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Abstract We show that the compound samarium hexaboride is a strong topological insulator using the 

eigenvalues of the space inversion operator in the low-energy limit of the periodic Anderson model. 

Additionally, we assume the presence of the ferromagnetic exchange interaction (M). A Dirac cone like feature 

in the surface state energy spectra is observed for M equals zero in a certain parameter range. For M not equal 

to zero, there is no Kramers degeneracy. We have been able to show that this phase corresponds to the quantum 

anomalous Hall state by calculating Berry curvature and the Chern number. Using Floquet theory, we further 

show that the access to a novel state with broken time reversal symmetry is possible due to the normal incidence 

of circularly polarized optical field on the surface of the compound despite M being absent.  

Keywords: Periodic Anderson model; Dirac cone; Kramers degeneracy; Quantum anomalous Hall 

state; Chern number; Floquet theory 

 

1. Introduction 

This communication is on a topical issue of the mixed valence compound SmB6.[1–5]—a narrow 

gap topological Kondo insulator (TKI) which, with a high-temperature metallic phase, transforms 

into a paramagnetic charge insulator below 45 K. It has been suggested [6,7], as well as it is 

increasingly apparent [8–10] during the past several years, that SmB6 is a non-trivial topological 

insulator. This has generated great deal of excitement in the condensed matter physics community 

and it still remains a matter of avid debate [6]. Despite the supporting evidence for the TKI scenario 

[1–10], there is no prognosis regarding the nature of the bulk and surface states of SmB6 [11–13]. In 

this paper our primary aim is to resolve this issue. We consider an extended periodic Anderson model 

(EPAM) [14] for the compound SmB6  for this purpose. We introduce here the exchange interaction 

(M) assuming the presence of the ferromagnetic magnetic impurities in the system. The slave boson 

(SB) mean-field-theoretic Anderson model of Legner [15] refers to a simple cubic lattice with one 

spin-degenerate orbital per lattice site each for 𝑑 and 𝑓  electrons. We consider the low-energy 

version of this model together with the exchange interaction. Our minimalistic Hamiltonian, based 

on the slave boson (SB)mean field theory of ref. [15], captures essential physics of TKI in the presence 

of the coulomb repulsion 𝑈௙  ( >> 𝑡ௗଵ) between f electrons on the same site, and the spin-orbit 

hybridization V. The parameter V is the harbinger of a topological dispensation. The terms (𝑡ௗଵ, 𝑡௙ଵ) 

are the nearest neighbor hopping parameters for 𝑑 and 𝑓 electrons. There are three other parameters 

(b, λ, ξ ) of our theory [14]. While the term ξ enforces the fact that there are equal number of d and f 

fermions, the parameter b represents a c-number slave-boson field. We note that the constraint 𝑈௙ >> 𝑡ௗଵ imposes a non-holonomic constraint, viz. the exclusion of the double occupancy. The SB-protocol 

provides a platform to reformulate this nonholonomic constraint into a holonomic constraint that can 

be implemented with the Lagrange multiplier λ. We found that λ = −6𝑡௙ଵ + 6𝑏ଶ𝑡௙ଵ, and ξ = −3𝑡ௗଵ +3𝑡௙ଵ. The admissible value of  𝑏ଶ is 1−. Since the method to obtain them is explained clearly in ref. 

[14] we will not reproduce the same here. We observe a Dirac cone like feature at  𝑘 = 0 momentum 

in the surface state energy spectra for M = 0 [16], upon writing the SB Hamiltonian in the Dirac basis 

similar to the Bernevig–Hughes–Zhang (BHZ) model [17].  We obtain the Z2 invariant (Z2 = −1) 

using the eigenvalues of the space inversion operator in the Fu-Kane framework [18].  This is the 
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conclusive evidence of the fact that SmB6 is a strong topological insulator for M = 0. By calculating 

Berry curvature and the Chern number we have been able to show that M≠ 0 corresponds to the 

quantum anomalous Hall state. It must be mentioned here that our low-energy model has been found 

adequate enough to capture important features of SmB6, although the ground state of the compound 

SmB6 has been shown to be is a quartet state [1].  

The exotic Floquet topological phases [19–26] with a high tunability could be realized using  the 

circularly polarized optical field (CPOF). Analogous to the Bloch theory, here one can transform the 

time-dependent Hamiltonian problem to a time-independent one using the Floquet’s theorem [27–

30]. The combinations of the Floquet theory with dynamical mean field theory [31], and slave boson 

protocol [32] were also formulated for strongly correlated systems. Our approach is in acquiescence 

to the latter. We use the Floquet theory[27–30,33] in section 3 in the high-frequency limit to examine 

the Co3 Sn2 S2 thin film system. Interestingly, the incidence of CPOF leads to the time reversal 

symmetry (TRS) broken  phase despite M = 0. The conclusive evidence of this phase being quantum 

spin Hall (QSH) phase is presented by calculating the spin Chern number [34,35].  

The paper is organized as follows: In section 2, we calculate Z2 invariant using the eigenvalues 

of the space inversion operator with in the Fu-Kane framework [18].  In section 3, we are able to 

show the emergence of a novel phase with broken-TRS by the normal incidence of tunable CPOF 

despite M = 0. For this purpose, we make use of the Floquet theory in the high-frequency limit to 

investigate the system. The paper ends with discussion and brief concluding remarks in section 4. 

2. Surface State Hamiltonian in SB formalism and the Z2 invariant 

A. Surface State Hamiltonian  

We treat the model Hamiltonian (𝐻௉஺ெ(𝑏, λ, 𝜉 )) in Eq.(1) of the ref.[14] in the low-energy limit 

below. All energies in our calculation/graphical representation below are expressed in units of the 

first neighbor hopping 𝑡ௗభ for d-electrons as this corresponds to the kinetic energy of these itinerant 

electrons and therefore the most dominant. In the above limit, the following replacements are 

necessary : sin൫𝑎௝𝑘௝൯  → 𝑎௝𝑘௝ + O൫𝑎௝ଷ𝑘௝ଷ൯, cos൫𝑎௝𝑘௝൯ → (1 −(ଵଶ 𝑎௝ଶ𝑘௝ଶ))  where 𝑘௝  (j = ( x, y, z)) are 

momentum components, and 𝑎௝ is the lattice constant along j direction. Furthermore, in order to 

obtain surface state Hamiltonian, we make the replacement  𝑎𝑘௭ → −𝑖𝑎 ∂୸ and  look for states 

localized within the surface z = 0 of the form 𝑒𝑥𝑝(−𝑖𝜒𝑧) . Furthermore,  we seek such a value of the 

unknown wave number 𝜒(𝜒 = −𝑖𝑞, 𝑞 > 0) for which the exponential 𝑒𝑥𝑝 ቀ− ௔௤௭௔ ቁ ≪ 1 for 𝑧 > 0. For 

example, if we assume 𝑎𝑞 ~1 the exponential 𝑒𝑥𝑝 ቀ− ௔௤௭௔ ቁ ~ exp(−10), i,e vanishingly small, for 𝑧 ~50𝑛𝑚 given that SmB6  cubic crystal structure with lattice constant a = 0.413 nm.  Therefore, 𝜒 =−𝑖𝑞, 𝑞 > 0 ensures a decaying term for z > 0 in the surface states. Upon including the exchange 

coupling M ,  we find that  the surface state Hamiltonian  ℎୱ୳୰୤ୟୡୣ(𝑘, 𝑞 , 𝜇, 𝑏, 𝑀) is ℎୱ୳୰୤ୟୡୣ= ቆϦା ℒଵ ℒଵற Ϧିቇ, ℒଵ = ൬ 0 −𝑖𝐴ଵ𝑎𝑞−𝑖𝐴ଵ𝑎𝑞 0 ൰ ,     Ϧା=Ϧ൫𝑘௫, 𝑘௬, 𝑞 , 𝜇, 𝑏, 𝑀൯ =                ൫𝜖(𝑘, 𝑞 , 𝜇, 𝑏)൯𝜏଴ + 𝒏൫𝑘௫, 𝑘௬, 𝑞 , 𝑏൯. 𝝈 +  𝑀𝜎௭ ,    Ϧି = Ϧ∗൫−𝑘௫, −𝑘௬  𝑞 , 𝜇, 𝑏, −𝑀൯ 

(1)

The two blocks (Ϧା, Ϧି),characterized by the pseudo-spin indices ( +, −), are related to each other 

by TRS for 𝑀 = 0 , and   𝒏൫𝑘௫, 𝑘௬, 𝑞 , 𝑏൯ =  ( 𝐴ଵ𝑎𝑘௫, 𝐴ଵ𝑎 𝑘௬, 𝜗൫𝑘௫, 𝑘௬, 𝑞 , 𝑏൯).  The other 

parameters/functions in (1) are 𝐴ଵ =   2𝑉𝑏, 𝒌 = ൫𝑘୶, 𝑘୷൯, 𝑘ଶ = (𝑘୶ ଶ + 𝑘௬ଶ),  𝜖(𝑘, 𝑞 , 𝜇, 𝑏) = 𝜖଴(𝜇, 𝑏)  −𝐷ଵ(𝑏)𝑎ଶ𝑞ଶ + 𝐷ଵ(𝑏)𝑎ଶ𝑘ଶ + O(𝑎ସ𝑞ସ) +  O(𝑎ସ𝑘ସ)    

𝜖଴(𝜇, 𝑏) =−𝜇 + [௕మଶ 𝜖௙ − 3𝑡ௗଵ − 3𝑡௙ଵ − 6𝑡ௗଶ − 6𝑡௙ଶ𝑏ଶ − 4𝑡ௗଷ − 4𝑡௙ଷ 𝑏ଶ],  

𝐷ଵ(𝑏) =[  
௧೏భା௕మ௧೑భଶ  +2(𝑡ௗଶ + 𝑏ଶ𝑡௙ଶ) + 2(𝑡ௗଷ + 𝑏ଶ𝑡௙ଷ)],  
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𝜗(𝑘, 𝑞, 𝑏)    = 𝜗଴(𝑏) −𝐵ଵ(𝑏)𝑎 ଶ𝑞ଶ  +𝐵ଵ(𝑏)𝑎ଶ𝑘ଶ + O(𝑎ସ𝑞ସ) +  O(𝑎ସ𝑘ସ),   

𝜗଴(𝑏) =  [− ௕మఢ೑ଶ − 6𝑡ௗଶ + 6𝑡௙ଶ𝑏ଶ − 4𝑡ௗଷ + 4𝑡௙ଷ 𝑏ଶ],   

𝐵ଵ(𝑏) =[ 
௧೏భି௕మ௧೑భଶ  +2(𝑡ௗଶ − 𝑏ଶ𝑡௙ଶ) + 2(𝑡ௗଷ − 𝑏ଶ𝑡௙ଷ)]. (2) 

Here the terms ൫𝑡ௗଵ , 𝑡௙ଵ൯, (𝑡ௗଶ,  𝑡௙ଶ), and ൫𝑡ௗଷ , 𝑡௙ଷ൯, respectively, are the NN, NNN, and NNNN 

hopping parameters [14] for 𝑑 and 𝑓 electrons, 𝜖௙ is the onsite energy of the 𝑓 electrons, μ is the 

chemical potential of fermion number, 𝜎௫,௬,௭  are the Pauli matrices, and 𝜎଴  is the 2×2 identity 

matrix.   On a quick side note,  we observe   that ℎୱ୳୰୤ୟୡୣ(𝑘, 𝑞 , 𝜇, 𝑏, 𝑀 = 0)  corresponds to Qi-Wu-

Zhang (QWZ) model[35]. As shown by these authors, the situation corresponds to the  QSH state, 

for the spin Hall conductance of Ϧ(൫𝑘௫, 𝑘௬, 𝑞 , 𝜇, 𝑏, 𝑀 = 0൯ and  Ϧ∗൫−𝑘௫, −𝑘௬  𝑞 , 𝜇, 𝑏, −𝑀 = 0൯ are 

not zero but the net Hall conductance of the system described by the model is zero.  

For calculating the Z2 invariant, the eigenvalues of the parity operator needs to be obtained. The 

objective could be accomplished with relative ease if the Hamiltonian in (1) is written down in the 

Dirac basis similar to the Bernevig–Hughes–Zhang (BHZ) model [17] presented over a decade and 

half ago for quantum wells. We now write the Hamiltonian in (1) in Dirac basis similar to the BHZ 

model:  ℎୱ୳୰୤ୟୡୣ஻ு௓ (𝑘  𝑞 , 𝜇, 𝑏, 𝑀) = ఢ೏ାఢ೎ଶ 𝐼ସ×ସ + ∑ 𝑑௔(𝑘, 𝑞 , 𝜇, 𝑏)γ௔ + 𝑀𝜎଴ ⨂𝜏௭  ௔ୀ଴,ଵଶ,ଷ,ହ   (3)

where 𝑑଴ = ఢ೏ିఢ೎ଶ  , 𝜖ௗ = ( 𝜖(𝑘, 𝑞 , 𝜇, 𝑏) + 𝜗(𝑘, 𝑞 , 𝑏)), 𝜖௖ =   (𝜖(𝑘, 𝑞 , 𝜇, 𝑏) − 𝜗(𝑘, 𝑞 , 𝑏)) ,   𝑑ଵ =−𝑖𝐴ଵ𝑎𝑘௬, 𝑑ଶ = 𝑖𝐴ଵ𝑎𝑘௫, 𝑑ଷ = 𝐴ଵ𝑎𝜒, and 𝑑ହ = 0. The Dirac matrices (γ଴, γଵ, γଶ, γଷ, γହ) in con-travariant 

notations are  γ଴ = 𝜎 ௭⨂𝐼ଶ×ଶ , γ௝ = 𝑖𝜎 ௬⨂𝜏 ௝ , 𝑗 = 1,2,3 , and  γହ = 𝑖γ଴ γଵ γଶ γଷ. The Pauli matrices σ  

and τ are acting in the space of bands that give rise to Kramers degeneracy (see Figure 1).  

B. Surface state spectrum 

The eigenvalues ∈௝ =  ∈௝ (𝑠, 𝜎, 𝑘, 𝑏, 𝑀) of the matrix (3) are given by a quartic and, therefore, 

we use Ferrari’s  solution  of a quartic equation (see Appendix A). We have plotted the surface state 

energy spectra (SSES) given by Eq. (A.2) as function of the dimensionless wave vector 𝑎𝑘  in Figures 

1(a) and 1(b). Since the conduction bands are partially empty, the surface state will be metallic. These 

figures correspond to unbroken TRS (M= 0). It will be shown below, calculating the Z2 invariant 

using the eigenvalues of the space inversion operator, that the figures correspond to QSH phase. 

There should be a surface Dirac cone (or at least a Kramers degeneracy) at k=0, as in ref. [16]. We 

indeed observe a Dirac cone like feature here (see Figure 1(a) and 1(b)) in a certain parameter-

window. The numerical values of the parameters used in the plots are 𝑡ௗభ = 1, 𝑡௙భ = −0.8, 𝑡ௗమ = 0.01, 𝑡௙మ = 0.01, 𝑡ௗయ = 0.001, 𝑡௙య = 0.001, 𝜖௙ = − 0.02, V =  0.1, b =0.98,μ =  0,   𝑀 = 0, 0.3 and  𝑈௙ ≫ 𝑡ௗభ . In 

both the figures, 𝑡௙ଵ is negative and, therefore, the figures correspond to the insulating bulk. It may 

be noted that one needs  𝑡௙భ~ 𝑡ௗభ to access the Dirac-cone feature. The Dirac-cone feature of SSES 

agrees with several experimental observations reported earlier, such as those by scanning-tunneling 

microscopy [36,37], angle-resolved photoemission spectroscopy (ARPES)[38,39] and the circular 

dichroism ARPES[40], and so on. Here, the red curve corresponds  to the spin-up valence band ∈ଷ (𝑠 = −1, 𝜎 = +1, 𝑘, 𝑏), and the green curve to spin-down conduction band ∈ଶ (𝑠 = +1, 𝜎 =−1, 𝑘, 𝑏) . The curves display the band-inversion close to the Fermi energy represented by the 

horizontal solid line. In Figure 1(c), though M= 0 , 𝜇 ≠ 0. We observe that the states corresponding 

to momenta ak = (±2,0) or ( 0, ±2) in Figure 1(a) are degenerate. Furthermore, they satisfy the 

condition 𝑎𝒌 + 𝑎𝑮 =   −𝑎𝒌 where a𝑮 is a reciprocal   lattice vector.  For example, for ak = 

(±2,0) and 𝑎𝑮 = (∓4,0).  Of course, there are other possibilities too, for example ak = ( ±√2, ±√2).  

These possibilities we are not taking into account for the simple reason that they do not satisfy the 

condition 𝒌 + 𝑮 =  −𝒌.     In Figure 1(d), M≠ 0 and therefore TRS is broken. There is no Kramers 

degeneracy as could be seen in this figure. The Figure 1(d) corresponds to QAH as is shown below.  
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(a)                                           (b) 

    

                   (c)                                             (d) 
Figure 1. The plots of surface state energy spectrum given by Equation (14) as a function of the 

dimensionless wave vector    𝑎𝑘. The numerical values of the parameters used in the plots are 𝑡ௗభ  

= 1, 𝑡௙భ  = ( −0.8,−0.5), 𝑡ௗమ  = 0.01, 𝑡௙ మ = 0.01, 𝑡ௗయ  = 0.001, 𝑡௙య  = 0.001, 𝜖௙ = − 0.02, V = 0.1, b =0.98,μ = 

(0,−0.5),   𝑀 = (0,0.5) and  𝑈௙ ≫ 𝑡ௗభ . The horizontal solid line represents the Fermi energy. Since the 

conduction bands are partially empty, the surface state will be metallic in all the cases. In (a)-(c), the 

system is TR symmetric. The energy bands of the system come in Kramers pairs. We observe a Dirac 

cone like feature in Figures (a) and (b). In Figure (d), TR symmetry is lacking and therefore no Kramers 

pair is possible. 

In Figure 2 we have shown the contour plots of the Berry-curvature(BC) in the z-direction for 

M≠ 0. The numerical values of the parameters used in the plots are 𝑡ௗభ = 1, 𝑡ௗమ = 0.01, 𝑡௙ మ = 0.01, 𝑡ௗయ = 0.001, 𝑡௙య = 0.001, 𝜖௙ = − 0.02, V = 0.1, b = 0.98, μ = 0,   and  𝑈௙ ≫ 𝑡ௗభ . The parameter  𝑡௙భ =  −0.8 in Figure (a) whereas  𝑡௙భ =  −0.6 in Figure (b). Upon integrating BC on a k-mesh-grid of the 

Brillouin zone (BZ), we calculate the intrinsic anomalous Hall conductivity 𝜎஺ு(AHC). This yields 

the Chern number (C). A brief outline of the procedure followed is given below in Appendix D. We 

find that AHC is 𝜎஺ு = 1.04 71 ቀ𝒆𝟐ℏ ቁ  in the former case (𝐶 = 1.0471  is close to the integer value 1), 

while in the latter case it is   𝜎஺ு =1.6607(𝒆𝟐ℏ ). Furthermore, we found that while for  𝑡௙భ =  −0.4, C 

= 3.3906, for  𝑡௙భ = − 0.2, C = 3.2181. Our conjecture for not obtaining integer values of Chern number 

leans upon the following: The Hall conductivity 𝜎஺ு cannot be determined as such from the 2D Dirac 
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model since Eq. (D.1) (see Appendix A) requires an integral over the whole BZ. The integral is outside 

the Dirac model’s range of validity. To circumvent the problem one may possibly choose a 

momentum space cut-off small compared to the size of BZ and large enough to capture nearly all the 

contributions to BC integral. This will be within the range of validity of the 2D Dirac model.  

   
(a)                                   (b) 

Figure 2. The contour plots of the Berry-curvature in the z-direction for M= 0.08 as a function of the 

dimensionless wave vector components   𝑎𝑘௫ and 𝑎𝑘௬. The numerical values of the parameters used 

in the plots are 𝑡ௗభ  = 1, 𝑡ௗమ  = 0.01, 𝑡௙ మ = 0.01, 𝑡ௗయ  = 0.001, 𝑡௙య  = 0.001, 𝜖௙ = − 0.02, V = 0.1, b =0.98, μ 

= 0,   and  𝑈௙ ≫ 𝑡ௗభ .  The parameter  𝑡௙భ  =  −0.8 in Figure (a), whereas  𝑡௙భ  =  −0.6 in Figure (b). 

Let us now note that the Fermi energy inside the gap intersects the surface state bands in the 

same BZ, in general, either an even or an odd pair number of times. If there are odd numbers of pair 

intersections, which guarantees the time reversal invariance, the surface state is topologically non-

trivial (strong topological insulator). Furthermore, it is also evident that the number of TRIM pair 

involved in the surface-state crossings (SSC) is one (odd). However, when there are an even number 

of pair-surface-state crossings, the surface states are topologically trivial (weak TI or ordinary Bloch 

insulators that are topologically equivalent to the filled shell atomic insulator). The quantized 

topological numbers, the Kane–Mele index Z2 for QSH phase and the Chern number Ϲ for QAH 

phase, strongly support such topological states. The QSH band structures are characterized by the 

topological invariant 𝜈଴= 0 (Z2= +1) and 𝜈଴ = 1 (Z2 = −1). The former corresponds to weak TI, while 

the latter to strong TI. In fact, materials with band structures with Z2= −1 are expected to exist in 

systems with strong spin-orbit coupling acting as an internal quantizing magnetic field on the 

electron system. The graphical representations in Figure 2 (except Figure 2(d)) indicate that the 

system considered here is a strong TI for M = 0. This is corroborated by analysis given below. 

C. Z2 invariant 

In a bid to to calculate the  Z2 invariant using the eigenvalues of the space inversion operator, 

we note that the f- and d-states have different parities, the inversion symmetry(IS) operator in this 

band basis is constructed as Π = 𝐼ଶ×ଶ ⊗𝜏 ௭.The time reversal (TR) operator for a spin 1/2 particle is Θ 

= 𝐼ଶ×ଶ⨂𝜏௬𝐾. The operator 𝐾  stands for the complex conjugation. Here the  𝜏௝ are Pauli matrices on 

two-dimensional spin space. The Hamiltonian under consideration, for M = 0, preserves the time 

reversal (TRS)and inversion symmetries (IS). It can be easily shown that  ⟨𝛩𝜓|𝛩𝜑⟩ =  ⟨𝜑|𝜓⟩ taking 

eigenstate of the z-component of the spin operator 𝐼ଶ×ଶ⨂𝜏௭ as the basis. Also, Θ γ଴Θ −1 = γ଴ , Θ γହΘ 
−1 = γହ ,and Θ γ௝Θ −1 = −γ௝ , where 𝑗 = 1,2, and 3. Similarly, Π γ଴ Π −1 = γ଴ ,  Π γ௝ Π −1 = −γ௝ ( 𝑗 =1,2), and Π γ௞ Π −1 = γ௞ ( 𝑘 = 3,5). Since only γ଴ 𝑎𝑛𝑑 γହ are even under time reversal and inversion 

(and 𝑑ହ = 0), at a time reversal invariant momentum(TRIM) Ki  where the system preserves both TR 

and IS , the Hamiltonian will have the form ℎୱ୳୰୤ୟୡୣ஻ு௓ (𝑘 = 𝐾௜ , 𝑞 , 𝜇, 𝑏, 𝑀 = 0)  = 
ఢ೏ାఢ೎ଶ 𝐼ସ×ସ +𝑑଴(𝑘 =  𝐾௜ , 𝑞 , 𝜇, 𝑏)γ଴. The eigenvalues of γ଴are ±1( multiplicity 2). The corresponding eigenvectors 
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are  ∣ +⟩ =  (1/ √2) ( 1  1   0   0)T  and   ∣ −⟩ =  (1/ √2)  (0  0   1    1  )T. Here ⟨+|γ଴|+⟩ =1  and ⟨−|γ଴|−⟩ =  −1. We obtain  ൻ+ห ℎୱ୳୰୤ୟୡୣ஻ு௓ (𝑘 = 𝐾௜ , 𝑞 , 𝜇, 𝑏, 𝑀 = 0, 𝑊଴)ห+ൿ = 𝜖ௗ = 𝐸ା,                                   ൻ−ห ℎୱ୳୰୤ୟୡୣ஻ு௓ (𝑘 = 𝐾௜ , 𝑞 , 𝜇, 𝑏, 𝑀 = 0, 𝑊଴)ห−ൿ = 𝜖௖ =  𝐸ି. 
(4)

Here 𝑑଴ = ఢ೏ିఢ೎ଶ  , 𝜖ௗ = ൫ 𝜖(𝑘, 𝑞 , 𝜇, 𝑏) + 𝜗(𝑘, 𝑞 , 𝑏)൯, 𝜖௖ =  ൫𝜖(𝑘, 𝑞 , 𝜇, 𝑏) − 𝜗(𝑘, 𝑞 , 𝑏)൯. (5)

Obviously enough, if 𝐸ି < 𝐸ା, the state   ∣ −⟩ is occupied and the parity of the state at TRIM 

Ki  is −1.  In the opposite case (𝐸ି  > 𝐸ା)  , the state   ∣ +⟩ is occupied and the parity is +1. 
Therefore, the parity is given by (−𝑠𝑔𝑛[𝑑଴]). 

We now obtain the Z2 invariant simply by the parity eigenvalues at TRIMs. The surface states 

correspond to the eigenstates (or the Bloch states linked to the eigenvalues in ∈௝ (𝑠, 𝜎, 𝑘, 𝑏, 𝑀 = 0). 

These are presented in Appendix A. We consider a matrix representation of the time reversal (TR) 

operator Θ in the Bloch wave function basis. With α and β as the band indices we consider the 

representation is   ξ஑ஒ (𝑘)   = ൻύ(ఈ)(−k)หΘหύ(ఉ)(k)ൿ . This matrix relates the two Bloch states  

|ύ(ఈ/ఉ)(−k/k)ൿ and  via  |ύ(ఈ)(−k)ൿ =  ∑ ξ஑ஒ ∗ (𝑘)ఉ 𝛩 |ύ(ఉ)(k)ൿ. With the aid of this one can easily show 

that  ξ஑ஒ (𝑘) is a unitary matrix ( ξறξ = I).  We also find that it has the property ξ஑ஒ (−𝑘)   =−ξஒ஑ (𝑘). This implies that the matrix ξ஑ஒ (𝐾௜) at a TRIM becomes anti-symmetric, i.e. ξ஑ஒ (𝐾௜) = −ξஒ஑ (𝐾௜) ≠ 0. Only when the bands α and β form a Kramers pair, such a non-zero ξ஑ஒ is obtained. 

Yet another which we need to consider is the Berry connection matrix defined as 𝛾ఈఉ(𝑘) =−𝑖ൻύ(ఈ)(k)ห∇୩หύ(ఉ)(k)ൿ.  In view of the results ⟨𝛩𝜓|𝛩𝜑⟩ =  ⟨𝜑|𝜓⟩  and |ύ(ఈ)(−k)ൿ = ∑ ξ஑ஒ ∗ (𝑘)ఉ 𝛩 |ύ(ఉ)(k)ൿ we arrive at the relation linking 𝛾ఈఉ(𝑘) and 𝛾ఈఉ(−𝑘): 𝜸(−𝒌)  = 𝛏(𝒌)𝜸∗(𝒌)𝛏ற(𝒌) + 𝒊𝛏(𝒌)𝛁𝐤𝛏ற(𝒌). (6)

Upon taking the trace we find  tr൫𝜸(−𝒌)൯ = 𝑡𝑟(𝜸∗(𝒌)) + 𝒊 𝑡𝑟(𝛏(𝒌)𝛁𝐤𝛏ற(𝒌)). Since 𝛾ఉఈ =  𝛾ఈఉ∗  

and ξ∇ξற = −(∇ξ)ξற , upon replacing −𝒌 by  𝒌  in the preceding equation one may write A =  

tr൫𝜸(𝒌)൯ = 𝑡𝑟(𝜸(−𝒌)) + 𝒊 𝑡𝑟(𝛏ற(𝒌)𝛁𝐤𝛏(𝒌)).We shall need this result below. The Berry curvature of  

tr൫𝜸(𝒌)൯ may be defined as 𝛀 = curl A. Since the system preserves TRS and inversion symmetries 

(IS), one may select any gauge which renders A equal to zero. We now consider the anti-symmetric 

and unitary matrix   ζ஑ஒ (𝑘)  = ൻύ(ఈ)(k)ห𝛱Θหύ(ఉ)(k)ൿ  (where Π 2 =1) to examine the consequence of 

setting A equal to zero. Since we find from ref.[18] that A =  tr൫𝜸(𝒌)൯ = 
௜ଶ 𝑡𝑟(𝜁ற∇୩𝜁) =  ௜ଶ ∇୩𝑡𝑟(𝑙𝑜𝑔𝜁) =i∇୩ logቀඥdet[𝜁]ቁ), it is clear that in order to make A = 0, one needs to adjust the phase of Bloch states 

|ύ(ఈ)(k)ൿ such that Pf(ζ) = 1. Suppose now ρ ( 𝐾௜୲୰୧୫) = ±1 are the eigenvalues of Π for band α at 

TRIM 𝐾௜୲୰୧୫,  one obtains the matrix  ξ஑ஒ ൫𝐾௜୲୰୧୫൯  = ൻύ(ఈ)(−𝐾ఈ୲୰୧୫)ห𝛱𝛱Θหύ(ఉ)൫𝐾௜୲୰୧୫൯ൿ= ζ஑ஒ ൫𝐾௜୲୰୧୫൯  ρ஑( 𝐾௜୲୰୧୫). (7)

Obviously enough, when ρα = ρβ, ξ஑ஒ (𝐾௜) =  −ξஒ஑ (𝐾௜) ≠ 0. Only when the bands α and β form 

a Kramers pair, such a non-zero ξ஑ஒ is obtained. It follows that if the bands α and β are the nth 

Kramers pair in the total of 2N bands, we may write   ρ஑=  ρஒ ≡ ρଶ୬. From Eq.(6), one can now see 

that  

𝑃𝑓ൣ ξ஑ஒ ൫𝐾௜୲୰୧୫൯൧ = 𝑃𝑓ൣ ζ஑ஒ ൫𝐾௜୲୰୧୫൯ ൧  ෑ 𝜌ଶ௡ே
௡ୀଵ ൫ 𝐾௜୲୰୧୫൯.  (8)

Since Pf(ζ) =  1, in view of this result and Eq.(B.3) in the Appendix B, we find that that the Z2 

invariant can be calculated simply by the parity eigenvalues 𝜌ଶ௡ at TRIMs 𝐾௜୲୰୧୫, that is (−1)ఔ =∏ δ൫K୲୰୧୫(௜) ൯  ௜ =  ∏ ∏ ρଶ୬ ൫K୲୰୧୫(௜) ൯.௡௜  Upon getting back to Eq.(5) and taking into account the 

observations below this equation,  the parity of the occupied state at K୲୰୧୫(௜)
, viz. δ൫K୲୰୧୫(௜) ൯ , is given 

by δ൫K୲୰୧୫(௜) ൯ =  (−𝑠𝑔𝑛[𝑑଴]). Besides, from Eq. (4), it is easy to infer 𝜖௖ >   𝜖ௗ  at a given momentum. 
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This implies that 𝐸ି > 𝐸ା. Regarding the topology of  our band system, this in turn leads to the 

conclusion that ν0 = 1. Thus, indeed the system is a strong topological (non-trivial) insulator.  

3. Floquet Theory 

The polarized periodic optical field provides a potent modus operandi to carry out theoretical 

proposition and experimental realization, manipulation, and detection of diverse 

unconventional/novel optical and electronic properties of materials, such as the realization of novel 

quantum phases without static counterparts like light induced quantum anomalous phase (QAH) 

phase [19], the topological phase transitions in semi-metals [21–24], the Floquet engin-eering of 

magnetism in topological insulator thin films [41,42], and so on. The exotic Floquet topological phases 

with a high tunability could be realized using  the polarized periodic optical field.  In fact, there has 

been an upsurge on experimental front in the search for topological states, in solid state [42], cold-

atom [43] and optical systems [44], which are driven periodically. The circularly polarized optical 

field (CPOF) is described by a time-periodic (time period = T = 2π/ ω where ω is the frequency of 

light) gauge field. Upon using the Peierls substitution, lattice electrons couple to the electromagnetic 

gauge field. In the presence of COPF, the thin film Hamiltonian 𝐻௦௨௥௙௔௖௘,, apart from breaking the 

time reversal invariance (TRS), becomes periodic in time. One can now transform the time-dependent 

Hamiltonian problem to a time-independent one using the Floquet’s theorem [25–28]. Analogous to 

the Bloch theory, a solution for the time-dependent Schrodinger equation of the system is obtained 

here involving the Floquet quasi-energy and the time-periodic Floquet state with the periodicity T. 

The  Floquet state could be expanded in a Fourier series which makes us arrive at an infinite 

dimensional eigenvalue equation in the Sambe space [27].The circularly polarized optical field  

incident upon the film may be described by a time-varying gauge field  𝑨(𝑡)  = 𝑨(𝑡 + 𝑇) = 𝑨𝟏(𝑠𝑖𝑛(ωt) , 𝑠𝑖𝑛(𝜔𝑡 +  𝜓) , 0)  through the relation: 𝑬(𝑡) = − డ𝑨(௧)డ௧ = −𝑬(𝑐𝑜𝑠(𝜔𝑡) , 𝑐𝑜𝑠(𝜔𝑡 +  𝜓), 0) , 𝑬 = 𝑨𝟏𝜔. Here 𝑬(𝑡) 𝑖𝑠 The optical field. In particular, when the phase ψ = 0 or π, the optical field is 

linearly polarized.  When ψ = + π/2 ( ψ = −π/2), the optical field is left-handed ( right-handed) 

circularly  polarized.  Once we have included a gauge field, it is necessary that we make the Peierls 

substitution 𝐻௦௨௥௙௔௖௘(𝑡) = 𝐻௦௨௥௙௔௖௘ ൬𝐤 − ௘ℏ 𝐀(𝑡)൰. The dimensionless quantity 𝑎𝐴଴ = ௔௘ாℏఠ  corresponds 

to the frequency of the incident light.  

We assume the normal incidence of CPOF on the surface SmB6 with the thickness d = 30 nm. 

Suppose the angular frequency of the optical field incident on the film is ω ≈   10ଵହ𝑟𝑎𝑑𝑖𝑎𝑛 − 𝑠ିଵ and 

wavelength 𝜆௜௡ ≈ 1500 𝑛𝑚.  Therefore the ratio d/ 𝜆௜௡  ≈ 0.02 ≪ 1   Upon taking the field into 

consideration our Hamiltonian becomes time dependent. As stated above, the Floquet theory can be 

applied to our time-periodic Hamiltonian 𝐻௦௨௥௙௔௖௘(𝑡) =  𝐻௦௨௥௙௔௖௘(𝑡 + 𝑇) with the period 𝑇 = 2π/ω.   

Analogous to the Bloch theory involving crystal quasi-momentum, a solution | 𝜂 (𝑡)⟩ =exp (−𝑖έ𝑡) | 𝜉 (𝑡)⟩  involving the Floquet quasi-energy έ  could be written down for the time-

dependent Schrodinger equation of the system. The Floquet state satisfies | 𝜉 (𝑡)⟩ = |𝜉 (𝑡 + 𝑇)⟩ and, 

therefore, could be expanded in a Fourier series | 𝜉 (𝑡)⟩ =  ∑ exp( −𝑖𝑟𝜔𝑡)௥  | 𝜉௥  ⟩   where r is an 

integer. Then the wave function, in terms of the quasi-energy  έ  has the form | 𝜂 (𝑡)⟩  = ∑ exp ቀ −𝑖 ቀ  έ ℏ + 𝑟𝜔ቁ t ቚ 𝜉௥  ⟩.௥  This makes us arrive at an infinite dimensional eigenvalue equation in 

the Sambe space (the extended Hilbert space)[27,28]: ∑ 𝐻௦௨௥௙௔௖௘,௥,௦ ௦ | 𝜉௡௦ ⟩ = (𝑠ℏω𝛿௥,௦ + ଵ் ∫ 𝐻ୱ୳୰୤ୟୡୣ(𝑡)𝑒௜(௥ି௦)ன௧ 𝑑𝑡)  ଴்   | 𝜉௡௦ ⟩ =   έ௡ |𝜉௡௦ ⟩. (9)

The matrix element of the Floquet state surface Hamiltonian 𝐻௦௨௥௙௔௖௘,ఈ,ఉ is given by   𝐻௦௨௥௙௔௖௘,ఈ,ఉ = 𝛼ℏω𝛿ఈ,ఉ + ଵ் ∫ 𝐻ୱ୳୰୤ୟୡୣ(𝑡)𝑒௜(ఈିఉ)ன௧𝑑𝑡,   ଴்  where ( 𝛼, 𝛽 ) are integers. In view of the 

Floquet theory [29–32], in the high-frequency limit, a thin film system, irradiated by the circularly 

polarized radiation, can be described by an effective, static Hamiltonian. in the off-resonant regime 

using the Floquet-Magnus (high-frequency) expansion [30]:  𝐻ୱ୳୰୤ୟୡୣி௟௢௤௨௘௧(𝑘) = 𝐻௦௨௥௙௔௖௘,଴,଴+ 
ൣுೞೠೝ೑ೌ೎೐,బ,షభ,ுೞೠೝ೑ೌ೎೐,బ,భ൧ℏఠ + O( 𝜔ିଶ), (10)
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where 𝐻௦௨௥௙௔௖௘,௡,௠ = ଵ் ∫ 𝐻ୱ୳୰୤ୟୡୣ(𝑡)𝑒௜(௡ି௠)ன௧𝑑𝑡  ଴் with n≠ 𝑚. For M << 𝑡ௗభ, we can write 

𝐻௦௨௥௙௔௖௘,଴,଴ =  ℎୱ୳୰୤ୟୡୣ(𝑘, 𝑞 , 𝜇, 𝑏) + [𝑡ௗଵ + 𝑏ଶ𝑡௙ଵ2  + 2൫𝑡ௗଶ + 𝑏ଶ𝑡௙ଶ൯ + 2൫𝑡ௗଷ + 𝑏ଶ𝑡௙ଷ൯] 
  × (𝑎ଶ𝐴଴ଶ) 𝜎଴⨂𝜏଴  + [ 

௧೏భି௕మ௧೑భଶ  +2(𝑡ௗଶ − 𝑏ଶ𝑡௙ଶ) + 2(𝑡ௗଷ − 𝑏ଶ𝑡௙ଷ)] (𝑎ଶ𝐴଴ଶ)  𝜎଴⨂𝜏௭, (11)

𝐻௦௨௥௙௔௖௘,଴,ିଵ = − ቈ𝑡ௗଵ + 𝑏ଶ𝑡௙ଵ2  + 2൫𝑡ௗଶ + 𝑏ଶ𝑡௙ଶ൯ + 2൫𝑡ௗଷ + 𝑏ଶ𝑡௙ଷ൯቉ 𝑖𝑎ଶ(𝑘௫+ 𝑒ି௜ ట𝑘௬)𝐴଴𝜎଴⨂𝜏଴ −[ ௧೏భି௕మ௧೑భଶ  +2(𝑡ௗଶ − 𝑏ଶ𝑡௙ଶ) + 2(𝑡ௗଷ − 𝑏ଶ𝑡௙ଷ)]𝑖𝑎ଶ ൫𝑘௫ + 𝑒ି௜ ట𝑘௬൯𝐴଴ 𝜎଴⨂𝜏௭ −(𝑖/2) 𝐴ଵ(𝑎𝐴଴)𝜎୸ ⊗𝜏୶ − (𝑖/2) 𝐴ଵ(𝑎𝐴଴ )𝑒ି௜ ట𝜎଴ ⊗𝜏୷  , 
(12)

𝐻௦௨௥௙௔௖௘,଴,ଵ = ቈ𝑡ௗଵ + 𝑏ଶ𝑡௙ଵ2  + 2൫𝑡ௗଶ + 𝑏ଶ𝑡௙ଶ൯ + 2൫𝑡ௗଷ + 𝑏ଶ𝑡௙ଷ൯቉ 𝑖𝑎ଶ (𝑘௫+ 𝑒௜ ట𝑘௬)𝐴଴𝜎଴⨂𝜏଴ 
+ [ ௧೏భି௕మ௧೑భଶ  +2(𝑡ௗଶ − 𝑏ଶ𝑡௙ଶ) + 2(𝑡ௗଷ − 𝑏ଶ𝑡௙ଷ)]𝑖𝑎ଶ ൫𝑘௫ + 𝑒ି௜ ట𝑘௬൯𝐴଴ 𝜎଴⨂𝜏௭ +(𝑖/2) 𝐴ଵ(𝑎𝐴଴)𝜎୸ ⊗𝜏୶  + (𝑖/2) 𝐴ଵ(𝑎𝐴଴) 𝑒௜ ట𝜎଴ ⊗𝜏୷. 

(13)

From the action of the time reversal operator on the wave function we see, that it leads to a 

complex conjugation of the wave function. Thus, in the case of spin-less wave functions as Θ =K, 

where K is the operator for complex conjugation. More generally, we can write Θ = UK where U is a 

unitary operator. Furthermore, for a spin-1/2 particle, flipping the spin coincides with the time-

reversal. This means Θ 𝑺 ෡ = −𝑺 ෡  where 𝑺 ෡ = ଵଶ 𝛔 ෝ   and 𝛔 ෝ  is the vector of Pauli matrices. In view of 

these, one may also choose Θ = 𝑖𝜎௬⨂𝜏଴𝐾. Upon making use of the results Θ 𝐴 ෡Θ −1  = 𝐴 ෡ , Θ 𝐵 ෡Θ −1  = −𝐵 ෡ ,and so on, where 𝐴 ෡ =  𝜎଴⨂𝜏଴, 𝜎௭⨂𝜏௬ ,   … … and 𝐵 ෡ =  𝜎଴⨂𝜏௬ ,……., we find that   𝛩 𝐻ୱ୳୰୤ୟୡୣி௟௢௤௨௘௧൫𝑎𝑘௫, 𝑎𝑘௬ ൯𝛩ିଵ 

        = 𝐻ୱ୳୰୤ୟୡୣி௟௢௤௨௘௧൫−𝑎𝑘௫, −𝑎𝑘௬൯  + (4𝑎ଶ𝐴଴ଶ𝑠𝑖𝑛𝜓/ℏ𝜔){𝐴ଵ𝑎𝑘௫  𝜎଴  ⊗𝜏୶  +  𝐴ଵ𝑎𝑘௬𝜎୸⊗𝜏୷}   

        × ൤௧೏భା௕మ௧೑భଶ  + 2൫𝑡ௗଶ + 𝑏ଶ𝑡௙ଶ൯ + 2൫𝑡ௗଷ + 𝑏ଶ𝑡௙ଷ൯൨ + ቀସ௔మ஺బ మ ஺భమ௦௜௡టℏఠ ቁ 𝜎௭ ⊗ 𝜏୸ , 

(14)

where Θ 𝐻ୱ୳୰୤ୟୡୣி௟௢௤௨௘௧൫𝑎𝑘௫, 𝑎𝑘௬ ൯ Θ −1 = 𝐻ୱ୳୰୤ୟୡୣி௟௢௤௨௘௧(𝑘)൫−𝑎𝑘௫, −𝑎𝑘௬൯ only when 𝜓 = 0 or π, that is, when the 

optical field is linearly polarized. In this case, the time reversal symmetry (TRS) is not broken. 

However, when 𝜓 ≠ 0 or π, TRS is broken. We now consider the particular cases where ψ = + π/2  

and  ψ = −π/2. For the former the optical field is left-handed circularly polarized, whereas for the 

latter it is right-handed. Thus, the (previously not known) consequence is that the incidence of the 

CPOF on the SmB6 surface will be able to create a novel state with the broken TRS.   

The Hamiltonian to describe this broken TRS system, in the basis (𝑑୩,↑ற
  𝑏𝑐୩,↓ற    𝑑୩,↓ற     𝑏𝑐୩,↑ற  )T, could 

be written as  𝐻ୱ୳୰୤ୟୡୣி௟௢௤௨௘௧(𝑘) =    
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⎝⎛
𝐸ଵ                                      𝐴ଵை௉ା (𝑎𝑘ି)                 0                     − 𝑖  𝐴ଵை௉ା 𝑎𝑞                    𝐴ଵை௉ା (𝑎𝑘ା)                                  𝐸 ଶ                −  𝑖  𝐴ଵை௉ା 𝑎𝑞                        0                                             0                                          𝑖  𝐴ଵை௉ି 𝑎𝑞                      𝐸ଷ                           − 𝐴ଵை௉ି (𝑎𝑘ି)                          𝑖  𝐴ଵை௉ି 𝑎𝑞                              0                     − 𝐴ଵை௉ି (𝑎𝑘ା)                                                      𝐸ସ                 ⎠⎞ (15)

where 𝒌 = ൫𝑘୶, 𝑘୷൯,  𝑎k∓ = 𝑎𝑘௫ ∓ 𝑖𝑎𝑘௬, 𝐸ଵ = 𝜖ை௉ + 𝜗ை௉ା , 𝐸ଶ = 𝜖ை௉ − 𝜗ை௉ା , 𝐸ଷ = 𝜖ை௉ + 𝜗ை௉ି , 𝐸ସ = 𝜖ை௉ −𝜗ை௉ି,   𝐴ଵை௉± = 𝐴ଵ ቆ1 ± 2𝐵ଶ𝑠𝑖𝑛𝜓 ቀ௔మ஺బమℏఠ ቁቇ , and 𝐴1 =   2𝑉𝑏 . The functions 𝜖ை௉ = 𝜖ை௉(𝑘, 𝑞 , 𝜇, 𝑏)  and 𝜗ை௉± =  𝜗ை௉± (𝑘, 𝑞, 𝑏) are defined below: 𝜖ை௉(𝑘, 𝑞 , 𝜇, 𝑏) = 𝜖଴(𝜇, 𝑏)  −𝐷ଵ(𝑏)𝑎ଶ𝑞ଶ + 𝐷ଶ(𝑏)𝑎ଶ𝑘ଶ +𝑎ଶ𝐴଴ଶ𝐷ଶ(𝑏) +  O(𝑎ସ𝑘ସ), (16)

𝜗ை௉± (𝑘, 𝑞, 𝑏)= 𝜗଴(𝑏)−𝐵ଵ(𝑏)𝑎 ଶ𝑞ଶ  + 𝐵ଶ(𝑏)𝑎ଶ𝑘ଶ − ቀ𝑎ଶ𝐴଴ଶ𝐵ଶ ± ቀ௔మ஺బమℏఠ ቁ 𝑠𝑖𝑛𝜓 𝐴ଵଶቁ. (17)

The eigenvalues ( 𝜀ఈ ) of the matrix (15) is given by the quartic  𝜀ఈସ + 𝛾ଵை௉(𝑘, 𝑏)  𝜀ఈଷ +𝛾ଶை௉(𝑘, 𝑏)    𝜀ఈଶ  + 𝛾ଷை௉(𝑘, 𝑏) 𝜀ఈ + 𝛾ସை௉(𝑘, 𝑏) = 0 (α= 1,2,3,4  )  where the coefficients 𝛾ఉை௉ (𝑘,b) (β = 

1,2,3,4) are given in Appendix A (see Eqs.(A.21)—(A.23)). It may be noted that to denote these 

eigenvalues we have used the symbol var epsilon which is distinct from that in Eq. (A.1). Once again, 

in view of the Ferrari’s solution of a quartic equation, we find the roots as   𝜀ఈ(𝑠, 𝜎, 𝑘, 𝑏)=  s ඨ𝜂ை௉(𝑘)2 − 𝛾ଵை௉(𝑘, 𝑏)4
+ 𝑙 ቌ𝑏ை௉(𝑘) − ቆ𝜂ை௉(𝑘)2 ቇ
+                                                                                                                          𝑠 𝑐ை௉(𝑘)ඨ 2𝜂ை௉(𝑘) ቍଵଶ. 

(18)

where α = 1,2,3,4,  𝑠 = ±1 is the spin index and 𝑙 = ±1 is the band-index. The spin-down (𝑠 =−1) conduction band ( 𝑙 = +1) and the spin-up (down) (𝑠 = ±1) valence bands ( 𝑙 = −1), denoted 

respectively by 𝜀ଶ(𝑙 = +1, 𝑠 = −1, 𝑘, 𝑏) , 𝜀ଷ(𝑙 = −1, 𝑠 = +1, 𝑘, 𝑏), and       𝜀ସ(𝑙 = −1, 𝑠 = −1, 𝑘, 𝑏) 

somewhat peculiar as will be shown below. The functions appearing in Eq. (18) are given by 𝜂ை௉(𝑘) = 2𝑏ை௉(𝑘)3 + ൫∆ை௉(𝑘) − ∆଴ை௉(𝑘)൯ଵଷ − ൫∆ை௉(𝑘) + ∆଴ை௉(𝑘)൯ଵଷ, (19)

 ∆଴ை௉(𝑘) = (௕ೀುయ (௞)ଶ଻ − ௕ೀು(௞)ௗೀು(௞)ଷ − 𝑐ை௉ଶ (𝑘)), (20)

∆ை௉(𝑘) = ( ଶ଻ଶଽ 𝑏ை௉଺ + ସௗೀುమ ௕ೀುమଶ଻ + 𝑐ை௉ସ − ௗೀು௕ೀುర଼ଵ − ଶ௕ೀುయଶ଻ + 
ଶ௖ೀುమ ௕ೀುௗೀುଷ  + 

ௗೀುయଶ଻ )1/2 , (21)

𝑏ை௉(𝑘) = {ଷఊభೀು(௞,௕)మି଼ఊమೀು(௞,௕)ଵ଺  },  𝑐ை௉(𝑘) =  { ିఊభೀು(௞,௕)యାସఊభೀು(௞,௕)ఊమೀು(௞,௕) ି଼ఊయೀು(௞,௕) ଷଶ  }, (22)

𝑑ை௉(𝑘) = ିଷఊభೀು(௞,௕)రାଶହ଺ఊరೀು(௞,௕)ି଺ସఊభೀು(௞,௕)ఊయೀು(௞,௕)ାଵ଺ఊభೀು(௞,௕)మఊమೀು(௞,௕)ଶହ଺ . (23)

The eigenvectors corresponding to  𝜀ఈᇱ 𝑠  could be calculated in a manner given in the Appendix 

A. The value of 𝑎ଶ𝐴଴ଶ (dimensionless intensity of the radiation)is taken to be around 0.8 which is good 

enough for the radiation field of frequency 𝜈~3 × 10ଵସ𝐻𝑧 under consideration.  Moreover, 𝑠𝑖𝑛𝜓 = 

+1 ( 𝑠𝑖𝑛𝜓 = − 1 sign) corresponds to the left-handed (right-handed) circularly polarized radiation 

above. We notice from above that CPOF not only renormalizes d and f electron hopping integrals but 

also does the renormalization of the hybridization parameter(HP) .  We have the renormalized 

hybridization parameters(HP) as 𝐴ଵை௉± = 𝐴ଵ ቆ1 ± 2𝐵ଶ𝑠𝑖𝑛𝜓 ቀ௔మ஺బమℏఠ ቁቇ,   and 𝐴ଵ =   2𝑉𝑏 . As 𝐵ଶ(𝑏) ≈ [ 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 August 2023                   doi:10.20944/preprints202308.1152.v1

https://doi.org/10.20944/preprints202308.1152.v1


 10 

 

௧೏భି௕మ௧೑భଶ ] > 0, we find that the renormalized HP 𝐴ଵை௉ା  > 𝐴ଵ   ( 𝐴ଵை௉ା  < 𝐴ଵ)for the left-handed (right-

handed) CPOF. However, the renormalized HP 𝐴ଵை௉ି  < 𝐴ଵ ( 𝐴ଵை௉ି  > 𝐴ଵ) for the left-handed(right-handed) CPOF.   We note that, in principle, when a renor-malized parameter is less than  𝐴ଵ, it is 

possible that there is a critical intensity of the radiation 𝑎ଶ𝐴଴ଶ ≈ 
(ℏ𝜔 )൫ ௧೏భି௕మ௧೑భ൯ at a given frequency at 

which the RHP in question will be zero. This, however, may affect the topological nature of the 

material.  Now the nearest neighbor hopping elements 𝑡ௗଵ and 𝑡௙ଵare related to the band masses by 𝑡ௗଵ,௙ଵ ≈ ℏ22𝑚𝑑,𝑓𝑎2 .  If one takes for the band masses  𝑚ௗ൫ 𝑚௙൯ = 1.5 𝑚௘ (50 𝑚௘),  where 𝑚௘is the rest mass of the electron, then the corresponding values of the hopping matrix elements are 𝑡ௗଵ ≈ 150 meV and 𝑡௙ଵ≈ 4.5 meV. This yields the critical intensity of the radiation 𝑎ଶ𝐴଴ଶ ≈ 2.25 which 

is roughly three times the intensity value assumed in the graphical representations in Figure 3. 

  

(a)                                      (b) 

      

                    (c)                                          (d) 

Figure 3. The plots of energy eigenvalues  𝜀ఈ(𝑠, 𝜎, 𝑘, 𝑏)  in Eq.(31)  as a function of ak for a given  intensity of incident radiation 𝑎𝐴଴  = (0.80, 0.50). The Figures 4(a) and 4(b), respectively, 
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corresponds to the plots for the left handed and the right-handed CPOF. The same is true for the 

Figures 4(c) and 4(b). The numerical values of the parameters used in the plots in (a) and (b) are 𝑡ௗభ  

= 1, 𝑡௙భ  = −0.8, 𝑡ௗమ  = 0.01, 𝑡௙ మ  = 0.01, 𝑡ௗయ  = 0.001, 𝑡௙య  = 0.001, 𝜖௙ = − 0.02, V = 0.1, b =0.98,μ = 0, 𝑎𝐴଴ = 0.8,  𝑀 = 0.0001 ≈ 0, 𝑎𝑛𝑑  𝑈௙ ≫ 𝑡ௗభ . The numerical values corresponding to (c) and (d) are μ 

= −0.5, and 𝑎𝐴଴ = 0.5 ; the rest of the values are the same as in (a) and (b).The horizontal  lines 

represent the Fermi energy. 

In Figure 3 (a),3(b), 3(c), and 3(d) we have plotted the energy eigenvalues  𝜀ఈ(𝑠, 𝜎, 𝑘, 𝑏)  as a 

function of ak for  𝑎𝐴଴ = (0.80,0.50) for the circularly polarized light. Whereas Figures 3(a) and 3(c) 

correspond to  left-handed CPOF,  3(b) and 3(d) to the right-handed CPOF. The numerical values 

of the parameters used in the plots are 𝑡ௗభ = 1, 𝑡௙భ = −0.8, 𝑡ௗమ = 0.01, 𝑡௙ మ = 0.01, 𝑡ௗయ = 0.001, 𝑡௙య = 

0.001, 𝜖௙ = − 0.02, V = 0.1, b =0.98,μ = ( 0, −0.5),   𝑀 = 0.0001 ≈ 0, 𝑎𝑛𝑑  𝑈௙ ≫ 𝑡ௗభ . The horizontal  

lines represent the Fermi energy. The conduction and valence bands denoted by 𝜀ଶ(𝑙 = +1, 𝑠 =−1, 𝑘, 𝑏) , 𝜀ଷ(𝑙 = −1, 𝑠 = +1, 𝑘, 𝑏), and    𝜀ସ(𝑙 = −1, 𝑠 = −1, 𝑘, 𝑏) represent-ed by differently colored 

curves, apart from the band-inversion, exhibit some peculiarities by way of the multiple avoided 

crossings and the near absence of a surface Dirac cone at k = 0 in 3(a) and 3(b) unlike that in Figure 

1(a).This non-trivial feature could be ascribed to the interaction of the system with the incident 

radiation. The figures show that when TRS is broken despite M = 0, the fledgling novel phase of the 

system is very robust. The reason being in both the figures the Fermi energy intersects the band 𝜀ଷ(𝑙 = −1, 𝜇 = +1, 𝑘, 𝑏) only in the same BZ an odd pair number of times. This pair of surface state 

crossings (SSC)corresponds to the momenta 𝒌 =   ( ±2,0)  or  ( 0, ±2) in Figures 3(a) and 3(b). 

However, in Figures 3(c) and 3(d) the same happens at the momenta 𝒌 =  (±1,0) or  (0, ±1). These 

momenta satisfy the condition 𝑎𝒌 + 𝑎𝑮 =  −𝑎𝒌, where the reciprocal lattice vector G is  (∓4,0) or  

(0, ∓4 ) in Figures 3(a) and 3(b) and (∓2,0) or  (0, ∓2 ) in Figures 3(c) and 3(d). Our graphical 

representation lead to the fact that, due to the light-matter interaction, the emergent unconventional 

phase possibly corresponds to QSH. However, as stated in section 1, the conclusive evidence of this 

TRS-broken phase being QSH/QAH phase will be obtained once we calculate the spin Chern 

number[34] and the Z2 invariant which are  future tasks. 

4. Discussion and concluding remarks 

The strong correlation effects and diverse surface conditions make SmB6 extremely complicated 

and almost a Gordian knot. Despite this, as we have seen above, our low-energy model was able to 

show that the compound is a strong TI. Our low-energy model was also able to capture the fact that 

there should be a surface Dirac cone at k=0(as in ref.[16]) in Figure 1(a) and 1(b) for M = 0.  For M≠0 (Figure 1(d)), since TRS is broken, there is no Kramers degeneracy. By calculating BC and the Chern 

number we have been able to show that the Figure 1(d) corresponds to QAH state. In the case of the 

light-matter interaction in section 3, however, we need to show that the novel TRS-broken phase 

(despite M = 0) corresponds to QSH state. The problem needs an extensive investigation introducing 

an additional term  ℎ௭ = ቂቀଵଶቁ ቀ− 𝛼଴ 𝑠𝑖𝑛൫𝑘୷𝑎൯ቁ 𝜎୶  ⊗ (𝜏௭ + 𝜏଴ ቁ  + ቀଵଶቁ  𝛼଴ 𝑠𝑖𝑛(𝑘୶𝑎) 𝜎୷  ⊗ (𝜏௭ + 𝜏଴ )], (23) 

which is the Rashba spin-orbit coupling (RSOC) between the d-electrons, in Eq. (1). Here α଴ stands for the strength of RSOC.These are highlights of the present report. 
The Rashba coupling can arise in the present system due to proximity of material lacking in the 

structural inversion symmetry. In view of the spin-polarized ARPES measurements which appear to 

confirm the surface helical spin texture [45,46], it would be interesting to see how does surface state 

react to Rashba splitting as there is evidence of for a massive surface state at the surface Brillouin 

zone center which can exhibit Rashba splitting[47]. The Rashba SOC is of particular importance as it 

is a crucial ingredient for several spintronics and topological phenomena [48].  

There are many other complications to bring home the point that the system needs concerted 

investigations. In fact, we are presently working on three of the several issues to be discussed below 

in brief: (i) Since we have considered surface state quite extensively, the next step forward is an 
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investigation on the Kondo break down[49,50]. (ii)In YbB12, a finite residual temperature-linear term 

in the thermal conductivity κ/T(T → 0) is observed demonstrating the presence of gapless and 

itinerant neutral fermions [51]. On the other hand, κ/T (T → 0) in SmB6 has been controversial [52,53]. 

While κ/T(T → 0) of SmB6 has been reported to be very small but finite [54–56], the absence of κ /T(T 

→ 0) has been reported in references [55,57]. It is worth mentioning that in ref.[58] κ/T(T → 0)  has 

been shown to be finite. In view of the fact that TKI are found to be exceptionally sensitive to 

impurities, the issue needs to be looked into. (iii) Finally, in the quantum oscillation (QO) 

experiments of Li et al. [59], the signatures of two-dimensional Fermi surfaces supporting the 

presence of topological surface states were obtained. Various theoretical models were put forward 

that invoke novel itinerant low-energy neutral excitations [60] within the charge gap. These 

excitations were proposed to produce magneto quantum oscillation (MQO) signals. The theoretical 

models which entered the fray are based on magnetoexcitons [61], scalar Majorana fermions [62], 

emergent fractionalized quasiparticles [63] and non-Hermitian states [64]. As has been reported 

earlier [61], in SmB6, the QOs are observed only in the magnetization (de Haas-van 

Alphen(dHvA)effect). The dHvA oscillations strongly deviate below 1 K from the Lifshitz-Kosevich 

theory (LKT) possibly due to the presence of  magnetic impurities [65]. It must be mentioned that 

the QOs in YbB12 [66] are observed in both magnetization (the de Haas-van Alphen, dHvA, effect) 

and resistivity (the Shubnikov-de Haas, SdH, effect) at applied magnetic fields H where the 

hybridization gap is still finite. The temperature-dependence of the oscillation amplitude complies 

with the expectations of Fermi-liquid theory [66]. It is hoped that the details of the problematic issues 

given above, related/unrelated to the present communication, will motivate the condensed matter 

physics community to delve deeper into this problem.     

In conclusion, looking at the controversies and the possibilities, it is anybody’s guess that there 

are many unsettled issues. Unless other TKI candidates are discovered and thoroughly studied, it is 

perhaps difficult to achieve enhancement in the current understanding of strongly correlated 

topological insulators. In this backdrop, it is pertinent to make an attempt to investigate thoroughly 

what exactly are the physical explanation of the issues involved. In a future communication, as we 

already stated, we undertake a part of this demanding task.  

Appendix A 

Eigenvalues and eigenvectors of the matrix in Eq. (3)  

The eigenvalues ∈௝ of the Hamiltonian matrix (12) are given by the quartic ∈௝4 + a ∈௝3+b ∈௝2 +c ∈௝ + d = 0. (A1)

In view  of  the  Ferrari’s  solution  of a quartic equation, we find the roots as 

 ∈௝ (𝑠, 𝜎, 𝑘, 𝑏, 𝑀) =∈௝,௞௦,ఙ (𝑏) =  σ ඨ𝜂଴(𝑘)2 − 𝑎4 + s ቌ𝑏଴(𝑘) − ቆ𝜂଴(𝑘)2 ቇ +  𝜎 𝑐଴(𝑘)ඨ 2𝜂଴(𝑘) ቍଵଶ ,   (A2)

where j= 1,2,3,4,  𝜎 = ±1 is the spin index and 𝑠 = ±1 is the band-index. The coefficients (a, b, c, d) 

of the quartic  are given by  

a = − 2 (𝜖ௗ + 𝜖௖), 𝜖ௗ = ( 𝜖(𝑘, 𝑞 , 𝜇, 𝑏) + 𝜗(𝑘, 𝑞 , 𝑏)), 𝜖௖ =  (𝜖(𝑘, 𝑞 , 𝜇, 𝑏) − 𝜗(𝑘, 𝑞 , 𝑏)), (A3)𝑏 = (𝐴𝐵 + 𝐶𝐷) +  4 𝜖ௗ𝜖௖+𝜖௖ଶ + 2(𝑑ଵଶ + 𝑑ଶଶ + 𝑑ଷଶ) ,  (A4)𝑐 =  −2(  𝜖௖ 𝐴𝐵 + 𝜖ௗ𝐶𝐷 +  (𝜖ௗ + 𝜖௖) (𝑑ଵଶ + 𝑑ଶଶ + 𝑑ଷଶ)), (A5)𝑑 =[ 𝐴𝐵𝐶𝐷 + (𝐴𝐷 + 𝐵𝐶)((𝑑ଵଶ + 𝑑ଶଶ) + (𝐴𝐶 + 𝐵𝐷)𝑑ଷଶ + (𝑑ଵଶ + 𝑑ଶଶ + 𝑑ଷଶ)ଶ , (A6)𝐴 = (𝜖ௗ + 𝑀), 𝐵 = (𝜖ௗ − 𝑀), 𝐶 =  (𝜖௖ + 𝑀), 𝐷 =  (𝜖௖ − 𝑀). (A7)
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The following symbols are defined in the main text:  𝑑଴ = ఢ೏ିఢ೎ଶ  ,  𝑑ଵ = −𝑖𝐴ଵ𝑎𝑘௬, 𝑑ଶ = 𝑖𝐴ଵ𝑎𝑘௫, 𝑑ଷ = 𝐴ଵ𝑎𝜒, and the hybridization parameter 𝐴ଵ =   2𝑉𝑏. The functions appearing in Eq. (A.2) are 

given by   𝜂଴(𝑘) = ଶ௕బ(௞)ଷ + (∆(𝑘) − ∆଴(𝑘))భయ − (∆(𝑘) + ∆଴(𝑘))భయ,   ∆଴(𝑘) = (௕ బయ(௞)ଶ଻ − ௕బ(௞)ௗబ(௞)ଷ − 𝑐଴ଶ(𝑘)), (A8)

∆(𝑘) = ( ଶ଻ଶଽ 𝑏଴଺ + ସௗబమ௕బమଶ଻ + 𝑐଴ସ − ௗబ௕బర଼ଵ − ଶ௕బయଶ଻ + 
ଶ௖బమ௕బௗబଷ  + 

ௗబయଶ଻)1/2 ,  𝑏଴(𝑘) = {ଷ௔మି଼௕ଵ଺  }, (A9)

𝑐଴(𝑘) =  { ି௔యାସ௔௕ ି଼௖ ଷଶ  },  𝑑଴(𝑘) = ିଷ௔రାଶହ଺ௗି଺ସ௔௖ାଵ଺௔మ௕ଶହ଺ . (A10)

The eigenstates linked to the eigenvalues  ∈௝ (𝑠, 𝜎, 𝑘 𝑞 , 𝜇, 𝑏, 𝑀) in (A.2) are given below. These 

are required for the calculation of the Chern number when 𝑀 ≠ 0. These Bloch states are given by  

  ψ௝,୩ = ⎝⎜
⎛𝜓ଵ௝(𝑘)𝜓ଶ௝(𝑘)𝜓ଷ௝(𝑘)𝜓ସ௝(𝑘)⎠⎟

⎞
,  j =1, 2,3,4, (A11)

𝜓 ଵ௝(𝑘) =  𝑔ଵ௝(𝑘),  𝜓ଶ௝(𝑘) = (−𝑖𝑎𝑘ା) 𝑓ଶ௝(𝑘) 𝑔ଵ௝(𝑘), 𝜓ଷ௝(𝑘) =  𝑖൫∈௝ −𝜖ௗ + 𝑀൯𝑓ଷ௝(𝑘) 𝑔ଵ௝(𝑘),  (A12)

 𝜓ସ௝(𝑘) = (−𝐴ଵ𝑎𝑘ା)𝑓ସ௝(𝑘) 𝑔ଵ௝(𝑘), (A13)𝑔ଵ௝(𝑘) =  ϒ௝ିଵ/ଶ(𝑘) = ( 1 + 𝑎ଶ𝑘ଶ|𝑓ଶ௝(𝑘)|ଶ + ൫∈௝ −𝜖ௗ + 𝑀൯ଶ |𝑓ଷ௝(𝑘)|ଶ +𝐴ଵଶ𝑎ଶ𝑘ଶ  |𝑓ସ௝(𝑘)|ଶ)ିభమ, 
(A14)

𝑓ଶ௝(𝑘) = (𝑎𝑞)ିଵൣ൫∈௝ −𝜖ௗ − 𝑀൯൫∈௝ −𝜖௖ + 𝑀൯ +𝐴ଵଶ𝑎ଶ𝑘ଶ +𝐴ଵଶ𝑎ଶ𝑞ଶ൧× ൣ൫∈௝ −𝜖ௗ +                                                    𝑀൯൫∈௝ −𝜖௖ + 𝑀൯ +𝐴ଵଶ𝑎ଶ𝑘ଶ+𝐴ଵଶ𝑎ଶ𝑞ଶ൧ିଵ 
(A15)

𝑓ଷ௝(𝑘) = (𝐴ଵ𝑎𝑞)ିଵൣ൫∈௝ −𝜖ௗ − 𝑀൯൫∈௝ −𝜖௖ + 𝑀൯ +𝐴ଵଶ𝑎ଶ𝑘ଶ +𝜂𝐴ଵଶ𝑎ଶ𝑞ଶ൧ 
             × ൣ൫∈௝ −𝜖ௗ + 𝑀൯൫∈௝ −𝜖௖ + 𝑀൯ +𝐴ଵଶ𝑎ଶ𝑘ଶ +𝐴ଵଶ𝑎ଶ𝑞ଶ൧ିଵ

,  𝜂 =  ൫∈ೕିఢ೏ିெ൯൫∈ೕିఢ೏ାெ൯ , 

(A16)

𝑓ସ௝(𝑘) = 2𝑀/ൣ൫∈௝ −𝜖ௗ + 𝑀൯൫∈௝ −𝜖௖ + 𝑀൯ +𝐴ଵଶ𝑎ଶ𝑘ଶ +𝐴ଵଶ𝑎ଶ𝑞ଶ൧. (A17) In the special case  𝑀 ≪ 𝑡ௗభ ,  𝜓ଵ௝(𝑘) =ϒ௝ିଵ/ଶ(𝑘), 𝜓ଶ௝(𝑘) =  ௗభା௜ௗమ ௗయ ϒ௝ିଵ/ଶ(𝑘) , 𝜓ଷ௝(𝑘) = ( ∈ೕିఢ೏)ௗయ  ϒ௝ିଵ/ଶ(𝑘) , and  𝜓ସ ௝ (𝑘) = 0.  W e find that the function ϒ௝ିଵ/ଶ(𝑘)  is given by   ௔௤
቎ቀ ∈ೕషച೏ቁమಲభమ ା(௔௞)మା(௔௤)మ቏భ/మ .  The eigenvectors in this special case are  
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ψ௝,୩ ≈     

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

௔௤
቎ቀ ∈ೕషച೏ቁమಲభమ ା(௔௞)మା(௔௤)మ቏భ/మ

ି௜௔௞శ
቎ቀ ∈ೕషച೏ቁమಲభమ ା(௔௞)మା(௔௤)మ቏భ/మ

௜ቀ ∈ೕషച೏ቁಲభ
቎ቀ ∈ೕషച೏ቁమಲభమ ା(௔௞)మା(௔௤)మ቏భ/మ

0 ⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

. (A18)

Chern number calculation: We calculate here the intrinsic anomalous Hall conductivity 

(AHC)/Chern number to show that the system is in the quantum anomalous Hall (QAH)phase when 𝑀 ≠ 0.  The expression of AHC is σ஺ு  = −(ୣమ௛ ) ∑ ∫ ௗమ௞(ଶగ)య஻௓  𝑔൫𝐸௝(𝑘) − 𝜇൯ Ω୨୸(k)௝ , where μ is the 

chemical potential of the fermion number, j is the occupied band index, 𝑔൫𝐸௝(𝑘) − 𝜇൯ is the Fermi-

Dirac distribution and Ω୨୸(𝑘) is the z-component of the Berry curvature (BC) for the jth band. To 

obtain AHC, we calculate BC using the Kubo formula  Ω୨୸(𝑘)= −2 ℏଶൣ𝐼𝑚 ∑ (E୨(k) − E୧(k))ିଶ ௜ஷ௝ ⟨𝑗, 𝑘|𝑣௫ෞ|𝑖, 𝑘⟩ൻ𝑖, 𝑘ห𝑣௬ෞห𝑗, 𝑘ൿ൧. (A19)

Here k is the Bloch wave vector, E௝(k) is the band energy, |𝑗, 𝑘⟩ are the Bloch functions of a 

single band. The operator 𝑣ఫෝ  represents the velocity in the j direction. For a system in a periodic 

potential and its Bloch states as the eigenstates, in view of the Heisenberg equation of motion  𝑖ℏ 
ௗ௫ොௗ௧=  

[ 𝑥ො, 𝐻෡], the identity ⟨𝑚, 𝐤ᇱ|𝑣ఈෞ|𝑛, 𝒌 ⟩ = ቀଵℏ ቁ ቀE୨(𝐤ᇱ) − E୧(𝐤)ቁ ർ𝑖, 𝐤ᇱቚ డడ௞ഀ ቚ𝑗, 𝒌 ඀  is satisfied. Upon using 

this identity, we obtain AHC in the zero temperature limit as  σ୅ୌ = 𝐶 ቀ௘మℏ  ቁwhere  𝐶 =  ∑ 𝐶௝୨ , 𝐶௝ = ∫ ∫  Ω୶୷(𝑘) ௗమ௞(ଶగ)మ .୆୞ The z-component of the Berry-curvature (BC) is Ω୶୷(𝑘) = ∑ ൬డ஺ೕ,೤ డ௞ೣ − డ஺ೕ,ೣ డ௞೤ ൰୨   = −2 ∑ 𝐼𝑚 ർడநౠ,ౡడ௞ೣ ฬ డநౠ,ౡడ௞೤ ඀ ୨  (A20)

We use the results presented in (A.11) - (A.20) to calculate BC. Next, upon integrating BC on a 

k-mesh-grid of the Brillouin zone, we calculate the intrinsic AHC.  

Eigenvalues of the matrix (15): The eigenvalues (𝜀ఈ) of the matrix (15) is given by the quartic  𝜀ఈସ + 𝛾ଵை௉(𝑘, 𝑏)  𝜀ఈଷ + 𝛾ଶை௉(𝑘, 𝑏)    𝜀ఈଶ   + 𝛾ଷை௉(𝑘, 𝑏)  𝜀ఈ + 𝛾ସை௉(𝑘, 𝑏) = 0  (α= 1,2,3,4  )  where the 

coefficients 𝛾ఉை௉ (𝑘,b) (β = 1,2,3,4) are given by 𝛾ଵை௉(𝑘, 𝑏) = − ෍ 𝐸ఓఓ , 𝛾ଶை௉(𝑘, 𝑏)
= (12) ෍ 𝐸ఓ𝐸ఔ − 2(ఓஷఔ 𝐴1𝑂𝑃+ 𝐴1𝑂𝑃 − )(𝑎𝑞)2 − (𝐴1𝑂𝑃+ 2 + 𝐴1𝑂𝑃− 2)(𝑎𝑘)2, (A21)

𝛾ଷை௉(𝑘, 𝑏) = ቀ− ଵ଺ቁ ∑ 𝐸ఓ𝐸ఔ𝐸ఙఓஷఔஷఙ +  (𝐴1𝑂𝑃+ 𝐴1𝑂𝑃− )(𝑎𝑞)2 ∑ 𝐸ఓఓ + 𝐴ଵை௉ି ଶ(𝑎𝑘)ଶ(𝐸ଵ +𝐸ଶ) + 

                                                                                                 𝐴ଵை௉ା ଶ(𝑎𝑘)ଶ(𝐸ଷ + 𝐸ସ), (A22)
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𝛾ସை௉  (𝑘) = ∏ 𝐸ఓఓ − 𝐴1𝑂𝑃− 2(𝑎𝑘)2(𝐸1𝐸2) − 𝐴1𝑂𝑃+ 2(𝑎𝑘)2(𝐸3𝐸4) −𝐴1𝑂𝑃+ 𝐴1𝑂𝑃− (𝑎𝑞)2(𝐸1𝐸4 + 𝐸2𝐸3) + 

𝐴ଵை௉ି ଶ𝐴ଵை௉ା ଶ(𝑎𝑘)ସ+ 𝐴ଵை௉ି ଶ𝐴ଵை௉ା ଶ(𝑎𝑞)ସ − 2𝐴ଵை௉ି ଶ𝐴ଵை௉ା ଶ(𝑎𝑞)ଶ((𝑎𝑘௫)ଶ − ൫𝑎𝑘௬൯ଶ). 

(A23)

Appendix B 

Supporting result for the calculation of Z2 invariant of the system: We feel necessary to 

supplement Eq.(8) and note below this equation by presenting an outline of the reports in ref.[15] in 

an effort to make the present communication comprehensive. We consider the green and red bands 

in Figure 1(a) and 1(b), and denote their Bloch wave functions, respectively, as |ύ(ଵ)(k)ൿ and |ύ(ଶ)(k)⟩. 
Following Fu and Kane[15] we assume the system one dimensional, i.e. k = (k,0).We impart the time 

dependence assuming that the band parameters change with time and return to the original values 

at t = T. We also suppose that the Hamiltonian ℎୱ୳୰୤ୟୡୣ஻ு௓  (𝑀 = 0) satisfies the following condition ℎୱ୳୰୤ୟୡୣ஻ு௓  (𝑀 = 0, −𝑡) =  ℎୱ୳୰୤ୟୡୣ஻ு௓  (𝑀 = 0, 𝑡)ିଵ . It is well-known [15] that charge polarization P can 

be calculated by integrating the Berry connection of the occupied states over the BZ. In the present 

case of the  two-band system, P may be written as P = P1 + P2 where the Berry connections ൛−𝑖ൻύ(ఈ)(k)ห∇௞| ύ(ఈ)(k)ൿൟ are given   by 𝑐ఈఈ(𝑘)  (𝛼 = 1,2) and  𝑃ଵ = ∫ ௗ௞ଶగగିగ   𝑐ଵଵ(𝑘),    𝑃ଶ = ∫ ௗ௞ଶగగିగ   𝑐ଶଶ(𝑘).  
The Berry curvature is given by Ωα(k) = ∇k × 𝑐ఈఈ(𝑘). The total polarization density  C(k) = 𝑐ଵଵ(𝑘)+ 𝑐ଶଶ(𝑘). This yields the TR polarization which is defined by P௧௥ = P1 – P3 = 2P1 − P. Here  P௧௥ gives the 

difference in charge polarization between spin-up and spin-down quasiparticle bands. We now go 

back the charge polarization P, calculated by integrating the Berry connection of the occupied states 

over the BZ.  Furthermore, the time-reversed version of |ύ(ଶ)(k)ൿ is equal to  |ύ(ଵ)(−k)ൿ  except for 

a phase factor. Hence, at t = 0 and t = T/2 one may write Θ|ύ(ଶ)(k)ൿ = 𝑒ି௜ఘ(௞)|ύ(ଵ)(−k)ൿ and Θ|ύ(ଵ)(k)ൿ 
= − 𝑒ି௜ఘ(ି௞)|ύ(ଶ)(−k)ൿ. It is not difficult to see that the matrix representation of the TR operator  in 

the Bloch wave function basis ξ஑ஒ (𝑘)  ≡  ൛ൻύ(ఈ)(−k)ห | ύ(ఉ)(k)ൿൟ will now be given as   ξ(𝑘) =൬ 0 𝑒ି௜ఘ(௞)−𝑒ି௜ఘ(௞) 0 ൰ . One can easily confirm that ξ஑ஒ (𝑘) is a unitary matrix. It has the property ξ஑ஒ (− 𝑘) =  − ξ஑ஒ ( 𝑘). This implies that ξ஑ஒ ( 𝑘) is anti-symmetric at a TRIM. Upon getting back to 

the connections, we note that the connections satisfy 𝑐ଵଵ(−𝑘) = 𝑐ଶଶ(𝑘)  − డడ௞ 𝜌(𝑘). These lead us to 

the charge polarization between spin-up bands P1 as    𝑃ଵ = ∫ ௗ௞ଶగగ଴  𝐶(𝑘) − ௜ଶగ [𝜌(𝜋) − 𝜌(0)] . Since 𝜌(𝑘) = 𝑖 log 𝜉ଵଶ(k), and C(k) = 𝑡𝑟(𝑐(𝑘)), after a little algebra, we  find  P௧௥  = ଵ௜గ log ൬ඥకభమ(଴)మకభమ(଴)   కభమ(గ)ඥకభమ(గ)మ൰ . 
Obviously enough, the argument of the logarithm  is +1 or −1. Furthermore, since log(−1) = iπ one 

can see that P௧௥ is 0 or 1 (mod 2).Physically, of course, the two values of P௧௥  corresponds to two 

different polarization states which the  system can take at t = 0 and t = T/2.The Bloch functions 

|ύ(ఈ)(𝑘, 𝑡)ൿ introduced above  could be visualized as  maps from the 2D phase space (k, t) to the 

Hilbert space. As in refs.[15], the Hilbert space could be separated into two parts depending on the 

difference in P௧௥ between t = 0 and t = T/2. This leads to introduction of a quantity ν0, specified only 

in mod 2, and defined as (P௧௥  ቀ୘ଶቁ – P௧௥ (0)): When P௧௥  does not changes between t = 0 to T/2, ν0 = 0, 

whereas if there is a change then ν0 = 1. The visualization mentioned above, thus, yields that the 

Hilbert space is trivial if ν0 = 0, while for ν0  = 1 it is nontrivial (twisted). Equivalently, the system 

band structures are characterized by Kane–Mele index[15] Z2= +1 (ν0 = 0) and Z2= −1 (ν0 = 1). We obtain  

(−1) ν0 =  ∏ ஞభమቀ୩౪౨౟ౣ(ೕ) ቁටஞభమቀ୩౪౨౟ౣ(ೕ) ቁమ௝   (B1)

We now consider the generalization of this result. For this purpose, we suppose that 2N bands 

are occupied and forming N Kramers pairs. For eachsuch pair n, at the TR symmetric times t = 0 and 
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π the wave functions are related by write Θ| ύ௡(ଶ)(k)඀  = 𝑒ି௜ఘ೙(௞)|ύ௡(ଵ)(−k)඀  and Θ| ύ௡(ଵ)(k)඀  = 𝑒ି௜ఘ೙(௞)|ύ௡(ଶ)(−k)඀ and the matrix  ξ(𝑘)  = 

⎝⎜
⎛ 0 𝑒ି௜ఘభ(௞) 0 0 ⋯−𝑒ି௜ఘభ(ି௞) 0 0 0 ⋯0 0 0 𝑒ି௜ఘమ(௞) ⋯0 0 −𝑒ି௜ఘమ(ି௞) 0 ⋯⋮ ⋮ ⋮ ⋮ ⋱ ⎠⎟

⎞. (B2)

This leads to  ξଵଶ ቀk୲୰୧୫(௝) ቁ ξଷସ ቀk୲୰୧୫(௝) ቁ … … ….  ξଶே ଶேିଵ ቀk୲୰୧୫(௝) ቁ = 𝑒ି௜ ∑ ఘ೙ቀ୩౪౨౟ౣ(ೕ) ቁ೙ಿసభ = Pf ቂ𝜉 ቀk୲୰୧୫(௝) ቁቃ,  
where Pfaffian is defined for an antisymmetric matrix and is related to  the determinant by Pf[𝐴]ଶ = det[𝐴].   The  difference in charge polarization between spin-up and spin-down quasiparticle 

bands, in this general case, is  now given by P௧௥  = ଵ௜గ log ൬ඥୢୣ୲ [క(଴)]௉௙[క(଴)]   ௉௙{క(గ)]ඥୢୣ୲ [క(଴)]൰ .  Thus, the  Z2 

topological invariant ν is given by (−1)ν0 = ∏ δ ቀk୲୰୧୫(௝) ቁ  where for each TRIM k୲୰୧୫(௝) one defines  ௝   

δ ቀ𝐾୲୰୧୫(௝) ቁ ≡ 
Pf[ξቀ௄౪౨౟ౣ(ೕ) ቁ]ටୢୣ୲[కቀ௄౪౨౟ౣ(ೕ) ቁ] (B3)

As we see in the section 2 of the main text, this leads to the classification of the Hilbert space into 

the twisted ( ν଴ =1) and the trivial one (  ν଴ = 0).   
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