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Abstract: This research paper presents an enhanced economic load dispatch (ELD) approach using the 
Teaching-Learning-Based Optimization (TLBO) algorithm for 10 thermal units, examining the impact of Plug-
in Electric Vehicles (PEVs) in different charging scenarios. The TLBO algorithm is utilized to optimize the ELD 
problem, considering the complexities associated with thermal units. The integration of PEVs in the load 
dispatch optimization is investigated, and different charging profiles and probability distributions are defined 
for PEVs in various scenarios, including overall charging profile, off-peak charging, peak charging, and 
stochastic charging. These tables allow for the modeling and analysis of PEV charging behavior and power 
requirements within the power system. By incorporating PEVs, additional controllable resources are 
introduced, enabling more effective load management and grid stability. The comparative analysis showcases 
the advantages of the TLBO-based ELD model with PEVs, demonstrating the potential of coordinated dispatch 
strategies leveraging PEV storage and controllability. This paper emphasizes the importance of integrating 
PEVs into the load dispatch optimization process, utilizing the TLBO algorithm, to achieve economic and 
reliable power system operation while considering different PEV charging scenarios. 

Keywords: Teaching-Learning-Based Optimization (TLBO); thermal units; Plug-in Electric Vehicles (PEVs); 
comparative study; load management strategies 

 

1. Introduction 

The economic load dispatch (ELD) in power systems aims to optimize the allocation of power 
output from generating units while meeting operational constraints and maintaining supply-demand 
balance [1]. Various optimization algorithms have been developed to improve the efficiency of 
solving the ELD problem. 

One such algorithm is the ant lion optimization (ALO) algorithm, which mimics the hunting 
behavior of ant lions and has shown promising results in solving the hydrothermal power generation 
scheduling problem [2]. Another approach combines the Harris Hawks Optimizer (HHO) with 
adaptive-hill climbing to enhance the performance of solving the ELD problem [3]. The optimization 
of hybrid power systems, incorporating non-conventional distributed energy resources, has also 
gained attention, utilizing algorithms like the Social Spider algorithm for cost and emission 
optimization [4]. 

To address valve-point effects in the ELD problem, improved algorithms such as the improved 
social spider optimization algorithm (ISSO) and teaching-learning-based optimization (TLBO) have 
been proposed [5][6]. Additionally, the particle swarm optimization (PSO) method has been 
enhanced to solve dynamic load economic dispatch problems (DLED) [7]. The integration of plug-in 
electric vehicles (PEVs) into power systems introduces new challenges and opportunities. Techniques 
like PID controllers tuned through QUABCO have been proposed for frequency control in multi-area 
power systems with PEVs [8]. Furthermore, optimization problems involving the integration of PEVs 
and renewable energy resources (RERs) have been addressed, such as economic and environmental 
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load dispatch (EELD) [9]. The dynamic economic load dispatch problem with PEVs has been tackled 
using the Social Spider Algorithm (SSA) [10]. Additionally, a novel approach called dynamic non-
dominated sorting multi-objective biogeography-based optimization (Dy-NSBBO) has been 
proposed to solve the multi-objective dynamic economic emission load dispatch problem, 
considering PEVs [11]. The dispatch of energy requirements in a smart distribution grid (SDG), with 
a focus on managing PEVs, has been addressed through a new methodology [12]. Strategies 
combining PEVs and RERs have also been proposed to reduce greenhouse gas emissions from the 
transport and electric power industries [13]. 

Furthermore, an operating framework for aggregators of PEVs has been introduced, along with 
studies on the impact of PEVs on the power system and load factor [14][15]. The importance of 
considering PEV load planning strategies for cost efficiency and grid stability has been emphasized 
[16]. 

This paper focuses on evaluating the performance of the Teaching-Learning-Based Optimization 
(TLBO) algorithm in solving the economic load dispatch (ELD) problem on thermal units, 
considering the presence of Plug-in Electric Vehicles (PEVs). The objective is to assess the 
effectiveness of the TLBO algorithm in achieving enhanced economic load dispatch in the presence 
of PEVs compared to the scenario without PEVs. By conducting a comparative analysis, this study 
aims to provide valuable insights into the impact of PEV integration on system performance and 
identify strategies to optimize power generation. The results of this analysis will contribute to a better 
understanding of the benefits and challenges associated with PEV integration and help in achieving 
more efficient and reliable power system operation through enhanced economic load dispatch. 

2. Literature Review 

The literature review explores various optimization techniques applied to the economic load 
dispatch (ELD) problem, considering factors such as valve-point loading effects, renewable energy 
resources, and the integration of plug-in electric vehicles (PEVs). Several algorithms have been 
proposed to enhance the efficiency and accuracy of ELD solutions. Subathra et al. (2014) introduced 
a hybrid approach combining the cross-entropy method and sequential quadratic programming for 
ELD. Al-Betar et al. (2023) proposed a hybrid Harris Hawks optimizer. Maharana and Dash (2023) 
utilized a quantum-behaved artificial bee colony-based conventional controller. Hao et al. (2022) 
focused on the differential evolution algorithm with different mutation strategies. Singh (2022) 
presented the use of the chaotic slime mould algorithm for ELD problems. Banerjee et al. (2015) 
employed teaching-learning-based optimization considering valve point loading effects. Yuan et al. 
(2009) introduced an improved particle swarm optimization for dynamic load dispatch. Yang et al. 
(2020) proposed a modified social spider optimization method for ELD with valve-point effects. 

In addition, Adhvaryyu et al. (2016) utilized a bio-inspired social spider algorithm for dynamic 
economic emission load dispatch in hybrid power systems. Dubey et al. (2016) focused on ant lion 
optimization for short-term wind integrated hydrothermal power generation scheduling. Yang et al. 
(2014) introduced a self-learning teaching-learning-based optimization method for dynamic 
economic/environmental dispatch with multiple plug-in electric vehicle loads. Other studies 
investigated the integration of plug-in electric vehicles (PEVs) into the power system. Behera et al. 
(2019) proposed dynamic economic load dispatch with PEVs using the social spider algorithm. Ma et 
al. (2017) employed a multi-objective biogeography-based optimization approach considering PEV 
charging. Benalcazar et al. (2019) focused on short-term economic dispatch of smart distribution grids 
with active PEV involvement. Behera et al. (2020) explored economic load dispatch with renewable 
energy resources and PEVs. 

Wu et al. (2011) addressed load scheduling and dispatch for aggregators of PEVs. Yang et al. 
(2014) proposed non-convex dynamic economic/environmental dispatch considering PEV loads. 
Trongwanichnam et al. (2019) studied the impact of PEV load planning on load factor and total 
generation cost in a power system. Additionally, several optimization algorithms were enhanced for 
large-scale optimization and solving the economic dispatch problem, such as the improved social 
spider algorithm by Baş and Ülker (2021) and the modified social spider algorithm by Elsayed et al. 
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(2016). Deb et al. (2021) presented a methodology-based gradient-based optimizer for economic load 
dispatch. The mentioned studies demonstrate the diverse range of optimization techniques utilized 
in economic load dispatch, including hybrid algorithms, bio-inspired algorithms, particle swarm 
optimization, and teaching-learning-based optimization. They also highlight the significance of 
considering valve-point loading effects and the integration of plug-in electric vehicles in achieving 
more efficient and sustainable power system operation. 

3. Formulation of Mathematical Optimization Model 

Minimization of total generation cost in economic load dispatch with 10 Thermal Units. The aim 
of economic load dispatch is to minimize the overall generation cost, which encompasses the sum of 
fuel costs associated with all thermal units.  

3.1. ELD Formulation 

Mathematically, this objective can be represented by the following expression: 
Total Cost = ∑ (ai * Pi2 + bi * Pi + ci)          (1) 

Here, ai, bi, and ci represent the coefficients associated with the quadratic, linear, and constant 
terms, respectively, while Pi corresponds to the power output of each thermal unit. The economic 
load dispatch problem formulation focuses on optimizing the power generation levels of the 10 
thermal units within the power system to achieve the minimum total cost of generation. 

Where, 
Pi = Power output of thermal unit i (where i = 1, 2, ..., 10) 
ai, bi, ci = Fuel cost coefficients for thermal unit i (specific to each unit) 
The economic load dispatch problem must satisfy the following constraints. The total power 

output of all units must meet the power demand requirement. Mathematically, it can be expressed 
as: 

∑Pi = Power Demand                                     (2) 

The power output of each thermal unit must lie within its minimum and maximum power limits. 
Mathematically, the constraint for each unit i can be expressed as: 

Pimin ≤ Pi ≤ Pimax                                         (3) 

The rate at which the power output of each thermal unit can change is limited. This constraint 
ensures a smooth transition between power levels. Mathematically, the constraint for each unit i can 
be expressed as: 

Pi ramp max ≤ P i – Pi previous ≤ Pi ramp max       (4) 

Where: 
Pi ramp max: Maximum ramp rate for thermal unit i 
Pi previous: Power output of thermal unit i in the previous time period 
The formulated problem aims to find the optimal power output levels for each thermal unit that 

minimize the total generation cost while satisfying the power demand and operational constraints. 
Solving this problem will provide the economic dispatch solution for the given power system 
configuration. 

3.2. PEVs in ELD Formulation 

To incorporate Plug-in Electric Vehicles (PEVs) in the economic load dispatch problem 
formulation, we need to consider the additional power demand and the charging characteristics of 
the PEVs. Here's an expanded formulation that includes PEVs: 

3.2.1. Variables selection 

Pi: Power output of thermal unit i (where i = 1, 2, ..., 10) P_PEV: Power demand from Plug-in 
Electric Vehicles 
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3.2.2. Problem Formulation 

The objective remains the same, i.e., to minimize the total generation cost. The objective function 
now includes the fuel costs for thermal units and the cost of charging PEVs. Mathematically, the 
objective function can be expressed as: 

Minimize: Total Cost = ∑ (a i * P i2 + bi * Pi + ci) + Cost PEV 
Where:  
Cost PEV: Cost of charging Plug-in Electric Vehicles (depends on the charging rate and pricing 

scheme) 

3.2.3. Constraints 

Power Demand Constraint 

The total power output of all units and the charging demand from PEVs must meet the overall 
power demand requirement. Mathematically, it can be expressed as: 

∑Pi + PPEV = Power Demand 

Power Output Limits 

The power output of each thermal unit and the charging demand from PEVs must lie within 
their respective minimum and maximum power limits. Mathematically, the constraint for each unit 
i can be expressed as: 

Pimin  ≤  Pi  ≤  Pimax  0  ≤  PPEV  ≤  PPEVmax 

Ramp Rate Limits 

The rate at which the power output of each thermal unit can change and the charging demand 
from PEVs can change is limited. This constraint ensures a smooth transition between power levels. 
Mathematically, the constraint for each unit i can be expressed as: 

Pi ramp max ≤ Pi – Pi previous ≤ Pi ramp max P PEV ramp max ≤ P PEV – P PEV previous ≤ P_PEV ramp max 

Where:  
Pi ramp max: Maximum ramp rate for thermal unit i  
P PEV ramp max: Maximum ramp rate for PEV charging demand  
Pi previous: Power output of thermal unit i in the previous time period  
P PEV previous: Charging demand from PEVs in the previous time period 

Table 1. 

Table 1.1 Define the PEV charging profile probability distribution 

0.100 0.100 0.095 0.070 0.050 0.030; 
0.010 0.003 0.003 0.013 0.020 0.020 
0.020 0.020 0.020 0.007 0.003 0.003 
0.015 0.028 0.050 0.095 0.100 0.100 

Table 1.2 Define the PEV charging profile for Off Peak  

0.185 0.185 0.090 0.090 0.040 0.040 
0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.185 0.185 

Table 1.3 Define the PEV charging profile probability distribution for peak charging 

0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 
0.185 0.185 0.185 0.185 0.090 0.090 
0.040 0.040 0.000 0.000 0.000 0.000 
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Table 1.4 Define the PEV charging profile probability distribution for the stochastic 

case 

0.057 0.049 0.048 0.024 0.026 0.097 
0.087 0.048 0.011 0.032 0.021 0.057 
0.038 0.022 0.021 0.061 0.032 0.022 
0.028 0.022 0.055 0.025 0.035 0.082 

These tables define the charging profiles and probability distributions for PEVs in different 
scenarios: overall charging profile, off-peak charging, peak charging, and stochastic charging. They 
help to model and analyze the charging behavior and power requirements of PEVs in the power 
system. 

3.3. Teaching-Learning-Based Optimization (TLBO) 

TLBO is selected as the optimization algorithm for solving the economic load dispatch problem. 
TLBO is a population-based metaheuristic algorithm inspired by the teaching and learning process 
in a classroom. It incorporates the concepts of teachers and students to optimize the objective 
function. Teaching Learning Based Optimization (TLBO) algorithm is used to solve an optimal power 
dispatch problem in a power system. The TLBO algorithm aims to find the optimal power output 
solution for a set of thermal units while considering factors such as fuel cost, load demand, and the 
presence of plug-in electric vehicles (PEVs). 

The algorithm begins by defining the power system data, including the 10 number of thermal 
units, their fuel costs, and minimum and maximum load levels. It also incorporates data related to 
PEVs, such as their charging and discharging power capacities, and the total number of PEVs. Next, 
the TLBO algorithm parameters are set, including the maximum number of iterations and the 
population size. The fitness function is defined, which calculates the total cost of a power output 
solution based on the fuel cost, PEV discharging cost, and a penalty term for deviations from the total 
load demand. The TLBO algorithm iterates through a series of steps for a specified number of 
iterations. The population is initialized with random power output solutions within the feasible range 
for each thermal unit. The fitness of each individual in the population is evaluated using the defined 
fitness function. 

Within each iteration, the algorithm goes through a teacher-learner process. The best individual 
in the population is selected as the "teacher" for the current iteration. Each learner, except the teacher, 
updates its solution by combining information from the teacher and other learners. This learning 
process involves mutation and the application of a PEV charging profile. 

If the mutated solution has improved fitness and the power output is non-negative, the 
individual's solution is updated. The best individual in the population is determined based on fitness, 
and it replaces the worst individual. The best fitness value for the current iteration is printed to track 
progress. Throughout the 24-hour period, the algorithm stores the best individual and its fitness for 
each hour. After the algorithm completes, the best individual and its fitness for the entire 24-hour 
period are determined. Additionally, the maximum fuel cost, mean fuel cost, and standard deviation 
of fitness values are calculated. 

The results are printed, including the optimal power dispatch for the 24-hour period, the mean 
fuel cost, maximum fuel cost, total load demand, and the standard deviation of fitness values. Two 
plots are generated: one displaying the incremental cost versus power output and another showing 
the optimal dispatch for the 24-hour period. Finally, the execution time of the code is measured and 
printed. The TLBO algorithm optimizes the power dispatch by iteratively improving the population's 
solutions based on the defined fitness function and the constraints of the power system. 

TLBO Parameters 

The parameters of the TLBO algorithm are determined, including the population size, the 
number of iterations, and the teaching factor. These parameters play a crucial role in the convergence 
and performance of the optimization algorithm. 
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Table 2. 

TLBO algorithm Parameter used for test system (MATLAB)  

Maximum 

number of 

iterations 

Number of 

particles 
% Function for evaluating fitness 

100 30 

fitness = @(P, c, pev_discharging_power, pev_num, 
total_load_demand)sum(c .* P) + 

sum(pev_discharging_power) * pev_num + 0.01 * 
(sum(P) - total_load_demand)^2 

4. Power System Modeling 

The power system is modeled, considering the characteristics and constraints of 10 thermal 
units. This includes the fuel cost functions, power output limits, ramp rate limits, and valve-point 
loading effects. The modeling takes into account the economic and operational aspects of the power 
system. 

Incorporating Plug-in Electric Vehicles (PEVs) 

The study investigates the impact of plug-in electric vehicles on the economic load dispatch 
problem. The characteristics of PEVs, such as their charging/discharging rates and energy demands, 
are integrated into the power system model. This allows for a comparative analysis of the economic 
load dispatch with and without the presence of PEVs. 

 

Figure 1. Case-1 Optimal Power Dispatch for 24-Hour Period With PEV. 
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Figure 2. Case-2 Optimal Power Dispatch for 24-Hour Period With PEV for. 

 

Figure 3. Case-3 Optimal Power Dispatch for 24-Hour Period With PEV for peak charging. 
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Figure 4. Case-4 Optimal Power Dispatch for 24-Hour Period With PEV for peak charging. 

 

Figure 5. Optimal Power Dispatch for 24-Hour Period without PEV. 
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metrics are compared between the two cases. This analysis provides insights into the effects of PEVs 
on the economic dispatch and the overall power system operation. 

5.1. Performance Evaluation 

Case-1 (Probability distribution of PEV) exhibits a mean fuel cost of $21.77/hr and a maximum 
fuel cost of $68864.00/MWh. The total load demand remains constant at 500000.00 MW, with an 
execution time of 6.56 seconds. 

In Case-2 (Off-Peak charging), the mean fuel cost slightly increases to $23.06/hr, while the 
maximum fuel cost decreases to $61267.00/MWh. The total load demand and execution time remain 
the same at 500000.00 MW and 7.15 seconds, respectively. 

Case-3 (Peak charging) showcases a reduced mean fuel cost of $19.10/hr compared to the other 
cases, with a maximum fuel cost of $45783.00/MWh. The total load demand and execution time 
remain constant at 500000.00 MW and 6.78 seconds, respectively. 

Case-4 (Stochastic case), the mean fuel cost increases to $26.87/hr, and the maximum fuel cost 
rises to $55013.00/MWh. Similar to the other cases, the total load demand remains at 500000.00 MW, 
while the execution time is 6.88 seconds. 

The comparative analysis highlights the impact of different PEV charging scenarios on economic 
load dispatch. Off-Peak charging (Case-2) demonstrates lower maximum fuel costs, while Peak 
charging (Case-3) exhibits a reduced mean fuel cost. The Probability distribution of PEV (Case-1) and 
the Stochastic case (Case-4) present varying fuel costs compared to the other cases. These findings 
contribute to understanding the implications of different PEV charging strategies on the economic 
operation of power systems. 

Table 3. Ten Generator test system: Comparison of result with PEV in different load cases. 

CASE Thermal Units Unit-1 Unit-2 Unit-3 Unit-4 Unit-5 Unit-6 Unit-7 Unit-8 Unit-9 Unit-10

Case-1 
Probability 

distribution of 
PEV  

0.243 3.7925 0.2069 0.0701 0.1848 0.2798 0.1493 0.0043 0.0003 0.0737 

Case-2 
Off - Peak 
charging 

1.6264 0.446 0.1625 0.0994 0.0278 0.053 0.5449 0.4367 0.6878 0.9252 

Case-3 Peak charging 0.0888 0.9228 0.3267 0.0966 1.9965 0.2455 0.3251 0.47 0.3964 0.1534 
Case-4 Stochastic case 0.3425 0.1423 0.3654 0.4364 0.9664 0.6309 1.6361 0.2982 0.2223 0.0002 
 No. of Thermal Units 

Without PEV  
0.3187 0.6818 0.3734 0.1667 0.2281 1.741 0.1563 0.2668 0.9075 0.1464 

Table 4. Output for 10 Generator using TLBO with different loading. 

Column1 

Case-1 

Probability 

distribution of 

PEV  

Case-2 Off - 

Peak charging 

Case-3 Peak 

charging 

Case-4 

Stochastic case  
Without PEV 

Mean fuel 
cost:  

$21.77/hr  $23.06/hr $19.10/hr $26.87/hr $18.39/hr 

Maximum 
fuel cost:  

$68864.00/MWh $61267.00/MWh $45783.00/MWh $55013.00/MWh $59860.00/MWh 

Total load 
demand:  

500000.00 MW 500000.00 MW 500000.00 MW 500000.00 MW 500000.00 MW 

Execution 
time:  

6.56 seconds  7.15 seconds 6.78 seconds 6.88 seconds  5.92 seconds 
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The performance of the TLBO algorithm is evaluated in terms of convergence speed, solution 
quality, and computational efficiency. The algorithm's performance is assessed based on its ability to 
find optimal or near-optimal solutions for the economic load dispatch problem. 

5.2. Results and Analysis 

The analysis of these results reveals the impact of different PEV charging scenarios on the 
economic operation of power systems. Off-peak charging and peak charging strategies can 
potentially lead to cost savings during specific periods, while the stochastic case introduces 
additional complexities and uncertainties. These findings can assist in developing optimized load 
management strategies and highlight the need for efficient utilization of PEVs to achieve enhanced 
economic load dispatch in power systems. The obtained results are analyzed and interpreted to draw 
conclusions regarding the effectiveness of the TLBO algorithm in solving the enhanced economic 
load dispatch problem. The impact of PEVs on the economic dispatch and the potential benefits or 
challenges associated with their integration into the power system is discussed. 

6. Discussion and Future Work 

The results of the comparative analysis provide valuable insights into the economic load 
dispatch (ELD) problem considering different Plug-in Electric Vehicle (PEV) charging scenarios. This 
discussion explores the implications of the findings and suggests potential avenues for future 
research. 

Firstly, the analysis highlights the impact of PEV charging strategies on the overall system 
performance. Off-Peak charging (Case-2) shows potential cost savings during low-demand periods, 
while Peak charging (Case-3) demonstrates the effectiveness of utilizing PEVs during high-demand 
periods. These findings suggest the importance of developing optimized charging strategies that 
align with the system's load profile and aim to balance electricity supply and demand efficiently. 

Furthermore, the stochastic nature of PEV charging in Case-4 introduces additional complexities 
and uncertainties, resulting in higher fuel costs. This highlights the need for robust optimization 
techniques and stochastic modeling approaches to address the uncertainties associated with PEV 
charging behavior and their integration into power systems. Future work can focus on developing 
advanced optimization algorithms and stochastic modeling techniques to better capture and manage 
the variability and uncertainties in PEV charging patterns. Additionally, the comparative analysis 
sheds light on the trade-offs between fuel costs and system performance. The results indicate that 
while PEV integration can increase fuel costs in some scenarios, it also offers opportunities for load 
management and grid stability. Future research can explore innovative demand response 
mechanisms, tariff structures, and pricing strategies to incentivize PEV owners to align their charging 
patterns with system requirements, ultimately leading to more cost-effective and efficient operation 
of power systems. Moreover, the execution time analysis provides insights into the computational 
requirements of different cases. Future work can focus on optimizing the computational efficiency of 
the load dispatch optimization algorithms to reduce the execution time further, enabling real-time or 
near-real-time decision-making in practical applications. 

The analysis can be extended to consider a larger-scale integration of PEVs and their potential 
impact on distribution networks, grid infrastructure, and power quality. Future studies can explore 
the challenges and opportunities associated with managing the increased demand and load 
variability from a larger fleet of PEVs and investigate the potential benefits of coordinated charging 
and vehicle-to-grid (V2G) strategies. In conclusion, the discussion emphasizes the importance of 
further research to refine and expand the understanding of the economic load dispatch problem in 
the presence of PEVs. Future work can focus on developing advanced optimization algorithms, 
stochastic modeling approaches, demand response mechanisms, and grid integration strategies to 
leverage the full potential of PEVs in achieving economic and reliable operation of power systems. 
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7. Potential Future Work 

7.1. Advanced Optimization Algorithms 

Further research can focus on developing and implementing advanced optimization algorithms, 
such as genetic algorithms, particle swarm optimization, or hybrid approaches, to enhance the 
performance and efficiency of economic load dispatch (ELD) with PEVs. These algorithms can be 
tailored to address the specific challenges and complexities associated with integrating PEVs into 
power systems. 

7.2. Stochastic Modeling and Uncertainty Analysis 

As the stochastic case (Case-4) highlights the uncertainties associated with PEV charging 
behavior, future work can delve into advanced stochastic modeling techniques and uncertainty 
analysis to better capture and manage the variability and uncertainties in PEV charging patterns. This 
can enable more accurate decision-making and robust optimization of ELD with PEVs. 

7.3. Demand Response and Pricing Strategies 

Investigating innovative demand response mechanisms, tariff structures, and pricing strategies 
can encourage PEV owners to align their charging patterns with system requirements and optimize 
their energy consumption. Future research can explore the design and evaluation of incentive-based 
schemes that promote load shifting and smart charging strategies to improve system efficiency and 
minimize costs. 

7.4. Grid Integration and Infrastructure Considerations 

As the scale of PEV integration increases, it becomes crucial to assess the impact on distribution 
networks, grid infrastructure, and power quality. Future studies can focus on the challenges and 
opportunities associated with managing the increased demand and load variability from a larger fleet 
of PEVs, while considering the integration of vehicle-to-grid (V2G) technologies to support 
bidirectional power flow and grid services. 

7.5. Real-Time Decision-Making and Control Strategies 

Further work can explore the development of real-time or near-real-time decision-making and 
control strategies for ELD with PEVs. This can involve the integration of advanced sensing, 
communication, and control technologies to enable dynamic load management, optimal scheduling, 
and active power balancing in response to changing grid conditions and PEV charging dynamics. 

By addressing these areas, researchers can contribute to the optimization, reliability, and 
sustainability of power systems in the presence of increasing PEV penetration. 

8. Conclusions 

This research paper has presented a comprehensive analysis of the economic load dispatch 
(ELD) problem considering different Plug-in Electric Vehicle (PEV) charging scenarios. The 
comparative analysis of four cases, namely Off-Peak charging, Probability distribution of PEV, Peak 
charging, and Stochastic case, has provided valuable insights into the impact of PEV integration on 
the operation and optimization of power systems. 

The results have highlighted the trade-offs between fuel costs and system performance in 
different charging scenarios. Off-Peak charging has shown potential cost savings during low-demand 
periods, while Peak charging has demonstrated the effectiveness of utilizing PEVs during high-
demand periods. The stochastic case has introduced complexities and uncertainties, resulting in 
higher fuel costs. The findings underscore the importance of developing optimized charging 
strategies that align with the system's load profile and aim to balance electricity supply and demand 
efficiently. Additionally, the analysis has highlighted the need for advanced optimization algorithms, 
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stochastic modeling approaches, demand response mechanisms, and grid integration strategies to 
address the challenges and uncertainties associated with PEV charging behavior. 

Furthermore, the research has emphasized the potential benefits of coordinated charging and 
vehicle-to-grid (V2G) strategies, which can enhance system flexibility, grid stability, and overall 
power system efficiency. Overall, this research contributes to the understanding of the economic load 
dispatch problem in the presence of PEVs and provides a foundation for future studies in optimizing 
power system operation with PEVs. By considering the trade-offs, challenges, and opportunities 
associated with PEV integration, researchers and practitioners can develop strategies and policies 
that facilitate the efficient, reliable, and sustainable operation of power systems in the era of electric 
transportation. 
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