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Abstract We show that the compound samarium hexaboride is a strong topological insulator using the
eigenvalues of the space inversion operator in the low-energy limit of the periodic Anderson model.
Additionally, we assume the presence of the ferromagnetic exchange interaction (M). A Dirac cone like feature
in the surface state energy spectra is observed for M equals zero in a certain parameter range. For M not equal
to zero, there is no Kramers degeneracy. We have been able to show that this phase corresponds to the quantum
anomalous Hall state by calculating Berry curvature and the Chern number. Using Floquet theory, we further
show that the access to a novel state with broken time reversal symmetry is possible due to the normal incidence
of circularly polarized optical field on the surface of the compound despite M being absent.

Keywords: Periodic Anderson model; Dirac cone; Kramers degeneracy; Quantum anomalous Hall
state; Chern number; Floquet theory

1. Introduction

This communication is on a topical issue of the mixed valence compound SmBs.[1-5] —a narrow
gap topological Kondo insulator (TKI) which, with a high-temperature metallic phase, transforms
into a paramagnetic charge insulator below 45K. It has been suggested [6,7], as well as it is
increasingly apparent [8-10] during the past several years, that SmBs is a non-trivial topological
insulator. This has generated great deal of excitement in the condensed matter physics community
and it still remains a matter of avid debate [6]. Despite the supporting evidence for the TKI scenario
[1-10], there is no prognosis regarding the nature of the bulk and surface states of SmBs [11-13]. In
this paper our primary aim is to resolve this issue. We consider an extended periodic Anderson model
(EPAM) [14] for the compound SmBs for this purpose. We introduce here the exchange interaction
(M) assuming the presence of the ferromagnetic magnetic impurities in the system. The slave boson
(SB) mean-field-theoretic Anderson model of Legner [15] refers to a simple cubic lattice with one
spin-degenerate orbital per lattice site each for d and f electrons. We consider the low-energy
version of this model together with the exchange interaction. Our minimalistic Hamiltonian, based
on the slave boson (SB)mean field theory of ref. [15], captures essential physics of TKI in the presence
of the coulomb repulsion U ( >> t4;) between f electrons on the same site, and the spin-orbit
hybridization V. The parameter V is the harbinger of a topological dispensation. The terms (t4;, tf1)
are the nearest neighbor hopping parameters for d and f electrons. There are three other parameters
(b, A, &) of our theory [14]. While the term & enforces the fact that there are equal number of d and f
fermions, the parameter b represents a c-number slave-boson field. We note that the constraint Uy >>
tq; imposes a non-holonomic constraint, viz. the exclusion of the double occupancy. The SB-protocol
provides a platform to reformulate this nonholonomic constraint into a holonomic constraint that can
be implemented with the Lagrange multiplier A. We found that A = —6t;; + 6b?ts;,and £ = =3ty +
3t¢,. The admissible value of b? is 1. Since the method to obtain them is explained clearly in ref.
[14] we will not reproduce the same here. We observe a Dirac cone like feature at k = 0 momentum
in the surface state energy spectra for M = 0 [16], upon writing the SB Hamiltonian in the Dirac basis
similar to the Bernevig-Hughes—Zhang (BHZ) model [17]. We obtain the Z: invariant (Z>= —1)
using the eigenvalues of the space inversion operator in the Fu-Kane framework [18]. This is the
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conclusive evidence of the fact that SmBs is a strong topological insulator for M = 0. By calculating
Berry curvature and the Chern number we have been able to show that M+ 0 corresponds to the
quantum anomalous Hall state. It must be mentioned here that our low-energy model has been found
adequate enough to capture important features of SmBs, although the ground state of the compound
SmBehas been shown to be is a quartet state [1].

The exotic Floquet topological phases [19-26] with a high tunability could be realized using the
circularly polarized optical field (CPOF). Analogous to the Bloch theory, here one can transform the
time-dependent Hamiltonian problem to a time-independent one using the Floquet’s theorem [27-
30]. The combinations of the Floquet theory with dynamical mean field theory [31], and slave boson
protocol [32] were also formulated for strongly correlated systems. Our approach is in acquiescence
to the latter. We use the Floquet theory[27-30,33] in section 3 in the high-frequency limit to examine
the Cos Sz Sz thin film system. Interestingly, the incidence of CPOF leads to the time reversal
symmetry (TRS) broken phase despite M =0. The conclusive evidence of this phase being quantum
spin Hall (QSH) phase is presented by calculating the spin Chern number [34,35].

The paper is organized as follows: In section 2, we calculate Z: invariant using the eigenvalues
of the space inversion operator with in the Fu-Kane framework [18]. In section 3, we are able to
show the emergence of a novel phase with broken-TRS by the normal incidence of tunable CPOF
despite M = 0. For this purpose, we make use of the Floquet theory in the high-frequency limit to
investigate the system. The paper ends with discussion and brief concluding remarks in section 4.

2. Surface State Hamiltonian in SB formalism and the Z: invariant

A. Surface State Hamiltonian

We treat the model Hamiltonian (Hpap (b, A, ¢ )) in Eq.(1) of the ref.[14] in the low-energy limit
below. All energies in our calculation/graphical representation below are expressed in units of the
first neighbor hopping t;, for d-electrons as this corresponds to the kinetic energy of these itinerant
electrons and therefore the most dominant. In the above limit, the following replacements are
necessary : sin(ajk;) - a;k; + 0(a?k?), cos(ajk;) - (1 —(% atk?)) where k; (j = ( x, y, z)) are
momentum components, and q; is the lattice constant along j direction. Furthermore, in order to
obtain surface state Hamiltonian, we make the replacement ak, » —iad, and look for states
localized within the surface z = 0 of the form exp(—iyz) . Furthermore, we seek such a value of the

unknown wave number y(y = —iq,q > 0) for which the exponential exp (— %) & 1 forz > 0. For

example, if we assume aq ~1 the exponential exp (— %) ~exp(—10), i,e vanishingly small, for z

~50nm given that SmBs cubic crystal structure with lattice constant 4 = 0.413 nm. Therefore, y =
—iq,q > 0 ensures a decaying term for z > 0 in the surface states. Upon including the exchange
coupling M, we find that the surface state Hamiltonian hgyeace(k, q, 4, b, M) is

by L; 0 —iA,aq
hsurface= <£-1I- b ) ~1 = (—iAlaq 01 ) ’ b+=b(kx' ky, q,u, b, M) =

(6(k, q, K, b))‘ro + n(kx, ky,q,b).a' + Mo, b_ = b*(—kx,—ky q,ub, —M)

The two blocks (b, b_),characterized by the pseudo-spin indices ( +, ), are related to each other
by TRS forM=0 , and n(kykyq,b)= ( Ayaky,Ajak,,9(ky ky,q,b)). The other
parameters/functions in (1) are

D

Ay = 2Vb, k= (kyky), k? = (kZ + k2),
€(k,q,p,b) = €0(u,b) —D;(b)a*q® + Di(b)a’k? + O(a*q*) + O(a*k*)

bZ
EO(‘L[, b) =—u+ [7 Ef - 3td1 - 3tf1 - 6td2 - 6tf2b2 - 4td3 - 4tf3 bz],

tg1+b%t
Dy(b) =[ ~F——L +2(tgy + b?tpy) + 2(tas + b?ty3)],
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3
9(k,q,b) = 99(b) —B;(b)a?q?® +B;(b)a’k? + 0(a*q*) + 0(a*k?),
bles 2 2
tai—b2tsy 2 2
B;(b) =[ Ea— +2(tg, — b*tsy) + 2(ta3 — b tr3)]. )

Here the terms (tm ,tfl), (taz) tr2), and (td3 ,tf3), respectively, are the NN, NNN, and NNNN
hopping parameters [14] for d and f electrons, € is the onsite energy of the f electrons, u is the
chemical potential of fermion number, o,, , are the Pauli matrices, and g, is the 2x2 identity
matrix. Ona quick side note, we observe that hgyrface(k, g, b, M = 0) corresponds to Qi-Wu-
Zhang (QWZ) model[35]. As shown by these authors, the situation corresponds to the QSH state,
for the spin Hall conductance of b((kx, ky, q,u,b,M = 0) and b*(—kx,—ky q,ub,—M= 0) are
not zero but the net Hall conductance of the system described by the model is zero.

For calculating the Z: invariant, the eigenvalues of the parity operator needs to be obtained. The
objective could be accomplished with relative ease if the Hamiltonian in (1) is written down in the
Dirac basis similar to the Bernevig-Hughes—Zhang (BHZ) model [17] presented over a decade and
half ago for quantum wells. We now write the Hamiltonian in (1) in Dirac basis similar to the BHZ
model:

hsBlﬁ%ace (k q,u, b' M) = EdT-'-ec 14X4 + Za=0,12,3,5 da (k, q,u b)ya + MGO ®TZ (3)

where dp=-C= | €= (elbq,mb)+90,q,b) e =  (eleq,mb) =9k q,b)), di=
—iA,aky,d, = iA;ak,, d; = A;ay, and ds5 = 0. The Dirac matrices (y°,y*,y% Y% ¥®) in con-travariant
notations are Y° = o?Q®I%? , y/ =io¥®1/,j =1,2,3 ,and y® = iy° y* y? y3. The Pauli matrices o
and t are acting in the space of bands that give rise to Kramers degeneracy (see Figure 1).

B. Surface state spectrum

The eigenvalues €; = €; (s,0,k,b, M) of the matrix (3) are given by a quartic and, therefore,
we use Ferrari’s solution of a quartic equation (see Appendix A). We have plotted the surface state
energy spectra (SSES) given by Eq. (A.2) as function of the dimensionless wave vector ak in Figures
1(a) and 1(b). Since the conduction bands are partially empty, the surface state will be metallic. These
figures correspond to unbroken TRS (M= 0). It will be shown below, calculating the Z» invariant
using the eigenvalues of the space inversion operator, that the figures correspond to QSH phase.
There should be a surface Dirac cone (or at least a Kramers degeneracy) at k=0, as in ref. [16]. We
indeed observe a Dirac cone like feature here (see Figure 1(a) and 1(b)) in a certain parameter-
window. The numerical values of the parameters used in the plots are t;, =1, t; = —0.8, t;, =0.01,
tr, =0.01, tq, =0.001, tg, =0.001, e, = — 0.02,V= 0.1,b=098,u= 0, M =0,03and Uf > tg,. In
both the figures, t;; is negative and, therefore, the figures correspond to the insulating bulk. It may
be noted that one needs t~ty, to access the Dirac-cone feature. The Dirac-cone feature of SSES
agrees with several experimental observations reported earlier, such as those by scanning-tunneling
microscopy [36,37], angle-resolved photoemission spectroscopy (ARPES)[38,39] and the circular
dichroism ARPES[40], and so on. Here, the red curve corresponds to the spin-up valence band
€; (s=—-1,0 =41,k b), and the green curve to spin-down conduction band €, (s =+4+1,0 =
—1,k,b). The curves display the band-inversion close to the Fermi energy represented by the
horizontal solid line. In Figure 1(c), though M= 0, # 0. We observe that the states corresponding
to momenta ak = (£2,0) or ( 0, £2) in Figure 1(a) are degenerate. Furthermore, they satisfy the
condition ak+aG =  —akwhereaGisareciprocal lattice vector. For example, for ak =
(£2,0) and aG = (F¥4,0). Of course, there are other possibilities too, for example ak = ( +V2, +V 2).
These possibilities we are not taking into account for the simple reason that they do not satisfy the
condition k+ G = —k. In Figure 1(d), M# 0 and therefore TRS is broken. There is no Kramers
degeneracy as could be seen in this figure. The Figure 1(d) corresponds to QAH as is shown below.
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Figure 1. The plots of surface state energy spectrum given by Equation (14) as a function of the
dimensionless wave vector  ak. The numerical values of the parameters used in the plots are t4,
=1, t; =( —0.8,-0.5), tg, =0.01, tf, =0.01, ty, =0.001, tr, =0.001, ¢, = — 0.02, V=0.1,b =098, =
(0,—0.5), M = (0,0.5) and Uy > t,,. The horizontal solid line represents the Fermi energy. Since the
conduction bands are partially empty, the surface state will be metallic in all the cases. In (a)-(c), the
system is TR symmetric. The energy bands of the system come in Kramers pairs. We observe a Dirac
cone like feature in Figures (a) and (b). In Figure (d), TR symmetry is lacking and therefore no Kramers
pair is possible.

In Figure 2 we have shown the contour plots of the Berry-curvature(BC) in the z-direction for
M= 0. The numerical values of the parameters used in the plots are t;, =1, t;, = 0.01, t;, =0.01,
tq, = 0.001, tr, =0.001, ¢, = — 0.02, V=0.1,b=098 u=0, and Us >» ty,. The parameter t; =
—0.8 in Figure (a) whereas t; = —0.6 in Figure (b). Upon integrating BC on a k-mesh-grid of the
Brillouin zone (BZ), we calculate the intrinsic anomalous Hall conductivity o445 (AHC). This yields
the Chern number (C). A brief outline of the procedure followed is given below in Appendix D. We

2
find that AHC is 0,5 =1.0471 (%) in the former case (€ = 1.0471 is close to the integer value 1),

2
while in the latter case itis gy =1.6607(%). Furthermore, we found that while for t;, = —0.4, C

=3.3906, for t;, = — 0.2, C=3.2181. Our conjecture for not obtaining integer values of Chern number
leans upon the following: The Hall conductivity ¢, cannot be determined as such from the 2D Dirac
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model since Eq. (D.1) (see Appendix A) requires an integral over the whole BZ. The integral is outside
the Dirac model’s range of validity. To circumvent the problem one may possibly choose a
momentum space cut-off small compared to the size of BZ and large enough to capture nearly all the
contributions to BC integral. This will be within the range of validity of the 2D Dirac model.

(b)

Figure 2. The contour plots of the Berry-curvature in the z-direction for M= 0.08 as a function of the

dimensionless wave vector components  ak, and ak,,. The numerical values of the parameters used
in the plots are t4, =1, t5, =0.01, tr, =0.01, t4, =0.001, tz, =0.001, e, = — 0.02, V=0.1,b=0.98, u
=0, and Ur > tg,. The parameter t; = —0.8in Figure (a), whereas t; = —0.6in Figure (b).

Let us now note that the Fermi energy inside the gap intersects the surface state bands in the
same BZ, in general, either an even or an odd pair number of times. If there are odd numbers of pair
intersections, which guarantees the time reversal invariance, the surface state is topologically non-
trivial (strong topological insulator). Furthermore, it is also evident that the number of TRIM pair
involved in the surface-state crossings (SSC) is one (odd). However, when there are an even number
of pair-surface-state crossings, the surface states are topologically trivial (weak TI or ordinary Bloch
insulators that are topologically equivalent to the filled shell atomic insulator). The quantized
topological numbers, the Kane-Mele index Z> for QSH phase and the Chern number C for QAH
phase, strongly support such topological states. The QSH band structures are characterized by the
topological invariant vy= 0 (Z>= +1) and vy =1 (Z>=-1). The former corresponds to weak TI, while
the latter to strong TI. In fact, materials with band structures with Z,= -1 are expected to exist in
systems with strong spin-orbit coupling acting as an internal quantizing magnetic field on the
electron system. The graphical representations in Figure 2 (except Figure 2(d)) indicate that the
system considered here is a strong TI for M = 0. This is corroborated by analysis given below.

C. Z2invariant

In a bid to to calculate the Z: invariant using the eigenvalues of the space inversion operator,
we note that the f- and d-states have different parities, the inversion symmetry(IS) operator in this
band basis is constructed as IT= [?** @1%.The time reversal (TR) operator for a spin 1/2 particle is ©®
= I?*2@1YK.The operator K stands for the complex conjugation. Here the 7/ are Pauli matrices on
two-dimensional spin space. The Hamiltonian under consideration, for M = 0, preserves the time
reversal (TRS)and inversion symmetries (IS). It can be easily shown that (OY|0¢) = (p|y) taking
eigenstate of the z-component of the spin operator I2*?®t?# as the basis. Also, ©Y°0 1=y° , ©y°0O
1=y5 and Oy/O 1 =—y/ , where j = 1,2,and 3. Similarly, ITy° IT1=y° , Iy [I'=—y/ (j=
1,2), and ITy* [T-1=y* ( k = 3,5).Since only y° and y* are even under time reversal and inversion
(and ds = 0), at a time reversal invariant momentum(TRIM) Ki where the system preserves both TR
and IS , the Hamiltonian will have the form h2HZ (k=K;, q,u,b,M =0) = EdTHCI x4
do(k = K;,q,u b)Y°. The eigenvalues of y’are +1( multiplicity 2). The corresponding eigenvectors
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6
are |+)= (/V2)(1 1 0 0T and [|-)= (1/¥2) 0 0 1 1 )T Here (+[y°|+)=
1 and (—|y°|=) = —1. We obtain

(+] hoiface(k = K, g1, b,M = 0,W)|+) = €4 = E,,
(~| hBHZ o (k =K;, q,mb,M =0,Wp)|-)= € = E_. @
Here
do =", e,=(elk,q,1,b) +9(k,q,b)),e. = (elk,q,ub) —9(k,q,b)). )

2

Obviously enough, if E_ < E,, the state | —) is occupied and the parity of the state at TRIM
Ki is —1. In the opposite case (E- > E.) , the state | +) is occupied and the parity is +1.
Therefore, the parity is given by (—sgn[d,]).

We now obtain the Z> invariant simply by the parity eigenvalues at TRIMs. The surface states
correspond to the eigenstates (or the Bloch states linked to the eigenvalues in €; (s,0,k,b,M = 0).
These are presented in Appendix A. We consider a matrix representation of the time reversal (TR)
operator ® in the Bloch wave function basis. With o and {8 as the band indices we consider the
representation is  §.g(k) = (1’)(“)(—k)|®|1')(ﬁ) (k)) . This matrix relates the two Bloch states
10(@/B)(—k/K)) and via [0 (=K)) = XpEig (k) @ [0 (K)). With the aid of this one can easily show
that &g (k) is a unitary matrix ( £ =1). We also find that it has the property &, (—k) =
=8 (k). This implies that the matrix §,g (K;) at a TRIM becomes anti-symmetric, i.e. §.5 (K;) =
—&p« (K;) # 0. Only when the bands a and 3 form a Kramers pair, such a non-zero &, is obtained.
Yet another which we need to consider is the Berry connection matrix defined as yqz(k) =
—i(l’)(“)(k)|Vk|1')(ﬁ)(k)). In view of the results (OY|0@¢p)= (plY) and |1')("‘)(—k)) =
2pSap () O [0 (k)) we arrive at the relation linking y,z(k) and y.z(—k):

y(—k) = )y (K)E (k) + i§(R)ViET (k). (6)

Upon taking the trace we find tr(y(—k)) = tr(y* (k) + i tr(§(k)V & (k). Since yp, = Yap
and &VE" = —(VE)ET, upon replacing —kby k in the preceding equation one may write A =
tr(y(k)) = tr(y(—k)) + i tr(§T (k)V,&(k)).We shall need this result below. The Berry curvature of
tr(y(k)) may be defined as Q = curl A. Since the system preserves TRS and inversion symmetries
(IS), one may select any gauge which renders A equal to zero. We now consider the anti-symmetric
and unitary matrix {eg (k) = (1')(“) (k)|17 ®|1')(B) (k)) (where IT2=1) to examine the consequence of
setting A equal to zero. Since we find from ref.[18] that A= tr(y(k)) = %tr (V) = évktr(lo g90) =
iV log(w/ det[¢ ])), it is clear that in order to make A = 0, one needs to adjust the phase of Bloch states

10(@(k)) such that Pf(C) = 1. Suppose now ¢ ( K/™™) = +1 are the eigenvalues of IT for band a at
TRIM K™, one obtains the matrix

EaB (Kitrim) — (l')(a) (_K&rim) |I-”-[®|l')(,8) (Kitrim))= ZaB (Kitrim) pa( Kitrim). (7)

Obviously enough, when ga =0, §up (K;) = —Eg (K;) # 0. Only when the bands a and  form
a Kramers pair, such a non-zero &g is obtained. It follows that if the bands a and  are the nth
Kramers pair in the total of 2N bands, we may write py,= pg = pzn. From Eq.(6), one can now see
that

N
PFL e (k™) = PF[ 3 (k™) ] | [ on (KE™). ®)

Since Pf(Q) = 1, in view of this result and Eq.(B.3) in the Appendix B, we find that that the Z>
invariant can be calculated simply by the parity eigenvalues p,, at TRIMs K™, that is (—1)¥ =
:6(KD ) = iTlnpzn (K9 ). Upon getting back to Eq.5) and taking into account the
observations below this equation, the parity of the occupied state at Kg)im, viz. S(Kg)im , is given

by S(K(i) ) = (—sgnld,]). Besides, from Eq. (4), it is easy to infer €, > ¢, ata given momentum.

trim
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This implies that E_ > E,. Regarding the topology of our band system, this in turn leads to the
conclusion that vo=1. Thus, indeed the system is a strong topological (non-trivial) insulator.

3. Floquet Theory

The polarized periodic optical field provides a potent modus operandi to carry out theoretical
proposition and experimental realization, manipulation, and detection of diverse
unconventional/novel optical and electronic properties of materials, such as the realization of novel
quantum phases without static counterparts like light induced quantum anomalous phase (QAH)
phase [19], the topological phase transitions in semi-metals [21-24], the Floquet engin-eering of
magnetism in topological insulator thin films [41,42], and so on. The exotic Floquet topological phases
with a high tunability could be realized using the polarized periodic optical field. In fact, there has
been an upsurge on experimental front in the search for topological states, in solid state [42], cold-
atom [43] and optical systems [44], which are driven periodically. The circularly polarized optical
field (CPOF) is described by a time-periodic (time period = T = 271/ @ where w is the frequency of
light) gauge field. Upon using the Peierls substitution, lattice electrons couple to the electromagnetic
gauge field. In the presence of COPF, the thin film Hamiltonian Hg,,fqce, apart from breaking the
time reversal invariance (TRS), becomes periodic in time. One can now transform the time-dependent
Hamiltonian problem to a time-independent one using the Floquet’s theorem [25-28]. Analogous to
the Bloch theory, a solution for the time-dependent Schrodinger equation of the system is obtained
here involving the Floquet quasi-energy and the time-periodic Floquet state with the periodicity T.
The Floquet state could be expanded in a Fourier series which makes us arrive at an infinite
dimensional eigenvalue equation in the Sambe space [27].The circularly polarized optical field
incident upon the film may be described by a time-varying gauge field A(t) =A(t+T) =
A (sin(wt), sin(wt + ), 0) through the relation: E(t) = —a';(tt) = —E(cos(wt),cos(wt + ),0),
E = Ajw. Here E(t) is The optical field. In particular, when the phase 1) = 0 or m, the optical field is
linearly polarized. When ¢ = + 1/2 ( ¢ = —71/2), the optical field is left-handed ( right-handed)
circularly polarized. Once we have included a gauge field, it is necessary that we make the Peierls

substitution Hgy,race(t) = Hsyrrace (k — %A(t)). The dimensionless quantity a4, = ';LE corresponds

w
to the frequency of the incident light.

We assume the normal incidence of CPOF on the surface SmBs with the thickness d = 30 nm.
Suppose the angular frequency of the optical field incident on the film isw =~ 10*radian —s~* and
wavelength A;, = 1500 nm. Therefore the ratio d/1; = 0.02<« 1 Upon taking the field into
consideration our Hamiltonian becomes time dependent. As stated above, the Floquet theory can be
applied to our time-periodic Hamiltonian Hgyyfqce(t) = Hsyrface(t + T) with the period T = 2m/w.
Analogous to the Bloch theory involving crystal quasi-momentum, a solution | 7 (t))=
exp (—iét) | ¢ (t)) involving the Floquet quasi-energy ¢ could be written down for the time-
dependent Schrodinger equation of the system. The Floquet state satisfies | ¢ (t)) = € (t + T)) and,
therefore, could be expanded in a Fourier series | ¢ (t)) = X, exp(—irwt) |&.) where r is an
integer. Then the wave function, in terms of the quasi-energy ¢ has the form | 7 (t)) =
Zrexp(—i(%+rw)t
the Sambe space (the extended Hilbert space)[27,28]:

1T i(r-s)m 4
Zs Hsurface,r,s | frsl ) = (Shw6r,s + ;fo Hsurface(t)e (r=s)et dt) | fg ) = &y |€7§ ) (9)

The matrix element of the Floquet state surface Hamiltonian Hgyyfaceqp iS given by

&, ). This makes us arrive at an infinite dimensional eigenvalue equation in

Hoyrfaceap = @hwdy g + %fOT Hgurface (1)@ P9tdt,  where ( a,f) are integers. In view of the
Floquet theory [29-32], in the high-frequency limit, a thin film system, irradiated by the circularly
polarized radiation, can be described by an effective, static Hamiltonian. in the off-resonant regime
using the Floquet-Magnus (high-frequency) expansion [30]:

HFloquet

H ;|
Cunthee (k) — Hsurface,0,0+ [ surface,0,—1 surface,o.l] + 0( (1)_2), (10)

hw
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where Hgyrracenm = % fOT Hgyriace (£) ! ™9t dt with n# m. For M << tg4 ,, We can write
tq1 + b2t
Hsurface,O,O = hsurface(k' qa,u b) + [MTfl + Z(tdz + bztfz) + z(td3 + bztf3)]
—_p2
X (a248) 0o®Tg + [ " 12(t4 — bPty;) + 2tas — b2ty)] (a243) 0p®r,, (1)
tar + b%te _
Hsurface,o,—l = - # + Z(tdz + bztfz) + Z(td3 + bztf3) laz(kx
+ et ¢ky)A000®T0 (12)
ta1—b?t ) _
—[ A . f1 +2(tgz — bztfz) + 2(tg3 — bztf3)]la2 (kx +e “pky)AO 0,7,
—(i/2) Ai(ady)o, @1y — (i/2) Ai(ady)e  Va, 1y ,
tar + btey ,
Hsurface,o,l = # + Z(tdz + bztfz) + Z(td3 + bth3) ia? (ky
+ eil/)ky)Aocr()@To (13)
ta1—b?t . _
+ [ B——L 42(t gy — bPtsy) + 2(tas — bPtr3)]ia? (ke + e i ¥k, ) A, 0,®7,

2

+(i/2) Ai(ady)o, @t + (i/2) Ai(akp) e'Vay ®ry.

From the action of the time reversal operator on the wave function we see, that it leads to a
complex conjugation of the wave function. Thus, in the case of spin-less wave functions as © =K,
where K is the operator for complex conjugation. More generally, we can write ©® = UK where U is a
unitary operator. Furthermore, for a spin-1/2 particle, flipping the spin coincides with the time-
reversal. This means ® § = —§ where § =§ 6 and 6 is the vector of Pauli matrices. In view of

these, one may also choose © = io, ®7K. Upon making use of the results A0 = 4, OBO 1 =
—B ,and so on, where 4 = 0,®r1,, 0,1y, ... and B = 0o®Ty ... , we find that

0 HEoMe (ak, ak, )01

surface

=H§é?&tzt(—akx, —aky) + (4aA3siny/hw) {Ajak, oy T, + Ajak

Y (14
0, @1y}

4a? A% AZsiny

ta1+b2tsy
X —_—
[ hw

+2(taz + b2tsy) + 2(tas + bztfg)] + ( )az 1, ,

where @ HE 9T (ak,, ak, ) ©-1= HE9T* (k) (~ak,, —ak,) only when ¥ = 0 orm, thatis, when the
optical field is linearly polarized. In this case, the time reversal symmetry (TRS) is not broken.
However, when ¥ # 0 or , TRS is broken. We now consider the particular cases where { = + /2
and 1 = -m/2. For the former the optical field is left-handed circularly polarized, whereas for the
latter it is right-handed. Thus, the (previously not known) consequence is that the incidence of the
CPOF on the SmBs surface will be able to create a novel state with the broken TRS.

The Hamiltonian to describe this broken TRS system, in the basis (df:’T bcf(r_ . dﬂ:’ . bcf(r_T )T, could

. Floquet _
be written as  H, ¢ . (k) =

d0i:10.20944/preprints202308.1152.v1
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E; Afop(ak_) 0 — i Ajppaq
Afop(aky) E, — i Afppaq 0 (15)
0 I Ajppaq Es — Ajpp(ak-)
i Ajppaq 0 — Ajop(aky) E,

Where k = (kX’ ky), aki = akx $ iaky, El = eop + 193—13, EZ = EOP - 19-0+P‘ E3 = eop + 190_P, E4_ = EOP -
a?A?
w

95m ALyp =4y (1 + 2B,simp (%

9%, = 9%, (k,q,b) are defined below:

)),andA1 = 2Vb. The functions €yp = €pp(k,q,u,b) and

€op(k,q,u,b) = €5(u, b) _D1(b)a2q2 + Dz(b)azkz +a2A€D2(b) + 0(a*k®), (16)

a?A}

955 (k, q, b)= 9o (b)—B1(b)a?q? + B,(b)a?k? — (a?A3B, + (%

) sinp A%). 17)

The eigenvalues (¢&,) of the matrix (15) is given by the quartic &5 + y;0p(k,b) €3 +
Y20r(k,b) €& +v30p(k,b) €4 + Vaop(k,b) =0 (a=1,23,4 ) where the coefficients ygop (kb) (B =
1,2,3,4) are given in Appendix A (see Eqs.(A.21)—(A.23)). It may be noted that to denote these
eigenvalues we have used the symbol var epsilon which is distinct from that in Eq. (A.1). Once again,
in view of the Ferrari’s solution of a quartic equation, we find the roots as

w

£4(s,0,k,b)
- Nop (k) _V10P(k: b)
B 2 4
+1{ bop(l) — <"0’°2(k)> (18)
1
2
+ scop(k) L
or Nop (k)

where a = 1,2,3,4, s = =1 is the spin index and | = *1 is the band-index. The spin-down (s =
—1) conduction band ( { = +1) and the spin-up (down) (s = +1) valence bands ( | = —1), denoted
respectively by & =4+1,s=-1kb) , &(l=-1,s=4+1kb),and &(=-1,s=-1kDb)
somewhat peculiar as will be shown below. The functions appearing in Eq. (18) are given by

2byp (k) 1 1
Nop(k) = 0; + (Bop (k) — Aoop(k))3 — (Bop (k) + Aoop(k))3, (19)
b3p(k)  bop(K)dop(k)
Doop (k) = ( 057 - 3 o — Ccznp(k))/ (20)
2 4d% pb? dopbd 2b3p  2cipbopd a3
B0 = Gty + 4800 4ty — e e, htgntor s dhiye,

bop(k) — {3710P(krb)21;8Y20P(krb) }’ Cop (k) — {—Y10P(kyb)3+4Y10P(er)ZVZOP(krb) —-8y30p(k,b) }’ (22)

dop (k) = —3ylop(k.b)‘*+2samp(k,b)—64y1m;(5k6.b)ygop(k,b)+16ylop(k.b)2y20p(k.b). 23)

The eigenvectors corresponding to &,5 could be calculated in a manner given in the Appendix

A. The value of a®A3 (dimensionless intensity of the radiation)is taken to be around 0.8 which is good
enough for the radiation field of frequency v~3 x 10'*Hz under consideration. Moreover, siny =
+1 ( siny = - 1 sign) corresponds to the left-handed (right-handed) circularly polarized radiation
above. We notice from above that CPOF not only renormalizes d and f electron hopping integrals but
also does the renormalization of the hybridization parameter(HP) . We have the renormalized
a?43

hw

hybridization parameters(HP) as Af,, = 4, (1 + 2stin1/)( )), and A; = 2Vb. As B,(b) =|

d0i:10.20944/preprints202308.1152.v1
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—_p2
tdlzﬂ] > 0, we find that the renormalized HP A%y, > A; ( Afpp < Ap)for the left-handed (right-

handed) CPOF. However, the renormalized HP Aj,p < A; ( Alpp > A;) for the left-handed(right-

handed) CPOF. We note that, in principle, when a renor-malized parameter is less than A4, it is
possible that there is a critical intensity of the radiation a?43 ~ (t(h—?z)t) at a given frequency at
d1—b“tsy

which the RHP in question will be zero. This, however, may affect the topological nature of the

material. Now the nearest neighbor hopping elements t;; and tf are related to the band masses by
2

tarf1 = mel—az. If one takes for the band masses md( mf) =15m, (50m,), where
af

m,is the rest mass of the electron, then the corresponding values of the hopping matrix elements are

tq1 =150 meV and t;;= 4.5 meV. This yields the critical intensity of the radiation a?A% ~ 2.25 which

is roughly three times the intensity value assumed in the graphical representations in Figure 3.
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Figure 3. The plots of energy eigenvalues ¢&,(s,0,k b) in Eq.(31) as a function of ak for
agiven intensity of incident radiation a4, = (0.80, 0.50). The Figures 4(a) and 4(b), respectively,
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corresponds to the plots for the left handed and the right-handed CPOF. The same is true for the
Figures 4(c) and 4(b). The numerical values of the parameters used in the plots in (a) and (b) are t,,
=1, t; = =08, tg, =001, tf, =001, tz, = 0.001, t;, =0.001, ¢, = — 0.02, V=01, b =0.98,u =
0,ad, = 0.8, M = 0.0001 = 0,and Uy » t4,. The numerical values corresponding to (c) and (d) are p
= —0.5,and a4, = 0.5 ; the rest of the values are the same as in (a) and (b).The horizontal lines
represent the Fermi energy.

In Figure 3 (a),3(b), 3(c), and 3(d) we have plotted the energy eigenvalues &,(s,0,k,b) as a
function of ak for a4, = (0.80,0.50) for the circularly polarized light. Whereas Figures 3(a) and 3(c)
correspond to left-handed CPOF, 3(b) and 3(d) to the right-handed CPOF. The numerical values
of the parameters used in the plots are t4, =1, t;, = —0.8, t5, = 0.01, tf, = 0.01, ta, =0.001, tg, =
0.001, ¢, = — 0.02, V=01, b =098,u=(0,-0.5), M =0.0001 = 0,and Uy » t4,. The horizontal
lines represent the Fermi energy. The conduction and valence bands denoted by &,(I = +1,s =
-1,k b), &s(l=-1,5s =+1,k,b),and &,(Il =—1,5s = —1,k,b) represent-ed by differently colored
curves, apart from the band-inversion, exhibit some peculiarities by way of the multiple avoided
crossings and the near absence of a surface Dirac cone at k = 0 in 3(a) and 3(b) unlike that in Figure
1(a).This non-trivial feature could be ascribed to the interaction of the system with the incident
radiation. The figures show that when TRS is broken despite M = 0, the fledgling novel phase of the
system is very robust. The reason being in both the figures the Fermi energy intersects the band
&(l=-1,u=+1,k,b) only in the same BZ an odd pair number of times. This pair of surface state
crossings (SSC)corresponds to the momenta k= (+2,0) or (0,%+2) in Figures 3(a) and 3(b).
However, in Figures 3(c) and 3(d) the same happens at the momenta k = (+£1,0) or (0,+1). These
momenta satisfy the condition ak + aG = —ak, where the reciprocal lattice vector G is (+4,0) or
(0,+4) in Figures 3(a) and 3(b) and (+2,0) or (0,+2) in Figures 3(c) and 3(d). Our graphical
representation lead to the fact that, due to the light-matter interaction, the emergent unconventional
phase possibly corresponds to QSH. However, as stated in section 1, the conclusive evidence of this
TRS-broken phase being QSH/QAH phase will be obtained once we calculate the spin Chern
number[34] and the Z: invariant which are future tasks.

4. Discussion and concluding remarks

The strong correlation effects and diverse surface conditions make SmBs extremely complicated
and almost a Gordian knot. Despite this, as we have seen above, our low-energy model was able to
show that the compound is a strong TI. Our low-energy model was also able to capture the fact that
there should be a surface Dirac cone at k=0(as in ref.[16]) in Figure 1(a) and 1(b) for M =0. For M#
0 (Figure 1(d)), since TRS is broken, there is no Kramers degeneracy. By calculating BC and the Chern
number we have been able to show that the Figure 1(d) corresponds to QAH state. In the case of the
light-matter interaction in section 3, however, we need to show that the novel TRS-broken phase
(despite M = 0) corresponds to QSH state. The problem needs an extensive investigation introducing
an additional term

h, = [G) (— a, sin(kya)) oy Q (1, + 1 ) + (%) g sin(kya) oy ® (12 +70)], (23)

which is the Rashba spin-orbit coupling (RSOC) between the d-electrons, in Eq. (1). Here

o, stands for the strength of RSOC.These are highlights of the present report.
The Rashba coupling can arise in the present system due to proximity of material lacking in the
structural inversion symmetry. In view of the spin-polarized ARPES measurements which appear to
confirm the surface helical spin texture [45,46], it would be interesting to see how does surface state
react to Rashba splitting as there is evidence of for a massive surface state at the surface Brillouin
zone center which can exhibit Rashba splitting[47]. The Rashba SOC is of particular importance as it
is a crucial ingredient for several spintronics and topological phenomena [48].

There are many other complications to bring home the point that the system needs concerted
investigations. In fact, we are presently working on three of the several issues to be discussed below
in brief: (i) Since we have considered surface state quite extensively, the next step forward is an
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investigation on the Kondo break down[49,50]. (ii)In YbBu, a finite residual temperature-linear term
in the thermal conductivity x/T(T — 0) is observed demonstrating the presence of gapless and
itinerant neutral fermions [51]. On the other hand, x/T (T — 0) in SmBs has been controversial [52,53].
While «/T(T — 0) of SmBs has been reported to be very small but finite [54-56], the absence of « /T(T
— 0) has been reported in references [55,571. It is worth mentioning that in ref.[58] «/T(T — 0) has
been shown to be finite. In view of the fact that TKI are found to be exceptionally sensitive to
impurities, the issue needs to be looked into. (iii) Finally, in the quantum oscillation (QO)
experiments of Li et al. [59], the signatures of two-dimensional Fermi surfaces supporting the
presence of topological surface states were obtained. Various theoretical models were put forward
that invoke novel itinerant low-energy neutral excitations [60] within the charge gap. These
excitations were proposed to produce magneto quantum oscillation (MQO) signals. The theoretical
models which entered the fray are based on magnetoexcitons [61], scalar Majorana fermions [62],
emergent fractionalized quasiparticles [63] and non-Hermitian states [64]. As has been reported
earlier [61], in SmBs, the QOs are observed only in the magnetization (de Haas-van
Alphen(dHvA)effect). The dHVA oscillations strongly deviate below 1 K from the Lifshitz-Kosevich
theory (LKT) possibly due to the presence of magnetic impurities [65]. It must be mentioned that
the QOs in YbB12 [66] are observed in both magnetization (the de Haas-van Alphen, dHVA, effect)
and resistivity (the Shubnikov-de Haas, SdH, effect) at applied magnetic fields H where the
hybridization gap is still finite. The temperature-dependence of the oscillation amplitude complies
with the expectations of Fermi-liquid theory [66]. It is hoped that the details of the problematic issues
given above, related/unrelated to the present communication, will motivate the condensed matter
physics community to delve deeper into this problem.

In conclusion, looking at the controversies and the possibilities, it is anybody’s guess that there
are many unsettled issues. Unless other TKI candidates are discovered and thoroughly studied, it is
perhaps difficult to achieve enhancement in the current understanding of strongly correlated
topological insulators. In this backdrop, it is pertinent to make an attempt to investigate thoroughly
what exactly are the physical explanation of the issues involved. In a future communication, as we
already stated, we undertake a part of this demanding task.

Appendix A

Eigenvalues and eigenvectors of the matrix in Eq. (3)
The eigenvalues €; of the Hamiltonian matrix (12) are given by the quartic

Ej4+ﬂ Ej3+b €j2+C €] +d=0. (Al)

Inview of the Ferrari's solution of a quartic equation, we find the roots as

50 (k) (k) 2
€ (s,0,k,b, M) =€/ (b)=o Tloz —%+s bo(k)—<n02 >+ o cy(k) m . (A2)

where j=1,2,3,4, o = %1 is the spin index and s = *1 is the band-index. The coefficients (4, b, ¢, d)
of the quartic are given by

a= - 2 (Ed + EC)/ Ed = (E(k'q'."ltb) +19(k'Q»b)):€c = (E(k:q;#,b)—ﬁ(k;q’b))r (A3)

b= (AB+CD)+ 4 €ge.+€?+2(d? +d3 + d?), (A4)
c= —2( €AB+¢€,CD+ (€4 + €.) (d? +d% + d?)), (A5)
d =[ ABCD + (AD + BC)((d? + d3) + (AC + BD)d3 + (d? + d3 + d3)? , (A6)

A=(eg+M),B= (¢4—M),C= (e, +M),D = (e, — M). (A7)
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€Ed—€c

The following symbols are defined in the main text: d, = , dy = —iAjaky,d, = iAjaky,
ds; = A;ay, and the hybridization parameter A; = 2Vb. The functions appearing in Eq. (A.2) are
given by

2bg (k)

Mo(k) = 228 1 (A(K) — 8o())5 — (ACK) + Ag())5, Ag(k) = (L - 2WbB _ 24y (A8)

_ 2 ., 4dibd 4 _ dobg _ 23 2cdbodo | di\,, __ (3a%-8b
A(k)_(729b0 to YT Tt T 27) » o) ={ 16 b (A9)

—a3+4ab -8c —-3a*+256d—64ac+16a?b

co(k) = {T}’ do(k) = 256

The eigenstates linked to the eigenvalues €; (s,0,k q,u,b,M) in (A.2) are given below. These
are required for the calculation of the Chern number when M # 0. These Bloch states are given by

(A10)

HO)
REAGCI

Wik = ¥ ; W | j=1,234, (A11)

3 (k)
V00 = g6, w0 = (=iaky) 500 g/G0), w30 = i(g; —ea + ML) )1

g1 k),

i (k) = (—Asak)f] () gl (A13)
gl = Y, ) = (1+ aZk?|f) (k)|? + (€ —€qa+ M)2 £ ()2 +A2a2k? A

£ (01273,
£ (k) = (aq)™[(€) —eq — M)(€; —€c + M) +A3a2k? +A2a’q?]
x [(g —€q + M)(gj —e. + M) +A3a%k?  (A15)

+A%a2q2]_1

f3j(k) = (A1aq) 7 t[(€; —eq — M)(€j —€. + M) +A%ak? +nAia’q?]

(A16)
x [(€) —eq + M)(€j —e. + M) +AZa2k? +A%a2q?] ", n= E—Zﬁ ,
£l =2M/[(€; —eq + M)(€; —€, + M) +A3a%k? +A3a%q?]. (A17)

In the special case M<Lty, 1/){(k) =Yj_1/2(k), wg(k) = dl;i\(j_l/z(k) , wg(k) =
3

(€j—€q)

7 Y]-_l/z(k) , and 1/)1(k)=0. W efind that the function Y]-_l/z(k) is given by
3

aq

2 1/2
[%ﬂak)u(aq)Z]

The eigenvectors in this special case are
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aq
(e-ca)” "
= +(ak)?+(aq)?
1
—iaky
/
(e-ca)” v
Uiy ~ 2 +(ak)?+(aq)? (A18)
], ~ .
(€j-€a)
l—]Al
(¢j-<a)’ v
7 —+(@)?+(aq)?
1
0

Chern number calculation: We calculate here the intrinsic anomalous Hall conductivity
(AHC)/Chern number to show that the system is in the quantum anomalous Hall (QAH)phase when

M # 0. The expression of AHC is o4y = —(= )ZJ fBZ o8 g(E (k) — ) Qf(k), where u is the

chemical potential of the fermion number, j is the occupied band index, g(E;(k) — u) is the Fermi-

Dirac distribution and Qf (k) is the z-component of the Berry curvature (BC) for the jth band. To
obtain AHC, we calculate BC using the Kubo formula

Q2(k)=-2 R2[Im Tip;(E; (k) — Ei(K) 72 i, kITeli, k)i, k|55 ), k). (A19)

Here k is the Bloch wave vector, E;(k) is the band energy, |j,k) are the Bloch functions of a

single band. The operator ¥ represents the velocity in the j direction. For a system in a periodic

potential and its Bloch states as the eigenstates, in view of the Heisenberg equation of motion ih Z—f=
[ 2, H], the identity (m K'|Tz|n, k)= (—) (E (K") — E; (k)) <l, k’| |], > is satisfied. Upon using
this identity, we obtain AHC in the zero temperature limit as oy = C (?2 )where C=2C, C

/ fBZ Qyy (k) % .The z-component of the Berry-curvature (BC) is

oKy ok (A20)

2
oky
We use the results presented in (A.11) - (A.20) to calculate BC. Next, upon integrating BC on a
k-mesh-grid of the Brillouin zone, we calculate the intrinsic AHC.
Eigenvalues of the matrix (15): The eigenvalues (¢,) of the matrix (15) is given by the quartic
et + viop(k,b) €3 +v0p(k,b) €2 +y30p(k,b) €4+ Vaor(k,b) =0 (a= 1,234 ) where the
coefficients ygop (k,b) (B =1,2,3,4) are given by

Y1op(k,b) = — Z E, . Y20p (k,b)

(A21)
1 + a- + 2 - 2 2
= ) ) Euby — 2(AT0pAion) (@)’ — (AL, + Aiop) (@)’
UEV
Y3op(k,b) = (_ %) Zuqtv#:o EuEan + (A-I’-OPAl_OP)(aq)Z Zu Eu + AIOPZ(ak)Z(El +
E;) + (A22)

2
Afop~(ak)?(Ez + Ey),

d0i:10.20944/preprints202308.1152.v1
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_ 2

Yaop (k) = [I.E, — ATpp?(ak)*(E1E,) — Afpp” (ak)*(E3E,) —

ATopATop(aq)* (ELEy + E2E3) + (A23)

- 2 _ 2 _ 2 2
ATop Afop” (ak)*+ ATop”Afop” (aq)* — 2470p° Atop” (aq)?((aky)? — (aky) )-

Appendix B

Supporting result for the calculation of Z: invariant of the system: We feel necessary to
supplement Eq.(8) and note below this equation by presenting an outline of the reports in ref.[15] in
an effort to make the present communication comprehensive. We consider the green and red bands
in Figure 1(a) and 1(b), and denote their Bloch wave functions, respectively, as [0 (k)) and 10 (k)).
Following Fu and Kane[15] we assume the system one dimensional, i.e. k = (k,0).We impart the time
dependence assuming that the band parameters change with time and return to the original values
at t = T. We also suppose that the Hamiltonian h5f% . (M = 0) satisfies the following condition
hBHZ (M =0,—t) = @hBHZ (M =0,t)@". It is well-known [15] that charge polarization P can
be calculated by integrating the Berry connection of the occupied states over the BZ. In the present
case of the two-band system, P may be written as P = P1 + P2 where the Berry connections

{—i(l’)(“)(k)|Vk| 1’)(“)(1())} are given by cge(k) (@ =1,2)and P; = f_"ﬂ% c1(k), P, = _”n% Cqp (k).
The Berry curvature is given by Qa(k) = Vk x ¢, (k). The total polarization density C(k) = ¢34 (k)+
22 (k). This yields the TR polarization which is defined by P, =P1-P3=2P1-P.Here P, gives the
difference in charge polarization between spin-up and spin-down quasiparticle bands. We now go
back the charge polarization P, calculated by integrating the Berry connection of the occupied states
over the BZ. Furthermore, the time-reversed version of 10 (k)) is equalto 0™ (—k)) except for
a phase factor. Hence, at t =0 and t = T/2 one may write ® [V (k)) = e~#® |y (-k)) and @ 10D (k))
= — e~ PR Y@ (—k)). It is not difficult to see that the matrix representation of the TR operator @in
the Bloch wave function basis &z (k) = {(1’)(“)(—k)|@| V) (k))} will now be given as §&(k) =
( 0 e~ir(R)
—e~ipk) 0

§ap (— k) = — &g (k). This implies that &g (k) is anti-symmetric at a TRIM. Upon getting back to
the connections, we note that the connections satisfy c¢;(—k) = c;,(k) — %p(k). These lead us to

the charge polarization between spin-up bands P1 as P, = f;r % Cc(k) — i [o(m) — p(0)] . Since

p(k) = ilogé&;,(k), and C(k) = tr(c(k)), after a little algebra, we find P, = élog (—“?2((((:))2 %)
12 12

Obviously enough, the argument of the logarithm is +1 or 1. Furthermore, since log(-1) = int one
can see that P, is 0 or 1 (mod 2).Physically, of course, the two values of P, corresponds to two
different polarization states which the system can take at t = 0 and t = T/2.The Bloch functions
10@ (k,t)) introduced above could be visualized as maps from the 2D phase space (k, t) to the
Hilbert space. As in refs.[15], the Hilbert space could be separated into two parts depending on the
difference in P, between t =0 and t=T/2. This leads to introduction of a quantity vo, specified only

in mod 2, and defined as (P, G) - P, (0)): When Py, does not changes between t = 0 to T/2, vo=0,
whereas if there is a change then vo= 1. The visualization mentioned above, thus, yields that the
Hilbert space is trivial if vo = 0, while for vo =1 it is nontrivial (twisted). Equivalently, the system
band structures are characterized by Kane-Mele index[15] Z,=+1 (vo = 0) and Z>=~1 (vo =1). We obtain
E12(](8;)im)
b1(10m)
We now consider the generalization of this result. For this purpose, we suppose that 2N bands
are occupied and forming N Kramers pairs. For eachsuch pair 7, at the TR symmetric times t =0 and

). One can easily confirm that &g (k) is a unitary matrix. It has the property

D= Tl (BI)
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nt the wave functions are related by write O 1’);2)(k)> = e‘ipn(k)h');l)(—k)) and Ol 1’)511)(k)> =

e~ iPn(0 @ (—k)> and the matrix £(k) =

0 e~ip1() 0 0
—e~tp1(=k) 0 0 0
0 0 0 e~ip2(k) ... (B2)
0 0 —e~ip2(=K) 0
. . . : _iyN_ o) i
This leads to &z (k) By (k) v e Bawanos (kK ) = e E=rPnlamm) = pr [¢ (1)),

where Pfaffian is defined for an antisymmetric matrix and is related to  the determinant by Pf[4]* =
det[A]. The difference in charge polarization between spin-up and spin-down quasiparticle

, . : : _1 det[§(0)] = _PF{E(m)]
bands, in this general case, is now given by P, =— log( PFEQ)]  JaetiE (0)]). Thus, the Z2
)
k

topological invariant v is given by (—=1)" =[[;8 ( trim) where for each TRIM kY)_one defines

trim

ORI

As we see in the section 2 of the main text, this leads to the classification of the Hilbert space into
the twisted ( v, =1) and the trivial one ( v, =0).

References

1.  Amorese, O. Stockert, K. Kummer, N. B. Brookes, Dae-Jeong Kim, Z. Fisk, M. W. Haverkort, P. Thalmeier,
L. Hao Tjeng, and A. Severing, Phys. Rev. B 100, 241107(R) (2019).

2. S.R. Panday and M. Dzero, Interacting fermions in narrow-gap semiconductors with band inversion, J.
Phys.: Condens. Matter 33 275601(2021).

3. A. Stern, M. Dzero, V.M. Galitski, Z. Fisk and ]. Xia, Surface-dominated conduction up to 240 K in the
Kondo insulator SmB6 under strain, Nat. Mater. 16 708 (2017).

4. P.P.Baruselli and M. Vojta, Kondo holes in topological Kondo insulators: Spectral properties and surface
quasiparticle interference, Phys. Rev. B 89, 205105 (2014).

5. L. Miao, C.-H. Min, Y. Xu, Z. Huang, E. C. Kotta, R. Basak, M. S. Song, B. Y. Kang, B. K. Cho, K. Kifiner, F.
Reinert, T. Yilmaz, E. Vescovo, Yi-D. Chuang, W. Wu, ]. D. Denlinger, and L. A. Wray, Phys. Rev. Lett. 126,
136401 (2021).

6. M. Dzero, K Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 2010, 104, 106408(2010); ibid Rev. B 2012, 85,
045130 ( 2012).

7. D.J.Kim, S.Thomas.; T. Grant, J. Botimer, Z. Fisk, J.Xia, Sci. Rep., 3, 3150(2013).

8.  S. Wolgast, C. Kurdak, K. Sun, J. W. Allen, D.-J. Kim, and Z. Fisk, Phys. Rev. B 88, 180405 (2013).

9. X.Zhang, N. P. Butch, P. Syers, S. Ziemak, R. L. Greene, and J. Paglione, Phys. Rev. X 3, 011011 (2013).

10. D.].Kim, ]J. Xia, and Z. Fisk, Nat. Mater. 13, 466 (2014).

11. P. K. Biswas, M. Legner, G. Balakrishnan, M. C. Hatnean, M. R. Lees, D. M. Paul, E. Pomjakushina, T.

Prokscha, A. Suter, T. Neupert, et al., Phys. Rev. B 95, 020410 (2017).

12.  A.P. Sakhya and K.B. Maiti, Scientific Reports volume 10, Article number: 1262 (2020).

13. N. Wakeham, P. F. S. Rosa, Y. Q. Wang, M. Kang, Z. Fisk, F. Ronning, and J. D. Thompson, Phys. Rev. B 94,
035127 (2016).

14. Udai Prakash Tyagi, Kakoli Bera and Partha Goswami, On Strong f-Electron Localization Effect in a
Topological Kondo Insulator, Symmetry,13(12), 2245 (2021); https://doi.org/10.3390/sym13122245.

15. M. Legner, Topological Kondo insulators: materials at the interface of topology and strong
correlations(Doctoral ~ Thesis),ETH Zurich Research Collection(2016).Link:https://www.research-
collection.ethz.ch/bitstream/ handle/20.500. 11850/155932/eth-49918-02.pdf?isAllowed=y&sequence=2.

16. E.Lou, ].-Z. Zhao, H-Weng, and X. Dai, Phys. Rev. Lett. 110, 096401(2013).

17. B. A.Bernevig, T. L. Hughes, and S.-C. Zhang: Science 314, 1757 (2006).

18. L. Fu, C.L. Kane.: Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006);
L. Fu, C. L. Kane, and E.J. Mele: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803
(2007); C. L. Kane, and E.J. Mele: Zz Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett.
95, 146802 (2005).

19. S.S. Dabiri, H. Cheraghchi, and A. Sadeghi, Light-induced topological phases in thin films of magnetically
doped topological insulators Physical Review B 103, 205130 (2021); H. Xu, J. Zhou, and J. Li, Light-induced



https://doi.org/10.20944/preprints202308.1152.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 August 2023 d0i:10.20944/preprints202308.1152.v1

17

quantum anomalous Hall effect on the 2D surfaces of 3D topological insulators, Advanced Science, 2101508

(2021).

20. W. Zhu, M. Umer, and ]. Gong, Floquet higher-order Weyl and nexus semimetals, Phys. Rev. Research 3,
L032026 (2021).

21. L. Zhou, C. Chen, and J. Gong, Floquet semimetal with Floquet-band holonomy, Phys. Rev. B 94, 075443
(2016).

22. H. Hubener, M. A. Sentef, U. D. Giovannini, A. F. Kemper, and A. Rubio, Creating stable Floquet-Weyl
semimetals by laser-driving of 3D Dirac materials, Nat. Commun. 8, 13940 (2017).

23. D. Zhang, H. Wang, J. Ruan, G. Yao, and H. Zhang, Engineering topological phases in the Luttinger
semimetal a-Sn, Phys. Rev. B 97, 195139 (2018).

24. H.Liu, ].-T. Sun, and S. Meng, Engineering Dirac states in graphene: Coexisting type-I and type-II Floquet-
Dirac fermions, Phys. Rev. B 99, 075121 (2019).

25. L. Li, C. H. Lee, and ]J. Gong, Realistic Floquet semimetal with exotic topological linkages between
arbitrarily many nodal loops, Phys. Rev. Lett. 121, 036401 (2018).

26. X.Liu, P. Tang, H. H'ubener, U. De Giovannini, W. Duan, and A. Rubio, arXiv preprint arXiv:2106.06977
(2021). 22. F. Qin, R. Chen, and H.-Z. Ly, ]J. Phys. Condens. Matter 34, 225001 (2022).

27. H. Sambe, Steady states and quasi-energies of a quantum mechanical system in an oscillating field, Phys.
Rev. A 7, 2203 (1973).

28. A. A. Pervishko, D. Yudin, and I. A. Shelykh, Impact of high-frequency pumping on anomalous finite-size
effects in three-dimensional topological insulators, Phys. Rev. B 97, 075420 (2018).

29. R. Chen, B. Zhou, and D.-H. Xu, Floquet Weyl semimetals in light-irradiated type-II and hybrid line node
semimetals, Phys. Rev. B 97, 155152 (2018).; R. Chen, D.-H. Xu, and B. Zhou, Floquet topological insulator
phase in a Weyl semimetal thin film with disorder, Phys. Rev. B 98, 235159 (2018).

30. N. Goldman and ]. Dalibard, Periodically Driven Quantum Systems: Effective Hamiltonians and
Engineered Gauge Fields, Phys. Rev. X 4, 031027 (2014); A. Eckardt and E. Anisimovas, High-frequency
approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys.
17, 093039 (2015).

3l. N. Tsuji, T. Oka, and H. Aoki, Correlated electron systems periodically driven out of
equilibrium: Floquet+DMFT formalism, Phys. Rev. B 78, 235124 (2008).

32. B. H. Wu and J. C. Cao, Noise of Kondo dot with ac gate: Floquet-Green’s function and noncrossing
approximation approach,Phys. Rev. B 81, 085327 (2010).

33. S. Kohler, J. Lehmann, and P. H"anggi, Driven quantum transport on the nanoscale ,Phys. Rep. 406, 379
(2005).

34. Y. Yang, Z. Xu, L. Sheng , B. Wang, D. Y. Xing , and D. N. Sheng, Time-reversal-symmetry-broken
quantum spin Hall effect, Phys. Rev. Lett. 107, 066602(2011).

35. X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Topological quantization of the spin hall effect in two-dimensional
paramagnetic semiconductors, Phys. Rev. B 74, 085308 (2006).

36. 36.W.Ruan, C. Ye, M. Guo, F. Chen, X.Chen, G.-Ming Zhang, and Y. Wang, Phys. Rev. Lett. 112, 136401(
2014).

37. S.Rogler, T.-Hwan Jang, D.-Jeong Kim, , and S. Wirth , Proc. Natl. Acad. Sci. U.S.A., 111 (13) 4798 (2014).

38. M. Neupane, N. Alidoust, S. Y. Xu, et al., Surface electronic structure of the topological Kondo-insulator
candidate correlated electron system SmBes. Nat Commun 4, 2991 (2013).

39. ]. Jiang, S. Li, T. Zhang, et al., Observation of possible topological in-gap surface states in the Kondo
insulator SmBe by photoemission. Nat Commun 4, 3010 (2013).

40. N. Xu, P. Biswas, J. Dil, et al., Direct observation of the spin texture in SmBs as evidence of the topological
Kondo insulator. Nat Commun 5, 4566 (2014).

41. F.Qin, R. Chen, and H.-Z. Ly, J. Phys. Condens. Matter 34, 225001 (2022).

42. J. W. Mclver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu, G. Meier, and A. Cavalleri, Light-induced
anomalous hall effect in graphene, Nature Physics 16, 38 (2019).

43. 43.B. K. Wintersperger, C. Braun, F. N. Unal, A. Eckardt, “ M. D. Liberto, N. Goldman, I. Bloch, and M.
Aidelsburger, Realization of an anomalous floquet topological system with ultracold atoms, Nature Physics
16, 1058 (2020).

44. C.S. Afzal, T.]. Zimmerling, Y. Ren, D. Perron, and V. Van, Realization of anomalous Floquet insulators in
strongly coupled nanophotonic lattices, Phys. Rev. Lett. 124, 253601 (2020).

45. N. Xu, P.K. Biswas, J.H. Dil, R.S. Dhaka, G. Landolt, S. Muff, C.E. Matt, X. Shi, N.C. Plumb, M. Radovi¢, E.
Pomjakushina, K. Conder, A. Amato, S.V. Borisenko, R. Yu, H.-M. Weng, Z. Fang, X. Dai, ]. Mesot, H. Ding,
M. Shi, Nat. Commun. 5, 4566 (2014).

46. S.Sugaetal, J. Phys. Soc. Jpn 83, 014705 (2014).

47. Hlawenka, P., Siemensmeyer, K., Weschke, E. et al. Samarium hexaboride is a trivial surface conductor. Nat
Commun 9, 517 (2018). https://doi.org/10.1038/s41467-018-02908-7


https://doi.org/10.20944/preprints202308.1152.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 August 2023 d0i:10.20944/preprints202308.1152.v1

18

48. A. Manchon, H. C. Koo, ]J. Nitta, S. M. Frolov, and R. A. Duine, New perspectives for rashba spin—orbit
coupling, Nat. Mater. 871(2015).

49. 1.Paul, C. P’epin, and M. Norman, Phys. Rev. Lett. 98, 026402 (2007).

50. V. Alexandrov, P. Coleman, O. Erten, Phys. Rev. Lett. 114, 177202 (2015).

51. Y. Sato et al., Nat. Phys. 15, 954 (2019).

52. Fuhrman, W.T., Chamorro, J.R., Alekseev, P.et al. Screened moments and extrinsic in-gap states in
samarium hexaboride. Nat Commun 9, 1539 (2018). https://doi.org/10.1038/s41467-018-04007-z

53. Infact, we have the literature where it is reported that the material may show a linear T-term in the specific
heat which has a coefficient that varies between 2 and 25 m]J/mole/K? , depending upon the sample
preparation [7, 16, 17]. Doping with 5% of magnetic impurities can lead to an order of magnitude increase
in the heat capacity [18].

54. M. E. Boulanger et al., Phys. Rev. B. 97, 245141 (2018).

55. Y. Xu et al., Phys. Rev. Lett. 116, 246403 (2016).

56. M. Orendac, et al. Isosbestic points in doped SmBs as features of universality and property tuning. Phys.
Rev. B 96, 115101 (2017).

57. S.Sen et al.,, Physical Review Research 2, 033370 (2020).

58. Chowdhury, D., Sodemann, I. & Sentil, T., Nat. Commn. 9, 1766 (2018).

59. G. Li et al.,, Science, 346, 1208-1212(2014). This study is the first report of the quantum oscillations in
magnetization in Kondo insulators.

60. G. Baskaran, arXiv: 1507.03477 v1 (2015).

61. Knolle, J. & Cooper, N. R., Phys. Rev. Lett. 118, 096604 (2017).

62. Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M., Phys. Rev. Lett. 119, 057603 (2017).

63. Chowdhury, D., Sodemann, I. & Sentil, T., Nat. Commn. 9, 1766 (2018).

64. Shen, H. and Fu, L., Phys. Rev. Lett. 121, 026403 (2018).

65. W. T. Fuhrman and P. Nikoli’c, Magnetic impurities in Kondo insulators: An application to samarium
hexaboride, Phys. Rev. B 101, 245118 (2020).

66. Z.Xiang, Y. Kasahara, T. Asaba, B. Lawson, C. Insman, Lu Chen, K. Sugimoto, S. Kawaguchi, Y. Sato, G.
Li, S. Yao, Y.L. Chen, F. Iga, J. Singleton, Y. Matsuda, and L. Li, Quantum oscillations of electrical resistivity
in an insulator, Science 69, 65 (2018).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202308.1152.v1

