m :

P | } | Optimization } } s |
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' | L '
| ! Bayesian | m_ |
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Figure 6. Framework of the ensemble learning prediction model based on Bayesian hyperparameter
optimization (BHO-AdaBoosting).

Let D={(xi, yi), i=1, 2, ..., N} is a random sample of the population (x, y), the number of iterations
is T, i.e. there are T weak learners, the number of samples is N, and it is hoped that the strongest
learner G(x) will eventually be output.

G(x) is weighted by the T weak learners. Let the t-weak classifier be Gi(x). Suppose the t-weak
classifier is being trained and its weight needs to be obtained.

Let Wi={we1, we, ..., wen}, where the sample set of Wi is used to train the data to obtain the weak
learner G¢(x). First, we compute the maximum error E: on the training set:

E,=max|y, -G, (x,) ©)


https://doi.org/10.20944/preprints202308.1209.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 August 2023 d0i:10.20944/preprints202308.1209.v1

13

The error is calculated for each sample point using the root mean square error with 5-fold cross
validation:

(10)

Then, the regression error rate is calculated according to the error of the sample points and the
sample set:

N
e, =) W, xe, (1)
i=1

The coefficient of the weak learner is obtained from the regression error rate, and then the weight
distribution is updated:
e
o, =—1
l-e, (12)

l—¢. .
=W, %o ™

t

w

t+1,i

Then, after normalizing the weight distribution, the final strong learner is obtained:

N
vaI,i = VVHl,i ZW
-1

t+1,i

G(x)= tzﬂ:g(x)xlnal (13)

g(0)M d@,xG,(v))

Md is the median, =1, 2, ..., T.
The following is an introduction to the three basic learners and Bayesian hyperparameter
optimization methods.

4.2.1. Extreme Gradient Boosting (XGBoost)

XGBoost was proposed by Chen et al. [55] from the University of Washington in 2016, which has
the characteristics of low computational complexity, fast running speed, high accuracy, and can
prevent overfitting. The objective function of XGBoost consists of a loss function, a regularization
term, and a constant term:

Obj(8)=L(0)+Q(0)+C (14)

The loss function is used to measure the prediction of the model, and the regularization term is
used to control the complexity of the model to avoid overfitting. The modeling process of XGBoost is
to keep the original model unchanged and take the error generated by the previous prediction as a
reference to build the next tree. That is, it takes the residual difference between the predicted value
and the true value as the input to the next tree, and the process is expressed as follows:

(1) Initialization:

7" =0 (15)
(2) Add the first tree to the model:
A1 ~(0
9 = fi(x) =9+ fi(x)) (16)
(3) Add the second tree to the model:

97 = A+ H(x) =37+ f(x) (17)
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(4) Add the t-th tree to the model:

7, —ka(x> 74 + £ (x,) (18)

where fi(xi) is the prediction result of the current t-th tree. yi(t) represents the predicted value of i
samples at ¢ time, which keeps the model prediction result of ¢-1 time. In this case, the loss function
is:

()= DI, =55+ 8.6, (x) 45, £

8= aA(t—nl(yi _QSH)) (19)
ho =9 I(y.-y'™")

(f 1)

where I is the sample at the j leaf node, and wj is the weight of the j leaf node, so that:

Gi:;;gi’Hf:;hi (20)
Substitute the above formula and take the partial derivative of wj to obtain the optimum weight:
.G
T H. +4 =
In this case, the optimal objective function can be obtained:
_ 14+ 6
OB](e)_—E;Hj T (22)

where y and A are the weighting factors, and T is the number of nodes. The smaller the value of the
objective function, the smaller the prediction error, and the better the model performance.

4.2.2. Multiple Linear Regression (MLR) Model

Linear regression is the use of linear fitting to explore the law behind the data, through the
regression model to find the regression curve behind the discrete sample points, and through this
regression curve can perform some predictive analysis. Multiple linear regression analysis is a
statistical method used to evaluate the relationship between a dependent variable and several
independent variables.

The multiple linear regression model with p independent variables [56] can be expressed as:

Y=0+px++Bx, +€

(23)
£~N(0,07)
For convenience, we introduce matrix notation with the actual data of n sets of molecular
descriptors:
VA 1 ﬂ1 X X 1p
£ ﬂ X X el X
Yy = Yy, e= 2 ;ﬂ: > X = 21 2 2p (24)
yn gn ﬁn _xl’l1 an ce x”p_

where X is the model design matrix, which is a constant matrix, Y and ¢ are random vectors, and:

Y~N, (XB,0°I),e~N,(0,0°1) (25)
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where ¢ is the unobserved random error vector, § is the vector composed of the regression
coefficients, and I is the identity matrix of order n.

For the least squares estimation of the regression coefficient f: choose an estimate of 5, denoted
as B , such that the sum of squares of the random error ¢ is minimized:

mine’ xe=min(Y - XB) (Y - X )
B B
e (26)
=(Y=XpB)y (Y =X[)=0()
According to the requirements of the least squares method, the necessary conditions for

obtaining extreme values from multivariate functions can solve the standard equation of regression
parameters as follows:

0
aﬁo ﬁozﬁo (27)
S_Q =0 (]':1,2,...,;9)

ﬂi ﬁozﬁo

4.2.3. Support Vector Machine Regression (SVR)

In this paper, we hope to use the data of known molecular descriptors for fitting, find a function
that fits the relationship between molecular descriptors and molecular activity sequences, and expect
to get a result with the least fitting error, so as to use this function for prediction. This can be achieved
by a support vector machine (SVM) model [57], which mainly maps inputs to a high-dimensional
feature space via nonlinear mapping (kernel function), and then constructs an optimal classification
hyperplane in this space. For the existing molecular data sample D, the optimization problem
expression corresponding to its SVR is as follows:

N AT il A

min el +CY & +8) o8

; f(x)—y. <e+&, 0<E(E=1,2,---,m)

S.L. | !
y,—f(x)<e+&, 0<E(=1,2,--,m)

where: w is a weight vector that determines the direction of the hyperplane; C is a penalty factor; and
C is a non-negative relaxation variable. ¢ is the insensitive loss function and represents the allowable
error between the regression value and the true value.

(29)

The Lagrange function is introduced, and a series of transformations are performed according
to the Karush-Kuhn-Tucker condition, and the SVR regression function is finally obtained:

f(x)= Zn:(ai —a )K(x,,x)+b (30)

where a;, ai* is the Lagrange multiplier that satisfies the constraint conditions, K is the kernel function,
and b is the offset of the regression function.

4.2.4. Bayesian Hyperparameter Optimization

Hyperparameter tuning is one of the most important concepts in machine learning, and its
setting is solved before the model is trained. Satisfactory performance of machine learning algorithms
depends on proper hyperparameter settings. Manual parameter tuning is complicated and uncertain,
and the value of the hyperparameter directly affects the prediction accuracy of the model. Bayesian
optimization can realize fast and automatic optimization of hyperparameters, and find the best
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combination of hyperparameters by building a probabilistic model and using Bayesian inference
method. Therefore, this paper decides to use Bayesian optimization for the hyperparameters of three
types of weak learners, in order to effectively reduce the time and energy input of parameter tuning,
and further improve the prediction performance and generalization ability of ensemble learning
models.

Bayesian optimization assumes that there is a functional relationship between the
hyperparameter and the loss function to be optimized, and that this functional relationship is a "black
box function" that approximates the posterior distribution of the unknown objective function by some
prior sample points. By learning the shape of the objective function, a set of hyperparameters is found
that will lead the result to the globally optimal solution. Bayesian optimization is an approximation
method that uses various proxy functions to fit the relationship between hyperparameters and model
evaluation, then selects the most promising hyperparameter combination for iteration, and finally
finds the best hyperparameter combination.

For the hyperparameter optimization problem of the XGBoost model, in the decision space of a
set of hyperparameters, Bayesian optimization constructs a probability model for the function f to be
optimized, further uses the model to select the next evaluation point, and iterates successively to
obtain the optimal hyperparameter solution [58]:

x =argminx___ f(x) 31)

where x* is the optimal hyperparameter combination, x is the decision space, and f(x) is the objective
function. The main core steps of the Bayesian optimization algorithm are two parts: prior function
and learning function.

xe ;(ng

(1) Gaussian regression Process

The Gaussian process is a nonparametric model and is also a set of random variables determined
by the mean function and the kernel function (covariance function), namely:

f(x) ~ gp(m(x), k(x,x)) (32)

in which:

{m(x) = E(m(x), k(x,x)) (33)

k(x, %) = E[(f(20) = m(x))(f(x) = m(x))]
In the XGBoost hyperparameter optimization problem, a sample data set D=(x, y) of

hyperparameters is created, where X=(x1, x2, ..., xt) is the training set, y={f(x1), f(x2), ..., f{x1)} is the set
of f(x). Then there is a Gaussian distribution:

fx)

f(x,)
M

fx,)

If a new sample x+1 is added and the covariance matrix, denoted by K, is updated, then the joint

k(x,,x;) - k(x,,x,)
:N| 0, : : (34)
k(x,,x)) - k(x,,x,)

Gaussian distribution can be expressed as:

fis K k
T |~N|O,
|:f;+1 kT k(xt+1 4 xt+1 ) (35)

in which:
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fu=Uf forei f1
k=[k(x,, x) k(x, ., x,) k(x,,,x,)]

fra =Nt 1,07 (36)
My (X)) = kTK_lfl:t
o’ (%) =k"K'k+k(x

t+17/ xt+1 )

As you can see, the Gaussian process simply gives the probability distribution of all possible
values of fw1. The exact value is not unique. Therefore, if enough sample points are collected, the
Gaussian process can be used to obtain an approximate estimate of the objective function.

(2) Acquisition Function
The sampling function guides the selection of the next sampling point in the decision space of

the hyperparameter. In this paper, the probability of improvement (PI) is used as the sampling
function. is used as the sampling function, and the expression is as follows:

u(x)—f(x+)—§j

o(x)

ﬂ@=®( 37)

where @ is the cumulative density function of the normal distribution; u(x), o(x) are based on
Gaussian processes and are the mean and variance of the objective function value, respectively. f(x*)
is the current optimal objective function value; £ is the parameter.

5. Experimental Results

The research idea of this paper is to first select 20 characteristic variables as the input of the
prediction model, then divide the test set and the training set of the sample data, use Bayes
hyperparameter optimization to determine the optimal hyperparameter combination of the base
learner and make predictions respectively, and finally obtain the prediction model of the strong
learner by weighted calculation to quantitatively predict the ERa biological activity.

5.1. Results of the Improved Random Forest Feature Selection

In this paper, an improved random forest scoring mechanism is used to select the top 25 feature
variables based on a recursive feature elimination algorithm. Considering the randomness of the
algorithm, the algorithm is tested 100 times, the 25 variables selected each time are counted, and
finally the 25 variables with the highest frequency are obtained. Then the correlation test is performed
on the 25 selected variables, and the less important one in the group of variables with strong
correlation is eliminated, and finally 20 variables are retained.

The random forest hyperparameters are set to: criterion="squared_error", n estimators=100,
min_samples_split=2, min_samples_leaf=1. The ranking results of the top 20 important feature
variables based on the improved scoring mechanism are shown in Table 2.

Table 2. Screening Results of Characteristic Variables.

Rankin Contributio Rankin Feature Contributio
Feature name
n degree g name n degree
1 MDEC-23 0.3578 11 SHsOH 0.0281
LipoaffinityInde
2 0.0802 12 BCUTp-1h 0.0259
X
3 BCUTec-11 0.0761 13 VPC-6 0.0247
4 minsssN 0.0548 14 minHBa 0.0214

d0i:10.20944/preprints202308.1209.v1
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5 maxHsOH 0.0530 15 hmin 0.0210
6 minsOH 0.0406 16 minHBint10 0.0203
ETA_BetaP_
7 BCUTc-1h 0.0371 17 0.0190
S
8 maxssO 0.0355 18 SPC-6 0.0178
9 mindssC 0.0287 19 MDEO-12 0.0152
10 ATSc3 0.0282 20 minHBint5 0.0146

The correlation analysis plot of the final 20 selected features is shown in Figure 7.
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Figure 7. Diagram of the correlation analysis of the 20 selected features.

As shown in Figure 7, there is basically no significant correlation among the 20 selected features,
which avoids the multicollinearity problem of the prediction model. At the same time, each variable
can provide independent information, which improves the explanatory power and generalization
ability of the model. From the screening results, the improved random forest scoring mechanism
proposed in this paper is reasonable and effective.

5.2. Quantitative Prediction of ERa Biological Activity

In Section 5.2.1, the results of hyperparameter optimization of the basic learner after Bayesian
optimization are shown. In Section 5.2.2, a quantitative prediction of biological activity based on an
optimized integrated model is reported. By learning and processing a large number of drug
molecular descriptors, our model can accurately predict and quantify the ERa biological activity of
compounds. The ratio of training set and test set for the data in this study was set to 80% and 20%,
respectively.

5.2.1. Results of Bayesian Hyperparameter Optimization

In this study, Gaussian processes are used as the prior probability model for Bayesian
hyperoptimization, and a tree-structured Parzen estimator is used to select the next combination of
hyperparameters to be evaluated, with a total of 50 iterations. The meanings of the main adaptation
parameters of each base learner and their set value ranges are shown in Table 3.

Table 3. Meanings and Ranges of the Base Learner Hyperparameters.
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Model | Hyperparameter Meaning Range
Decision t
n_estimators ccision tree [50, 100, 150, 200]
quantity
Maximum depth . (,1'10) evenly'
max_depth distributed, step size
of the tree )
is 1.
(106,1)
XGBoost | learning_rate Learning rate logarithmically
uniform distribution.
Ratio of
subsample subs:;llo ;)es to (05,1 evenly
Hhsamp oamp distributed.
training samples
Feature sampling (0.5,1) evenly
Colsample_bytree rate distributed.
Whether to fit th:
MLR tit_intercept e. errofitthe [True, False]
intercept
Regularization (10%,1)
C & Zt © logarithmically
patameter uniform distribution.
SVR (10-6,1)
Kernel value . .
gamma rance logarithmically
& uniform distribution.
kernel Kernel type [linear’, 'rbf']

This paper uses Python [59] to write the code of the Bayesian hyperparameter optimization
algorithm. After repeated iterations of Bayes, the optimal combination of hyperparameters of each

base learner is finally obtained as follows:

XGBoost : 'Colsample_bytree'=0.7543, 'learning_rate'= 0.0854, 'n_estimators'=1, 'subsample'=
0.8404, 'type'=2, 'max_depth'=9.0.

MLR: 'fit_intercept:True

SVR:'C'=1.6110, 'gamma’= 0.03320, 'kernel'= linear

5.2.2. Quantitative Prediction Results of BHO-AdaBoosting

Based on the above optimal hyperparameter combination, we perform quantitative prediction
of the ensemble learning model and get the following results. Figure 8 shows the comparison between
the predicted value and the true value.
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Figure 8. Comparison of Predicted and Actual Values.

As shown in Figure 8, the model performs well in predicting the biological activity of ERa on
the test set. The agreement between the predicted result and the actual value is high, and the error
between them is small. In order to discuss the prediction accuracy, stability and generalization ability
of our model more intuitively, we will select several classical machine learning methods to compare
with the model in this paper, and use a variety of error indicators to evaluate the model performance.

6. Discussion

In this section, we compare the prediction results of the bioactivity of ERa using our proposed
BHO-AdaBoosting model with several classical prediction models, and perform an error analysis. In
addition, we provide predictions for the 50 candidate compounds that inhibit ERa in this study.

6.1. Comparative Experimental Results and Error Analysis

This study compares the computational results of the proposed method on the test set with those
of other classical methods to verify the accuracy of the model.

6.1.1. Comparative Experimental Results

To test the accuracy and effectiveness of the BHO-AdaBoosting model in predicting the
bioactivity of ERa, we selected the MLR, SVR, XGBoost models in the ensemble learning framework,
and the widely used CNN-LSTM combination prediction model for comparative experiments. The
comparative experiments in this research were conducted using the PyTorch framework. Table 4
shows the parameter settings for each model. Figure 9 shows the comparative prediction results of
each model.

Table 4. Parameter settings of the comparison models.

Model Parameter setting
MLR default parameter
SVR kernel="rbf', C=1e3, gamma=0.1

objective="reg:squarederror’,
colsample_bytree=0.3,

XGBoost learning_rate=0.1,

max_depth=5,
alpha=10
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n_estimators=10

a 1D convolutional layer was
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features of 64 size and holds hidden
states of 50 size.
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Figure 9. Comparison of the prediction results of the model test set.

6.1.2 Error Analysis

The performance of the Mul-BHO-XGBoost bioactivity prediction model and other prediction
algorithms was evaluated using the root mean square error (RMSE), mean absolute error (MAE), and
goodness of fit (R?) metrics. The formula is:

RMSE =

A
N;(y,- )
(38)

1J -
MAE =23 [y, =3,

132=1—i(y,.—ﬁ,-)2 Zn:(y,-—i-)2
i=1 i=1

where: yi and #i are the actual and predicted values of the bioactivity pICso in the test set, respectively.
Jiis the mean value of the true bioactivity pICso value; N is the number of test samples.

The graphical representation of the prediction error performance of each model for bioactivity
on the test set is shown in Figure 10, while Table 5 provides the detailed prediction performance
indicators for each model.
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Figure 10. Distribution of prediction error values for different models.
Table 5. Prediction performance metrics for different models.
Model RMSE MAE R?
MLR 0.9416 0.7002 0.5955
SVR 1.1727 0.7698 0.3726
XGBoost 1.9316 1.6702 0.1591
CNN-LSTM 0.7486 0.5171 0.7443
BHO- 0.6920 0.4837 0.8155
AdaBoosting

The proposed model in this paper exhibits superior prediction performance on the training set,
as shown in Figure 9 and Table 5. The CNN-LSTM combined prediction model follows in
performance. This shows the advantage of the comprehensive model in prediction to some extent. In
addition, XGBoost has the lowest prediction accuracy, which may be due to the inadequacy of the
dataset in this article. Less extensive datasets pose certain difficulties for models, especially complex
models like XGBoost. Due to its high performance and data intensive requirements, XGBoost may
not perform as well as other models on small datasets.

By training of weak learners, the accuracy of the model proposed in this paper is greatly
improved compared to MLR and CNN-LSTM, and the RMSE is reduced by 7.60%-26.51%. MAE is
reduced by 6.46%-30.92%; R? is increased by 9.57%-36.94%. The experimental results demonstrate the
rationality of the proposed model algorithm and its suitability for predicting biological activity.

6.2. Prediction for 50 Candidate Compounds

Our model demonstrated good bioactivity prediction ability based on the above performance
indicators. This paper aims to apply the model to predict the bioactivity of 50 ERa inhibitor candidate
compounds in the database. The primary objective is to expand the search space for active
compounds, identify more compounds with anti-breast cancer potential, and provide a reference
value for the research and development of other anticancer drugs, including breast cancer. Table 6
shows the predicted results of the model.

Table 6. Activity prediction results for 50 candidate compounds.

Ranki Ranki
anian MF plCs o MF pICso

8 8
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1 C25H2203 8.583 26 C24H19FO5 6.890
2 C25H19FO35 7.953 27 C51H67N3010 6.885
3 C29H33NO2 7.859 28 C29H34N204 6.878
4 C31H24FNO3 7.733 29 C65H107N21016 6.871
5 C36H33FN203 7.708 30 C65H107N21016 6.871
6 C34H3008S 7.602 31 C23H17FO3 6.854
7 C36H33FN203 7.583 32 C26H23FO5 6.847
8 C29H27FN203 7.527 33 C65H107N21016 6.826
9 C27H30NO4 7.510 34 C64H105N21016 6.822
10 C26H2205 7.435 35 C32H3404 6.808
11 C30H29FN203 7.401 36 C62H105N21016 6.764
12 C31H23FO3 7.384 37 C19H260S 6.757
13 C30H23FO2 7.380 38 C63H101N19017 6.723
14 C25H2004 7.348 39 C18H2405 6.690
15 C31H33FN203 7.344 40 C27H21FO4 6.541
16 C29H28FNO3 7.327 41 C22H31NO3 6.494
17 C25H19FO4 7.326 42 C21H29NO3 6.343
18 C29H26FNO3 7.239 43 C28H26CIN303 6.289
19 C31H38N205 7.144 44 C29H28CIN303 5.978
20 C52H71IN3010 7.135 45 C26H25CIN40O2 5.686
21 C26H21FO3 7.106 46 C23H26CIN303 5.544
22 C25H2206 7.054 47 C21H22CIN30O3 5411
23 C29H33NO2 7.048 48 C23H24CIN303 5.396
24 C16H12CI2M202  6.969 49 C23H24CIN502 5.386
25 C31H38N204 6.911 50 C23H27CIN40O2 5.358

Note: Since SMILES is too long to be display, the molecular formula is used. Among them, three compounds of
C62H105N21016 are isomers.

Table 6 presents and ranks the predicted bioactivity values for each candidate compound. The
predicted results can be used to make a preliminary assessment of the activity levels of these
compounds, provide guidance for further experimental studies, and optimize the selection.
Compound C25H2203, 4-[2-benzyl-1-[4-(2-pyrrolidin-1-ylethoxy)phenyl]but-1-enyl]phenol IUPAC
name), showed high bioactivity values, suggesting that it has potential as an anticancer agent. Further
investigations can be conducted to determine whether other properties, such as oral bioavailability
and cardiotoxicity, make it possible to use them as an ERa inhibitor for anti-breast cancer therapy.
Yan et al. [60] have confirmed the function of the 4-[2-benzyl-1-[4-(2-pyrrolidin-1-
ylethoxy)phenyl]but-1-enyl]phenol in the selection strategy of anti-breast cancer inhibitors, which
supports the reliability of the results presented in this paper.

7. Conclusion

This study proposes a new approach for optimal modeling of anti-breast cancer drug candidates.
The model was trained using the molecular drug database of the University of Alberta Drug Bank in
Canada. The results were compared with those obtained using classical prediction methods, and the
bioactivity of 50 anti-breast cancer drug candidates was predicted. The main findings of this study
can be summarized as follows: (1) By integrating correlation calculations into the traditional random
forest scoring mechanism, we have screened out the molecular descriptors with high predictive
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ability and the variables with weak correlation with bioactivity. This process improves the
interpretability of the model. (2) Considering that the prediction accuracy of the ensemble learning
model is greatly affected by the value of hyperparameters, Bayesian hyperparameter optimization is
used to obtain the optimal combination of hyperparameters of the base learner, which improves the
robustness and generalization of the model. (3) Three performance indicators (RMSE, MAE, R?) are
used to evaluate the multiple linear regression (MLR), support vector regression (SVR), extreme
gradient boosting XGBoost, CNN-LSTM combined prediction model and the model in this paper.
The performance comparison of the prediction results showed that the proposed quantitative
prediction model of BHO-AdaBoosting bioactivity could significantly improve the prediction
accuracy. (4) The model in this paper was applied to the study of 50 new compounds, and it was
found that the compound 4-[2-benzyl-1-[4-(2-pyrrolidin-1-ylethoxy)phenyl]but-1-enyl]phenol
showed good anti-breast cancer biological activity.

This study can be improved in two ways: First, although the model proposed in this paper
predicts the anticancer activity of ERa inhibitors well on the test set, we plan to expand the sample
set to further evaluate the applicability of this model for predicting the anticancer activity of other
anticancer candidate compounds. Second, in addition to promising anti-tumor activity, a compound
must have favorable pharmacokinetic and safety properties in humans, as well as ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties such as absorption,
distribution, metabolism, excretion and toxicity, to qualify as a drug candidate. We intend to further
evaluate the anticancer potential of a compound by taking these factors into account. Our efforts are
aimed at providing more reliable techniques and tools for the identification and development of anti-
breast cancer drugs. We want to improve the treatment of cancer and the quality of life of patients.
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