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Article 
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Abstract: Breast cancer is the most common malignancy in women worldwide. The pathogenesis of 

this disease is closely related to the estrogen receptor alpha subtype (ERα). Therefore, it is of great 

importance to develop effective inhibitors of ERα activity for the treatment of breast cancer. In this 

paper, we propose a novel ensemble machine learning model for quantitative structure-activity 

relationship of anti-breast cancer drugs, which can effectively predict drug activity in small samples 

with multiple characteristic variables. To avoid the problem of over-fitting caused by low-

correlation independent variables, the scoring mechanism of random forest was improved by 

incorporating three relevance indicators, including the maximum mutual information number, 

Pearson correlation coefficient and distance correlation coefficient, and 20 optimal molecular 

descriptors were selected. The Bayesian hyperparameter optimization method was used to optimize 

the parameters of multiple linear regression (MLR), support vector regression (SVR), and extreme 

gradient boosting (XGBoost), respectively. The AdaBoost strong learner was constructed by 

combining the weak learner with the weighted linear addition method. The results show that the 

proposed ensemble learning model has the best prediction performance compared to the three basic 

learner models and the CNN-LSTM combination prediction model. The root mean square error was 

reduced by 7.60%-26.51%. The mean relative error was reduced by 6.46%-30.92%. Goodness of fit 

increased by 9.57%-36.94%. Finally, the biological activities of 50 candidate compounds for ERα 

inhibitors were predicted, and it was found that 4-[2-benzyl-1-[4-(2-pyrrolidin-1-

ylethoxy)phenyl]but-1-enyl]phenol had an excellent biological activity value pIC50, which had the 

potential to be an ERα inhibitor. The model proposed in this paper has good prediction accuracy, 

which can provide an effective reference for the discovery and development of anti-breast cancer 

drugs. 

Keywords: breast cancer; activity prediction; random forest; feature selection; Bayesian 

hyperparameter optimization; AdaBoosting 

 

1. Introduction 

Breast cancer is one of the most common cancers with a high mortality rate in the world and is 

the leading cancer among women worldwide, as shown in Figure 1. According to data published by 

the International Agency for Research on Cancer (IARC) of the World Health Organization, the 

number of new cases of breast cancer worldwide will reach 2.26 million in 2020, and breast cancer 

will replace lung cancer as the fastest growing cancer in the world [1]. The distribution of the highest 
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cancer incidence in women worldwide is shown in Figure 1. According to statistics, approximately 

one in three people in the United States will be diagnosed with cancer, and one in eight women will 

develop breast cancer. The global incidence of breast cancer is expected to increase to 3 million cases 

by 2040 [2]. Although the mortality rate from breast cancer has decreased over the past two years due 

to improvements in medical care, the incidence and disease burden of breast cancer are still slowly 

increasing each year [3], threatening the health of women worldwide. 

 

Figure 1. Distribution of highest cancer incidence in women worldwide [4]. It shows the top cancer 

per country, estimated number of new cases in 2020, females, all ages (excluding NMSC). 

There are significant regional differences in the incidence of breast cancer in women, as shown 

in Figure 2. 

 

Figure 2. Regional distribution of breast cancer incidence in women worldwide [4]. It shows the 

estimated age-standardized incidence rates (World) in 2020, breast, females, all ages. 

The figure above shows that the incidence of breast cancer is relatively low in Asian and African 

countries and relatively high in the Americas and Oceania. In addition, the higher the level of 

economic development in Europe and the United States, the higher the incidence of breast cancer 

among women. However, scholars have found that the reporting age of women in some Asian 

countries is generally earlier than that in Europe [5], and the incidence of breast cancer has shown a 

rapidly increasing trend in recent years due to economic transformation and lifestyle changes [6]. 

The development of breast cancer is closely associated with estrogen receptors. Related studies 

have shown that estrogen receptor alpha (ERα) is expressed in less than 10% of normal breast 

epithelial cells, but in approximately 60% of breast tumor cells [7-8]. Experimental results in mice by 

Tekmal et al. [9] showed that mammary gland development in mice lacking the ERα gene would be 
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impaired even in the presence of persistent tissue estrogen, demonstrating that ERα plays an 

important role in mammary gland development and induces mammary gland hyperplasia in mice. 

In addition, Lee et al. [10] further demonstrated through whole genome sequencing (WGS) that the 

disruption and translocation of the ERα genome in estrogen is a direct factor influencing breast cancer 

gene expansion. Therefore, estrogen is considered to be one of the important pathogenesis of breast 

cancer, and ERα is considered to be an important target. 

In the treatment process, estrogen receptor activity plays an important role in controlling 

estrogen levels in the body, especially in anti-hormone therapy, which is commonly used in ERα-

expressing breast cancer patients [11]. This means that compounds that can inhibit the activity of ERα 

may be the key drugs for the treatment of breast cancer, such as transcription factor activating protein 

2γ (TFAP2C, AP-2γ) [12] and aromatase inhibitors [13]. Good anti-breast cancer activity is an 

important evaluation index for the selection of inhibitors. Therefore, in recent years, more and more 

scholars have adopted the method of establishing compound activity prediction models to screen 

anti-breast cancer candidate drugs [14-16]. The accurate prediction model and the key factors 

affecting the biological activity of estrogen receptor α subtype, the therapeutic target of breast cancer, 

have become the focus of medical attention. 

The main contributions of this paper are as follows: (1) The advantages of the maximum 

information coefficient method, distance correlation and Pearson correlation are integrated, and the 

traditional random forest method is improved to compensate for the disadvantages of the lack of 

variable correlation in the feature selection process of the traditional random forest, so as to better 

filter out the optimal molecular descriptors. (2) The Bayesian hyperparameter optimization method 

is adopted to optimize the hyperparameters of the XGBoost model, so as to effectively improve the 

prediction accuracy and generalization ability of the model. (3) In this paper, the above research 

methods are applied to drug activity prediction studies for the first time, and the biological activities 

of 50 new anti-breast cancer candidates are verified. At the same time, this method can also be used 

to solve other drug activity prediction problems. These contributions make this study have important 

scientific significance and practical application prospect. 

The rest of this paper is organized as follows: Section 2 summarizes the literature on drug 

activity prediction from both traditional experimental methods and machine learning methods. 

Section 3 introduces the data used in this study and preprocesses the dataset. In Section 4, we present 

our improved random forest feature selection method and a comprehensive prediction model for the 

activity of ERα inhibitors against breast cancer. In Section 5, the dataset is divided into test and 

training sets, and the model proposed in this paper is used for empirical analysis. In Section 6, the 

rationality and accuracy of this model were verified by comparing with other classical drug activity 

prediction models, and the biological activities of 50 new candidate compounds were predicted. In 

Section 7, the main results of this paper are summarized and the direction for future improvement is 

suggested. 

2. Related Work 

With the rapid development of drug research and development, many drug activity prediction 

methods have emerged. After reviewing important literature, drug activity prediction methods can 

be divided into two categories: traditional experimental methods and machine learning methods. 

2.1. Traditional Experimental Method 

This type of method is characterized by the fact that no machine learning algorithms are used in 

the computational process. The application of drugs in the treatment of diseases is regarded as a 

complex interaction process between drug molecules and corresponding target proteins [17]. At 

present, the study of drug-target protein interaction is mainly divided into experimental methods 

and computational methods. 

2.1.1. Experimental Method 
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Nuclear magnetic resonance (NMR) spectroscopy can accurately probe the distribution of 

metabolites in living cells and tissues in vivo and identify lead compounds that inhibit protein 

interactions [18]. Mansa et al. [19] found that isothermal microcalorimetry (IMC) has more potential 

than agar diffusion and broth culture in determining the antimicrobial activity of probiotic isolates. 

Surface plasmon resonance (SPR) has been used by scientists for secondary screening, lead 

optimization, and quantitative structure-activity relationship analysis [20]. KenIchiro et al. [21] used 

structure-based high throughput screening (HTS) to discover the multifunctional chemical inhibitors 

of florigen activation complex. 

However, these experimental methods have the limitations of high cost, long time and small 

application range, so the computer-aided drug target prediction method is more favored by 

researchers in the traditional experimental methods. 

2.1.2. Computer Aided Method 

Computational methods have undergone continuous development and enrichment from the 

earliest ligand-based prediction methods, to structure-based prediction methods, to molecular 

dynamics prediction methods. 

The ligand-based prediction method is to analyze the three-dimensional structure of drug 

molecules for activity prediction, and the quantitative structure-activity relationship (QSAR) 

proposed by Hansch et al. [22] has been widely used in drug activity prediction. For example, 

Mansouri et al. [23] trained estrogen or androgen receptor activity prediction by various QSAR 

methods, and Putri et al. [24] used QSAR to establish a prediction model for anti-colon cancer and 

anti-liver cancer activity of substituted 4-anilylmarin derivatives. 

Structure-based methods, which are widely used in molecular docking and virtual screening 

(VS), predict the activity of target proteins by analyzing the three-dimensional structure of the target 

protein. Both molecular docking and virtual screening predict the activity and selectivity of drugs by 

simulating and evaluating the interaction between drug molecules and target molecules. Wang et al. 

[25] first proposed the protein-ligand scoring method (SCORE), which introduced the atomic binding 

score and used the empirical scoring function to represent the binding free energy, and then 

calculated the binding affinity between the protein with known three-dimensional structure and the 

corresponding ligand. In addition, empirical scoring methods include DrugScore [26] based on 

knowledge, genetic optimization for ligand docking (GOLD) [27] based on force field, and 

VALIDATE [28] based on statistical methods, and so on. These functions effectively discriminate 

between well-docked protein-ligand binding modes. 

Molecular dynamics simulation is a research method using computer simulation, which can 

realize the search of receptor concept, the selection of the best binding site of small molecules, and 

the evaluation of the binding strength between drug molecules and target proteins in the study of 

drug activity. The molecular dynamics simulation of Yang et al. [29] showed that the candidate 

compound had stable binding ability between the two proteases at the same time, thus finding a new 

potent dual-target inhibitor that can be used for cancer treatment. Xiao et al. [30] investigated the 

conformational changes of GLP-1R in the activation process by accelerated molecular dynamics and 

conventional molecular dynamics simulation, and obtained the intermediate states and their effects 

of different helices in the activation process by structural analysis and potential of mean force (PMF) 

calculation. 

2.2. Machine Learning Method 

With the rapid development of biomedicine, drug activity data is showing a rapid growth trend. 

The use of traditional experimental methods to predict drug activity can no longer meet the needs of 

new drug research and development. Machine learning has a good ability to express the deep level 

of high-dimensional data, and scholars have found that the accuracy of drug activity prediction can 

be greatly improved by using algorithms [31]. Related research can be divided into traditional 

machine learning methods and some new directions of machine learning in recent years, such as deep 

learning and ensemble learning. 
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2.2.1. Traditional Machine Learning Methods 

Traditional machine learning methods mainly include support vector machine, decision tree, 

Bayes, stepwise regression, and so on. 

Martinčič et al. [32] used machine learning methods of support vector regression and multiple 

linear regression to predict antioxidant activity, and proposed a new method for graphical evaluation 

of the applicable range of the support vector regression (SVR) model. Dutt et al. [33] combined 

decision tree algorithm and moving average analysis method in their study to predict agonist activity 

of G protein-coupled receptor-40. Lane et al. [34] used the Bayesian model to learn from a library of 

more than 1000 synthesized molecules. Under the threshold of 100 nM and 1 μM, the average 

accuracy of predicting the in vitro activity of Mycobacterium tuberculosis was as high as 0.93 and 

0.89, respectively, showing excellent performance for a single machine learning algorithm. 

Hrynkiewicz et al. [35] used forward and backward stepwise regression methods (FR and BR) to 

predict the structural biological activity of angiotensin converting enzyme (ACE) inhibitor/bitter 

dipeptide, respectively, and found that C-atC(-) and N-Molw(+) had dual functions on dipeptides. 

And there was no direct relationship between ACE inhibition and the bitterness of dipeptides. 

2.2.2. Deep Learning Method 

Deep learning models have been developed to predict inhibitors of various targets, including 

kinases, and have been shown to achieve better prediction performance than traditional machine 

learning. Among them, the deep learning neural network (DNN) model is the most widely used and 

has the highest maturity [36-38], including single-task DNN, multi-task DNN, bypass DNN, etc. 

Convolutional neural network (CNN) is widely used in molecular image learning to identify 

molecular features in the field of drug activity prediction. For example, Hentabli et al. [39] developed 

a molecular matrix format adapted from two-dimensional fingerprint descriptors to predict the 

biological activity of compounds based on deep learning convolutional neural network. The area 

under the curve (AUC) of the CNN activity prediction method was the highest. Dadfar et al. [40] used 

genetic algorithm (GA) to optimize the parameters of artificial neural network (ANN) and established 

the activity prediction model of sulfonamides, and the results showed that the prediction effect was 

better than genetic algorithm-multiple linear regression (GA-MLR). 

In addition, some scholars have proposed combined prediction models of deep learning and 

machine learning, which have also achieved good prediction effects, such as CNN-SVR [41], SVM-

DNN [42], KNN-ANN [43], and so on. 

2.2.3. Integrated Learning Method 

In recent years, ensemble learning models have been gradually applied to drug activity 

prediction, but there are still relatively few studies. Boosting is one of the most important strategies 

in ensemble learning. Afolabi et al. [44] used a combination of different boosting methods (Adaboost) 

to predict new bioactive molecules in order to find pharmacologically active molecules that can 

provide remedies for a range of different diseases and infections. They conducted research 

experiments using the widely used molecular diagnostic laboratories (MDL) drug data reporting 

(MDDR) database and found that the Adaboost method produced better results than other machine 

learning methods; Tavakoli et al. [45] developed a boosting-enhanced ensemble algorithm (AdaBoost 

R3) for predicting the biological activity of tyrosine kinase inhibitors, which improved the prediction 

accuracy of the traditional boosting model and made it free from the influence of outliers. Rong et al. 

[14] proposed a regression prediction model for the biological activity of ERα of improved sparrow 

search algorithm-random forest (ISSA-RF), and optimized the parameter range of random forest by 

an improved sparrow search algorithm to improve the prediction accuracy and efficiency of anti-

breast cancer drug candidates. In addition, ensemble learning models such as rotation forest [46] and 

gradient boosting decision tree (GBDT) [47] have also been applied in drug activity prediction 

research. 
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In summary, the research methods of drug activity prediction have gradually diversified from 

pure biochemical experiments to the support of machine learning algorithms, and then to the 

application of deep learning and ensemble learning algorithms. Compared with traditional 

experimental methods, traditional machine learning algorithms save research and development costs 

and have higher efficiency. However, with the increase of data volume, the performance of traditional 

machine learning models starts to decline. At present, more and more researchers tend to introduce 

transfer learning and attention mechanism into deep learning models to shorten the model training 

time, which greatly improves the prediction accuracy of drug molecules and the effectiveness of drug 

molecule generation. However, it should be noted that deep learning models sometimes have 

problems such as overfitting or gradient disappearance, which makes the model unable to effectively 

learn and further apply the data samples, that is, the generalization performance is not good enough. 

Data preprocessing and model structure optimization should be the main tasks of further research. 

Due to the limited prediction accuracy and generalization ability of individual classifiers, some 

scholars have turned to ensemble learning methods using ensemble classifiers. However, the 

application of ensemble learning in biomedicine is not mature enough, and the prediction model is 

relatively single. Second, most of the existing studies mainly focus on using different models for 

prediction, and select the best prediction method by comparing the performance without further 

optimizing the model itself. For example, some important hyperparameters in the model often choose 

empirical values. In addition, there are few studies on the combination of ensemble learning and 

machine learning algorithms for drug activity prediction. 

3. Data Preprocessing 

The data used in this paper are from the Drug molecular database of the University of Alberta 

Drug Bank [48]. The dataset contains the biological activity value pIC50 of 1974 candidate compounds 

against ERα, as well as the molecular descriptor information of the compounds. Higher pIC50 values 

indicate higher biological activity. Molecular descriptors include 2D/3D features such as 

physicochemical properties of the compound (e.g. molecular weight, LogP, etc.), topology (e.g. 

number of hydrogen bond donors, number of hydrogen bond receptors, etc.). 

After statistical screening, there were no empty values in this data set. The number of 

compounds, i.e. the number of samples, is 1974 and the number of variables, i.e. the number of 

molecular descriptors, is 729. There is no gap between the number of samples and the number of 

features. Without any treatment, when the model-based regression algorithm is used for feature 

selection, it is easy to cause serious overfitting. Therefore, this paper first preprocessed the data set 

at a deep level, used low-variance filtering to remove invalid variables with low-variance features, 

and then used Laida criterion to eliminate abnormal variables to obtain high-quality sample data.  

3.1 Descriptive Statistics 

Descriptive statistical analysis was performed on the biological activity data of 1974 compounds 

and the data of 729 molecular descriptors, and the results are shown in Table 1.  

Table 1. Descriptive statistics of the partial results (N=1974). 

Molecular 

descriptor 

Minimum 

value 

Maximum 

value 
Mean value 

Standard 

deviation 

pIC50 2.456 10.34 6.59 1.42 

nAcid 0.00 4.00 0.11 0.35 

ALogP -23.11 5.18 1.11 1.43 

ALogp2 0.00 533.84 3.29 12.83 

AMR 54.07 517.43 116.56 31.57 
. . . . . . . . . . . . . . . 
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WPATH 349.00 301690.00 2709.62 7194.53 

WPOL 14.00 230.00 46.28 13.29 

XLogP -3.59 14.28 2.97 1.62 

Zagreb 6.00 748.00 150.72 41.45 

As can be seen from Table 1, the statistical values of molecular descriptors as a whole are very 

different, the law of data structure is not obvious, and it is difficult to directly analyze and predict. In 

addition, the sample data corresponding to 225 molecular descriptors are all 0, and there is data 

redundancy. These independent variables will be eliminated in the next data preprocessing. 

3.2 Elimination of Low Variance Characteristics 

All values of the column characteristics of the low-variance function variables are basically the 

same, the data range does not vary much, the variance is very small, and this type of variable can 

provide little or no information (such as constant variables and zero-variance variables). In this case, 

this type of function should be deleted. Low variance filtering is a common feature selection method, 

which can quickly identify the features with low variance and delete them from the data set to avoid 

the noise or misleading the model caused by low variance features [49]. In this paper, low variance 

filtering is used to preprocess the data. 

Since the variance is related to the data range, it is necessary to normalize the data set first. The 

normalization formula is: 

min max min
( ) / ( )

norm
X X X X X= − −                     (1) 

In the formula, Xnorm represents the normalized value, X represents the original value, Xmin and 

Xmax represent the minimum and maximum values in the data set, respectively. The data visualization 

results of the 729 molecular descriptors after normalization are shown in Figure 3. The single dashed 

line in the figure represents the distribution of the values of a single molecular feature over the entire 

data set, 1974 compounds. 

 

Figure 3. Visualized results of 729 molecular descriptors. 

As can be seen from the Figure 3, the data range fluctuations of 729 molecular descriptors are 

quite different, and the data of some molecular descriptors almost form a horizontal line, which 

should be removed from the sample data first. After repeated experiments, the variance threshold in 

this study was finally set to 1%, and 261 high-variance feature variables were retained. 
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3.3 Diagnosis of Abnormal Variables 

After the single characteristic variable is eliminated, the data are further screened using the 

PauTa criterion [50] to improve the accuracy and reliability of subsequent data analysis and 

modeling. The specific procedures are as follows: The features whose eigenvalues are not in the range 

of μ±3σ and the number of outliers is more than 100 are eliminated. On this basis, the features whose 

eigenvalues are not in the range of μ±3σ and the number of outliers is not more than 100 are processed 

by the maximum value limiting method. That is, the outliers larger than μ+3σ are replaced by μ+3σ 

and those smaller than μ-3σ are replaced by μ-3σ. In this paper, a total of 24 features are eliminated 

by the PauTa criterion screening. Due to space limitations, 9 features are selected and illustrated by 

a box plot as shown in Figure 4. In which, (a) Description: Maximum E-state descriptors of strength 

for potential Hydrogen Bonds of path length 3, Class: 2D; (b) Description: Sum of atom-type E-State: 

:N:-, Class: 2D; (c) Description: Minimum atom-type E-State: :N:-, Class: 2D; (d) Description: 

Maximum atom-type E-State: :N:-, Class: 2D;  (e) Description: Minimum atom-type E-State: aSa, 

Class: 2D; (f) Description: Count of atom-type HE-State: :NH:, Class: 2D; (g) Description: Sum of 

atom-type E-State: :NH:, Class: 2D; (h) Description: Minimum atom-type E-State: :NH:, Class: 2D; (i) 

Description: Maximum atom-type E-State: :NH:, Class: 2D. 

By observing the box plot of abnormal data, it is found that the data distribution is too scattered, 

the box is compressed very flat, even only one line is left, and there are still many outliers, so such 

features are eliminated. 

 

Figure 4. Box plot of features excluded by Rajda's rule. 
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The data preprocessing eliminates a total of 492 feature variables, leaving 237. In the next section, 

the improved random forest feature selection method is presented in detail. Among the remaining 

237 feature variables, the top 20 variables that affect the contribution degree of ERα biological activity 

are selected as the feature variables of the activity prediction model. 

4. Methodology 

For ERα, a therapeutic target of breast cancer, it is necessary to collect a series of biological 

activity data of compounds acting on the target, and then to construct a quantitative prediction model 

of biological activity of ERα using many molecular structure descriptors as independent variables 

and biological activity values as dependent variables. The algorithm flow of the proposed prediction 

model is shown in Figure 5. 

As shown in Figure 5, the method used in this paper can be divided into three steps: First, to 

avoid the problem that the independent variables with weak correlation increase the complexity of 

the subsequent prediction model, resulting in overfitting and decreased prediction accuracy, the 

random forest method was improved to screen the best molecular descriptors. Three complementary 

correlation functions were incorporated into the random forest method to screen the best molecular 

descriptors. Second, in the ensemble learning AdaBoosting method, the prediction performance of 

each base learner is closely related to the selection of hyperparameters. Therefore, in this paper, 

Bayesian hyperparameter optimization is selected, and the optimal hyperparameter combination of 

each base learner is obtained by continuous iteration according to the data set. Finally, the AdaBoost 

strong learner was constructed by combining the weak learner with the weighted linear addition 

method, and the ensemble learning model was used to predict the biological activities of 50 anti-

breast cancer candidate compounds. 
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Figure 5. Schematic diagram of the quantitative prediction model for ERα biological activity. 

4.1 Improved Random Forest Feature Selection Method. 

The random forest algorithm can perform regression analysis based on classification, and obtain 

the contribution degree of each molecular descriptor to biological activity through the internal 

operation mechanism. However, the traditional random forest method does not consider the 

correlation between the independent variable and the dependent variable, so the calculation result 

may not be able to select the optimal feature. Because in the whole random forest, the features that 

avoid overfitting and combine to improve the generalization ability may get higher contribution 

scores, but their correlation with independent variables may be weak, which will reduce the accuracy 

and interpretation ability of the subsequent prediction model. Therefore, we propose an improved 

random forest scoring mechanism that integrates correlation into the random forest scoring 

mechanism. 

4.1.1. The Original Random Forest Method 

Random forest algorithm is an algorithm used to solve classification, regression and other 

problems, it will combine multiple decision trees into a random forest, through the selection of 

random samples and random features, improve the accuracy and generalization ability of the model. 

The random forest algorithm can quantify the importance of each molecular descriptor on biological 

activity. The greater the importance of a molecular descriptor, the greater the influence of the feature 

on biological activity, and the smaller the importance, the less the influence of the feature on the 

result. 

            k k k left left right right
n w G w G w G= × − × − ×  (2) 

where: wk, wleft, and wright are node k and the ratio of training samples to the total number of training 

samples in its left and right nodes, respectively; Gk, Gleft, and Gright are the impurity of node k and its 

left and right child nodes, respectively. After knowing the importance of each node, the importance 

of a feature can be obtained: 

                       i j k
f n n=    (3) 

where j belongs to nodes that are split on feature i and k belongs to all nodes.  

4.1.2. Maximum Mutual Information Coefficient 

The maximum mutual information coefficient (MIC) method is generally used to reflect the 

linear and nonlinear relationship between the independent variable and the dependent variable, and 

has been widely applied. In this paper, we use the maximum mutual information coefficient method 

to measure the correlation between biological activity and analysis descriptors. It is calculated as 

follows [51]:  

 

2

2
,

( , )
( ; ) ( , ) log

( ) ( )

( , )
[ ; ] [ ; ] ( , ) log

( ) ( )X Y

p x y
I x y p x y dxdy

p X p Y

p X Y
I x y I X Y p X Y

p X p Y


=


 ≈ =





                 (4) 

where p(x, y) is the joint probability density of the molecular descriptor x and the biological activity 

y of the compound. However, it is difficult to calculate the joint probability density in practical 

application. Therefore, the idea of the maximum mutual information coefficient method is to map the 

relationship between x and y in a two-dimensional space and express it in terms of scatter points, and 

then divide the two-dimensional space into several grid structures. In this way, the problem of 

solving the joint probability density is transformed into the probability of scatter point distribution 

in the grid. The MIC calculation method is as follows: 
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a b

I X Y
MIC x y

X Y

× <

<


=



 =


 (5) 

4.1.3. Pearson Correlation Coefficient 

The Pearson correlation coefficient is a method of calculating linear correlation proposed by the 

British statistician Pearson [52] in the 20th century to measure the degree of linear correlation between 

the molecular descriptor X and the biological activity Y of a compound, with a value between -1 and 

1. This intuition of linear correlation is expressed as follows: when X increases, Y simultaneously 

increases or decreases; when the two are distributed on a line, the Pearson correlation coefficient is 

equal to 1 or -1; when there is no linear relationship between the two variables, the Pearson 

correlation coefficient is 0. The Pearson correlation coefficient between two variables can be 

calculated using the following formula: 

       2 2

1 1

[( )( )]cov( , )
( , )

( ) ( )

X Y

n n
X Y

i X i Y
i i

E X YX Y
X Y

X Y

µ µ
ρ

σ σ
µ µ

= =

− −
= =

− −     (6) 

4.1.4. Distance Correlation Coefficient 

The traditional Pearson correlation coefficient can only measure the linear relationship between 

the molecular descriptor X and the biological activity Y of a compound, and the data must satisfy the 

assumption of normal distribution. To compensate for the lack of Pearson correlation coefficient to 

some extent, this paper uses distance correlation coefficient (DC) to measure the correlation between 

molecular descriptor X and compound bioactivity Y, and selects the important factors. The advantage 

of DC is that it can describe any regression relationship of predicted objects and factors, whether 

linear or nonlinear, and does not require any model assumptions and parameter conditions, which 

greatly strengthens the universality of this method. 

In this study, distance correlation coefficients were used to measure the independence of the 

molecular descriptor X from the biological activity Y of the compound, denoted dcorr(x, y). When 

dcorr(x, y)=0, it means that X and Y are independent of each other. The larger the dcorr(x, y), the 

stronger the distance correlation between x and y. Let {(xi, yi), i=1, 2, …, n} be a random sample of the 

population (x, y). Szekely et al. [53] defined the DC sample estimate of x and y of two random 

variables as follows 

             

2

1 2 3

1 2
1 1

2 2 2
1 1 1 1

3 2
1 1 1

cov( , )
( , )

cov( , ) cov( , )

cov ( , ) 2

1

1 1

1

x y

x y

x y

n n

i j i jd d
i j

n n n n

i j i jd d
i j i j

n n n

i j i jd d
i j l

d x y
dorr x y

d x x d y y

d x y S S S

S x x y y
n

S x x y y
n n

S x x y y
n

= =

= = = =

= = =



 =
 ×


= + −


= − −



= − × −


 = − −




 



 (7) 

Similarly, dcov(x, x) and dcov(y, y) can be calculated. 

4.1.5. Improved Random Forest Method 
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Since that the traditional random forest model does not consider the correlation between 

independent variables and dependent variables, the optimal molecular descriptor cannot be selected. 

To this end, we propose an improved random forest method that combines the maximum mutual 

information coefficient method, distance correlation and Pearson correlation comprehensive function 

based on the random forest contribution score. 

These three correlation indicators can complement each other. Pearson correlation coefficient 

can provide linear dependence between molecular descriptors and biological activity. Compared 

with the other two indices, the maximum mutual information coefficient method has a stronger 

ability to detect the nonlinear relationship between molecular descriptors and biological activities of 

compounds. The distance correlation coefficient is more robust in dealing with nonlinear 

relationships and is not affected by scale transformation. Therefore, in this paper, these three 

correlation indicators are added to the improved random forest scoring mechanism, and the formula 

is as follows: 

       
1

( )
3 ( , ) ( , ) [ , ]

i i i

fi
fni

fi dorr X Y X Y MIC X Yρ
= ×

+ +  (8) 

where j belongs to the nodes split on feature i, Y represents the biological activity of the compound. 

4.2. Establishment of the BHO-AdaBoosting Model 

The AdaBoost algorithm is an implementation version of the ensemble learning method 

boosting algorithm [54], whose core idea is to train different classifiers on the same training set (weak 

classifiers), and then combine these weak classifiers to form a stronger final classifier (strong 

classifier). In this study, MLR, SVR, and XGBoost are selected as the base learners, and these three 

base learners show good prediction ability on linear, nonlinear, and high-dimensional data sets, 

respectively. When they are combined as the weak learners of AdaBoosting, the model is expected to 

have good prediction and generalization potential. The framework of the ensemble learning 

prediction model based on Bayesian hyperparameter optimization is shown in Figure 6. 

 

Figure 6. Framework of the ensemble learning prediction model based on Bayesian hyperparameter 

optimization (BHO-AdaBoosting). 

Let D={(xi, yi), i=1, 2, ..., N} is a random sample of the population (x, y), the number of iterations 

is T, i.e. there are T weak learners, the number of samples is N, and it is hoped that the strongest 

learner G(x) will eventually be output. 

G(x) is weighted by the T weak learners. Let the t-weak classifier be Gt(x). Suppose the t-weak 

classifier is being trained and its weight needs to be obtained. 

Let Wt={wt,1, wt,2, ..., wt,N}, where the sample set of Wt is used to train the data to obtain the weak 

learner Gt(x). First, we compute the maximum error Et on the training set: 

                         = max ( )
t i t i

E y G x−  (9) 
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The error is calculated for each sample point using the root mean square error with 5-fold cross 

validation: 

                      

2

, 2

( )
i t i

t i

t

y G x

E
ε

−
=  (10) 

Then, the regression error rate is calculated according to the error of the sample points and the 

sample set: 

                         , ,
1

N

t t i t i
i

e W ε
=

= ×  (11) 

The coefficient of the weak learner is obtained from the regression error rate, and then the weight 

distribution is updated: 

                         

,1

1, ,

1

ε

α

α −

+


= −

 = ×
t i

t

t
t

t

t i t i

e

e

W W

 (12) 

Then, after normalizing the weight distribution, the final strong learner is obtained: 

                       

1, 1, 1,
1

1

1
( ) ( ) ln

( )= ( ))

N

t i t i t i
i

T

t t

t t

W W W

G x g x

g x G x

α

α

+ + +
=

=


=




= ×

 ×






M d(

 (13) 

Md is the median, t=1, 2, ..., T.  

The following is an introduction to the three basic learners and Bayesian hyperparameter 

optimization methods. 

4.2.1. Extreme Gradient Boosting (XGBoost) 

XGBoost was proposed by Chen et al. [55] from the University of Washington in 2016, which has 

the characteristics of low computational complexity, fast running speed, high accuracy, and can 

prevent overfitting. The objective function of XGBoost consists of a loss function, a regularization 

term, and a constant term: 

                             ( ) ( ) ( )Obj L Cθ θ θ= + Ω +  (14) 

The loss function is used to measure the prediction of the model, and the regularization term is 

used to control the complexity of the model to avoid overfitting. The modeling process of XGBoost is 

to keep the original model unchanged and take the error generated by the previous prediction as a 

reference to build the next tree. That is, it takes the residual difference between the predicted value 

and the true value as the input to the next tree, and the process is expressed as follows: 

(1) Initialization: 

                                  
(0)ˆ 0
t

y =              (15) 

(2) Add the first tree to the model: 

                         
(1) (0)

1 1
ˆ ˆ( ) ( )

t i t i
y f x y f x= = +                (16) 

(3) Add the second tree to the model: 

                        
(2) (1)

1 2 2
ˆ ˆ( ) ( ) ( )

t i i t i
y f x f x y f x= + = +             (17) 
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(4) Add the t-th tree to the model: 

                  
( ) ( 1)

1

ˆ ˆ( ) ( )
t

t t

t k i t t i
k

y f x y f x−

=

= = +  (18) 

where ft(xi) is the prediction result of the current t-th tree. 𝑦̂𝑖(t) represents the predicted value of i 

samples at t time, which keeps the model prediction result of t-1 time. In this case, the loss function 

is: 

              ( 1)

( 1)ˆ

( 1) 2

1

( 1)

ˆ

2 ( 1)

1
ˆ( ) [ ( ) ( ) ( )]

2

ˆ( )

ˆ( )

t
i

t
yi

n
t

i i i t i i t i
i

t

i i iy

t

i i i

L t l y y g f x h f x

g l y y

h l y y

−

−

−

=

−

−


= − + +


= ∂ −


= ∂ −




 (19) 

where Ij is the sample at the j leaf node, and 𝑤j is the weight of the j leaf node, so that: 

                      
,

j j

j i j i
i I i I

G g H h
∈ ∈

= =   (20) 

Substitute the above formula and take the partial derivative of 𝑤j to obtain the optimum weight: 

                       
* j

j

j

G
w

H λ
= −

+
 (21) 

In this case, the optimal objective function can be obtained: 

                   
1

1
( )

2

T
j

j j

G
OBJ T

H
θ γ

λ=

= − +
+

  (22) 

where γ and λ are the weighting factors, and T is the number of nodes. The smaller the value of the 

objective function, the smaller the prediction error, and the better the model performance. 

4.2.2. Multiple Linear Regression (MLR) Model 

Linear regression is the use of linear fitting to explore the law behind the data, through the 

regression model to find the regression curve behind the discrete sample points, and through this 

regression curve can perform some predictive analysis. Multiple linear regression analysis is a 

statistical method used to evaluate the relationship between a dependent variable and several 

independent variables. 

The multiple linear regression model with p independent variables [56] can be expressed as: 

                   
0 1 1

2(0, )

p p
Y x x

N

β β β ε

ε σ

 = + + + +






 (23) 

For convenience, we introduce matrix notation with the actual data of n sets of molecular 

descriptors: 

  

11 12 11 1 1

21 22 22 2 2

1 2

, , ,

p

p

n n n n n np

x x xy

x x xy
Y X

y x x x

ε β

ε β
ε β

ε β
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      
      = = = =       
      
             




      


 (24) 

where X is the model design matrix, which is a constant matrix, Y and ε are random vectors, and:  

                
2 2( , ), (0, ) β σ ε σ n nY N X I N I  (25) 
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where ε is the unobserved random error vector, β is the vector composed of the regression 

coefficients, and I is the identity matrix of order n. 

For the least squares estimation of the regression coefficient β: choose an estimate of β, denoted 

as 𝛽෡  , such that the sum of squares of the random error ε is minimized: 

               

min min( ) ( )

ˆ ˆ ˆ               ( ) ( ) ( )

β β
ε ε β β

β β β

× = − −

= − − ==

T T

def
T

Y X Y X

Y X Y X Q

 (26) 

According to the requirements of the least squares method, the necessary conditions for 

obtaining extreme values from multivariate functions can solve the standard equation of regression 

parameters as follows: 

                      
0

0

ˆ0 0

ˆ0

0

0     ( 1,2, , )
i

Q

Q
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β β

β β

β

β

=

=

 ∂
=

∂


∂ = =∂



 (27) 

4.2.3. Support Vector Machine Regression (SVR) 

In this paper, we hope to use the data of known molecular descriptors for fitting, find a function 

that fits the relationship between molecular descriptors and molecular activity sequences, and expect 

to get a result with the least fitting error, so as to use this function for prediction. This can be achieved 

by a support vector machine (SVM) model [57], which mainly maps inputs to a high-dimensional 

feature space via nonlinear mapping (kernel function), and then constructs an optimal classification 

hyperplane in this space. For the existing molecular data sample D, the optimization problem 

expression corresponding to its SVR is as follows: 

                  
2

ˆ, , ,
1

1 ˆmin ( )
2i i

m

i i
w b

i

w C
ξ ξ

ξ ξ
=

+ +  (28) 
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f x y i m
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y f x i m

ε ξ ξ

ε ξ ξ

 − ≤ + ≤ =


− ≤ + ≤ =




 (29) 

where: w is a weight vector that determines the direction of the hyperplane; C is a penalty factor; and 

ζ is a non-negative relaxation variable. ε is the insensitive loss function and represents the allowable 

error between the regression value and the true value. 

The Lagrange function is introduced, and a series of transformations are performed according 

to the Karush-Kuhn-Tucker condition, and the SVR regression function is finally obtained: 

                 
1

( ) ( ) ( , )
n

i i i
i

f x K x x bα α ∗

=

= − +  (30) 

where αi, αi* is the Lagrange multiplier that satisfies the constraint conditions, K is the kernel function, 

and b is the offset of the regression function. 

4.2.4. Bayesian Hyperparameter Optimization 

Hyperparameter tuning is one of the most important concepts in machine learning, and its 

setting is solved before the model is trained. Satisfactory performance of machine learning algorithms 

depends on proper hyperparameter settings. Manual parameter tuning is complicated and uncertain, 

and the value of the hyperparameter directly affects the prediction accuracy of the model. Bayesian 

optimization can realize fast and automatic optimization of hyperparameters, and find the best 
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combination of hyperparameters by building a probabilistic model and using Bayesian inference 

method. Therefore, this paper decides to use Bayesian optimization for the hyperparameters of three 

types of weak learners, in order to effectively reduce the time and energy input of parameter tuning, 

and further improve the prediction performance and generalization ability of ensemble learning 

models. 

Bayesian optimization assumes that there is a functional relationship between the 

hyperparameter and the loss function to be optimized, and that this functional relationship is a "black 

box function" that approximates the posterior distribution of the unknown objective function by some 

prior sample points. By learning the shape of the objective function, a set of hyperparameters is found 

that will lead the result to the globally optimal solution. Bayesian optimization is an approximation 

method that uses various proxy functions to fit the relationship between hyperparameters and model 

evaluation, then selects the most promising hyperparameter combination for iteration, and finally 

finds the best hyperparameter combination. 

For the hyperparameter optimization problem of the XGBoost model, in the decision space of a 

set of hyperparameters, Bayesian optimization constructs a probability model for the function f to be 

optimized, further uses the model to select the next evaluation point, and iterates successively to 

obtain the optimal hyperparameter solution [58]: 

                  
* arg min ( )dx R

x x f x
χ∈ ⊆

=  (31) 

where x* is the optimal hyperparameter combination, χ is the decision space, and f(x) is the objective 

function. The main core steps of the Bayesian optimization algorithm are two parts: prior function 

and learning function. 

(1) Gaussian regression Process 

The Gaussian process is a nonparametric model and is also a set of random variables determined 

by the mean function and the kernel function (covariance function), namely: 

                  ( ) ( ( ), ( , ))f x gp m x k x x′  (32) 

in which: 

              
( ) ( ( ), ( , ))

( , ) [( ( ) ( ))( ( ) ( ))]

m x E m x k x x

k x x E f x m x f x m x

′ =


′ ′ ′= − −
 (33) 

In the XGBoost hyperparameter optimization problem, a sample data set D=(x, y) of 

hyperparameters is created, where X=(x1, x2, ..., xt) is the training set, y={f(x1), f(x2), ..., f(xt)} is the set 

of f(x). Then there is a Gaussian distribution: 
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  


 (34) 

If a new sample xt+1 is added and the covariance matrix, denoted by K, is updated, then the joint 

Gaussian distribution can be expressed as: 

                    
1:

1 11
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t tt

f K k
N

k k x xf
+ ++

  
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in which： 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2023                   doi:10.20944/preprints202308.1209.v1

https://doi.org/10.20944/preprints202308.1209.v1


 17 

 

             

1: 1 2

1 1 1 2 1

2

1 1 1

1

1 1 1:

2 1

1 1 1 1

[ , , , ]

[ ( , ), ( , ), , ( , )]

( , )

( )

( ) ( , )

T

t t

t t t t

t t t

T

t t t

T

t t t t

f f f f

k k x x k x x k x x

f N

x k K f

x k K k k x x

µ σ

µ

σ

+ + +

+ + +

−

+ +

−

+ + + +

 =


=


 =
 = +




  (36) 

As you can see, the Gaussian process simply gives the probability distribution of all possible 

values of ft+1. The exact value is not unique. Therefore, if enough sample points are collected, the 

Gaussian process can be used to obtain an approximate estimate of the objective function. 

(2) Acquisition Function 

The sampling function guides the selection of the next sampling point in the decision space of 

the hyperparameter. In this paper, the probability of improvement (PI) is used as the sampling 

function. is used as the sampling function, and the expression is as follows: 

                   
( ) ( )

( )
( )

u x f x
f x

x

ξ

σ

+ − −
= Φ 

 
 (37) 

where Ф is the cumulative density function of the normal distribution; u(x), σ(x) are based on 

Gaussian processes and are the mean and variance of the objective function value, respectively. f(x+) 

is the current optimal objective function value; ξ is the parameter. 

5. Experimental Results  

The research idea of this paper is to first select 20 characteristic variables as the input of the 

prediction model, then divide the test set and the training set of the sample data, use Bayes 

hyperparameter optimization to determine the optimal hyperparameter combination of the base 

learner and make predictions respectively, and finally obtain the prediction model of the strong 

learner by weighted calculation to quantitatively predict the ERα biological activity. 

5.1. Results of the Improved Random Forest Feature Selection  

In this paper, an improved random forest scoring mechanism is used to select the top 25 feature 

variables based on a recursive feature elimination algorithm. Considering the randomness of the 

algorithm, the algorithm is tested 100 times, the 25 variables selected each time are counted, and 

finally the 25 variables with the highest frequency are obtained. Then the correlation test is performed 

on the 25 selected variables, and the less important one in the group of variables with strong 

correlation is eliminated, and finally 20 variables are retained.  

The random forest hyperparameters are set to: criterion="squared_error", n estimators=100, 

min_samples_split=2, min_samples_leaf=1. The ranking results of the top 20 important feature 

variables based on the improved scoring mechanism are shown in Table 2. 

Table 2. Screening Results of Characteristic Variables. 

Rankin

g 
Feature name 

Contributio

n degree 

Rankin

g 

Feature 

name 

Contributio

n degree 

1 MDEC-23 0.3578  11 SHsOH 0.0281  

2 
LipoaffinityInde

x 
0.0802  12 BCUTp-1h 0.0259  

3 BCUTc-1l 0.0761  13 VPC-6 0.0247  

4 minsssN 0.0548  14 minHBa 0.0214  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2023                   doi:10.20944/preprints202308.1209.v1

https://doi.org/10.20944/preprints202308.1209.v1


 18 

 

5 maxHsOH 0.0530  15 hmin 0.0210  

6 minsOH 0.0406  16 minHBint10 0.0203  

7 BCUTc-1h 0.0371  17 
ETA_BetaP_

s 
0.0190  

8 maxssO 0.0355  18 SPC-6 0.0178  

9 mindssC 0.0287  19 MDEO-12 0.0152  

10 ATSc3 0.0282  20 minHBint5 0.0146  

The correlation analysis plot of the final 20 selected features is shown in Figure 7. 

 

Figure 7. Diagram of the correlation analysis of the 20 selected features. 

As shown in Figure 7, there is basically no significant correlation among the 20 selected features, 

which avoids the multicollinearity problem of the prediction model. At the same time, each variable 

can provide independent information, which improves the explanatory power and generalization 

ability of the model. From the screening results, the improved random forest scoring mechanism 

proposed in this paper is reasonable and effective. 

5.2. Quantitative Prediction of ERα Biological Activity 

In Section 5.2.1, the results of hyperparameter optimization of the basic learner after Bayesian 

optimization are shown. In Section 5.2.2, a quantitative prediction of biological activity based on an 

optimized integrated model is reported. By learning and processing a large number of drug 

molecular descriptors, our model can accurately predict and quantify the ERα biological activity of 

compounds. The ratio of training set and test set for the data in this study was set to 80% and 20%, 

respectively.  

5.2.1. Results of Bayesian Hyperparameter Optimization 

In this study, Gaussian processes are used as the prior probability model for Bayesian 

hyperoptimization, and a tree-structured Parzen estimator is used to select the next combination of 

hyperparameters to be evaluated, with a total of 50 iterations. The meanings of the main adaptation 

parameters of each base learner and their set value ranges are shown in Table 3. 

Table 3. Meanings and Ranges of the Base Learner Hyperparameters. 
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Model Hyperparameter Meaning Range 

XGBoost 

n_estimators 
Decision tree 

quantity 
[50, 100, 150, 200] 

max_depth 
Maximum depth 

of the tree 

（1,10）evenly 

distributed, step size 

is 1. 

learning_rate Learning rate 

（10-6,1）

logarithmically 

uniform distribution. 

subsample 

Ratio of 

subsamples to 

training samples 

（0.5,1）evenly 

distributed. 

Colsample_bytree 
Feature sampling 

rate 

（0.5,1）evenly 

distributed. 

MLR fit_intercept 
Whether to fit the 

intercept 
[True, False] 

SVR 

C 
Regularization 

parameter 

（10-6,1）

logarithmically 

uniform distribution. 

gamma 
Kernel value 

range 

（10-6,1）

logarithmically 

uniform distribution. 

kernel Kernel type ['linear', 'rbf'] 

This paper uses Python [59] to write the code of the Bayesian hyperparameter optimization 

algorithm. After repeated iterations of Bayes, the optimal combination of hyperparameters of each 

base learner is finally obtained as follows: 

XGBoost： 'Colsample_bytree'=0.7543, 'learning_rate'= 0.0854, 'n_estimators'=1, 'subsample'= 

0.8404, 'type'=2, 'max_depth'= 9.0. 

MLR：'fit_intercept':True 

SVR: 'C'=1.6110, 'gamma'= 0.03320, 'kernel'= linear 

5.2.2. Quantitative Prediction Results of BHO-AdaBoosting 

Based on the above optimal hyperparameter combination, we perform quantitative prediction 

of the ensemble learning model and get the following results. Figure 8 shows the comparison between 

the predicted value and the true value. 
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Figure 8. Comparison of Predicted and Actual Values. 

As shown in Figure 8, the model performs well in predicting the biological activity of ERα on 

the test set. The agreement between the predicted result and the actual value is high, and the error 

between them is small. In order to discuss the prediction accuracy, stability and generalization ability 

of our model more intuitively, we will select several classical machine learning methods to compare 

with the model in this paper, and use a variety of error indicators to evaluate the model performance. 

6. Discussion 

In this section, we compare the prediction results of the bioactivity of ERα using our proposed 

BHO-AdaBoosting model with several classical prediction models, and perform an error analysis. In 

addition, we provide predictions for the 50 candidate compounds that inhibit ERα in this study. 

6.1. Comparative Experimental Results and Error Analysis 

This study compares the computational results of the proposed method on the test set with those 

of other classical methods to verify the accuracy of the model. 

6.1.1. Comparative Experimental Results 

To test the accuracy and effectiveness of the BHO-AdaBoosting model in predicting the 

bioactivity of ERα, we selected the MLR, SVR, XGBoost models in the ensemble learning framework, 

and the widely used CNN-LSTM combination prediction model for comparative experiments. The 

comparative experiments in this research were conducted using the PyTorch framework. Table 4 

shows the parameter settings for each model. Figure 9 shows the comparative prediction results of 

each model. 

Table 4. Parameter settings of the comparison models. 

Model Parameter setting 

MLR default parameter 

SVR kernel='rbf', C=1e3, gamma=0.1 

XGBoost 

objective='reg:squarederror', 

colsample_bytree=0.3, 

learning_rate=0.1, 

max_depth=5, 

alpha=10 
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n_estimators=10 

CNN-LSTM 

a 1D convolutional layer was 

established that receives input 

features of 64 size and holds hidden 

states of 50 size. 

 

Figure 9. Comparison of the prediction results of the model test set. 

6.1.2 Error Analysis 

The performance of the Mul-BHO-XGBoost bioactivity prediction model and other prediction 

algorithms was evaluated using the root mean square error (RMSE), mean absolute error (MAE), and 

goodness of fit (R2) metrics. The formula is: 
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 （38） 

where: yi and ŷi are the actual and predicted values of the bioactivity pIC50 in the test set, respectively. 

ȳi is the mean value of the true bioactivity pIC50 value; N is the number of test samples. 

The graphical representation of the prediction error performance of each model for bioactivity 

on the test set is shown in Figure 10, while Table 5 provides the detailed prediction performance 

indicators for each model. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2023                   doi:10.20944/preprints202308.1209.v1

https://doi.org/10.20944/preprints202308.1209.v1


 22 

 

 

Figure 10. Distribution of prediction error values for different models. 

Table 5. Prediction performance metrics for different models. 

Model RMSE MAE R2 

MLR 0.9416 0.7002 0.5955 

SVR 1.1727 0.7698 0.3726 

XGBoost 1.9316 1.6702 0.1591 

CNN-LSTM 0.7486 0.5171 0.7443 

BHO-

AdaBoosting 
0.6920 0.4837 0.8155 

The proposed model in this paper exhibits superior prediction performance on the training set, 

as shown in Figure 9 and Table 5. The CNN-LSTM combined prediction model follows in 

performance. This shows the advantage of the comprehensive model in prediction to some extent. In 

addition, XGBoost has the lowest prediction accuracy, which may be due to the inadequacy of the 

dataset in this article. Less extensive datasets pose certain difficulties for models, especially complex 

models like XGBoost. Due to its high performance and data intensive requirements, XGBoost may 

not perform as well as other models on small datasets. 

By training of weak learners, the accuracy of the model proposed in this paper is greatly 

improved compared to MLR and CNN-LSTM, and the RMSE is reduced by 7.60%-26.51%. MAE is 

reduced by 6.46%-30.92%; R2 is increased by 9.57%-36.94%. The experimental results demonstrate the 

rationality of the proposed model algorithm and its suitability for predicting biological activity. 

6.2. Prediction for 50 Candidate Compounds 

Our model demonstrated good bioactivity prediction ability based on the above performance 

indicators. This paper aims to apply the model to predict the bioactivity of 50 ERα inhibitor candidate 

compounds in the database. The primary objective is to expand the search space for active 

compounds, identify more compounds with anti-breast cancer potential, and provide a reference 

value for the research and development of other anticancer drugs, including breast cancer. Table 6 

shows the predicted results of the model. 

Table 6. Activity prediction results for 50 candidate compounds. 

Rankin

g 
MF pIC50 

Rankin

g 
MF pIC50 
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1 C25H22O3 8.583  26 C24H19FO5 6.890  

2  C25H19FO3S 7.953  27  C51H67N3O10 6.885  

3  C29H33NO2 7.859  28  C29H34N2O4 6.878  

4 C31H24FNO3 7.733  29 C65H107N21O16 6.871  

5 C36H33FN2O3 7.708  30 C65H107N21O16 6.871  

6  C34H30O8S 7.602  31 C23H17FO3  6.854  

7 C36H33FN2O3 7.583  32 C26H23FO5 6.847  

8 C29H27FN2O3 7.527  33 C65H107N21O16 6.826  

9  C27H30NO4 7.510  34 C64H105N21O16 6.822  

10  C26H22O5 7.435  35  C32H34O4 6.808  

11 C30H29FN2O3 7.401  36 C62H105N21O16 6.764  

12 C31H23FO3 7.384  37  C19H26OS 6.757  

13 C30H23FO2 7.380  38 C63H101N19O17 6.723  

14 C25H20O4  7.348  39  C18H24OS 6.690  

15 C31H33FN2O3 7.344  40 C27H21FO4 6.541  

16  C29H28FNO3 7.327  41  C22H31NO3 6.494  

17  C25H19FO4  7.326  42 C21H29NO3 6.343  

18 C29H26FNO3 7.239  43  C28H26ClN3O3 6.289  

19  C31H38N2O5 7.144  44  C29H28ClN3O3 5.978  

20 C52H71N3O10 7.135  45  C26H25ClN4O2 5.686  

21  C26H21FO3 7.106  46  C23H26ClN3O3 5.544  

22  C25H22O6  7.054  47 C21H22ClN3O3 5.411  

23  C29H33NO2 7.048  48  C23H24ClN3O3  5.396  

24 C16H12Cl2M2O2 6.969  49  C23H24ClN5O2 5.386  

25  C31H38N2O4 6.911  50 C23H27ClN4O2 5.358  

Note: Since SMILES is too long to be display, the molecular formula is used. Among them, three compounds of 

C62H105N21O16 are isomers. 

Table 6 presents and ranks the predicted bioactivity values for each candidate compound. The 

predicted results can be used to make a preliminary assessment of the activity levels of these 

compounds, provide guidance for further experimental studies, and optimize the selection. 

Compound C25H22O3, 4-[2-benzyl-1-[4-(2-pyrrolidin-1-ylethoxy)phenyl]but-1-enyl]phenol (IUPAC 

name), showed high bioactivity values, suggesting that it has potential as an anticancer agent. Further 

investigations can be conducted to determine whether other properties, such as oral bioavailability 

and cardiotoxicity, make it possible to use them as an ERα inhibitor for anti-breast cancer therapy. 

Yan et al. [60] have confirmed the function of the 4-[2-benzyl-1-[4-(2-pyrrolidin-1-

ylethoxy)phenyl]but-1-enyl]phenol in the selection strategy of anti-breast cancer inhibitors, which 

supports the reliability of the results presented in this paper. 

7. Conclusion 

This study proposes a new approach for optimal modeling of anti-breast cancer drug candidates. 

The model was trained using the molecular drug database of the University of Alberta Drug Bank in 

Canada. The results were compared with those obtained using classical prediction methods, and the 

bioactivity of 50 anti-breast cancer drug candidates was predicted. The main findings of this study 

can be summarized as follows: (1) By integrating correlation calculations into the traditional random 

forest scoring mechanism, we have screened out the molecular descriptors with high predictive 
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ability and the variables with weak correlation with bioactivity. This process improves the 

interpretability of the model. (2) Considering that the prediction accuracy of the ensemble learning 

model is greatly affected by the value of hyperparameters, Bayesian hyperparameter optimization is 

used to obtain the optimal combination of hyperparameters of the base learner, which improves the 

robustness and generalization of the model. (3) Three performance indicators (RMSE, MAE, R2) are 

used to evaluate the multiple linear regression (MLR), support vector regression (SVR), extreme 

gradient boosting XGBoost, CNN-LSTM combined prediction model and the model in this paper. 

The performance comparison of the prediction results showed that the proposed quantitative 

prediction model of BHO-AdaBoosting bioactivity could significantly improve the prediction 

accuracy. (4) The model in this paper was applied to the study of 50 new compounds, and it was 

found that the compound 4-[2-benzyl-1-[4-(2-pyrrolidin-1-ylethoxy)phenyl]but-1-enyl]phenol 

showed good anti-breast cancer biological activity. 

This study can be improved in two ways: First, although the model proposed in this paper 

predicts the anticancer activity of ERα inhibitors well on the test set, we plan to expand the sample 

set to further evaluate the applicability of this model for predicting the anticancer activity of other 

anticancer candidate compounds. Second, in addition to promising anti-tumor activity, a compound 

must have favorable pharmacokinetic and safety properties in humans, as well as ADMET 

(Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties such as absorption, 

distribution, metabolism, excretion and toxicity, to qualify as a drug candidate. We intend to further 

evaluate the anticancer potential of a compound by taking these factors into account. Our efforts are 

aimed at providing more reliable techniques and tools for the identification and development of anti-

breast cancer drugs. We want to improve the treatment of cancer and the quality of life of patients. 
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